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We investigate πρ scattering based on the coupled-channel formalism with the πρ and KK̄� (K̄K�)
channels included. We construct the kernel amplitudes by using the meson-exchange model and compute
the coupled integral equation for πρ scattering. By performing the partial-wave expansion, we show
explicitly that the a1ð1260Þ meson is dynamically generated by the coupled-channel formalism. The a1
meson only appears by including the KK̄� (K̄K�) channel. We obtain the pole position of the a1 meson asffiffiffiffiffi
sR

p ¼ ð1170.7 − i173.0Þ MeV. We conclude that the a1 meson can be interpreted as a kaon and vector
kaon molecular state.
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I. INTRODUCTION

The a1ð1260Þ meson is the first axial-vector meson. If
chiral symmetry SUð2Þ ⊗ SUð2Þ is unbroken, then the ρ
and a1 mesons form a chiral doublet [1,2] as the π and σ
(f0ð500Þ) do. The existence of the a1 meson has been well
established since the ACCMOR Collaboration [3] con-
firmed it in partial wave analyses of the π−π−πþ system.
However, the values of its mass and width do not reach
an experimental consensus. For example, the ARGUS
Collaboration at DESY [4] found the mass of the a1 meson
to be ma1 ¼ ð1046� 11Þ MeV and its width to be Γa1 ¼
ð521� 27Þ MeV in the decay τ → π−π−πþντ whereas
the CLEO Collaboration announced rather large values
ma1 ¼ ð1331� 10� 3Þ and Γa1 ¼ ð814� 36� 13) MeV
in the decay τ → π−π0π0ντ [5]. Recently, the LHCb
Collaboration measured ma1 ¼ ð1195.050� 1.045�
6.333Þ and Γa1 ¼ ð422.013� 2.096� 12.723Þ MeV in
D0 → K∓π�π�π∓ decays [6]. Moreover, one should keep
in mind that there is an inevitable model dependence in
analyzing the experimental data. The Particle Data Group
(PDG) estimates the average values of the a1 mass and
width as ma1 ¼ ð1230� 40Þ and Γa1 ¼ ð420� 35) MeV.
Since the a1 meson has quantum numbers as JPC ¼ 1þþ,

it can be constructed as qq̄ (13P1) state. It is an isovector
meson with negative G parity. Dankowych et al. [7] carried

out the isobar-model partial-wave analysis of high statistics
data on π−p → πþπ−π0n from the Argonne National
Laboratory zero-gradient synchrotron. They extracted the
partial-wave cross section of πρ scattering in S and D waves.
The a1 resonance was observed in the S-wave cross section
with the broad width, which reaches the kaon and vector kaon
(K̄K�) threshold. It was even seen that the a1 meson decays
into K̄ and K� [5,8,9]. It implies that the a1 meson may be
strongly coupled to the K and K�. Thus, the a1 meson may
contain the tetraquark component, or it can even be inter-
preted as the molecular state [10–13]. A similar situation can
be found in the case of the scalar-isovector meson a0ð980Þ,
which is often interpreted either as a tetraquark state or as a
resonance appearing from the πη and KK̄ coupled channels
[14–17]. The scalar mesons f0ð500Þ and f0ð980Þ meson
are also considered as the tetraquark or molecular states
[16,18–22]. In particular, the f0ð980Þ is just below the KK̄
threshold, it can be regarded as aKK̄ molecular state [19,23].
Janssen et al. [24] constructed the meson-exchange model

for πρ scattering with the effective Lagrangian, including
the a1 meson explicitly. In the present work, we will extend
the work of Ref. [24] by considering the coupled-channel
formalism. We add the KK̄� (K̄K�) channel to the πρ
channel but exclude the a1 meson. We will show how the
KK̄� (K̄K�) channel generates dynamically the a1 meson
and describe successfully the S-wave cross section. We first
formulate the kernel amplitude based on the meson-
exchange model. We treat the vector meson based on the
hidden local gauge symmetry [25,26]. This has a certain
merit that the coupling constants are constrained. Then we
solve the coupled integral equation for πρ scattering. The
results for the S-wave cross section clearly reveals the a1
meson with a broad width. We find the pole position in the
second Riemann sheet as

ffiffiffiffiffi
sR

p ¼ ð1170.7 − i173.0Þ MeV.

*sclymton@inha.edu
†hchkim@inha.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 114015 (2022)

2470-0010=2022=106(11)=114015(7) 114015-1 Published by the American Physical Society

https://orcid.org/0000-0002-0215-9758
https://orcid.org/0000-0002-8718-8661
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.114015&domain=pdf&date_stamp=2022-12-16
https://doi.org/10.1103/PhysRevD.106.114015
https://doi.org/10.1103/PhysRevD.106.114015
https://doi.org/10.1103/PhysRevD.106.114015
https://doi.org/10.1103/PhysRevD.106.114015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


II. GENERAL FORMALISM

We start from the definition of the scattering amplitude
expressed as

Sfi ¼ δfi − ið2πÞ4δ4ðPf − PiÞT fi; ð1Þ

where Pf and Pi denote the total four-momenta of the final
and initial state. The formal transition amplitude T fi is
obtained from the Bethe-Salpeter (BS) equation with the
coupled-channel formalism employed:

T fiðp0; p; sÞ ¼ Vfiðp0; p; sÞ þ 1

ð2πÞ4
Z

d4qVfkðp0; q; sÞ

× Gkðq; sÞT kiðq; p; sÞ; ð2Þ

where s is the square of the total energy. p, p0, and q stand,
respectively, for the four-momenta of the initial, final,
and intermediate mesons in the center of mass (c.m.) frame.
The indices i and f represent the initial and final meson
channels, and k designates the intermediate state in the
coupled-channel formalism. Since it is rather complicated
to deal with the BS equation, we use its three-dimensional
reduction, which is not unique. In the current work, we
utilize the Blankenbecler-Sugar (BbS) equation [27,28]
that preserves the unitarity of two-body interaction for
all energies and keeps Lorentz invariance. It is convenient
to introduce the coupled-channel formalism and is
expressed as

T fiðp0;p; sÞ ¼ Vfiðp0;p; sÞ þ 1

ð2πÞ3
Z

d3q
2Ek1ðqÞEk2ðqÞ

× Vfkðp0;q; sÞ EkðqÞ
s − E2

kðqÞ
T kiðq;p; sÞ; ð3Þ

where Eki ¼ ðq2 þmkiÞ1=2 and Ek ¼ Ek1 þ Ek2. The zer-
oth component of the momenta is determined by the
propagator Gk given as q0 ¼ ðEk1 − Ek2Þ=2.
Since we are mainly interested in the a1 meson, we need

to consider only the two channels: πρ and KK̄� (K̄K�).
Other channels such as the πω and πϕ do not contribute to
the production of the a1 meson. In the coupled-channel
formalism, the kernel Vfi in Eq. (3) is expressed as

Vfi ¼
�

Vπρ→πρ VKK̄�→πρ

Vπρ→KK̄� VKK̄�→KK̄�

�
; ð4Þ

where the off-diagonal part of Vfi contains the transition
from πρ → KK̄�ðK̄K�Þ. Since K and K� have no definite G
parity, we need to combine the KK̄� and K̄K� states, which
gives a state with the definite G parity:

jKK̄�ð�Þi ¼ 1ffiffiffi
2

p ðjKK̄�i � jK̄K�iÞ: ð5Þ

Note that we consider only the negative one because πρ has
negative G parity. We will see later that the KK̄� channel
with the positive G parity decouples from the πρ channel.
The kernel Vfi in Eq. (4) is modeled by meson-exchange

diagrams as drawn generically in Fig. 1. Since the a1 meson
will be dynamically generated by the coupled-channel
formalism, we do not include it in the s channel. The
vertices in the Feynman diagrams are formulated from the
SU(3) symmetric effective Lagrangians given by

LPPV ¼
ffiffiffi
2

p
gPPVTrð½P; ∂μP�VμÞ;

LVVV ¼ −
ffiffiffi
2

p
gVVVTrðð∂μVν − ∂νVμÞVμVνÞ;

LPVV ¼
ffiffiffi
2

p gPVV
mV

εμναβTrð∂μVν∂αVβPÞ; ð6Þ

where subscripts V and P denote the vector and pseudo-
scalar mesons involved in the vertices. mV represents
the mass of the vector meson. We choose gPPV ¼ gVVV
by regarding the vector mesons as dynamical gauge bosons
arising from hidden local gauge symmetry [25,26]. The
values of the coupling constants are taken from Ref. [24]:
g2ππρ=4π ¼ 2.84 and ðg2πρω=4πÞm2

ω ¼ 7.5. These couplings
are related to the gPPV and gPVV by SU(3) symmetric factor
as gππρ ¼ 2gPPV and gπρωmω ¼ 2gPVV . Since flavor SU(3)
symmetry is broken, the coupling constants vary from the
SU(3) symmetric case. When it is necessary, we change
the values of the coupling constants, which are not far from
the SU(3) symmetric ones, so that we can fit the exper-
imental data. However, we regard the ϕ exchange coupling
constant as a free parameter. Its value we have selected
differs from the SU(3) symmetric one by 1%.
The trace operators in Eq. (6) run only over flavor space.

The matrices for the pseudoscalar and vector mesons are
expressed, respectively, as

P ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCA; ð7Þ

FIG. 1. The u (left) and t channels (right) of the meson-
exchanged diagrams.
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Vμ ¼

0
BB@

1ffiffi
2

p ρ0μ þ 1ffiffi
2

p ωμ ρþμ K�þ
μ

ρ−μ − 1ffiffi
2

p ρ0μ þ 1ffiffi
2

p ωμ K�0
μ

K�−
μ K̄�0

μ ϕμ;

1
CCA; ð8Þ

where we employ the standard mixing for the ω1 and ω8

components such that the ω meson contains only the u and
d quarks whereas the ϕ meson only comprises the strange
quark. The mixing angle between η and η0 is in the range
between −10° and −20° [29]. It will only lead to ð2 − 6Þ%
difference in the gKηK� coupling constant, so that η0

exchange will provide maximum 13% of the η-exchange
contribution to the KK̄� → KK̄� potential. Moreover, the
contribution of η exchange to the potential is tiny.
Therefore, for simplicity, we ignore the η0 meson exchange
in the current study. The flavor part of Eq. (6) can be
evaluated in the isospin bases and yield factors labeled as IS
listed in the fourth column of Table I. Note that the IS factor
contains both the SU(3) symmetric factor and isospin one.
From Table I, we find it obvious that the KK̄� channel with
positive G parity cannot be coupled to the πρ channel.
Since the hadron has a finite size, we introduce the form

factor at each vertex. We use the following parametrization
for it:

FðtÞ ¼
�
nΛ2 −m2

nΛ2 − t

�
n

; FðuÞ ¼
�
nΛ2 −m2

nΛ2 − u

�
n

; ð9Þ

where m denotes the mass of the exchange particle. n is
determined by the power of the momentum in the vertex.
For example, we take n ¼ 1 for the VPP vertex whereas we
choose n ¼ 2 for the VVP one. Though the cutoff massesΛ
are free parameters, we reduce the uncertainties by fixing
their values as follows: we add (600–700) MeV to the
exchange mass. This idea is based on the fact that a heavier

particle has a smaller size [30–32]. Thus, the value of Λ is
also taken to be larger than that of the corresponding meson
mass by around (600–700) MeV. To fit the data, however,
we choose a larger value of the cutoff mass especially for ϕ
exchange, where its value is 1400 MeV higher than that of
the exchanged meson mass. In addition, we drop out the
energy and angular dependence of the form factors for the
sake of simplicity [24].
We obtain the kernels Vfi by summing the amplitudes

of all possible exchange diagrams listed in Table I. There
are only 3 possible diagrams that provide the Feynman
amplitudes as functions of the Mandelstam variables and
a type of exchanged mesons. The amplitudes for the t
channel with vector-meson exchange and for the u channel
with pseudoscalar-meson and vector-meson exchanges are,
respectively, given by

At
Vðp0;pÞ ¼ ISg2PPVF

2ðtÞðp2 þ p4Þμ

×

�
gμν −

1

m2
V
ðp1 − p3Þμðp1 − p3Þν

�
PðtÞ

× ½ð2p1 − p3Þ · ϵ�ϵν þ ð2p3 − p1Þ · ϵϵ�ν
− ϵ · ϵ�ðp1 þ p3Þν�; ð10Þ

Au
Pðp0;pÞ ¼ −ISg2PPVF2ðuÞð2p2 − p3Þ · ϵ�PðuÞ

× ð2p4 − p1Þ · ϵ; ð11Þ

Au
Vðp0;pÞ ¼ −IS

g2PVV
m2

V
F2ðuÞεμναβpμ

3ϵ
�νðp3 − p2Þαgβδ

× PðuÞεγσηδpγ
1ϵ

σðp1 − p4Þη; ð12Þ

where p1ðpÞ and p2ðpÞ, respectively, denote the four
momenta of the initial vector and pseudoscalar mesons
whereas p3ðp0Þ and p4ðp0Þ are those of the final vector and
pseudoscalar mesons, respectively. The polarization vectors
of the initial and final vector mesons are, respectively, labeled
as ϵðpÞ and ϵ�ðp0Þ. As for the propagators of the exchange
mesons, we utilize the static ones, following Ref. [24].
Since the a1 meson arises from the S-wave transition

amplitude, we carry out the partial wave decomposition of
the kernel and transition amplitudes. The partial-wave
helicity amplitudes can be obtained by projecting the
amplitudes onto the total angular momentum J,

T JðfiÞ
λ0λ ðp0; pÞ ¼ VJðfiÞ

λ0λ ðp0; pÞ þ 1

ð2πÞ3
X
k;λk

Z
q2dq

2Ek1ðqÞEk2ðqÞ

× VJðfkÞ
λ0λk

ðp0; qÞ EkðqÞ
s − E2

kðqÞ
T JðkiÞ

λkλ
ðq; pÞ; ð13Þ

where λ0, λ, and λk denote the helicities of the final (f),
initial (i), and intermediate (k) states, respectively. The
partial-wave kernel amplitudes can be expressed as

TABLE I. The factor IS and cutoff Λ for all possible exchange
diagrams for each reaction. Note that the value inside the
parentheses is given for the conjugate state of KK̄� and m is
the exchange mass.

Reaction Exchange Type IS Λ −m (MeV)

πρ → πρ π u 4 600
ρ t −4 600
ω u −4 600

πρ → KK̄�ðK̄K�Þ K u −2ð2Þ 700
K� t 2ð−2Þ 750

KK̄� → KK̄� ρ t 1 600
ω t −1 600
ϕ t −2 1400

KK̄� → K̄K� π u 1 600
η u −3 600
ρ u −1 600
ω u 1 600
ϕ u 2 1400
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VJðfiÞ
λ0λ ðp0; pÞ ¼ 2π

Z
dðcos θÞdJλ0λðθÞVfi

λ0λðp0; p; θÞ; ð14Þ

where θ denotes the scattering angle and dJλ0λðθÞ stand for
the matrix elements of the WignerD functions. The partial-
wave T amplitude is also expressed in a similar manner.
The partial-wave coupled integral equation in Eq. (13)

is solved numerically after we regularize the singularity
arising from the two-body meson propagator G. We build
the matrix V in momentum space, including both the πρ
and KK̄� channels. Then T matrix can be derived by the
Haftel-Tabakin’s method of the matrix inversion [33]

T ¼ ð1 − VG̃Þ−1V: ð15Þ

It is convenient to write the T matrix in the particle basis
[34]. Thus, we define T IJL as the T matrix for a given total
isospin I, total angular momentum J, and orbital angular
momentum L.

III. a1 MESON AS A KK̄� MOLECULAR STATE

We discuss now how the a1 meson can be dynamically
generated by the coupled channel formalism. In Fig. 2,
we draw the real part of T 110 in the KK̄� → KK̄� channel,
which corresponds to the quantum numbers of the a1
resonance. Here we will only consider the KK̄� single
channel to examine how the resonance behavior arises from
the integral equation. The kernel amplitude VKK̄�→KK̄� itself
does not show any resonance behavior, which is depicted as
the dashed line. On the other hand, the full transition
amplitude generates the singularity below the KK̄� thresh-
old energy after the integral equation is solved. The pole is
positioned on the real energy axis. This singularity occurs

from the strong attraction of the t-channel exchange.
Specifically, this attractive potential comes from the ϕ
exchange diagram since the ρ and ω contribution cancelled
each other as we can see from their IS factor. This singular
behavior in T is responsible for creating the a1 meson
in the πρ → πρ reaction. The remarkable point is that it
only appears below the KK̄� threshold. Once we introduce
the πρ channel and make it coupled to the KK̄� one, the
pole moves to the second Riemann sheet in the complex
energy plane. This indicates that the finite width of the a1
resonance is caused by the coupling of the KK̄� channel
with the πρ one.
To compare the experimental data [7] given in an

arbitrary unit, one can take the total cross section to be

σ ≡ σπρðt ¼ m2
ρ;MπρÞ ¼ −CIm½T πρðMπρÞ�; ð16Þ

where C is the constant to match the data to the results from
a theoretical model. The full transition amplitude T πρ is
obtained by solving the integral equation in the coupled-
channel formalism, given in Eq. (3). Figure 3 shows the
result for σ as a function of the πρ invariant mass. The solid
curve draws the current result whereas the dot-dashed one
corresponds to that from Ref. [24] in which the a1 meson
was explicitly introduced as a s-channel pole diagram with
the πρ channel only considered. The result from Ref. [24]
shows a symmetric shape, since the a1 pole diagram
governs it. On the other hand, the present result reveals
a dynamical feature of the a1 resonance. The physical a1
meson is generated only by coupling the πρ channel with
the KK̄� one. It describes well the experimental data on πρ
scattering near the πρ threshold. The S-wave total cross

FIG. 2. Real part of T 110 in the KK̄� → KK̄� reaction as a
function of energy. Here we label the kernel amplitude
VKK̄�→KK̄� as V. The dashed line depicts V, whereas the solid
curve draws ð1 − VGÞ−1V.

FIG. 3. Comparison of the πρ → πρ total cross section for
IJL ¼ 110 as a function of πρ invariant mass with that from
Ref. [24]. The solid curve draws the result from the present work
whereas the dot-dashed one depicts that from Ref. [24]. The
dashed line exhibits the result with the KK̄� channel turned off.
The experimental data are taken from Ref. [7].
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section rapidly increases and reaches the maximum value at
around 1100 MeV. While the result from Ref. [24] falls off
rapidly, so that it is underestimated in the vicinity of the
KK̄� threshold, the present result decreases less rapidly.
It explains well the data even near the KK̄� threshold. If
we turn off the KK̄� channel, the result cannot yield the
a1ð1260Þ resonance structure at all. Thus, the KK̄� channel
plays a critical role in generating the a1 resonance. A
similar situation can be found in the case of the f0ð980Þ
meson. In Ref. [19], ππ scattering was investigated within
the meson-exchange model, where the f0ð980Þ resonance
can only appear when the KK̄ channel was included. A
similar feature was also observed in Ref. [23]. So, the
f0ð980Þmeson is often considered as aKK̄ molecular state.
Similarly, the a1ð1260Þ resonance can be called a KK̄�
molecular state.
To scrutinize the a1ð1260Þ resonance based on the

current work, we evaluate the pole position for this
resonance in the second Riemann sheet and coupling
strength at the pole position. We utilize the analytic
continuation method [35] to determine the scattering matrix
on the complex energy plane of total energy. We locate the
pole position a1 at

ffiffiffiffiffi
sR

p ¼ ð1170.7 − i173.0Þ MeV in the
complex energy plane. Since there is no other resonance
nearby, we can determine clearly its position. From the pole
position we found that the width of the a1 meson is in
agreement with that from Ref. [7], where Γ ¼ ð380�
100Þ MeV was obtained by using the Bowler model fit.
Experimentally, the width of the a1ð1260Þ meson is given
in the wide range: Γa1 ¼ ð250 − 600Þ MeV [29]. The
present work provides almost the center value of Γa1≈
350 MeV, compared to the PDG data.
To see the a1 resonance structure more explicitly, we also

present the 3D plot of the jTj in the complex energy plane,
as illustrated in Fig. 4. To derive the coupling strengths
of the a1 meson coupled to the πρ and KK̄� channels, we
derive it from the residue of the transition amplitude
defined as Ra;b:

Ra;b ¼ lim
s→sR

ðs − sRÞT a;b=4π: ð17Þ

We divide the partial-wave component of the T matrix with
the factor 4π since we use a different definition of partial
wave expansion in Eq. (14). The coupling strengths are
defined as the square root of the residue of the transition
amplitude, so that we obtain them as

ga1πρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra1

πρ;πρ

q
¼ ð5.75 − i1.35Þ ½GeV�; ð18Þ

ga1KK̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra1

KK̄�;KK̄�

q
¼ ð12.37 − i2.31Þ ½GeV�: ð19Þ

Note that we choose the positive signs for both coupling
strengths, since we are not able to determine them.

Finally but not least, we want briefly to mention about
the compositeness of the a1 meson. Weinberg shows the
possibility to quantify the nature of the bound state
through the renormalization constant [36]. It is possible
to extend this idea to the virtual and resonance state. In
Ref. [37], for instance, the compositeness of an unstable
resonance was studied by examining the coupling strength
and the derivative of a two-body loop propagator evalu-
ated in the second Riemann sheet where the resonance’s
pole is located. In Ref. [38] the positive definite com-
positeness of the resonance was studied. However, it is
valid to examine the compositeness only when the thresh-
old energy is less than the mass of a resonance. Therefore,
it is rather complicated to calculate the compositeness
to prove that K and K� dominate in the a1 since the
KK̄� threshold energy is larger than the a1 mass in the
present work.

IV. SUMMARY AND CONCLUSIONS

In the present work, we studied πρ scattering based on
the meson-exchange model, focusing on the a1ð1260Þ
resonance appearing in the S-wave total cross section.
We showed that the coupled-channel formalism including
the πρ and KK̄� channels generated the a1 meson dynami-
cally. The KK̄� channel plays an essential role in producing
the a1 meson. We solved the integral equation for KK̄�
scattering and found a pole on the real energy axis. Once we
introduced the πρ channel and coupled it to the KK̄�
channel, we observed that the a1 resonance arises dynami-
cally in πρ scattering. We obtained the pole position of
the a1 resonance at

ffiffiffiffiffi
sR

p ¼ ð1170.7 − i173.0Þ MeV. The
present result is much better than the one in the previous

FIG. 4. The 3D plot of absolute T matrix as a function of
complex energy.
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study, where the a1 meson was introduced explicitly in the
s-channel pole diagram with the πρ single channel con-
sidered only. We also derived the coupling strengths ga1πρ
and ga1KK̄� from the residue of the transition amplitude.
These results imply that the dynamically generated a1
meson may be interpreted as a KK̄� molecular state.
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