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The light front densities of momentum, angular momentum, and intrinsic pressure are calculated for
the photon, both in the free case and at leading order in quantum electrodynamics. In the latter case, we
moreover decompose the form factors into photon and electron contributions. Circularly and linearly
polarized photons are both considered, with the latter containing significant azimuthal modulations in both
the momentum density and in intrinsic stresses. We find that theD-term of the photon is positive instead of
negative, and accordingly the intrinsic radial pressure of the photon is negative. Despite this, the radiation
pressure exerted by the photon is positive. We illustrate through explicit calculation how the intrinsic
pressure associated with the D-term and the radiation pressure exerted by the photon are different
quantities.
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I. INTRODUCTION

The energy-momentum tensor (EMT) has become an
increasingly relevant topic in the hadron physics com-
munity, owing largely to its implications for the proton
mass puzzle [1–7] and the proton spin puzzle [8–10].
Matrix elements of the EMT between hadron states
encode a slate of gravitational form factors (GFFs), which
are the primary objects of study in works on the subject.
In addition to the puzzles pertaining to properties of the
proton, much attention has been given to studies of
mechanical properties [11–13] and spatial densities
[13–16] related to the GFFs, especially the so-called
D-term [17] or Druck term [18].
In the companion paper [19], we determined the two-

dimensional light front densities associated with the
GFFs of spin-one targets. The formalism presented there
was focused primary on massive spin-one targets, but is
applicable (with little modification) to massless targets as
well. The photon is an especially pertinent case of a spin-
one target, which has previously been a considered as target
in theoretical hadron physics studies [20–24]. Its gravita-
tional form factors have also been calculated long ago

[25,26] to leading order in quantum electrodynamics
(QED). More recently, the QED electron at leading order
has been used as a toy model for studying the proton mass
puzzle [27], giving a precedent for using dressed particles
from QED as a playground for better understanding issues
related to the EMT for hadron physics. It is therefore
worthwhile considering what the EMT densities for a
photon target are—both for a free photon, and for the
QED photon at leading order.
In fact, the photon has a special peculiarity that makes it

especially pertinent. It is widely believed that negativity of
theD-term is a necessary condition for stability of a target.
In particular, it is believed to be related to positivity of
the radial pressure [13,14,16]. The negativity condition
already been called into question by the D-term of the
QED electron being infinite and positive [28], but con-
troversy remains on whether this is a pathology of long-
range forces that can be eliminated by a redefinition [29].
We find, however, that theD-term of the photon is positive
even for a free photon. It is worth noting, however, that the
photon being massless prevents it from decaying, so its
exception to the postulated stability criterion may not be
an issue.
We initiate this study alongside the companion paper

[19], precisely because the formalism of light front den-
sities of spin-one targets is necessary to even consider the
question. Although the physical meaning of Breit-frame
densities remains controversial [14–16,30–34], it is some-
times claimed that they give information about densities in
the rest frame of the target, possibly subject to “relativistic
corrections” [13]. It is clear—even if Breit-frame densities
do have such a physical meaning—that the meaning
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ascribed by such a framework is completely inapplicable to
a photon target. On the other hand, the physical mean-
ingfulness of light front densities requires only the pos-
sibility of localizing the target in the transverse plane
[16,31,32]—a feat that can, in principle, be accomplished
for a photon just as much as for any massive target.
This work is organized as follows. Section II presents the

few changes to the formalism of the companion paper [19]
needed to investigate the massless photon as a target.
Section III then obtains the densities of a free photon, and
Sec. IV subsequently obtains the densities of the QED
photon at leading order. Section V investigates the light
front density of transverse pressure exerted by a photon,
i.e., radiation pressure, in order to highlight the difference
between this and the intrinsic pressure that is encoded by
the D-term.

II. FORMALISM

The majority of the necessary formalism is presented in
the companion paper [19]. However, the photon possesses a
few special properties as a massless gauge boson. Firstly,
there are fewer independent gravitational form factors than
the massive case—three instead of six. Secondly, there
are no transversely polarized states, but superpositions of
helicity states instead give elliptically or linearly polarized
states. This section will address these special properties of
the photon.

A. Gravitational form factors of a massless photon

The photon has fewer gravitational form factors than other
spin-one targets by virtue of gauge invariance. This can be
seen by considering the massive spin-one EMT in Eq. (1) of
the companion paper [19] (see also Refs. [35–40]),

hp0λ0jTμνð0Þjpλi ¼ 2PμPν

�
−ðε · ε0�ÞG1ðtÞ þ

ðε · ΔÞðε0� · ΔÞ
2M2

G2ðtÞ
�

þ ΔμΔν − Δ2gμν

2

�
−ðε · ε0�ÞG3ðtÞ þ

ðε · ΔÞðε0� · ΔÞ
2M2

G4ðtÞ
�

þ 1

2
Pfμ½ε0�νgðε · ΔÞ − ενgðε0� · ΔÞ�G5ðtÞ

þ 1

4
½Δfμðε0�νgðε · ΔÞ þ ενgðε0� · ΔÞÞ − εfμε0�νgΔ2 − 2gμνðε · ΔÞðε0� · ΔÞ�G6ðtÞ; ð1Þ

but with M signifying an arbitrary positive quantity with
units of energy instead of the photon mass (which is of
course zero). Gauge invariance requires that the EMT
should be invariant under the substitutions

εðpÞ ↦ εðpÞ − iχ̃ðpÞp; ð2aÞ

ε0�ðp0Þ ↦ ε0�ðp0Þ þ iχ̃ðp0Þp0; ð2bÞ

which in turn places strong constraints on the form factors
appearing in Eq. (1). These constraints can be used to
remove any dependence of the EMT matrix element on the
arbitrary constant M, which now depends on only three
independent form factors.
There are multiple bases that can be used to represent

the three independent form factors. For the sake of
continuity of the literature, we use the notation of
Milton [26] in particular, in which the EMT of the photon
is decomposed as

hp0λ0jTμνð0Þjpλi ¼ Θμν
1 F1ðtÞ þ Θμν

2 F2ðtÞ þ Θμν
3 F3ðtÞ;

ð3aÞ

Θμν
1 ¼ −2PμPνðε · ε0�Þ þ 1

2
ðΔμΔν − Δ2gμνÞðε · ε0�Þ

þ Pfμ½ε0�νgðΔ · εÞ − ενgðΔ · ε�Þ�

−
1

2
½Δfμðε0�νgðΔ · εÞ þ ενgðΔ · ε0�ÞÞ

− εfμε0�νgΔ2 − 2gμνðΔ · εÞðΔ · ε0�Þ�; ð3bÞ

Θμν
2 ¼ 2ð2ðΔ · εÞðΔ · ε0�Þ − Δ2ðε · ε0�ÞÞðΔμΔν − Δ2gμνÞ;

ð3cÞ

Θμν
3 ¼ 4PμPνð2ðΔ · εÞðΔ · ε0�Þ − Δ2ðε · ε0�ÞÞ; ð3dÞ

where the brackets signify symmetrization; afμbνg ¼
aμbν þ aνbμ. It is worth noting that Θμν

1 is a traceless
tensor, whereas Θμν

2;3 are not traceless. However, all three
structures contain a nonzero traceless piece, i.e., a piece
that transforms under the (1, 1) representation of the
Lorentz group.
A peculiarity of Milton’s form factor breakdown is that

F2ðtÞ and F3ðtÞ are unitful, with units GeV−2. Normally,
one might introduce a factor of the target massM−2 into the
tensors Θμν

2;3 to keep the form factors unitless, but this
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cannot be done for a massless target. Analyticity also
prevents a pole at t ¼ 0 from appearing, so the only unit
GeV−2 quantities that could factor out of F2;3ðtÞ are masses
of other particles that interact with the photon. This of
course means that F2;3ðtÞ must vanish for a free photon. It
also means that a scale is introduced explicitly by the

interaction with massive charged particles. It’s a choice of
convention to leave F2;3ðtÞ unitful instead of introducing a
factor of m−2

e into the tensors Θμν
2;3.

In the companion paper [19], an alternative slate of
effective form factors was proposed in its Eq. (2). Restated
here for convenience, the expression is

hp0λ0jTμνð0ÞjpλijΔþ¼0 ¼ 2PμPνAλ0λðΔ⊥Þ − i
PfμϵνgPΔn

ðP · nÞ J λ0λðΔ⊥Þ þ
ΔμΔν − Δ2gμν

2
Dλ0λðΔ⊥Þ

þ Pfμnνg

ðP · nÞ Eλ0λðΔ⊥Þ þ
nμnν

ðP · nÞ2 Hλ0λðΔ⊥Þ þ i
nfμϵνgPΔn

ðP · nÞ2 Kλ0λðΔ⊥Þ: ð4Þ

These “effective form factors” depend on helicity and on
the four-vector n defining the light front, and are thus really
light front helicity amplitudes rather than proper form
factors. We consider them to be “effective form factors”
because their 2D Fourier transforms conveniently give
conventional Galilean densities. The helicity amplitudes
for the fixed-helicity case, which function as effective form
factors for helicity states, can be expressed For photons
in light front helicity states in particular, these effective
form factors can be expressed in terms of the Milton form
factors as

AλλðtÞ ¼ F1ðtÞ; ð5aÞ

J λλðtÞ ¼ λF1ðtÞ; ð5bÞ

DλλðtÞ ¼ F1ðtÞ; ð5cÞ

EλλðtÞ ¼ tF1ðtÞ; ð5dÞ

HλλðtÞ ¼
t2

4
F1ðtÞ; ð5eÞ

KλλðtÞ ¼ −λ
t
4
F1ðtÞ: ð5fÞ

Light front densities for helicity states thus depend only
on a single independent form factor F1ðtÞ. The other Milton
form factors appear instead in the helicity-flip amplitudes,

A�∓ðtÞ ¼ 2tF3ðtÞ; ð6aÞ

J �∓ðtÞ ¼ 0; ð6bÞ

D�∓ðtÞ ¼ 2tF2ðtÞ; ð6cÞ

E�∓ðtÞ ¼ 0; ð6dÞ

H�∓ðtÞ ¼ 0; ð6eÞ

K�∓ðtÞ ¼ 0: ð6fÞ

These two form factors thus contribute only to the densities
of photons with noncircular polarizations.

B. Linear polarization

We consider linearly polarized photons as an extreme
case of photons with a noncircular polarization in order to
study the effects of F2ðtÞ and F3ðtÞ on photon densities.
Horizontal polarization (electric fields oscillating along the
x axis) are considered for definiteness. In light of the
helicity vector conventions used in this work (which are
explicitly given in Eq. (A8) of the companion paper [19] ],
the horizontal and vertical polarization vectors can be
written

εH ¼ −εþ þ ε−ffiffiffi
2

p ; ð7aÞ

εV ¼ iεþ þ iε−ffiffiffi
2

p : ð7bÞ

Accordingly, helicity-flip contributions are present in the
effective form factors for linearly polarized photons. In
particular

AlinðΔ⊥Þ ¼ F1ðtÞ − 2tF3ðtÞ cos 2ϕ; ð8aÞ

J linðΔ⊥Þ ¼ 0; ð8bÞ

DlinðΔ⊥Þ ¼ F1ðtÞ − 2tF2ðtÞ cos 2ϕ; ð8cÞ

ElinðΔ⊥Þ ¼ tF1ðtÞ; ð8dÞ

HlinðΔ⊥Þ ¼
t2

4
F1ðtÞ; ð8eÞ

KlinðΔ⊥Þ ¼ 0; ð8fÞ
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where ϕ is the angle between the direction of the transverse
electric field and the direction of Δ⊥. Consequently,
linearly polarized photons can potentially have cos 2ϕ
modulations in their densities.

III. EMT AND DENSITIES OF A
FREE PHOTON

The energy-momentum tensor of the free photon field is
[41,42]

TμνðxÞ ¼ FμλFλ
ν þ 1

4
gμνFλρFλρ: ð9Þ

To find matrix elements of this EMT between single-
photon states, a normal mode decomposition of the four-
potential can be used

AμðxÞ ¼
X
λ

Z
dkþd2k⊥
2kþð2πÞ3 fε

μðk; λÞaðk; λÞe−ik·x

þ ε�μðk; λÞa†ðk; λÞeþik·xg: ð10Þ

Using normal ordering with Eq. (9) (to avoid an infinite
vacuum contribution), we find

hp0λ0j∶Tμνð0Þ∶jpλi ¼ Θμν
1 ; ð11Þ

where Θμν
1 is as defined in Eq. (3). Consequently, for the

free photon, one has

Ffree
1 ðtÞ ¼ 1; ð12aÞ

Ffree
2 ðtÞ ¼ Ffree

3 ðtÞ ¼ 0: ð12bÞ

Thus, linearly polarized free photons do not have angular
modulations in their densities. Since F2ðtÞ and F3ðtÞ are
unitful form factors, and a free photon does not have an
obvious mass scale, these quantities must necessarily
vanish in the free case.
We remind the reader that of the six light front helicity

amplitudes (or effective form factors), only A, J and D
contribute to the Galilean densities. All free photons have
the following effective form factors

AfreeðtÞ ¼ DfreeðtÞ ¼ 1; ð13Þ

and helicity states in particular have

J free
λ ðtÞ ¼ λ: ð14Þ

Since the free photon is pointlike, these results are almost
trivial. The momentum and spin sum rules Að0Þ ¼ 1 and
J λð0Þ ¼ λ are satisfied, and the corresponding Pþ and
angular momentum densities are delta functions at the
origin. The D-term has the surprising property, however,

that Dð0Þ ¼ 1 > 0. It has widely been postulated—first in
Ref. [12] and later elsewhere, see Refs. [13,14,16] for
instance—that Dð0Þ < 0 is required for stability of a
system. However, the free photon clearly violates this
condition. It is unnecessary for massless states to satisfy
the stability criterion, however, since their masslessness
prevents them from decay.
In fact, the result Dð0Þ ¼ 1 is true for the photon

by virtue of gauge invariance, and will also hold when
QED corrections are considered. This can be seen immedi-
ately from Eqs. (5) and (6). One must have F1ð0Þ ¼ 1 to
satisfy the sum rule Að0Þ ¼ 1, but as a consequence of
gauge invariance, we also have Dð0Þ ¼ F1ð0Þ. Thus,
the introduction of interactions will not make Dð0Þ
negative.

A. Densities and mechanical properties of the
free photon

Using Eq. (16a) of the companion paper [19]

ρðλÞpþðb⊥Þ ¼ Pþ
Z

d2Δ⊥
ð2πÞ2 AλλðtÞe−iΔ⊥·b⊥ ; ð15Þ

the Pþ density of the free photon is

ρPþðb⊥Þ ¼ Pþδð2Þðb⊥Þ; ð16Þ

as expected of a point particle. For helicity states, the
angular momentum is similarly given by a delta function at
the transverse origin.
Obtaining the light front comoving stress tensor is more

subtle. From its definition in Eq. (39) of the companion
paper [19]

D̃λðb⊥Þ ¼
1

4Pþ

Z
d2Δ⊥
ð2πÞ2DλλðtÞe−iΔ⊥·b⊥ ; ð17Þ

the light front Polyakov stress potential of the free photon
can be written as

D̃γðb⊥Þ ¼
1

4Pþ δð2Þðb⊥Þ ¼
1

4Pþ lim
σ→0

�
1

2πσ2
e−

1

2σ2
b2⊥
�
: ð18Þ

It is prudent to use a Gaussian representation for the delta
function, especially since the Gaussian wave packet is more
physical than the fully localized state (with only the former
having a representative in Hilbert space [43]). As discussed
in Refs. [16,32], one should in general defer taking the
σ → 0 limit until after all other calculations have been
performed, except in cases where the dominated conver-
gence theorem allows this limit to be commuted inside
any integrands or derivatives. Dealing with Gaussian wave
packets in this case specifically allows the pathologies of
delta functions to be avoided.
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The stress tensor can be fully parametrized by its
eigenpressures. For the free photon (as well as for helicity
states of interacting photons), these are the radial and
tangential pressures given by [14,16,19]

pðλÞ
r ðb⊥Þ ¼ pðλÞðb⊥Þ þ

sðλÞðb⊥Þ
2

¼ 1

b⊥
dD̃λðb⊥Þ
db⊥

; ð19aÞ

pðλÞ
t ðb⊥Þ ¼ pðλÞðb⊥Þ −

sðλÞðb⊥Þ
2

¼ d2D̃λðb⊥Þ
db2⊥

: ð19bÞ

For the free photon wave packet in particular

prðb⊥; σÞ ¼ −
1

4Pþ
1

2πσ4
e−

1

2σ2
b2⊥ ; ð20aÞ

ptðb⊥; σÞ ¼ −
1

4Pþ
1

2πσ4

�
1 −

b2⊥
σ2

�
e−

1

2σ2
b2⊥ : ð20bÞ

The sign behavior of this is exactly the opposite of what is
typically expected for the radial and tangential pressures:
the radial pressure is negative-definite, while the tangential
pressure is negative at short distances from the origin and
positive at larger distances. This is of course related toDð0Þ
being positive instead of negative.
Typically, the radial pressure in particular is used to

define static mechanical properties of a system out of the
expectation that it is positive-definite. Despite the photon
radial pressure being negative, we can still proceed with
the usual definitions. The integral of the radial pressure is
negative, and diverges in the limit of wave packet locali-
zation,

Z
d2b⊥pr;γðb⊥; σÞ ¼ −

1

4Pþ
1

σ2
: ð21Þ

The b2⊥-weighted moment is also negative, but finite,

Z
d2b⊥b2⊥pr;γðb⊥; σÞ ¼ −

1

2Pþ < 0: ð22Þ

Consequently, the mean squared mechanical radius, as
given by [16,44]

hb2⊥imechðσÞ ¼
R
d2b⊥b2⊥pr;γðb⊥; σÞR
d2b⊥pr;γðb⊥; σÞ

¼ 2σ2; ð23Þ

is positive at σ > 0, and goes to zero as σ → 0. The
mechanical radius of the free photon is zero, as one would
expect for a pointlike particle.
It appears almost absurd that the radial pressure of the

free photon should be negative. After all, photons are
known to exert positive radiation pressure [42]. Our
finding does not contradict this known result, however.
As previously explained in Ref. [16], the stress tensor

Tij as a whole consists of two pieces; a piece that encodes
the flow of the target in the transverse plane (both due
to average motion and wave function dispersion), and a
piece that encodes the stresses that would be measured
by an observer comoving with that transverse flow.
Previous works have not considered the contributions
of hadron flow explicitly, since their goal was to only
describe intrinsic structure. These works thus effectively
studied only the pressure as seen by the comoving
observer. This quantity is identified as an intrinsic
pressure of the system, and for the photon, this is negative.
The radiation pressure, however, includes the flow that
has been so far not included explicitly. We shall calculate
transverse radial radiation pressure in Sec. Vand comment
further there.

IV. LEADING-ORDER QED CORRECTIONS

In this section, we consider leading-order corrections to
the photon’s gravitational form factors arising from quan-
tum electrodynamics (QED). The full QED Lagrangian can
be written in the Gupta-Bleuler formalism [45,46] as

L ¼ ψ̄0

�
i
2
=∂
↔
− e0=A0 −m0

�
ψ0 −

1

4
F2
0 −

λ0
2
ð∂ · A0Þ2; ð24Þ

where we have explicitly noted that this expression is in
terms of the bare (unrenormalized) fields. The EMT for this
Lagrangian is [47,48]

Tμν ¼ i
4
ψ̄0γ

fμ
∂

↔νg
ψ −

1

2
e0ψ̄0γ

fμAνg
0 ψ0 þ F0

μσF0σ
ν

− λ0ð∂ · A0Þ∂fμAνg
0 − gμνL: ð25Þ

A. Renormalization at leading order

Loop diagrams will produce ultraviolet (UV) divergen-
ces that must be regularized and removed through renorm-
alization. The divergences in the total EMT can be
controlled and eliminated through conventional renormal-
ization of the QED Lagrangian. We use dimensional
regularization [49–51] with d ¼ 4 − 2ϵ to control these
divergences.
The bare quantities appearing in Eqs. (24) and (25) are

related to the renormalized quantities [52]

ψ0 ¼
ffiffiffiffiffi
Z2

p
ψ ; ð26aÞ

m0 ¼ Zmme; ð26bÞ

Aμ
0 ¼

ffiffiffiffiffi
Z3

p
Aμ; ð26cÞ

λ0 ¼ Z−1
3 λ; ð26dÞ
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e0 ¼ Zee; ð26eÞ

Z1 ≡
ffiffiffiffiffi
Z3

p
Z2Ze: ð26fÞ

By theWard identity, we have Z1 ¼ Z2 to all orders in QED
[53,54]. Using these standard renormalized quantities, the
EMT takes the form

TμνðxÞ ¼ Z3FμλFλ
ν þ 1

4
gμνZ3FλρFλρ

þ Z2ψ̄

�
i
4
∂

↔fμ
γ
νg
− Zmme

�
ψ −

1

2
eZ1ψ̄γ

fμAνgψ

− λð∂ · AÞ∂fμAνg þ 1

2
gμνλð∂ · AÞ2: ð27Þ

The values of the renormalization constants cannot be
determined without specifying a subtraction scheme. For
simplicity, we consider on-shell renormalization, in which
Zm is determined by requiring that me be the physical pole
mass of the electron, and Z2 and Z3 are determined by
requiring the residue of the renormalized Green’s functions
are 1 at the respective mass poles. At leading order, the
results for these constants are

Zm ¼ 1þ α

4π

�
−
3

ϵ
þ 3 log

�
m2

e

μ̄2

�
− 5

�
þOðα2Þ; ð28aÞ

Z2 ¼ 1þ α

4π

�
−
1

ϵ
þ 3 log

�
m2

e

μ̄2

�
− 2 log

�
μ2

μ̄2

�
− 5

�

þOðα2Þ; ð28bÞ

Z3 ¼ 1þ α

3π

�
−
1

ϵ
þ log

�
m2

e

μ̄2

��
þOðα2Þ; ð28cÞ

where μ̄2 ¼ 4πμ2e−γE . Order α corrections to Ze are not ne-
cessary for a leading-order calculation of photon structure.
Lastly, before proceeding to calculations and results, we

specify that we use Feynman gauge (λ ¼ 1) for ease of
calculation.

B. Leading-order calculations and results

As discussed for instance in Ref. [52], the matrix element
of the EMT vertex receives contributions from truncated
Feynman diagrams, i.e., those whose external legs do not
contain a self-energy part. The relevant diagrams are de-
picted in Fig. 1, where a graviton vertex is used to symbolize
an EMT operator insertion, as discussed in Ref. [39].

ð29Þ

ð30Þ

ð31Þ

FIG. 1. Feynman diagrams for leading-order QED corrections to the photon EMT. The EMT operator insertion is depicted as an
interaction with a graviton.
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Since the calculation is being done at leading order, any
Oðα2Þ terms that arise will be dropped.
The first diagram in Fig. 1 (the direct diagram) is

straightforward,

ð32Þ

The last two diagrams (the eye diagrams) we find to be
individually zero, so

ð33Þ

The last two diagrams (the triangle diagrams) are equal to
each other, and are constrained by consistency with Eq. (3)
to give, at leading order

ð34Þ

Our explicit results for F1−3ðtÞ are given in Eq. (35) below.
In principle, it would have been possible for individual

diagrams to give additional tensor structures beyond those
encountered in Eq. (3), since that equation is constrained to
satisfy momentum conservation and individual diagrams
are not. However, it happens to work out that no non-
conserving form factors appear for individual diagrams, in

stark contrast to the case for an electron target [27]. To be
sure, the direct diagram cannot contain nonconserved form
factors since it only rescales the tree level result, and since
the eye diagrams are zero, the triangle diagrams cannot
contain any new (nonconserved) tensor structures.
Summing the diagrams gives the following leading order

results for the gravitational form factors of the photon,

F1ðtÞ ¼ 1þ α

2π

�
35

18
−
13

6

1

τ
−
4

3

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

τ

r
sinh−1ð ffiffiffi

τ
p Þ

�
1 −

5

4

1

τ

�
−
ðsinh−1ð ffiffiffi

τ
p ÞÞ2

τ

�
1 −

1

2

1

τ

��
; ð35aÞ

2tF3ðtÞ ¼
α

2π

�
1

3
− 7

1

τ
þ 6

1

τ

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

τ

r
sinh−1ð ffiffiffi

τ
p Þ − 2

ðsinh−1ð ffiffiffi
τ

p ÞÞ2
τ

�
1 −

1

2

1

τ

��
; ð35bÞ

2tF2ðtÞ ¼
α

2π

�
1

3
þ 3

1

τ
− 2

1

τ

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

τ

r
sinh−1ð ffiffiffi

τ
p Þ − 1

τ

ðsinh−1ð ffiffiffi
τ

p ÞÞ2
τ

�
; ð35cÞ

where τ ¼ −t
4m2

e
. These results agree with those of

Refs. [25,26]. In contrast to the individual diagrams, the
form factors as a whole are independent of renormalization
scheme and scale—as expected, since the EMT is a
conserved current.
Numerical results for the gravitational form factors of the

photon are given in Fig. 2, where they are also compared to
the leading large −t behavior given in Eqs. (37).
The limiting behavior of the form factors is instructive to

consider, since their behavior at small −t is related to the
size of the system (for instance, via radii); and conversely,

the behavior at large −t is related to the behavior of the
Fourier transform at small impact parameters. The small −t
expansions for each of these form factors are

F1ðtÞ ≈ 1 −
α

2π

11

45
τ þOðτ2Þ; ð36aÞ

2tF3ðtÞ ≈
α

2π

2

45
τ þOðτ2Þ; ð36bÞ

2tF2ðtÞ ≈
α

2π

4

45
τ þOðτ2Þ; ð36cÞ
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while the large −t expansions are

F1ðtÞ ≈ 1þ α

2π

�
35

18
−
2

3
logð4τÞ þ −10þ 2 logð4τÞ − log2ð4τÞ

4τ
þO

�
1

τ2

��
; ð37aÞ

2tF3ðtÞ ≈
α

2π

�
1

3
þ −28þ 12 logð4τÞ − 2log2ð4τÞ

4τ
þO

�
1

τ2

��
; ð37bÞ

2tF2ðtÞ ≈
α

2π

�
1

3
þ 12 − 4 logð4τÞ

4τ
þO

�
1

τ2

��
: ð37cÞ

The leading terms in the large −t expansion agree with the
results previously obtained by Ref. [26].
Noting the small −t behavior in Eqs. (36), the leading-

order corrections to the form factors are clearly nonzero
only at nonzero t, so do not affect any static quantities. As
anticipated above, we find the following effective form
factors for photon states of any polarization,

Að0Þ ¼ 1; ð38aÞ

J ð0Þ ¼ 1; ð38bÞ

Dð0Þ ¼ 1; ð38cÞ

just as in the free case. ForAð0Þ and J ð0Þ, these results are
constrained by conservation laws (momentum and angular
momentum, respectively). Finding Dð0Þ to be unaltered by
leading order corrections appears a nontrivial result, but as
discussed above, this follows from gauge invariance, and
introducing more interactions and higher orders will not
make Dð0Þ negative for the photon.

C. Electron-photon decomposition

Let us now consider the breakdown into photon and
electron contributions. Of the diagrams in Fig. 1, only the
direct diagram corresponds to “photon” contributions to
the EMT. Thus, without additional renormalization, we
would have

FðγÞ
1 ðtÞ ¼ Z3; ð39aÞ

FðeÞ
1 ðtÞ ¼ −Z3 þ F1ðtÞ; ð39bÞ

but since Z3 is UV divergent, both of these quantities are
infinite. Additional renormalization is required for the
composite operators defining the electron and photon
contributions.
To simplify the renormalization procedure, we follow

Refs. [2,55] in separating the EMT into scalar (0, 0) and
traceless (1, 1) parts, with careful attention to this separa-
tion being done in d ¼ 4 − 2ϵ dimensions,

Tμν ¼ T̄μν þ T̂μν; ð40aÞ

T̂μν ¼ gμν

4 − 2ϵ
gαβT̂

αβ; ð40bÞ

FIG. 2. The gravitational form factors of the photon at leading order in QED, compared to their large −t asymptotic forms.
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T̄μν ¼ Tμν − T̂μν: ð40cÞ

As stated in Refs. [2,55], the scalar and traceless parts do
not mix under renormalization, so we can deal with them
separately. Moreover, since there are no nonconserved form
factors, and all of the structures Θμν

1;2;3 defined in Eq. (3)
contain (1, 1) pieces, it is only necessary to consider
renormalization of the traceless piece of the EMT to obtain
form factor decompositions.
Therefore, let us consider how the traceless part of the

EMT can be decomposed into electron and photon pieces.
For the bare operators,

T̄μν
e0 ¼

i
4
ψ̄0γ

fμ
∂

↔νg
ψ0 −

1

2
e0ψ̄0γ

fμAνg
0 ψ0 −

gμν

4 − 2ϵ
me0ψ̄0ψ0;

ð41aÞ

T̄μν
γ0 ¼ Fμλ

0 F0λ
ν þ gμν

4 − 2ϵ
F2
0 − λ0ð∂ · A0Þ

×

�
∂
μAν

0 þ ∂
νAμ

0 −
1 − ϵ

2 − ϵ
gμνð∂ · A0Þ

�
: ð41bÞ

The renormalized operators (which we signify by square
brackets, following Ref. [51]) are in general mixtures of the
bare operators,

½T̄μν
e � ¼ ZeeT̄

μν
e0 þ ZeγT̄

μν
γ0; ð42aÞ

½T̄μν
γ � ¼ ZγeT̄

μν
e0 þ ZγγT̄

μν
γ0; ð42bÞ

where the notation Zee etc., comes from Ref. [2], and where
gauge-fixing and equation of motion terms that vanish for
physical states have been dropped.
In the absence of interactions (α ¼ 0), we would have

Zee ¼ Zγγ ¼ 1 and Zeγ ¼ Zγe ¼ 0, so it is helpful to define

Zee ¼ 1þ δee; ð43aÞ

Zγγ ¼ 1þ δγγ; ð43bÞ

where δee and δγγ are both OðαÞ. The additional require-
ment that ½T̄μν� ¼ T̄μν

0 [2] gives us

Zγe ¼ −δee; ð44aÞ

Zeγ ¼ −δγγ: ð44bÞ

The divergent parts of δee and δγγ can be determined by
requiring that matrix elements of the renormalized oper-
ators are finite. For the photon target at Δ ¼ 0 in particular,

hγj½T̄μν
e �jγi ¼

�
α

3π

1

ϵ
− δγγ

�
Θμν

1 þ ðfiniteOðαÞÞ; ð45aÞ

hγj½T̄μν
γ �jγi¼

�
1þδγγ −

α

3π

1

ϵ

�
Θμν

1 þðfiniteOðαÞÞ; ð45bÞ

which determines δγγ at leading order in α to be

δγγ ¼
α

3π

1

ϵ
þ αC; ð46Þ

where C is a constant that is defined by the renormalization
scheme. The other constant, δee, does not contribute to
photon structure at leading order, since it is OðαÞ and
appears with another factor α in the relevant diagrams.
The finite electron-photon decomposition of the form

factors can now be performed by using the δγγ result we
have obtained. Using Milton’s basis for the form factors,
only F1ðtÞ receives additional renormalization, and the
decomposition can be written

FðeÞ
1 ðt; μ2Þ ¼ F1ðtÞ − 1þ α

3π

�
log

�
μ2

m2
e

�
þ logð4πÞ − γE

�

− αC; ð47aÞ

FðγÞ
1 ðt; μ2Þ ¼ 1 −

α

3π

�
log

�
μ2

m2
e

�
þ logð4πÞ − γE

�
þ αC:

ð47bÞ

The decomposition is notably scale and scheme dependent.
By contrast, one has (at leading order),

F2ðtÞ ¼ FðeÞ
2 ðtÞ; ð48aÞ

F3ðtÞ ¼ FðeÞ
3 ðtÞ; ð48bÞ

which are finite as they are.
Let us consider a couple of schemes for illustration. Note

that on-shell subtraction was used for renormalization of the
Lagrangian, and that the following schemes are only used for
operator renormalization on top of this. The following
decompositions would differ if we had used a different
subtraction scheme when renormalizing the Lagrangian.
The first scheme is minimal subtraction (MS), in which

counterterms are defined only to cancel divergences, and
contain no finite part. In this scheme, CMS ¼ 0.
The other scheme we consider is modified minimal

subtraction (MS), in which counterterms contain a finite
part that cancels factors of logð4πÞ − γE that show up
frequently in dimensional regularization. In this scheme,
we have

CMS ¼
1

3π
flogð4πÞ − γEg: ð49Þ

An interesting aspect of the MS scheme for operator
renormalization (when combined with on-shell
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renormalization for the Lagrangian) is that at a scale equal
to the electron mass (μ ¼ me), all of the photon target’s
light front momentum can be attributed to the photon itself;
i.e., one has

AðeÞ
MS

ð0;m2
eÞ ¼ 0; ð50aÞ

AðγÞ
MS

ð0;m2
eÞ ¼ 1: ð50bÞ

This can only be true at a single renormalization scale,
however, since the momentum fractions obey an evolution
equation [56–58].

1. Trace piece of the EMT

Although it is not necessary to obtain form factor
decompositions, it is interesting to look at the renormal-
ization of the pure trace part of the EMT. The relevant bare
operators are

T̂μν
e0 ¼

gμν

4 − 2ϵ
me0ψ̄0ψ0; ð51aÞ

T̂μν
γ0 ¼ gμν

�
1

4
−

1

4 − 2ϵ

�
ðF2

0 − 2λ0ð∂ · A0Þ2Þ

≈
gμν

4

ϵ

2
ðF2

0 − 2λ0ð∂ · A0Þ2Þ þOðϵ2Þ: ð51bÞ

The operator renormalization of the operators on the right-
hand side are highly standardized (see Refs. [2,4,27,59–62]).
The electron operator is a finite sigma term and is invariant
under renormalization

½meψ̄ψ � ¼ me0ψ̄0ψ0; ð52Þ

and accordingly the ϵ dependence of its prefactor can be
dropped. The photon operator, however, mixes under
renormalization,

½F2� ¼ ZFF2
0 þ ZCme0ψ̄0ψ0: ð53Þ

The total renormalized EMT trace can be written as

½T̂μ
μ� ¼ ð1þ γmÞ½meψ̄ψ � þ

βðeÞ
2e

½F2�: ð54Þ

As explained in Refs. [5,27], it is somewhat arbitrary how
these pieces can be attributed to photon and electron
contributions, and a variety of schemes for breaking this
up exist.
For the case of a photon target, however, matrix elements

of ½F2� contribute at Oðα2Þ. To start, F2
0 itself evaluates to

zero at leading order, since only the direct diagram of Fig. 1
could contribute. Additionally, ZC is order α, and me0ψ̄0ψ0

only contributes through diagrams that already have two
electron-photon vertices. Thus, each term on the right-hand

side of Eq. (53) is at least order α2 and does not contribute
to the leading order EMT matrix element.
Accordingly, for photon states at leading order,

hp0λ0j½T̂μν�jpλi ¼ hp0λ0jT̂μν
e0jpλi þOðα2Þ

¼ hp0λ0j½T̂μν
e �jpλi þOðα2Þ: ð55Þ

Thus, the trace of the EMT for the photon at leading order
can be attributed entirely to the electron. To be sure, the
trace of the photon EMT vanishes at t ¼ 0, both because
Θμν

1 is traceless and because Θμν
2;3 vanish at t ¼ 0. Thus a

mass sum rule based on the trace of the EMT would be
trivial for photons.
Since Θμν

2;3 are not traceless, the renormalization of the
(0, 0) piece of the EMT could conceivably affect the breakup
of F2;3ðtÞ into electron and photon pieces. However, we
find that these form factors can be attributed entirely to the
electron at leading order, consistent with our finding when
considering the renormalization of the (1, 1) piece.

D. Radii and densities: Helicity states

As discussed in Refs. [14,16] as well as the companion
paper [19], two-dimensional densities of the photon in the
transverse plane can be obtained through 2D Fourier
transforms of its gravitational form factors.

1. Light front momentum density

Let us first consider the Pþ density. For helicity states,
this is given by Eq. (15) with AðtÞ ¼ F1ðtÞ. In particular,
the 2D Fourier transform of an azimuthally-symmetric
function such as F1ðtÞ can be written as

ρPþðb⊥Þ ¼
Pþ

2π

Z
∞

0

dk kF1ð−k2ÞJ0ðb⊥kÞ

¼ Pþ

2π
H0½F1ð−k2Þ�ðb⊥Þ; ð56Þ

where Hν½FðkÞ�ðbÞ signifies the Hankel transform of order
ν. Analytic results for the Hankel transforms of the
functions in Eq. (35) do not exist in the mathematics
literature, but a numerical Hankel transform can be used to
obtain the densities, provided the growing and constant
asymptotic behavior at large −t [as given in the leading
terms of Eq. (37a)] is subtracted off. The two-dimensional
Fourier transforms of the functions describing this asymp-
totic behavior are as follows:

Z
d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥ ¼ δð2Þðb⊥Þ; ð57Þ

Z
d2Δ⊥
ð2πÞ2 log

�
Δ2⊥
m2

e

�
e−ib⊥·Δ⊥ ¼ −

Θðmeb⊥Þ
πb2⊥

; ð58Þ
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whereΘðxÞ is the Heaviside step function. The first of these
identities is well-known; the second follows from Eq. (A1),
which is proved in the Appendix.
Since the large −t behavior of the form factor governs

the small b⊥ behavior of the density, we can expect the Pþ
density at small (but nonzero) impact parameter to take the
form,

ρPþðb⊥Þ ≈
αPþ

3π2
1

b2⊥
þOðb−1⊥ Þ; ð59Þ

with the b−2⊥ behavior coming specifically from the Fourier
transform of the logarithm in Eq. (37a). In the left panel of
Fig. 3, the exact Pþ density is compared to its limiting form
at small impact parameter as given in Eq. (59)—as well as
to the Jz density, which shall be described in more
depth below.
The Pþ radius is given by the derivative of the form

factor, 4F0
1ð0Þ, as discussed for instance in the companion

paper [19]. The value can be read off from the small −t
expansion in Eq. (36a),

hb2⊥iPþ ¼ 11

90π

α

m2
e
≈ ð6.5 fmÞ2: ð60Þ

This especially large radius is due to the photon easily
forming a large-sized configuration as an eþe− pair, owing
to the small mass of the electron. This large radius can also
be understood through the small b⊥ form of Eq. (59)—
which is a fairly slow falloff—holding quite well up to
about b⊥ ≈ 10 fm, as seen in the left panel of Fig. 3.

2. Angular-momentum density

As explicated in Eq. (16b) of the companion paper [19],

ρðλÞJz
ðb⊥Þ ¼ λ

Z
d2Δ⊥
ð2πÞ2

�
J ðtÞ þ t

dJ ðtÞ
dt

�
e−iΔ⊥·b⊥ : ð61Þ

For a λ ¼ þ1 helicity state, J ðtÞ ¼ F1ðtÞ. It is helpful to
note that

F1ðtÞ þ t
dF1ðtÞ
dt

¼ 1þ α

2π

�
23

18
þ 5

6

1

τ
−
1

3

ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r
sinh−1ð ffiffiffi

τ
p Þ

�
4þ 5

τ
þ 1

τ2

�
−
1

2

ðsinh−1ð ffiffiffi
τ

p ÞÞ2
τ2

�
; ð62Þ

where τ ¼ −t
4m2

e
as before. The small −t expansion is

given by

F1ðtÞ þ t
dF1ðtÞ
dt

≈ 1 −
α

2π

22

45
τ þOðτ2Þ ð63Þ

and the large −t limiting form by

F1ðtÞ þ t
dF1ðtÞ
dt

≈
α

2π

�
23

18
−
2

3
logð4τÞ þ 2 − 2 logð4τÞ

4τ

�
þOðτ−2Þ: ð64Þ

The small −t expansion tells us that the angular-momentum
radius is

FIG. 3. The light front densities of a helicity state photon. For the Pþ density, we have divided out Pþ to make the quantity boost-
invariant, and so that it could be compared to the Jz density. The pressure distributions have similarly been multiplied by Pþ to produce
boost-invariant quantities.
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hb2⊥iJ ¼
11

45π

α

m2
e
≈ ð13 fmÞ2; ð65Þ

which is twice the Pþ radius.
The coefficient attached to the logarithm in Eqs. (37a)

and (64) is the same, and accordingly the Pþ and Jz
densities will have the same small b⊥ asymptotics. This can
be seen clearly in the numerical result in the left panel of
Fig. 3. The larger Jz radius must be attributed to the
difference between the Pþ and Jz densities at larger b⊥,
where the angular momentum density becomes larger.

3. Pressure distributions

The Polyakov stress potential D̃ðb⊥Þ is related to the
Fourier transform of DðtÞ, and since DðtÞ ¼ AðtÞ ¼ F1ðtÞ
for a helicity state photon, we effectively have

D̃ðb⊥Þ ¼
1

4ðPþÞ2 ρPþðb⊥Þ: ð66Þ

The radial and tangential eigenpressures can be obtained
from this stress potential through Eqs. (19). The derivatives
can be done numerically for the exact densities, but
analytically for the limiting forms at small b⊥. These
limiting forms are

prðb⊥Þ ≈ −
α

6π2Pþ
1

b4⊥
þOðb−3⊥ Þ; ð67aÞ

ptðb⊥Þ ≈þ α

2π2Pþ
1

b4⊥
þOðb−3⊥ Þ: ð67bÞ

Numerical results for the eigenpressures in a helicity
state photon are plotted in the right panel of Fig. 3. Because
of the b−4⊥ behavior, these pressures become highly singular
near the transverse origin. The magnitude of the actual
pressures depends on Pþ (being inversely proportional to
it), but a boost-invariant quantity can be obtained by
multiplying the pressures by Pþ (as is done in the plot).
The radial pressure, in contrast to the usual expectations

(of e.g., Refs. [12–14,16]), is not strictly positive, but in fact
highly negative. This is, however, in line with our findings
for the free photon. The negative pressure for the QED
photon now has spatial extent, rather than being localized at
the origin through a delta function. Despite the spatial
extent, however, the mechanical radius remains zero.
Considering Eq. (54) of the companion paper [19]

hb2⊥imech ¼
R
d2b⊥b2⊥prðb⊥ÞR
d2b⊥prðb⊥Þ

; ð68Þ

F1ð0Þ—which appears in the numerator—is still finite,
but the denominator (which integrates F1ðtÞ over all t)
is infinite.

E. Linear polarization and density modulations

Photons in superpositions of helicity states have azimu-
thal modulations in their densities. The magnitudes of these
modulations are governed by F2ðtÞ (for stress distributions)
and F3ðtÞ (for Pþ densities). We consider linear polariza-
tion here as an extreme case. Taking the appropriate 2D
Fourier transforms of Eq. (8) gives

ρlinearPþ ðb⊥Þ ¼ ρcircularPþ ðb⊥Þ þ cos 2ϕ
Pþ

2π

×H2½−2k2F3ð−k2Þ�ðb⊥Þ; ð69aÞ

D̃linearðb⊥Þ ¼ D̃circularðb⊥Þ þ cos 2ϕ
1

2π

1

4Pþ

×H2½−2k2F2ð−k2Þ�ðb⊥Þ; ð69bÞ

for the Pþ density and Polyakov stress potential. The stress
tensor can be decomposed into three functions, as described
by Eq. (47) of the companion paper [19]

SijT ðb⊥; msÞ ¼ δijpðmsÞ
T ðb⊥Þ þ

�
b̂ib̂j −

1

2
δij

�
sðmsÞ
T ðb⊥Þ

þ ðb̂iϕ̂j þ ϕ̂ib̂jÞvðmsÞ
T ðb⊥Þ: ð70Þ

The relevant functions can be shown (with a little calculus
and Bessel function identities) to be

plinearðb⊥Þ ¼ pcircularðb⊥Þ þ cos 2ϕ
1

2π

1

8Pþ H2

× ½−2k4F2ð−k2Þ�ðb⊥Þ; ð71aÞ

slinearðb⊥Þ ¼ scircularðb⊥Þ þ cos 2ϕ
1

2π

1

8Pþ

× fH0½−2k4F2ð−k2Þ�ðb⊥Þ
þH4½−2k4F2ð−k2Þ�ðb⊥Þg; ð71bÞ

vlinearðb⊥Þ ¼ sin 2ϕ
1

2π

1

8Pþ f−H0½−2k4F2ð−k2Þ�ðb⊥Þ
þH4½−2k4F2ð−k2Þ�ðb⊥Þg: ð71cÞ

From these, the eigenpressures of the linearly polarized
photon can be obtained using Eq. (52) of the companion
paper [19]

PðmsÞ
T;� ðb⊥Þ ¼ pðmsÞ

T ðb⊥Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðsðmsÞ

T ðb⊥ÞÞ2þðvðmsÞ
T ðb⊥ÞÞ2;

r

ð72aÞ

θðmsÞ
� ðb⊥Þ ¼ ϕþ1

2
tan−1

�
2vðmsÞ

T ðb⊥Þ
sðmsÞ
T ðb⊥Þ

�
þΘð�sðmsÞ

T ðb⊥ÞÞ
π

2
;

ð72bÞ
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êðmsÞ
� ðb⊥Þ ¼ cosðθðmsÞ

� ðb⊥ÞÞx̂þ sinðθðmsÞ
� ðb⊥ÞÞŷ: ð72cÞ

Numerical results for the Pþ density of a horizontally-
polarized photon are depicted in Fig. 4. Because of the
∼ b−2⊥ behavior of the density at small impact parameter, the
gradient is exceedingly steep in these plots, and the density
values above an arbitrary maximum have been clipped to
prevent the plots from displaying as an isolated white pixel.
The left panel, which uses a linear color map, clearly shows
that the photon is effectively elongated in the direction of
polarization (i.e., the direction of the electric field oscil-
lations). The right panel uses a logarithmic color map to
make the gradient more visible.
Since the Pþ density is not azimuthally symmetric, there

is a quadrupole moment associated with it. This moment
can be evaluated using Eq. (28) of the companion paper
[19], but with the linear polarization direction (in this case,
x̂) used instead of a spin vector. In terms of the form factors,
the quadrupole moment works out to be

QLF ¼ −8F3ð0Þ: ð73Þ

As can be seen in Eq. (36), F3ð0Þ is finite, and in particular

QLF ¼
α

45π

1

m2
e
≈ 7.7 fm2: ð74Þ

This is a remarkably large quadrupole moment, and is
positive, indicating that the photon is prolate in the
direction of polarization. This is of course compatible with
what is visible in Fig. 4.
Using Eq. (71), along with Eq. (72), the eigenpressures

of a horizontally polarized photon can be obtained.

Numerical results for these eigenpressures are depicted
in Fig. 5. In contrast to transversely-polarized states of
massive hadrons, neither of these eigenpressures can be
interpreted as a deformed radial or tangential pressure.

V. RADIATION PRESSURE

For both the free photon and the QED photon at leading
order, we found a negative radial light front pressure. This
is a strange result that appears to contradict our intuition
(and known results [42]) that photons should exert positive
pressure. However, this contradiction is only apparent.
Radiation pressure—the pressure exerted by photons—
includes contributions from the total transverse motion
of the electromagnetic field, which is to say it contains
contributions from AðtÞ that are neglected by looking at
only the transversely -comoving part of the stress tensor.
(See Ref. [16], especially Sec. III thereof, for further
explanation.)
Let us consider the stress tensor as a whole. As explained

in Ref. [16], this diverges for states that are localized at the
transverse origin. Wave packets with a finite spatial extent
must be used to define such a density, which cannot be
interpreted as describing intrinsic structure (in contrast to
the comoving stress tensor). Let us consider a Gaussian
wave packet with average transverse momentum k⊥ and a
finite transverse spatial width σ,

hpþ;p⊥; λjΨi ¼
ffiffiffiffiffiffi
2π

p
ð2σÞe−σ2ðp⊥−k⊥Þ2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþð2πÞδðpþ − PþÞ

p
: ð75Þ

Using Eq. (6) of Ref. [16] with the local operator Ô ¼ Tij,
and noting the breakdown of the EMT in terms of helicity
amplitudes in Eq. (4), we find

FIG. 4. Pþ density of a horizontally polarized photon. The left panel uses a linear color map, but clips values above the maximum
depicted in the color bar. The right panel uses a logarithmic color map to make the gradient less steep, and values are still clipped above
the maximum depicted in the color bar. Both densities have had Pþ divided out to make them boost invariant.
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Tijðb⊥;k⊥; σÞ ¼
1

2Pþ

Z
d2P⊥
ð2πÞ2

Z
d2Δ⊥
ð2πÞ2

�
2Pi⊥P

j
⊥AðtÞ þ 1

2
ðΔi⊥Δ

j
⊥ − δijΔ2⊥ÞDðtÞ

�
e−iΔ⊥·b⊥e−2

σ2

2
ðP−kÞ2⊥e−

σ2

2
Δ2⊥ : ð76Þ

Explicitly evaluating the P⊥ integral gives the following result for the full stress tensor,

Tijðb⊥;k⊥; σÞ ¼
1

2Pþ

Z
d2Δ⊥
ð2πÞ2

��
2ki⊥k

j
⊥ þ δij

2σ2

�
AðtÞ þ 1

2
ðΔi⊥Δ

j
⊥ − δijΔ2⊥ÞDðtÞ

�
e−iΔ⊥·b⊥e−

σ2

2
Δ2⊥ : ð77Þ

For the photon in a helicity state, AðtÞ ¼ DðtÞ ¼ F1ðtÞ.
Using this, and noting that the radial pressure is obtained by
contracting the stress tensor with b̂ib̂j (with b̂ being the unit
radial vector in the transverse plane), we find

Prðb⊥;k⊥; σÞ ¼
1

4Pþ

�
4k2⊥cos2ðϕbkÞ þ

1

σ2
þ 1

b⊥
d

db⊥

�

×
Z

d2Δ⊥
ð2πÞ2 F1ðtÞe−iΔ⊥·b⊥e−

σ2

2
Δ2⊥ ; ð78Þ

where ϕbk ¼ ϕ − ϕΔ and a script Pr is used to differentiate
from the intrinsic radial pressure pr. Unlike pr, Pr contains
contributions from AðtÞ, which include both the average
motion of the photon and statistical motion due to wave
function dispersion.
For the free photon, the transverse radiation pressure

given by Eq. (78) is strictly non-negative. When F1ðtÞ ¼ 1,
as in the free case, one has

Z
d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥e−
σ2

2
Δ2⊥ ¼ 1

2πσ2
e−

1

2σ2
b2⊥ ; ð79Þ

and it is easy to see that

�
1

σ2
þ 1

b⊥
d

db⊥

�
e−

1

2σ2
b2⊥ ¼ 0: ð80Þ

The k2⊥ term is strictly positive at k⊥ ≠ 0 by virtue of
positivity of the light front momentum density, which is
guaranteed by the probability interpretation of the “good”
components of light front densities (in this case, Tþþ)
[63,64]. When σ → 0, the total radial pressure becomes a
delta function, and the free photon accordingly behaves like
a pointlike particle that exerts a positive total pressure.
The radiation pressure described by Eq. (78) is non-

negative even for the interacting photon, and this holds to
all orders in any gauge-invariant theory of photon inter-
actions. In fact, the only assumptions we need to prove non-
negativity are Eq. (78) and the positivity of ρpþðb⊥Þ. Let us
first consider the k⊥ ¼ 0 case, since the k2⊥ term is positive
anyway. Using the convolution theorem, Eq. (78) can be
rewritten as

Z
d2Δ⊥
ð2πÞ2 F1ðtÞe−iΔ⊥·b⊥e−

σ2

2
Δ2⊥

¼ 1

2πσ2Pþ

Z
d2b0⊥ρpþðb0⊥Þe−

1

2σ2
ðb⊥−b0⊥Þ2 ; ð81Þ

FIG. 5. Eigenpressures of a horizontally polarized photon. The color maps have been clipped above the shown maximum and
minimum values.
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where ρpþðb⊥Þ was defined in Eq. (15). From Eq. (78), the
radiation pressure for k⊥ ¼ 0 is then

Prðb⊥;k⊥ ¼ 0;σÞ ¼ 1

8πσ2ðPþÞ2
Z

d2b0⊥ρpþðb0⊥Þ

×

�
1

σ2
þ 1

b⊥
d

db⊥

�
e−

1

2σ2
ðb⊥−b0⊥Þ2 : ð82Þ

Performing the derivative with respect to b⊥ ¼ jb⊥j gives

Prðb⊥;k⊥ ¼ 0; σÞ ¼ 1

8πσ4ðPþÞ2
Z

d2b0⊥ρpþðb0⊥Þ

×
b⊥ · b0⊥
b2⊥

e−
1

2σ2
ðb⊥−b0⊥Þ2 : ð83Þ

Using polar coordinates, with ϕ signifying the angle
between b⊥ and b0⊥, gives

Prðb⊥;k⊥ ¼ 0; σÞ ¼ 1

8πσ4ðPþÞ2b⊥
e−

1

2σ2
b2⊥

×
Z

db0⊥b02⊥ρpþðb0⊥Þe−
1

2σ2
b02⊥

×
Z

dϕ cosϕeþ
b⊥b0⊥
σ2

cosϕ: ð84Þ

Now, the quantity

Z
2π

0

dϕ eþ
b⊥b0⊥
σ2

cosϕ cosϕ ¼ 2πI1

�
b⊥b0⊥
σ2

�
; ð85Þ

which is a modified Bessel function of the first kind [65], is
positive since it receives larger weights from the exponen-
tial when cosϕ is positive than when cosϕ is negative. The
remaining factors in the b0⊥ integral are non-negative.
If ρpþðb0⊥Þ is a delta function (as in the free case), the
result is zero (as we saw explicitly in the free case), but if
ρpþðb0⊥Þ is positive in any extended region, then it follows
that Prðb⊥;k⊥ ¼ 0; σÞ is positive. Therefore, we find that
the transverse radiation pressure of a photon is strictly non-
negative, and is in fact positive if the light front momentum
density has any finite spatial extent (as it does in QED).

VI. SUMMARY AND CONCLUSIONS

We calculated the momentum, angular momentum, and
pressure densities of a photon on the light front, both for a
free photon and for a QED photon at leading order. We
calculated both the intrinsic pressure and the radiation
pressure, clarifying the difference between these. The
intrinsic pressure in particular is encoded by the D-term,
and exhibits different properties than the radiation pressure,
only the latter of which is positive for a photon. TheD-term
of the photon is positive, in stark contrast to the negativity

criterion for stability of massive systems, and entailing that
the intrinsic pressure density of a photon is negative.
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APPENDIX: HANKEL TRANSFORM
OF LOGARITHM

To the best of our knowledge the zeroth order Hankel
transform of a logarithm has not been tabulated in the
mathematics or physics literature. We will prove in this
section that

H0½logðkÞ�ðbÞ ¼
Z

∞

0

dk kJ0ðbkÞ logðkÞ ¼ −
ΘðbÞ
b2

; ðA1Þ

where ΘðbÞ is the Heaviside step function.
To obtain this result, first consider the variable trans-

formation k ↦ sk in the original integral,

FðbÞ≡H0½logðkÞ�ðbÞ

¼ s2
Z

∞

0

dk kJ0ðbskÞ logðskÞ

¼ s2FðsbÞ þ s2 logðsÞ
Z

∞

0

dk kJ0ðbskÞ: ðA2Þ

Next, note that the Hankel transform of a constant is a delta
function,

Z
∞

0

dk kJ0ðbkÞ ¼
δðbÞ
b

: ðA3Þ

This gives us

FðsbÞ ¼ 1

s2
FðbÞ − logðsÞ δðbÞ

b
: ðA4Þ

Differentiating with respect to s and then taking s ¼ 1 gives
a differential equation for FðbÞ,

bF0ðbÞ þ 2FðbÞ ¼ −2π
δðbÞ
b

: ðA5Þ

This can be solved by substituting the ansatz,

FðbÞ ¼ fðbÞ
b2

; ðA6Þ
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with fðbÞ satisfying

1

b
f0ðbÞ ¼ −

δðbÞ
b

: ðA7Þ

This has the solution,

fðbÞ ¼ C − ΘðbÞ; ðA8Þ

and therefore the desired Hankel transform is

FðbÞ ¼ C − ΘðbÞ
b2

: ðA9Þ

To determine C, we can find the mean-squared radius
associated with FðbÞ when it has been multiplied by a
Gaussian falloff. Unless C ¼ 1, the radius associated with
FðbÞ itself will diverge, so the Gaussian falloff factor is
necessary. The quantity in question is defined as

hb2iðσÞ≡
Z

d2b b2FðbÞe− b2

2σ2 : ðA10Þ

From direct evaluation, we find

hb2iðσÞ ¼ σ2ðC − 1Þ: ðA11Þ

Now, we compare to the radius result obtained by evalu-
ating in momentum space. Using the convolution theorem,
the product in this integral can be written as the 2D Fourier
transform of a convolution,

FðbÞe− b2

2σ2 ¼
Z

d2k
ð2πÞ2 e

−ik·b

×
Z

d2k0

ð2πÞ2 ð2πσ
2e−

σ2

2
ðk−k0Þ2Þ logðk0Þ: ðA12Þ

Using integration by parts, the mean-squared radius can be
written as

hb2iðσÞ ¼ −2πσ2
Z

d2k0

ð2πÞ2 ∇
2
k½e−

σ2

2
ðk−k0Þ2 �jk¼0 logðk0Þ

¼ σ4

2

Z
∞

0

dκ

�
1 −

1

2
σ2κ

�
e−

σ2

2
κ log κ: ðA13Þ

Evaluating this integral gives

hb2iðσÞ ¼ −σ2; ðA14Þ

thus requiring C ¼ 0, and proving Eq. (A1).
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