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Densities associated with the energy-momentum tensor are calculated for spin-one targets. These
calculations are done in a light front formalism, which accounts for relativistic effects due to boosts and
allows for arbitrary spatial localization of the target. These densities include the distribution of momentum,
angular momentum, and pressures over a two-dimensional plane transverse to the light front. Results are
obtained for both longitudinally and transversely polarized targets, and the formalism is tailored to allow
the possibility of massless targets. The momentum density and pressure distributions are calculated for a
deuteron target in a light cone convolution model, with which the properties of this model (such as helicity
dependence of the densities) is illustrated.
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I. INTRODUCTION

The energy-momentum tensor (EMT) has become a
major topic of interest in hadron physics. It touches on
several major outstanding problems in the field, including
the proton mass puzzle [1–7] and the proton spin puzzle
[8–10]. It is also believed by some to contain information
about the mechanical properties of hadrons, including
the spatial distributions of pressures and shear stresses
[11–13], as well as information about the mechanical
stability of hadrons.
Most research into the EMT of hadrons has focused on

the gravitational form factors (GFFs) of spin-zero and
spin-half targets. This is understandable, since the proton
is spin-half, and spin-zero is an especially simple case for
exploratory studies. However, spin-one targets play an
important role in our understanding of the strong nuclear
force, and are thus deserving of more attention in research
on GFFs. The deuteron is spin-one after all, and as the
simplest nucleus, it is an ideal testing ground for studies of
how the internucleon force arises from quantum chromo-
dynamics [14]. Spin-one targets more generally contain
extra information not present in lower-spin targets, such as
a gluon transversity distribution whose evolution decou-
ples from quarks [15].

Several recent theoretical studies [16–19] and model
calculations [20–23] have been done for the EMT and
GFFs of spin-one targets. However, there is yet no
investigation into the light front densities associated with
the GFFs of spin-one targets. Breit frame studies exist
[17,18], but there is considerable controversy regarding the
physical meaningfulness of Breit frame densities (see
Refs. [24–31] for a variety of perspectives), whereas light
front densities have a clear physical meaning and inter-
pretation as true densities [25,26,30,32,33]. It is thus
prudent to investigate the light front densities associated
with the GFFs of spin-one targets.
This work is an investigation into the general properties

and expressions for EMT densities in spin-one targets. A
companion paper [34] investigates the densities for a photon
target specifically.
This paper is organized into the following sections.

Section II considers the decomposition of EMT matrix
elements into GFFs, examining how this decomposition
depends on target polarization. Section III then obtains all
the relevant densities, including static moments and radii,
as well as their polarization dependence. Section IV
illustrates some of these densities with a simple light cone
convolution model of the deuteron, and Sec. V concludes
the work.

II. MATRIX ELEMENTS FOR DEFINITE-SPIN
STATES

For a massive spin-one system, the matrix element of the
conserved, symmetric EMT between spin-one plane wave
states is given by [16–18,20,21,35]
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hp0λ0jTμνð0Þjpλi ¼ 2PμPν

�
−ðε · ε0�ÞG1ðtÞ þ

ðε · ΔÞðε0� · ΔÞ
2M2

G2ðtÞ
�

þ ΔμΔν − Δ2gμν

2

�
−ðε · ε0�ÞG3ðtÞ þ

ðε · ΔÞðε0� · ΔÞ
2M2

G4ðtÞ
�
þ 1

2
Pfμ½ε0�νgðε · ΔÞ − ενgðε0� · ΔÞ�G5ðtÞ

þ 1

4
½Δfμðε0�νgðε · ΔÞ þ ενgðε0� · ΔÞÞ − εfμε0�νgΔ2 − 2gμνðε · ΔÞðε0� · ΔÞ�G6ðtÞ; ð1Þ

where P ¼ 1
2
ðpþ p0Þ, Δ ¼ p0 − p, t ¼ Δ2, where ε is a

polarization four-vector that depends on momentum p and
spin quantum number λ, and ε0 similarly on p0 and λ0, and
where fg denotes symmetrization without a factor 1

2
(i.e.,

afμbνg ¼ aμbν þ aνbμ). Note that several conventions exist
in the literature for naming the gravitational form factors.
We have here used the notation first found in Ref. [16] and
later adopted (and expanded) in Refs. [17,21]. Refer-
ence [18] gives a comparison of the existing conventions.
Several nonconserved form factors, namely G7−9ðtÞ, also
exist when examining the EMT contributions of a single
parton flavor, but in this work we examine only the total
EMT, which is conserved. The effects of nonconserved
GFFs on partonic densities are deferred to a future study.
Reference [17] additionally gives two more form factors,
G10;11ðtÞ for the asymmetric EMT, but a consistent appli-
cation of Noether’s second theorem to obtain the EMT has
been shown to reproduce the symmetric Belinfante EMT
for QCD [36], so we limit our attention to the symmetric
EMT here.

Clearly, Eq. (1) is not applicable to massless systems,
due to the presence of factors 1=M2. The presence of these
factors is somewhat artificial; standard form factor decom-
positions like Eq. (1) are designed so that (1) the form
factors are unitless and (2) poles do not occur in the form
factors nor in accompanying Lorentz structures that are not
present in the EMTmatrix element. Condition (2) precludes
using factors of 1=t instead of 1=M2 to accompany, e.g.,
G2ðtÞ. However, if condition (1) is relaxed, one can write a
variant of Eq. (1) with no factors of 1=M2 present, but
several unitful Lorentz scalar functions.
This work will examine light front densities of spin-one

systems, including massless systems such as the photon. It
is thus desirable to have a breakdown into Lorentz scalar
functions that is applicable to both massless and massive
systems. When considering light front densities in
particular, where Δþ ¼ 0 by virtue of integrating out
x− [30], the EMT matrix element can be decomposed as
follows:

hp0λ0jTμνð0ÞjpλijΔþ¼0 ¼ 2PμPνAλ0λðΔ⊥Þ − i
PfμϵνgPΔn

ðP · nÞ J λ0λðΔ⊥Þ þ
ΔμΔν − Δ2gμν

2
Dλ0λðΔ⊥Þ

þ Pfμnνg

ðP · nÞ Eλ0λðΔ⊥Þ þ
nμnν

ðP · nÞ2 Hλ0λðΔ⊥Þ þ i
nfμϵνgPΔn

ðP · nÞ2 Kλ0λðΔ⊥Þ; ð2Þ

where n is the lightlike four-vector that defines the light
front coordinates, i.e., such that V · n ¼ Vþ and the
decomposition was constructed to be invariant under
scaling n by a factor. It should be remarked that the
Lorentz scalar functions Aλ0λðΔ⊥Þ etc. are not proper form
factors, owing to their dependence on the initial and final
target helicities, but can more accurately be called helicity
amplitudes. It should also be noted that this decomposition
is not defined when Pþ ¼ 0, which can occur in the
massless case for plane waves in the −z direction. This
decomposition has several unitful helicity amplitudes,
namely E, H and K, with units GeV2, GeV4 and GeV2,
respectively.
It should be stressed that we do not propose the helicity

amplitudes in Eq. (2) as a replacement for any of the
existing conventions; their utility lies specifically in the

ability to take light front Fourier transformations of these
helicity amplitudes to obtain physically interpretable den-
sities. In the respect that Fourier transforms of these
quantities produce light front densities (similarly to form
factors for spin-zero and spin-half targets), we will occa-
sionally refer to the helicity amplitudes as “effective form
factors”, but we stress that these quantities are not really
proper form factors.
In the massive case, the six helicity amplitudes in Eq. (2)

are linear combinations of the form factors found in Eq. (1),
with the particular combination depending on the initial
and final helicity. Of special interest are those that con-
tribute to the Galilean densities [27,30], which are the
densities corresponding to only theþ and transverse spatial
components of the EMT. These densities have the special
property of being covariant under the Galilean subgroup of
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the Poincaré group. Since nþ ¼ 0 and ni⊥ ¼ 0 (we use bold
vectors with a ⊥ subscript to signify transverse spatial
components), only A, J , and D contribute to these
densities.
The relationships between the form factors in Eq. (1) and

helicity amplitudes in Eq. (2) can be found by evaluating
Eq. (1) explicitly using the spin-one polarization vectors
found in Ref. [37] at ξ≡ − Δþ

2Pþ ¼ 0 (which are also given in
Appendix A). For example, let us consider cases with no
helicity flip (λ0 ¼ λ), which are relevant to the Galilean
densities of light front helicity states. For helicity �1 states
we have

A��ðΔ⊥Þ ¼ G1ðtÞ −
t

4M2
G2ðtÞ; ð3aÞ

J ��ðΔ⊥Þ ¼ � 1

2
G5ðtÞ≡�J ðtÞ; ð3bÞ

D��ðΔ⊥Þ ¼ G3ðtÞ − G6ðtÞ −
t

4M2
G4ðtÞ; ð3cÞ

whereas for helicity-0 states we have

A00ðΔ⊥Þ ¼
�
1þ t

2M2

�
G1ðtÞ −

t
4M2

ð2G5ðtÞ þ G6ðtÞÞ

−
t2

8M4
G2ðtÞ; ð4aÞ

J 00ðΔ⊥Þ ¼ 0; ð4bÞ

D00ðΔ⊥Þ ¼ G3ðtÞ −
t

4M2
ð−2G3ðtÞ þ G6ðtÞÞ −

t2

8M4
G4ðtÞ:

ð4cÞ

The results for the other helicity amplitudes can be found in
Appendix B.

A. Transversely polarized states

We next consider transversely polarized states for
massive spin-one hadrons. Since the only sensible quan-
tization axis for the spin of massless particles is along the
direction of travel, transversely polarized states can only
sensibly be considered in the massive case. The transverse
polarization vectors are given by the following linear
combinations of light front helicity states [38],

εμT;�1 ¼
εþ1 �

ffiffiffi
2

p
eiϕsε0 þ e2iϕsε−1

2
; ð5aÞ

εμT;0 ¼
εþ1 − e2iϕsε−1ffiffiffi

2
p ; ð5bÞ

and similarly for the final (primed) state. Accordingly, the
relevant EMT matrix elements will involve spin-flip con-
tributions. A catalog of all the individual contributions can
be found in Appendix B. Without loss of generality, we can
define x̂ ¼ s⊥, and for more compact formulas, we sup-
press explicit s⊥ dependence in the expressions to follow.
The simplest manner to give results is in terms of the

effective form factors,

hp0; msjTμνð0Þjp;msi ¼ 2PμPνAðmsÞ
T ðΔ⊥Þ − i

PfμϵνgPΔn

ðP · nÞ J ðmsÞ
T ðΔ⊥Þ þ

ΔμΔν − Δ2gμν

2
DðmsÞ

T ðΔ⊥Þ

þ Pfμnνg

ðP · nÞ E
ðmsÞ
T ðΔ⊥Þ þ

nμnν

ðP · nÞ2H
ðmsÞ
T ðΔ⊥Þ þ i

nfμϵνgPΔn

ðP · nÞ2 KðmsÞ
T ðΔ⊥Þ; ð6Þ

wherems ∈ f−1; 0;þ1g is the magnetic spin number, i.e., the eigenvalue of s⊥ projected along the quantization axis. Each
of the effective form factors works out to have the form,

F ð�1Þ
T ðΔ⊥Þ ¼

1

4
ðFþþðtÞ þ F−−ðtÞ þ 2F 00ðtÞÞ þ

t cos 2ϕΔ

8M2
F cos 2ϕ

T ðtÞ � i
ffiffiffiffiffi
−t

p
sinϕΔ

2M
F sinϕ

T ðtÞ; ð7aÞ

F ð0Þ
T ðΔ⊥Þ ¼

1

2
ðFþþðtÞ þ F−−ðtÞÞ −

t cos 2ϕΔ

4M2
F cos 2ϕ

T ðtÞ; ð7bÞ

where F stands in for any of the effective form factors in
Eq. (2) or Eq. (6), and where ϕΔ is the angle between Δ⊥
and s⊥. The F sinϕ

T ðtÞ and F cos 2ϕ
T ðtÞ that are relevant to the

Galilean light front densities are, in terms of the traditional
GFFs,

Asinϕ
T ðtÞ ¼ G5ðtÞ − 2G1ðtÞ þ

t
2M2

G2ðtÞ; ð8aÞ

Acos 2ϕ
T ðtÞ ¼ G2ðtÞ; ð8bÞ
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J sinϕ
T ðtÞ ¼ 0; ð8cÞ

J cos 2ϕ
T ðtÞ ¼ 0; ð8dÞ

Dsinϕ
T ðtÞ ¼ G6ðtÞ − 2G3ðtÞ þ

t
2M2

G4ðtÞ; ð8eÞ

Dcos 2ϕ
T ðtÞ ¼ G4ðtÞ: ð8fÞ

It should be clear from these results, combined with
Eqs. (3b) and (4b), that J T ¼ 0. This means that the Jz
density for transversely polarized states is zero, see Eq. (16b)
further down. To be sure, the structure of Eq. (2) means that
J T is a Jz density of transversely polarized states and not a
density of transverse angular momentum. This finding is not
surprising, since the expectation value of Jz in a transversely
polarized state is zero. The transverse angular momentum
operator is given by x−TþiðxÞ − xi⊥Tþ−ðxÞ, meaning that
this would entail a non-Galilean density and is thus beyond
the scope of this work. Indeed, this quantity would involve
several of the non-Galilean helicity amplitudes (those other
than A, J and D).
It may be instructive to consider Eq. (7) in terms of

unpolarized, vector polarized, and tensor polarized combi-
nations of the target. These polarization combinations are
defined for transversely polarized targets as follows:

F ðUÞ
T ðΔ⊥Þ ¼

1

3
ðF ðþ1Þ

T ðΔ⊥Þ þ F ð−1Þ
T ðΔ⊥Þ þ F ð0Þ

T ðΔ⊥ÞÞ;
ð9aÞ

F ðVÞ
T ðΔ⊥Þ ¼ F ðþ1Þ

T ðΔ⊥Þ − F ð−1Þ
T ðΔ⊥Þ; ð9bÞ

F ðTÞ
T ðΔ⊥Þ ¼

1

2
ð2F ð0Þ

T ðΔ⊥Þ − F ðþ1Þ
T ðΔ⊥Þ − F ð−1Þ

T ðΔ⊥ÞÞ:
ð9cÞ

If we also define these states for longitudinally polarized
targets,

F ðUÞ
L ðtÞ ¼ 1

3
ðFþþðtÞ þ F−−ðtÞ þ F 00ðtÞÞ; ð10aÞ

F ðVÞ
L ðtÞ ¼ FþþðtÞ − F−−ðtÞ; ð10bÞ

F ðTÞ
L ðtÞ ¼ 1

2
ð2F 00ðtÞ − FþþðtÞ − F−−ðtÞÞ; ð10cÞ

then we find for the transversely polarized states that

F ðUÞ
T ðΔ⊥Þ ¼ F ðUÞ

L ðtÞ ð11aÞ

F ðVÞ
T ðΔ⊥Þ ¼

i
ffiffiffiffiffi
−t

p
sinϕΔ

M
F sinϕ

T ðtÞ ð11bÞ

F ðTÞ
T ðΔ⊥Þ ¼ −F ðTÞ

L ðtÞ − t cos 2ϕΔ

4M2
F cos 2ϕ

T ðtÞ: ð11cÞ

The modulations can thus be interpreted in terms of vector
and tensor polarization states, but these states actually differ
depending on the spin quantization axis. We will consider
general polarization below. Throughout the remainder of
this work, however, we focus on deuterons in specific
polarization states rather than mixtures. The reason for this
is that unpolarized, vector polarized, and tensor polarized
states are mixtures that are not present in the Hilbert space
of the target, and we choose to focus in this work on the
densities and properties of spin-one systems in pure states.

B. General polarization

An alternate way of considering the dependence on the
initial and final state helicities of the spin-one particle in
Eq. (2) is by tracing it with a spin-one density matrix
ρðλ; λ0Þ characterizing the ensemble,

⟪Tμνð0Þ⟫≡X
λ;λ0

ρðλ; λ0Þhp0λ0jTμνð0Þjpλi: ð12Þ

We refer the reader to Appendix C for a summary of the
spin-one density matrix formalism and a definition of the
density matrix parameters (SL; ST;ϕS; TLL; TLT; TTT;ϕTL

;
ϕTT

) appearing in the formulas that follow. By considering
the relevant contractions of the off-diagonal covariant
density matrix of Eq. (C12), evaluated at Δþ ¼ 0, with
tensors built from P, Δ, n and the 4D Levi-Civita tensor, we
obtain the following expressions for the density matrix
averaged effective form factors appearing in Eq. (2),

X
λ;λ0

ρðλ; λ0ÞAλ0λ ¼
�
2

3
þ TLL

��
G1ðtÞ −

t
4M2

G2ðtÞ
�
þ
�
1

3
− TLL

���
1þ t

2M2

�
G1ðtÞ −

t2

8M4
G2ðtÞ

−
t

2M2
G5ðtÞ −

t
4M2

G6ðtÞ
�
þ iST sinðϕS − ϕtÞ

ffiffiffiffiffi
−t

p
M

�
G1ðtÞ −

t
4M2

G2ðtÞ −
G5ðtÞ
2

�

þ TTT cosð2ϕTT
− 2ϕtÞ

t
4M2

G2ðtÞ; ð13aÞ
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X
λ;λ0

ρðλ; λ0ÞJ λ0λ ¼
SL
2
G5ðtÞ þ iTLT sinðϕTL

− ϕtÞ
ffiffiffiffiffi
−t

p
2M

ðG5ðtÞ þ G6ðtÞÞ; ð13bÞ

X
λ;λ0

ρðλ; λ0ÞDλ0λ ¼
�
2

3
þ TLL

��
G3ðtÞ −

t
4M2

G4ðtÞ − G6ðtÞ
�
þ
�
1

3
− TLL

���
1þ t

2M2

�
G3ðtÞ

−
t2

8M4
G4ðtÞ −

t
4M2

G6ðtÞ
�
þ iST sinðϕS − ϕtÞ

ffiffiffiffiffi
−t

p
M

�
G3ðtÞ −

t
4M2

G4ðtÞ −
G6ðtÞ
2

�

þ TTT cosð2ϕTT
− 2ϕtÞ

t
4M2

G4ðtÞ; ð13cÞ

where ϕt is the azimuthal angle of Δ⊥.
We point out that A and D depend on the same density

matrix parameters—namely, 1 (the unpolarized part),
TLL; ST sinðϕS − ϕtÞ, and TTT cosð2ϕTT

− 2ϕtÞ—while J
depends on SL and TLT sinðϕTL

− ϕtÞ. The first set of
parameters are scalars and the second set are pseudoscalars,
reflecting the parity properties of the central charge pþ and
pressure on the one hand, and particle spin on the other. The
modulations in the densities for the transversely polarized
states are identified with the transverse vector (ST sinϕ)
and mixed longitudinal-transverse tensor (TLT sinϕ) polar-
ized part of the density matrix for the sinϕ modulations,
and the completely transverse tensor part (TTT cos 2ϕ) for
the cos 2ϕ modulations.
For Eq. (13), our previous expressions for the helicity

[Eqs. (3) and (4)] and transversely polarized states [Eqs. (7)
and (8)] are recovered after identifying the corresponding
density matrix parameters for these ensembles. For pure
longitudinal polarized states we need the following rest
frame spin parameters

λ ¼ �1∶ SL ¼ �1; TLL ¼ 1=3;

ST ¼ TLT ¼ TTT ¼ 0; ð14aÞ

λ ¼ 0∶ TLL ¼ −2=3;

SL ¼ ST ¼ TLT ¼ TTT ¼ 0: ð14bÞ

For pure transversely polarized states one has

λ ¼ �1∶ ST ¼ �1; TLL ¼ −1=6; TTT ¼ 1=2;

ϕTT
¼ ϕS; SL ¼ TLT ¼ 0; ð15aÞ

λ ¼ 0∶ TLL ¼ 1=3; TTT ¼ −1;ϕTT
¼ ϕS;

ST ¼ SL ¼ TLT ¼ 0: ð15bÞ

III. PROPERTIES OF SPIN-ONE DENSITIES

For states with definite light front helicity, the effective
form factors as given in Eqs. (3) and (4) can be used to
obtain the azimuthally symmetric light front Pþ, angular

momentum, and pressure densities of a spin-one system
localized in the transverse plane. The formulas for the Pþ
density and comoving stress tensor are identical to those
already found in Refs. [27,30] for spin-zero or spin-half
hadrons, but withA andD substituted for A andD. We give
these relations again here (along with the angular momen-
tum density)

ρðλÞpþðb⊥Þ ¼ Pþ
Z

d2Δ⊥
ð2πÞ2 AλλðtÞe−iΔ⊥·b⊥ ; ð16aÞ

ρðλÞJz
ðb⊥Þ ¼ λ

Z
d2Δ⊥
ð2πÞ2

�
J ðtÞ þ t

dJ ðtÞ
dt

�
e−iΔ⊥·b⊥ ; ð16bÞ

Sijλ ðb⊥Þ ¼
1

4Pþ

Z
d2Δ⊥
ð2πÞ2 ðΔ

i⊥Δ
j
⊥ − Δ2⊥δijÞDλλðtÞe−iΔ⊥·b⊥ :

ð16cÞ

The only significant difference from the spin-zero and spin-
half cases is that the densities now depend on λ, meaning
that the distribution of momentum, angular momentum,
and forces will differ between spin-one hadrons of the same
species that are prepared in different helicity states.
For transversely polarized states of massive hadrons, the

effective form factors have azimuthal dependence. The exact
manner of this dependence varies between the densities
under consideration, so we will proceed to consider the
properties of each separately.

A. Light front momentum density

The Pþ density for helicity states is given already by
Eq. (16a). The transversely polarized Pþ density contains
azimuthal dependence which is essentially carried over
from the azimuthal dependence of the effective form
factors, since

Z
d2Δ⊥
ð2πÞ2

i
ffiffiffiffiffi
−t

p
sinϕΔ

2M
Asinϕ

T ðtÞe−iΔ⊥·b⊥

¼ −
sinϕ
2M

d
db⊥

Z
d2Δ⊥
ð2πÞ2A

sinϕ
T ðtÞe−iΔ⊥·b⊥ ; ð17aÞ
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Z
d2Δ⊥
ð2πÞ2

t cos 2ϕΔ

4M2
Acos 2ϕ

T ðtÞe−iΔ⊥·b⊥

¼ cos 2ϕ
4M2

�
d2

db2⊥
−

1

b⊥
d

db⊥

�Z
d2Δ⊥
ð2πÞ2A

cos 2ϕ
T ðtÞe−iΔ⊥·b⊥ ;

ð17bÞ

where on the right-hand side, ϕ is the angle between b⊥ and
s⊥. In numerical applications, formulas involving deriva-
tives may not be stable, and it may be more helpful to use
Hankel transforms instead,

Z
d2Δ⊥
ð2πÞ2

i
ffiffiffiffiffi
−t

p
sinϕΔ

2M
Asinϕ

T ðtÞe−iΔ⊥·b⊥

¼ sinϕ
2M

1

2π
H1½kAsinϕ

T ðt ¼ −k2Þ�ðb⊥Þ; ð18aÞ

Z
d2Δ⊥
ð2πÞ2

t cos 2ϕΔ

4M2
Acos 2ϕ

T ðtÞe−iΔ⊥·b⊥

¼ cos 2ϕ
4M2

1

2π
H2½k2Acos 2ϕ

T ðt ¼ −k2Þ�ðb⊥Þ; ð18bÞ

where the Hankel transform of order ν is defined by [39]:

Hν½FðkÞ�ðbÞ ¼
Z

∞

0

dkkJνðbkÞFðkÞ; ð19Þ

and where JνðxÞ is the Bessel function of order ν.
For the sake of more compact formulas, it is prudent to

define

ρsinϕT ðb⊥Þ ¼
Pþ

2π

1

2M
H1½kAsinϕ

T ð−k2Þ�ðb⊥Þ; ð20aÞ

ρcos 2ϕT ðb⊥Þ ¼
Pþ

2π

1

4M2
H2½k2Acos 2ϕ

T ð−k2Þ�ðb⊥Þ: ð20bÞ

The Pþ density of a transversely polarized spin-one hadron
is thus given by

ρð�1Þ
T ðb⊥Þ ¼

ρðþÞ
pþ ðb⊥Þ þ ρð0Þpþðb⊥Þ

2
� sinϕρsinϕT ðb⊥Þ

þ 1

2
cos 2ϕρcos 2ϕT ðb⊥Þ; ð21aÞ

ρð0ÞT ðb⊥Þ ¼ ρðþÞ
pþ ðb⊥Þ − cos 2ϕρcos 2ϕT ðb⊥Þ; ð21bÞ

where we have used ρðþÞ
pþ ðb⊥Þ ¼ ρð−Þpþ ðb⊥Þ to make the

formulas slightly shorter.
The Pþ densities for all polarization states satisfy sum

rules. Integrating Eq. (16a) over all space gives

Z
d2b⊥ρ

ðλÞ
pþðb⊥Þ ¼ PþAλλð0Þ: ð22Þ

For this to equal Pþ, we have the sum rule

Aλλð0Þ ¼ 1; ð23Þ

for each helicity λ. Since Að0Þ ¼ G1ð0Þ for massive
hadrons, this is compatible with the G1ð0Þ ¼ 1 sum rule
of Ref. [17]. Since the integrals of sinϕ and cos 2ϕ over

½0; 2πÞ are zero, the azimuthal dependence of ρðmsÞ
T ðb⊥; s⊥Þ

integrates to zero, and we also have

Z
d2b⊥ρ

ðmsÞ
T ðb⊥; s⊥Þ ¼ Pþ: ð24Þ

The Pþ density for both helicity and transversely polar-
ized states do not have Pþ dipole moments, i.e., their center-
of-Pþ is at the origin, as expected. A general explanation for
why this occurs can be found in Sec. 7 of Ref. [40]. For the
case of helicity states, it is easy to see that

Z
d2b⊥b⊥ρ

ðλÞ
pþðb⊥Þ ¼ 0: ð25Þ

For transversely polarized states, if we use coordinates
where s⊥ ¼ x̂,

Z
d2b⊥b⊥ρ

ðmsÞ
T ðb⊥; s⊥Þ ¼

msŷPþ

2M
ðG5ð0Þ − 2G1ð0ÞÞ ¼ 0:

ð26Þ

We know G1ð0Þ ¼ 1 by momentum conservation. It has
been shown previously [16,17,20] that G5ð0Þ ¼ 2 follows
from angular momentum conservation. Thus, the center-
of-Pþ is at the origin, as expected.
On the other hand, the transversely polarized Pþ density

does exhibit a quadrupole moment. In two spatial dimen-
sions, we define the traceless quadrupole tensor as

Qij
LFðs⊥; msÞ ¼

Z
d2b⊥ð2bi⊥bj⊥ − b2⊥δijÞρðmsÞ

T ðb⊥; s⊥Þ:

ð27Þ

The quadrupole moment itself can be identified with

QLFðs⊥; msÞ ¼ si⊥s
j
⊥Q

ij
LFðs⊥; msÞ; ð28Þ

so that, conversely

Qij
LFðs⊥; msÞ ¼ ð2si⊥sj⊥ − δijÞQLFðs⊥; msÞ: ð29Þ

We find through explicit evaluation that
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QLFðs⊥;�1Þ ¼ Pþ

2M2
G2ð0Þ≡ 1

2
QLF; ð30aÞ

QLFðs⊥; 0Þ ¼ −
Pþ

M2
G2ð0Þ≡ −QLF: ð30bÞ

The value of G2ð0Þ is not constrained by any conservation
laws or sum rules, and is zero for a free boson [18]. A
nonzero quadrupole moment must thus be generated by
dynamics.
As is conventional in the nuclear physics literature [41],

a positive quadrupole moment indicates a prolate hadron
(elongated in the direction of the spin quantization axis),
while a negative quadrupole moment indicates an oblate
hadron (flattened in the direction of the spin axis). A
positive G2ð0Þ would thus mean that the ms ¼ �1 state is
prolate, and that thems ¼ 0 state is oblate. A negative value
for G2ð0Þ would of course indicate the opposite.
The contrast with the Breit frame mass quadrupole

moment (see Refs. [17,18]) is remarkable. Comparing to
Ref. [17] in particular1 and using sum-rule enforced values
(and dropping nonconserved form factors)

QBreit ¼
1

M

�
G2ð0Þ − 1 −

1

2
G6ð0Þ

�
: ð31Þ

The Breit-frame quadrupole moment depends on G6ð0Þ in
addition to G2ð0Þ. Remarkably, G6ð0Þ ¼ −2 in the free
theory [18], meaning that the Breit-frame mass quadrupole
moment is also generated entirely by dynamics. However,
since G6ð0Þ also comes into play, the quadrupole moment
may turn out to have different magnitudes and even signs in
the Breit frame and on the light front. In Ref. [21], the rho
meson was found to have GNJL

2 ð0Þ ≈ 0.158 > 0 and
GNJL
6 ð0Þ ≈ −1, which means that the rho meson (in this

model) has a positive Pþ quadrupole moment on the light
front, but a negative mass quadrupole moment in the Breit
frame. Since G6ð0Þ is involved in the Breit-frame quadru-
pole moment, the difference between this and the light front
quadrupole moment may be due to relativistic spin effects,
as was remarked for the electric quadrupole moment
in Ref. [42].
Let us lastly look at the Pþ radius of spin-one hadrons,

which is defined through

hb2⊥iPþ ¼ 1

Pþ

Z
d2b⊥b2⊥ρpþðb⊥Þ ¼ 4

∂AðΔ⊥Þ
∂t

				
t¼0

; ð32Þ

and for massive hadrons differs between polarization states,
since the effective AðΔ⊥Þ form factor differs. For helicity
states of massive hadrons

hb2⊥iPþðλ ¼ �1Þ ¼ 4
dG1ðtÞ
dt

				
t¼0

−
G2ð0Þ
M2

; ð33aÞ

hb2⊥iPþðλ¼ 0Þ¼ 4
dG1ðtÞ
dt

				
t¼0

þ 1

M2

× ð2G1ð0Þ−2G5ð0Þ−G6ð0ÞÞ; ð33bÞ

while for transversely polarized states

hb2⊥iPþðms ¼ �1Þ ¼ 1

2
ðhb2⊥iPþðλ ¼ �1Þ

þ hb2⊥iPþðλ ¼ 0ÞÞ; ð33cÞ

hb2⊥iPþðms ¼ 0Þ ¼ hb2⊥iPþðλ ¼ �1Þ; ð33dÞ

The average Pþ density between the three polarization
states (of massive hadrons) is the same for helicity and
transversely polarized states,

ρ̄pþðb⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2

�
G1ðtÞ þ

t
6M2

�
G1ðtÞ − G2ðtÞ − G5ðtÞ

−
1

2
G6ðtÞ

�
−

t2

24M4
G2ðtÞ

�
e−iΔ⊥·b⊥ ; ð34Þ

and likewise is the corresponding radius [21]

hb2⊥iPþ ¼ 4
dG1ðtÞ
dt

				
t¼0

þ 2

3M2

×

�
G1ð0Þ−G2ð0Þ−G5ð0Þ−

1

2
G6ð0Þ

�
: ð35Þ

B. Angular-momentum density

The Jz angular-momentum density for helicity states is
given in Eq. (16b), and for transversely polarized states is
identically zero, as already discussed in Sec. II. As with the
Pþ density, it may be helpful for numerical applications to
be able to take a single Hankel transform of J ðtÞ itself.
Some straightforward algebra can be used to show that

ρðλÞJz
ðb⊥Þ ¼

λb⊥
2π

H1½kJ ð−k2Þ�ðb⊥Þ: ð36Þ

From this density, the total angular momentum projected
along the z axis is

Z
d2b⊥ρ

ðλÞ
Jz
ðb⊥Þ ¼ λJ ð0Þ ¼ λ

2
G5ð0Þ: ð37Þ

Since this must be λ, we reproduce the finding of
Refs. [16,17,20] that G5ð0Þ ¼ 2.

1The sign convention in Ref. [21] is the opposite as in
Ref. [17], the latter of which we follow in this work.
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For helicity λ ¼ �1 states, an angular momentum radius
can be defined as

hb2⊥iJ ¼
1

λ

Z
d2b⊥b2⊥ρ

ðλÞ
Jz
ðb⊥Þ¼ 8

dJ ðtÞ
dt

				
t¼0

¼ 4
dG5ðtÞ
dt

				
t¼0

:

ð38Þ

C. The comoving stress tensor

Following Refs. [13,30], the comoving stress tensor can
most easily be dealt with using the following auxiliary
density (which we call the Polyakov stress potential)

D̃λðb⊥Þ ¼
1

4Pþ

Z
d2Δ⊥
ð2πÞ2 DλλðtÞe−iΔ⊥·b⊥ ; ð39Þ

for which

Sijλ ðb⊥Þ ¼ ð∇2⊥δij − ∇i⊥∇
j
⊥ÞD̃λðb⊥Þ: ð40Þ

Analogously to spin-zero and spin-half helicity states
[13,27,30], the comoving stress tensor for spin-one helicity
states can be decomposed into an isotropic pressure pðb⊥Þ
and shear stress (or pressure anisotropy) function sðb⊥Þ as
follows:

Sijλ ðb⊥Þ ¼ δijpðλÞðb⊥Þ þ
�
bi⊥b

j
⊥

b2⊥
−
1

2
δij
�
sðλÞðb⊥Þ: ð41Þ

This decomposition entails radial and tangential eigenpres-
sures, given by

pðλÞ
r ðb⊥Þ ¼ pðλÞðb⊥Þ þ

sðλÞðb⊥Þ
2

¼ 1

b⊥
dD̃λðb⊥Þ
db⊥

; ð42aÞ

pðλÞ
t ðb⊥Þ ¼ pðλÞðb⊥Þ −

sðλÞðb⊥Þ
2

¼ d2D̃λðb⊥Þ
db2⊥

: ð42bÞ

As with the Pþ density, it may be helpful for numerical
applications to obtain these quantities through higher-order
Hankel transforms, rather than through derivatives. The
isotropic pressure and shear stress can be shown to be

pðλÞðb⊥Þ ¼ −
1

8Pþ
1

2π
H0½k2Dλλð−k2Þ�ðb⊥Þ; ð43aÞ

sðλÞðb⊥Þ ¼ −
1

4Pþ
1

2π
H2½k2Dλλð−k2Þ�ðb⊥Þ: ð43bÞ

1. Transverse polarization

For transversely polarized states, the structure of the
comoving stress tensor becomes significantly more

complicated. The Polyakov stress potential obtains mod-
ulations completely analogous to those in the Pþ density;
we define

D̃sinϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

2M
H1½kDsinϕ

T ð−k2Þ�ðb⊥Þ; ð44aÞ

D̃cos2ϕ
T ðb⊥Þ¼

1

2π

1

4Pþ
1

4M2
H2½k2Dcos2ϕ

T ð−k2Þ�ðb⊥Þ; ð44bÞ

where the effective form factor modulations are as defined
in Eq. (8). The Polyakov potentials for transversely
polarized states are given by

D̃ð�1Þ
T ðb⊥Þ ¼

D̃þðb⊥Þ þ D̃0ðb⊥Þ
2

� sinϕD̃sinϕ
T ðb⊥Þ

þ 1

2
cos 2ϕD̃cos 2ϕ

T ðb⊥Þ; ð45aÞ

D̃ð0Þ
T ðb⊥Þ ¼ D̃þðb⊥Þ − cos 2ϕD̃cos 2ϕ

T ðb⊥Þ; ð45bÞ

where we have used D̃þðb⊥Þ ¼ D̃−ðb⊥Þ to make the
formulas slightly shorter. The comoving stress tensor is
then given by

SijT ðb⊥; msÞ ¼ ð∇2⊥δij − ∇i⊥∇
j
⊥ÞD̃ðmsÞ

T ðb⊥Þ: ð46Þ

This stress tensor no longer has the simple decomposition
of Eq. (41); it contains a new tensor structure, and the
functions multiplying each structure now contain azimuthal
modulations,

SijT ðb⊥; msÞ ¼ δijpðmsÞ
T ðb⊥Þ þ

�
b̂ib̂j −

1

2
δij
�
sðmsÞ
T ðb⊥Þ

þ ðb̂iϕ̂j þ ϕ̂ib̂jÞvðmsÞ
T ðb⊥Þ: ð47Þ

Here, b̂ and ϕ̂ are unit vectors in the radial and counter-
clockwise tangential directions, respectively. Note that each
of the tensor structures except for the δij accompanying

pðmsÞ
T ðb⊥Þ is traceless, so pðmsÞ

T ðb⊥Þ can be understood as
the isotropic pressure.
To obtain the functions pT , sT , and vT , one can contract

the comoving stress tensor with multiples of the associated
tensors

pðmsÞ
T ðb⊥Þ ¼

1

2
δijS

ij
T ðb⊥; msÞ; ð48aÞ

sðmsÞ
T ðb⊥Þ ¼

�
b̂ib̂j −

1

2
δij
�
SijT ðb⊥; msÞ; ð48bÞ

vðmsÞ
T ðb⊥Þ ¼

1

2
ðb̂iϕ̂j þ ϕ̂ib̂jÞSijT ðb⊥; msÞ: ð48cÞ
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With some straightforward but tedious algebra, combining these equations with Eq. (46) yields

pðmsÞ
T ðb⊥Þ ¼

1

2

�
∂
2

∂b2⊥
þ 1

b⊥
∂

∂b⊥
þ 1

b2⊥
∂
2

∂ϕ2

�
D̃ðmsÞ

T ðb⊥Þ; ð49aÞ

sðmsÞ
T ðb⊥Þ ¼

�
−

∂
2

∂b2⊥
þ 1

b⊥
∂

∂b⊥
þ 1

b2⊥
∂
2

∂ϕ2

�
D̃ðmsÞ

T ðb⊥Þ; ð49bÞ

vðmsÞ
T ðb⊥Þ ¼

�
−

1

b⊥
∂

∂b⊥
þ 1

b2⊥

�
∂

∂ϕ
D̃ðmsÞ

T ðb⊥Þ: ð49cÞ

It will be helpful for numerical applications to have expressions for the functions pT , sT , and vT in terms of Hankel
transforms rather than coordinate derivatives. Some algebra and identities for Bessel functions can be used to accomplish
this. We spare the reader the details of the derivation, stating only the results. For specific polarization states, these functions
are given by

pð�1Þ
T ðb⊥Þ ¼

pðþÞðb⊥Þ þ pð0Þðb⊥Þ
2

� sinϕpsinϕ
T ðb⊥Þ þ

1

2
cos 2ϕpcos 2ϕ

T ðb⊥Þ; ð50aÞ

sð�1Þ
T ðb⊥Þ ¼

sðþÞðb⊥Þ þ sð0Þðb⊥Þ
2

� sinϕssinϕT ðb⊥Þ þ
1

2
cos 2ϕscos 2ϕT ðb⊥Þ; ð50bÞ

vð�1Þ
T ðb⊥Þ ¼ cosϕvcosϕT ðb⊥Þ þ

1

2
sin 2ϕvsin 2ϕT ðb⊥Þ; ð50cÞ

and for the ms ¼ 0 state are

pð0Þ
T ðb⊥Þ ¼ pðþÞðb⊥Þ − cos 2ϕpcos 2ϕ

T ðb⊥Þ; ð50dÞ

sð0ÞT ðb⊥Þ ¼ sðþÞðb⊥Þ − cos 2ϕscos 2ϕT ðb⊥Þ; ð50eÞ

vð0ÞT ðb⊥Þ ¼ − sin 2ϕvsin 2ϕT ðb⊥Þ: ð50fÞ

The ϕ modulations in these functions are given by

psinϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

2M

�
−
1

2
H1½k3Dsinϕ

T ð−k2Þ�ðb⊥Þ
�
; ð51aÞ

ssinϕT ðb⊥Þ ¼
1

2π

1

4Pþ
1

2M
fH1½k3Dsinϕ

T ð−k2Þ�ðb⊥Þ −
2

b⊥
H2½k2Dsinϕ

T ð−k2Þ�ðb⊥Þg; ð51bÞ

vcosϕT ðb⊥Þ ¼
1

2π

1

4Pþ
1

2M

�
1

b⊥
H2½k2Dsinϕ

T ð−k2Þ�ðb⊥Þ
�
; ð51cÞ

and the 2ϕ modulations by

pcos 2ϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

4M2

�
−
1

2
H2½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ
�
; ð51dÞ

scos 2ϕT ðb⊥Þ ¼
1

2π

1

4Pþ
1

4M2

�
−
1

2
H0½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ −
1

2
H4½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ
�
; ð51eÞ
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vsin 2ϕT ðb⊥Þ ¼
1

2π

1

4Pþ
1

4M2

�
1

4
H0½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ −
1

4
H4½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ
�
: ð51fÞ

For transversely polarized states, the eigenpressures will no longer be radial and tangential. The eigenpressures are
instead given by2

PðmsÞ
T;� ðb⊥Þ ¼ pðmsÞ

T ðb⊥Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðsðmsÞ

T ðb⊥ÞÞ2 þ ðvðmsÞ
T ðb⊥ÞÞ2

r
: ð52aÞ

These eigenpressures are normal stresses along ϕ-dependent unit vectors ê�, whose angles with respect to the spin
quantization axis s⊥ ¼ x̂ are given by

θðmsÞ
� ðb⊥Þ ¼ ϕþ 1

2
tan−1

�
2vðmsÞ

T ðb⊥Þ
sðmsÞ
T ðb⊥Þ

�
þ Θð�sðmsÞ

T ðb⊥ÞÞ
π

2
; ð52bÞ

where ΘðxÞ is the Heaviside step function. The unit eigenvectors are then written

êðmsÞ
� ðb⊥Þ ¼ cosðθðmsÞ

� ðb⊥ÞÞx̂þ sinðθðmsÞ
� ðb⊥ÞÞŷ: ð52cÞ

It is also possible to categorize the eigenpressures in an alternative way

P̄ðmsÞ
T;r ðb⊥Þ ¼ pðmsÞ

T ðb⊥Þ þ signðsðmsÞ
T ðb⊥ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðsðmsÞ

T ðb⊥ÞÞ2 þ ðvðmsÞ
T ðb⊥ÞÞ2;

r
ð53aÞ

P̄ðmsÞ
T;t ðb⊥Þ ¼ pðmsÞ

T ðb⊥Þ − signðsðmsÞ
T ðb⊥ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðsðmsÞ

T ðb⊥ÞÞ2 þ ðvðmsÞ
T ðb⊥ÞÞ2

r
; ð53bÞ

whose angles with respect to the spin quantization axis are

θ̄ðmsÞ
r ðb⊥Þ ¼ ϕþ 1

2
tan−1

�
2vðmsÞ

T ðb⊥Þ
sðmsÞ
T ðb⊥Þ

�
; ð53cÞ

θ̄ðmsÞ
t ðb⊥Þ ¼ ϕþ 1

2
tan−1

�
2vðmsÞ

T ðb⊥Þ
sðmsÞ
T ðb⊥Þ

�
þ π

2
: ð53dÞ

At every b⊥, these of course furnish the same pair of eigenvectors and eigenvalues as Eq. (52); the difference lies in how the
pairs are sorted into b⊥-dependent functions. The eigenvalue/eigenvector pairs in Eq. (53) in particular reduce to the
familiar radial and tangential eigenpressures in the helicity case (where vT ¼ 0). However, there is benefit to using Eq. (52)
instead of Eq. (53) for transversely polarized states; namely, that when vT ≠ 0, only the former are continuous across
sT ¼ 0. This can be seen both in the square root function in the pressure functions themselves, and in how the step function
in the angle functions compensates the π

2
discontinuity between 1

2
tan−1ð∞Þ and between 1

2
tan−1ð−∞Þ.

2. Mechanical radius

It has been hypothesized [12,13,27,30] that the radial pressure is a positive-definite quantity for stable systems, and can
thus be used to define a positive-definite “mechanical radius” that gives an estimate of a hadron’s size

hb2⊥imech ¼
R
d2b⊥b2⊥prðb⊥ÞR
d2b⊥prðb⊥Þ

: ð54Þ

2A capital P is used to signify transverse eigenpressures to assist visually distingiushing them from other auxilliary functions such as
pðmsÞ
T .
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For transversely polarized states the radial pressure is not
an eigenpressure, but it is nevertheless a normal stress along
the b̂ direction, and is given by

pðmsÞ
Tr ðb⊥Þ ¼

1

b⊥
∂D̃ðmsÞ

T ðb⊥Þ
∂b⊥

þ ∂
2D̃ðmsÞ

T ðb⊥Þ
∂ϕ2

: ð55Þ

In both the numerator and denominator, the integrals over
the azimuthal modulations become zero. Thus, for either
helicity or transversely polarized states, the numerator
becomes, via integration by parts,Z

d2b⊥b2⊥prðb⊥Þ ¼ −
1

2Pþ Dð0Þ: ð56Þ

The denominator, with a little integration calculus, can be
shown to beZ

d2b⊥prðb⊥Þ ¼ −
1

16πPþ

Z
0

−∞
dt
Z

2π

0

dϕDðΔ⊥Þ; ð57Þ

where the modulations again integrate to zero. The
mechanical radius is thus given by

hb2⊥imech ¼
4Dð0ÞR

0
−∞ dtDðtÞ

				
sinϕ¼0;cos 2ϕ¼0

: ð58Þ

For specific helicity states of massive hadrons, we have

hb2⊥imechðλ ¼ �1Þ ¼ 4ðG3ð0Þ − G6ð0ÞÞR
0
−∞ dtðG3ðtÞ − G6ðtÞÞ

; ð59aÞ

hb2⊥imechðλ ¼ 0Þ ¼ 4G3ð0ÞR
0
−∞ dtG3ðtÞ

; ð59bÞ

while for specific transverse-polarization states, we have

hb2⊥imech;Tðms ¼ �1Þ ¼ 4ðG3ð0Þ − 1
2
G6ð0ÞÞR

0
−∞ dtðG3ðtÞ − 1

2
G6ðtÞÞ

; ð59cÞ

hb2⊥imech;Tðms ¼ 0Þ ¼ 4ðG3ð0Þ − G6ð0ÞÞR
0
−∞ dtðG3ðtÞ − G6ðtÞÞ

: ð59dÞ

For the unpolarized state, the numerator and denominator
need to be averaged separately. The unpolarized mechani-
cal radius of a massive hadron is given by

hb2⊥imech ¼
4ðG3ð0Þ − 2

3
G6ð0ÞÞR

0
−∞ dtðG3ðtÞ − 2

3
G6ðtÞÞ

: ð60Þ

IV. NUMERICAL ILLUSTRATION

As a simple numerical illustration, we present light
front densities for the deuteron in a light cone convolution

model [43–46]. The model provides a description of
deuteron structure in terms of on-shell nucleons, which
allows for on-shell gravitational form factors to be used
for the nucleon, according to the standard formulas (e.g.,
Eq. (6) of Ref. [13]).
A potential downside of the light cone model is that it

breaks manifest Lorentz covariance by truncating the Fock
state at a two-nucleon state—a truncation that is invariant
under the kinematic subgroup, but not under dynamical
transformations. The form factor and helicity amplitude
breakdowns in Eqs. (1) and (2) are a consequence of
Lorentz covariance, and accordingly, the helicity amplitudes
calculated in this model through different components of the
EMT may be inconsistent. (Compare to Refs. [43,45],
where polynomiality breaks down for generalized parton
distributions of the deuteron, which makes extraction of the
GFFs ambiguous.) Additionally, the components Tþi and
Tij are “bad” components [47,48], in the sense that they mix
Fock states with different numbers of particles, and the
truncation of the deuteron Fock state at two nucleons
accordingly drops potentially relevant physics.
Despite this potential shortcoming, we adopt the model

in question, largely due to the lack of alternatives with the
desirable covariance property. Moreover, this section is
primarily meant to illustrate the general formalism devel-
oped above—a purpose for which the model is perfectly
adequate. To deal with the issue of inconsistent helicity
amplitudes, we consider specifically components of the
EMT that give expected behavior of the GFFs at t ¼ 0,
namely that the t ¼ 0 results for all helicity transitions are
zero [e.g., J þ0ð0Þ ¼ 0], and that Dλλ0 ð0Þ is finite for all λ
and λ0.
We calculate in a frame where P⊥ ¼ 0. We have Δþ ¼ 0

by construction, and it also follows that Δ− ¼ 0. Without
loss of generality, we can consider Δx ¼ ffiffiffiffiffi

−t
p

and Δy ¼ 0.
In the convolution the momentum of the “active” nucleon
enters the matrix element of the EMT. This has the same
Δþ and Δ⊥ as for the deuteron, whereas Δ− does not enter
into the relevant matrix elements.
We find the following EMT matrix elements to provide

GFFs with the required t ¼ 0 behavior

1

2ðPþÞ2 hp
0λ0jTþþjpλi ¼ Aλ0λðtÞ; ð61aÞ

−
1

Pþ ffiffiffiffiffi
−t

p hp0λ0jTþRjpλi ¼ J λ0λðtÞ; ð61bÞ

−2hp0λ0jTRRjpλi ¼ tDλ0λ; ð61cÞ

where the R and L components are defined via

aR ¼ ax þ iay; ð62aÞ

aL ¼ ax − iay: ð62bÞ
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These allow us to calculate the necessary helicity ampli-
tudes directly. Specifically, off-diagonal matrix elements
contribute to the sinϕ (one unit helicity difference) and
cos 2ϕ (two units) modulations for the transversely polar-
ized states.
Because of Lorentz covariance violations by the con-

volution model, several symmetry relations laid out in
Appendix B are violated by applying Eq. (61) to the model.
For instance, we find J þ0ðtÞ ≠ −J �

0þðtÞ. In this case
specifically, we find J þ0ð0Þ ¼ 0 but J 0þð0Þ ≠ 0. Since
physically this helicity amplitude should vanish at t ¼ 0, we
use Eq. (61) to calculate J þ0ðtÞ specifically, and then set
J 0þðtÞ ¼ −J �

þ0ðtÞ. (If we use TþL rather than TþR to
calculate these same helicity amplitudes, their behavior is
actually reversed. This behavior reversal is an inevitable
consequence of stricter symmetry properties than Lorentz
covariance, namely hermiticity and parity invariance.) In all
cases where the relations in Appendix B are violated, we
restore the relations by fiat and use Eq. (61) to calculate the
specific helicity amplitude with the required t ¼ 0 behavior.
To proceed, we also need the following matrix elements

for the nucleon light front EMT, obtained by evaluating
Eq. (27) of Ref. [30]. For Tþþ matrix elements

1

2ðPþÞ2 hp
0
NλjTþþjpNλi ¼

�
αN
2

�
2

AðtÞ; ð63aÞ

1

2ðPþÞ2 hp
0
N − jTþþjpNþi ¼ −

�
αN
2

�
2
ffiffiffiffiffi
−t

p
2M

½AðtÞ − 2JðtÞ�;

ð63bÞ

1

2ðPþÞ2 hp
0
N þ jTþþjpN−i ¼

�
αN
2

�
2
ffiffiffiffiffi
−t

p
2M

½AðtÞ − 2JðtÞ�;

ð63cÞ

for TþR matrix elements,

−
1

Pþ ffiffiffiffiffi
−t

p hp0
NλjTþRjpNλi ¼

αN
2

�
−2

PR
Nffiffiffiffiffi
−t

p AðtÞ þ λJðtÞ
�
;

ð64aÞ

−
1

Pþ ffiffiffiffiffi
−t

p hp0
N − jTþRjpNþi¼ αN

2

PR
N

M
½AðtÞ− 2JðtÞ�; ð64bÞ

−
1

Pþ ffiffiffiffiffi
−t

p hp0
N þ jTþRjpN−i

¼ −
αN
2

PR
N

M

�
AðtÞ þ

�
PL
N

PR
N
− 1

�
JðtÞ

�
; ð64cÞ

and for TRR matrix elements,

2hp0
NλjTRRjpNλi ¼ 4ðPR

NÞ2AðtÞ − tDðtÞ − 2λ
ffiffiffiffiffi
−t

p
PR
NJðtÞ;
ð65aÞ

2hp0
N − jTRRjpNþi ¼ −

ffiffiffiffiffi
−t

p
2M

½4ðPR
NÞ2AðtÞ − tDðtÞ�

þ 2

ffiffiffiffiffi
−t

p
M

ðPR
NÞ2JðtÞ; ð65bÞ

2hp0
N þ jTRRjpN−i ¼

ffiffiffiffiffi
−t

p
2M

½4ðPR
NÞ2AðtÞ − tDðtÞ�

þ 2

ffiffiffiffiffi
−t

p
M

PR
NP

L
NJðtÞ: ð65cÞ

Here, αN is related to the light front momentum fraction of
the active nucleon,

αN ¼ 2pþ
N

pþ ¼ 2p0þ
N

pþ : ð66Þ

For the nucleon form factors, we use simple multipole
parametrizations, motivated by the investigations of
Ref. [49] (see Sec. V.C thereof in particular),

AðtÞ ¼ 2JðtÞ ¼ 1

ð1 − t=m2
f2ð1270ÞÞð1 − t=m2

f2ð1430ÞÞ
; ð67aÞ

DðtÞ ¼ Dð0Þ
ð1 − t=m2

f2ð1270ÞÞð1 − t=m2
f2ð1430ÞÞð1 − t=m2

σð800ÞÞ
;

ð67bÞ

with Dð0Þ ¼ −2, motivated by lattice QCD findings [50].
The helicity amplitudes in this model are presented in

Fig. 1. From these, a variety of light front densities can be
obtained. We present a selected sample of these densities, in
order to not take up too much space. In particular, pþ
densities can be calculated using Eqs. (16a) and (20), and
the pressure distributions using Eqs. (43), (50), (51),
and (52).
First, in Fig. 2, we present light front momentum (pþ)

densities for both λ ¼ 0 and λ ¼ þ1 helicity states, as well
as for the ms ¼ 0 and ms ¼ þ1 transversely polarized
states. The pþ densities obtained from this model are
especially robust, since they are obtained through the
“good” component Tþþ of the EMT. They also provide
the clearest, most transparent description of the deuteron’s
structure.
A curious aspect of thems ¼ þ1 state is its deformation

towards theþy direction. This is a peculiarity of the use of
light front coordinates, and has been noticed for the
deuteron’s electric charge density previously in Ref.
[38,42], as well as in both the charge density [25] and
pþ density [51] of a transversely polarized proton. In
Ref. [25], this deformation was interpreted in terms of
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FIG. 1. The helicity amplitudes AðtÞ, J ðtÞ and DðtÞ of the deuteron for various helicity combinations. Those not explicitly given in
the plots are determined from these using the relations in Appendix B.

FIG. 2. The pþ density of the deuteron in various polarization states, with pþ divided out to provide a boost-invariant density that is
normalized to 1. A left-handed coordinate system is used, so that the z direction is into rather than out of the page. The panels are (top-
left) helicity state with λ ¼ 0, (top-right) helicity state with λ ¼ þ1, (bottom-left) transverse polarization along x axis with ms ¼ 0, and
(bottom-right) transverse polarization along x axis with ms ¼ þ1.

SPATIAL DENSITIES OF MOMENTUM AND FORCES IN … PHYS. REV. D 106, 114013 (2022)

114013-13



distortions created by the point of view of an observer
moving quickly towards the target. However, no such
reference frame has actually been chosen here.
The transverse deformations are likely due to a mix of

different effects, including the use of fixed xþ rather than
fixed x0, the fact that x− has been integrated out, and that
we are considering a density of Pþ rather than a density of
P0. Note that there is more P3 on one side of the axis of
rotation than the other, since the axis of rotation is along the
x axis, and modulations in the P3 density would be present
in the Pþ density as well, even in a three-dimensional
instant form density in the rest frame. There may also be
modulation effects from Wigner-Melosh rotations connect-
ing states with light front spin and canonical spin, as was
observed in Refs. [29,42,52] for spin-half systems.
Let us consider the static quantities associated with the

momentum densities. Starting with the radii, using
Eq. (32), we find the following radii for helicity states

hb⊥ipþðλ ¼ 0Þ ¼ 1.77 fm; ð68aÞ

hb⊥ipþðλ ¼ 0Þ ¼ 1.69 fm; ð68bÞ

hb⊥ipþ ¼ 1.72 fm: ð68cÞ

These results are roughly compatible with the known
charge radius of the deuteron. The Breit frame deuteron
charge radius is 2.130 fm [53], which scaled down byffiffiffiffiffiffiffiffi
2=3

p
to give a rough estimate for a 2D charge radius, gives

1.739 fm.
For the transversely polarized states, we can calculate a

quadrupole moment. Using Eqs. (30) and (B3), the light
front quadrupole moment is found to be

QLF ¼ 4lim
t→0

A−þðtÞ
t

¼ 0.27pþ-fm; ð69Þ

which is surprisingly close to the empirical value of the
electric quadrupole moment, 0.2859e-fm [54–56].
The pressure distributions are of special interest, due to

the amount of attention these have received in the hadron
physics community recently. Unfortunately, the light cone
convolution model is less trustworthy for these quantities
because they correspond to “bad” components of the EMT,
namely, Tij. An ideal situation would be to obtain Dλλ0 ðtÞ
from a manifestly covariant model. Nonetheless, for
illustration of the formalism, we present the pressure
distributions obtained from this model.
A selection of eigenpressures are presented in Fig. 3,

with the selection limited to save space. For helicity states,
the radial pressure is selected, and for transversely
polarized states, the “þ” eigenpressure is selected accord-
ing to Eq. (52). The color is selected to show magnitude
and sign of the pressure, and two-sided arrows to signify
direction.

We feel it is important to reiterate the physical meaning of
intrinsic pressure and its sign in this context, as was
explained previously in Ref. [51]. Since the deuteron is
in equilibrium, the expectation value of the force acting over
any region of the transverse plane is exactly zero. By
Gauss’s theorem, this means that the integral of F⊥ · n̂ over
the surface of any region must be zero. The stresses encoded
by the expectation value of Tij correspond to forces acting
on this region from all directions, which sum to a net force
of zero. A positive pressure therefore does not indicate a net
repulsive force from the center, nor does a negative pressure
signify a confining force towards the center, as was claimed
in Ref. [57]. A positive pressure means that particles in this
region of space are experiencing pushing forces from both
directions, and a negative pressure likewise means they are
experiencing pulling forces from both directions. For the
radial eigenpressures (helicity states), these directions are
towards and away from the center of the deuteron, while for
transversely polarized states, the directions are indicated by
white arrows overlaid on the plot.
In fact, since the densities obtained in this formalism

correspond to stresses seen by transversely comoving
observers, the pressures are static pressures or intrinsic
pressures, and should be contrasted by dynamic pressures
which include impulse imparted by flow or motion of the
medium (see for instance Chapter 4-3 of Ref. [58]).
It has been postulated throughout the literature

[13,27,30] that the radial pressure should be positive as
a stability condition. Our result for the λ ¼ 0 radial
pressure, in the top-left panel of Fig. 3, violates this
expectation. Although the stability requirement is merely a
conjecture lacking proof, it is premature to declare our
model result to be a counter-example, owing to the
possible shortcomings of a light cone convolution model.
For now, we consider the results here to be tentative and
open to replacement by results from a manifestly covariant
calculation.
If we do however take the results in Fig. 3 at face value,

they paint an interesting picture of the dynamics at play
within the deuteron. There appears to be a ring of roughly
half a femtometer at which pressure is more intense. Within
this ring, near the center, the pressure becomes negative for
the helicity zero state—specifically in the region where the
pþ density is depleted (see Fig. 2). The exact meaning of
this negative pressure (and its reality, given limitations of the
model) is unclear. One possibility is that the negative
pressure corresponds to attractive forces pulling particles
inside the ring towards the ring, and that the pressure
remains negative because the pressure exerted by other
particles crowding the area is not present.
Let us consider static quantities associated with the

comoving stress tensor. First of all, the static D-terms
for helicity states are

D0ð0Þ ¼ −24.33; ð70aÞ
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D�1ð0Þ ¼ −24.16: ð70bÞ

These values are large, negative, and nearly identical. It is
worth noting that negativity of Dð0Þ has been frequently
postulated [12,13,27,30] as a looser stability criterion than
the radial pressure being positive, and that our deuteron
model at least satisfies this condition. Next, we consider
mechanical radii calculated according to Eq. (58),

hb⊥imechðλ ¼ 0Þ ¼ 2.39 fm; ð71aÞ

hb⊥imechðλ ¼ þ1Þ ¼ 1.06 fm; ð71bÞ

hb⊥imech ¼ 1.24 fm: ð71cÞ

These results are surprising. It is worth stressing, as
discussed above, that the “average” involves averaging
the numerator and denominator separately, rather than
taking the mean of the three radii; this is why the average
mechanical radius is not close to the mean of the three
polarization states’ radii. In any case, the disparity between
the radii is stark, and can be understood clearly by looking
at Fig. 3; the negative presssure near the center of the
helicity-zero state greatly enhances its mechanical radius.

V. SUMMARY AND OUTLOOK

In this work, we obtained the two-dimensional light front
densities of momentum, angular momentum, and pressures
within spin-one targets. In contrast to the spin-half case, the
densities have helicity dependence, and the densities of

FIG. 3. The radial (or þ) eigenpressure of the deuteron in various polarization states, multiplied by pþ to provide a boost-invariant
density. See Eq. (52) and the discussion around it for an explanation of the eigenpressures. The arrows indicate directions in which the
pressure is acting, and are double-sided because pressures from both directions act with the same magnitude and result in a net zero force
(see text for further elaboration). A left-handed coordinate system is used, so that the z direction is into rather than out of the page. The
panels are (top-left) helicity state with λ ¼ 0, (top-right) helicity state with λ ¼ þ1, (bottom-left) transverse polarization along x axis
with ms ¼ 0, and (bottom-right) transverse polarization along x axis with ms ¼ þ1.
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transversely polarized spin-one hadrons can exhibit quad-
rupole deformations that are related to the differences
between the helicity-one and helicity-zero densities. All
of these special properties of spin-one light front densities
have been illustrated with a light front convolution model
of the deuteron.
Experimentally, the spatial densities for the deuteron

could be extracted from data for coherent hard exclusive
reactions on the deuteron. These are challenging measure-
ments, however, due to the steeper t-slopes of the coherent
deuteron cross section compared to that of the nucleon.
Current data is scarce: the HERMES Collaboration has
measured deeply virtual Compton scattering (DVCS) on
the deuteron with both unpolarized [59] and polarized
targets [60], and Jefferson Lab (JLab) has more recent
results for coherent π0 electroproduction on the deuteron
[61]. In the future, more data should be forthcoming from
JLab [62,63], and especially the future electron-ion collider
[64,65] with its dedicated far-forward detectors setup.
Accessing the gravitational form factors from these data
is a nontrivial inverse problem, as they are related to Mellin
moments of twist-2 vector generalized parton distributions
(GPDs) [17], which are present in the amplitudes in the
Compton form factors, being x-convolutions of the GPDs
with a hard scattering coefficient.
In a following companion paper [34], we apply the

formalism developed here to the photon as a special case. A
few minor modifications are made to accommodate the
massless case, but these result in simplifications of the
formalism. The photon is an especially pertinent target to
consider, since the employment of a light front formalism
allows for its densities to be calculated.
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APPENDIX A: LIGHT FRONT SPIN-ONE
POLARIZATION VECTORS

This appendix uses the polarization vectors from
Refs. [37,43,45], but at ξ ¼ 0, which is the case relevant
to local operators such as the EMT. Note that
Δþ ¼ −2ξPþ, so having ξ ¼ 0 is equivalent to having
Δþ ¼ 0, and we take Δþ ¼ ðn · ΔÞ ¼ 0 throughout the
paper (including this appendix).
The polarization basis vectors are given explicitly by

εμ0 ¼
1

M

�
pμ −M2

nμ

ðP · nÞ
�
; ðA1Þ

ε0μ0 ¼ 1

M

�
p0μ −M2

nμ

ðP · nÞ
�
; ðA2Þ

εμ1 ¼
1ffiffiffiffiffi
−t

p
�
Δμ þ t

nμ

2ðP · nÞ
�
; ðA3Þ

ε0μ1 ¼ 1ffiffiffiffiffi
−t

p
�
Δμ − t

nμ

2ðP · nÞ
�
; ðA4Þ

εμ2 ¼ ε0μ2 ¼ −
1ffiffiffiffiffi
−t

p ϵμναβP
νΔαnβ

ðP · nÞ ; ðA5Þ

where the Levi-Civita symbol is normalized to satisfy
ε0123 ¼ þ1. These polarization basis vectors satisfy the
following orthogonality and normalization relations,

εi · εj ¼ ε0i · ε
0
j ¼ −δij; ðA6Þ

εi · p ¼ ε0i · p
0 ¼ 0: ðA7Þ

The positive and negative helicity vectors are defined
via [45]3

ε� ¼∓ e�iϕΔ
ε1 � iε2ffiffiffi

2
p ; ðA8Þ

and equivalently for the primed four-vectors, where ϕΔ is
the azimuthal angle of the momentum transfer Δ⊥ with
respect to a fixed x̂ axis. The positive and negative helicity
vectors satisfy

ε�þ · εþ ¼ ε0�− · ε0− ¼ −1; ðA9Þ

ε�þ · ε− ¼ ε0�− · ε0þ ¼ 0; ðA10Þ

ε0 · p ¼ εþ · p ¼ ε− · p ¼ 0; ðA11Þ

ε00 · p
0 ¼ ε0þ · p0 ¼ ε0− · p0 ¼ 0: ðA12Þ

For ε� (and their primed counterparts) specifically,

εþ · n ¼ ε0þ · n ¼ ε− · n ¼ ε0− · n ¼ 0: ðA13Þ

For massless spin-one particles such as the photon, using
ε� as the polarization vectors thus amounts to using light
cone gauge.
Several helpful explicit four-products include

ðε0 · ΔÞ ¼
−t
2M

; ðA14Þ

3Note that Refs. [37,43] take ϕΔ ¼ π and define ϵμ1; ϵ
μ
2 (and

primed equivalent vectors) with an opposite sign.
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ðε00 · ΔÞ ¼
þt
2M

; ðA15Þ

ðε1 · ΔÞ ¼ ðε01 · ΔÞ ¼ −
ffiffiffiffiffi
−t

p
; ðA16Þ

ðε2 · ΔÞ ¼ ðε02 · ΔÞ ¼ 0; ðA17Þ

and several explicit outer products include

1

2
εfμ0 ε0νg0 ¼ 1

M2

�
PμPν −

1

4
ΔμΔν

�
−
nfμPνg

ðP · nÞ þ
M2nμnν

ðP · nÞ2 ;

ðA18Þ

1

2
εfμ1 ε0νg1 ¼ −

ΔμΔν

t
þ t
4

nμnν

ðP · nÞ2 ; ðA19Þ

1

2
εfμ2 ε0νg2 ¼ −gμν −

�
1 −

t
4M2

�
M2nμnν

ðP · nÞ2 þ
nfμPνg

ðP · nÞ þ
ΔμΔν

t
:

ðA20Þ

APPENDIX B: EXPLICIT EMT
MATRIX ELEMENTS

In this appendix we give explicit evaluations of all the
helicity amplitudes in Eq. (2) in terms of the G1−6ðtÞ form
factors in Eq. (1), using all combinations of the polarization
vectors in Appendix A.
Firstly, for the A results:

A00 ¼
�
1þ t

2M2

�
G1ðtÞ −

t
4M2

ð2G5ðtÞ þ G6ðtÞÞ

−
t2

8M4
G2ðtÞ; ðB1Þ

Aþþ ¼ A−− ¼ G1ðtÞ −
t

4M2
G2ðtÞ; ðB2Þ

A0þ ¼A−0 ¼−A�
þ0 ¼−A�

0−

¼−
ffiffiffiffiffi
−t

pffiffiffi
2

p
M

�
G1ðtÞ−

1

2
G5ðtÞ−

t
4M2

G2ðtÞ
�
eiϕΔ ; ðB3Þ

A−þ ¼ A�þ− ¼ t
4M2

G2ðtÞe2iϕΔ : ðB4Þ

Next, for J ðtÞ:

J 00 ¼ 0; ðB5Þ

J þþ ¼ −J −− ¼ 1

2
G5ðtÞ; ðB6Þ

J 0þ ¼ −J −0 ¼ −J �
þ0 ¼ J �

0− ¼ −
ffiffiffiffiffi
−t

p

4
ffiffiffi
2

p
M

× fG5ðtÞ þ G6ðtÞgeiϕΔ ; ðB7Þ

J −þ ¼ J �þ− ¼ 0: ðB8Þ

Next, for DðtÞ:

D00 ¼
�
1þ t

2M2

�
G3ðtÞ −

t
4M2

G6ðtÞ −
t2

8M2
G4ðtÞ; ðB9Þ

Dþþ ¼ D−− ¼ G3ðtÞ − G6ðtÞ −
t

4M2
G4ðtÞ; ðB10Þ

D0þ¼D−0¼−D�
þ0¼−D�

0−

¼−
ffiffiffiffiffi
−t

pffiffiffi
2

p
M

�
G3ðtÞ−

1

2
G6ðtÞ−

t
4M2

G4ðtÞ
�
eiϕΔ ; ðB11Þ

D−þ ¼ D�þ− ¼ t
4M2

G4ðtÞe2iϕΔ : ðB12Þ

Next, for EðtÞ:

E00 ¼
t
2
ðG5ðtÞ þ G6ðtÞÞ; ðB13Þ

Eþþ ¼ E−− ¼ t
4
ðG5ðtÞ − G6ðtÞÞ; ðB14Þ

E0þ ¼ E−0 ¼−E�
þ0 ¼−E�

0−

¼−
ffiffiffiffiffi
−t

p
M

2
ffiffiffi
2

p
��

1þ t
4M2

�
G5ðtÞþ

t
4M2

G6ðtÞ
�
eiϕΔ ;

ðB15Þ

E−þ ¼ E�þ− ¼ −
t
4
ðG5ðtÞ þ G6ðtÞÞe2iϕΔ : ðB16Þ

Next, for HðtÞ:

H00 ¼ −
tM2

2
G6ðtÞ; ðB17Þ

Hþþ ¼ H−− ¼ tM2

4

�
1 −

t
2M2

�
G6ðtÞ; ðB18Þ

H0þ ¼H−0¼−H�
þ0¼−H�

0− ¼
t
ffiffiffiffiffi
−t

p
M

4
ffiffiffi
2

p G6ðtÞeiϕΔ ; ðB19Þ

H−þ ¼ H�þ− ¼ tM2

4
G6ðtÞe2iϕΔ : ðB20Þ

Lastly, for KðtÞ:

K00 ¼ 0; ðB21Þ

Kþþ ¼ −K−− ¼ t
8
G6ðtÞ; ðB22Þ
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K0þ ¼K−0 ¼−K�
þ0 ¼−K�

0− ¼−
ffiffiffiffiffi
−t

p
M

4
ffiffiffi
2

p G6ðtÞeiϕΔ ; ðB23Þ

K−þ ¼ K�þ− ¼ 0: ðB24Þ

We also state the expressions for the non-Galilean effective form factors for general polarization

X
λ;λ0

ρðλ; λ0ÞEλ0λ ¼
�
2

3
þ TLL

�
t
4
ðG5ðtÞ − G6ðtÞÞ þ

�
1

3
− TLL

�
t
2
ðG5ðtÞ þ G6ðtÞÞ

þ iST sinðϕS − ϕtÞ
M

ffiffiffiffiffi
−t

p
2

��
1þ t

4M2

�
G5ðtÞ þ

t
4M2

G6ðtÞ
�

− TTT cosð2ϕTT
− 2ϕtÞ

t
4
ðG5ðtÞ þ G6ðtÞÞ; ðB25Þ

X
λ;λ0

ρðλ; λ0ÞHλ0λ ¼
��

2

3
þ TLL

�
M2t
4

�
1 −

t
2M2

�
−
�
1

3
− TLL

�
M2t
2

ðB26Þ

− iST sinðϕS − ϕtÞ
Mt

ffiffiffiffiffi
−t

p
4

þ TTT cosð2ϕTT
− 2ϕtÞ

M2t
4

�
G6ðtÞ; ðB27Þ

X
λ;λ0

ρðλ; λ0ÞKλ0λ ¼
�
SL

t
8
þ iTLT sinðϕTL

− ϕtÞ
M

ffiffiffiffiffi
−t

p
2

�
G6ðtÞ: ðB28Þ

APPENDIX C: SPIN-ONE DENSITY MATRIX

The density matrix ρðλ; λ0Þ of a spin-one system is a 3 × 3 Hermitian matrix with unit trace,
P

λ;λ0 ρðλ; λ0Þ ¼ 1. In the rest
frame (RF) of the spin-one system it can be specified in a basis of single-particle states jp ¼ 0; λi, where the momentum is
zero and the spin is quantized along the z-axis, with spin projection λ ¼ ð−1; 0; 1Þ. The density matrix can be parametrized
in the form [66]

ρ≡ ρðλ; λ0Þ ¼ 1

3
þ 1

2
SiSi þ TijT ij: ðC1Þ

Here, Si are the 3 × 3matrices describing the spin operators in the spin-one representation for e� ¼∓ 1ffiffi
2

p ðex � ieyÞ; e0 ¼ ez,

Sx ¼
1ffiffiffi
2

p

0
B@

0 1 0

1 0 1

0 1 0

1
CA; Sy ¼

iffiffiffi
2

p

0
B@

0 −1 0

1 0 −1
0 1 0

1
CA; Sz ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA; ðC2Þ

and their symmetric traceless rank-2 tensors

T ij ¼
1

2
ðSiSj þ SjSiÞ −

2

3
δij; ðC3Þ

and i; j ¼ ðx; y; zÞ denote the Cartesian components. The parameters in Eq. (C1) are a three-dimensional vector Si and a
traceless symmetric tensor Tij. They coincide, respectively, with the expectation value of the spin operators and their traceless
tensor products

Si ¼ Tr½ρŜi� ¼ hŜii; ðC4aÞ

Tij ¼ Tr½ρT̂ ij� ¼ hT̂ iji: ðC4bÞ
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In the rest frame of a particle, the covariant spin-one density matrix ρβα½RF� can be introduced as

ρβα½RF� ¼
X
λ;λ0

ρðλ; λ0Þϵβðk; λÞϵ�αðk; λ0Þ ¼ 1

3

�
−gβα þ kβkα

M2

�
−

i
2M

ϵβαs½RF�k − tβα½RF�; ðC5Þ

where kμ ¼ ðM; 0; 0; 0Þ. In the rest frame, the spin vector sμ½RF� and tensor tβα½RF� only have spatial components, which
are identical to the spin parameters appearing in Eq. (C1). The spin tensor is traceless. In formulas

si½RF�≡ Si; s0½RF� ¼ 0; ðC6aÞ

tij½RF�≡ Tij; t0α½RF� ¼ tβ0½RF� ¼ 0; tμμ½RF� ¼ 0: ðC6bÞ

It is advantageous to consider the following ð2þ 1ÞD (transverse, longitudinal) decomposition of the rest-frame spin vector
and tensor,

S ¼ ðSx; Sy; SxÞ≡ SLð0; 0; 1Þ þ STðcosϕS; sinϕS; 0Þ; ðC7aÞ

T ¼

0
BBB@

Txx−Tyy

2
− Tzz

2
Txy Txz

Txy − Txx−Tyy

2
− Tzz

2
Tyz

Txz Tyz Tzz

1
CCCA≡

�
TTT − TLL

2
12×2 TLT

TLT TLL

�
;

TLT ¼ ðTxz; TyzÞ≡ TLTðcosϕTL
; sinϕTL

Þ; ðC7bÞ

TTT ¼
 Txx−Tyy

2
Txy

Txy − Txx−Tyy

2

!
≡ TTT

2

�
cos 2ϕTT

sin 2ϕTT

sin 2ϕTT
− cos 2ϕTT

�
; ðC7cÞ

where TTT is symmetric and traceless in transverse coordinates.
In cases where one considers an outer product of two polarization vectors with specific helicity values λ; λ0, one can

obtain the value of ϵβðk; λÞϵ�αðk; λ0Þ by making the following substitutions in Eq. (C5) for the unpolarized, vector and tensor
polarized parts, see Eqs. (C4a) and (C4b),

1 → δλ;λ0 ; ðC8aÞ

Si → hλ0jSijλi; ðC8bÞ

Tij → hλ0jT ijjλi: ðC8cÞ

Similar statements apply for the polarization parameters introduced in Eq. (C7).
For the case of particles with nonzero three-momentum we can introduce the density matrix by applying Lorentz boosts

to the polarization four vectors in Eq. (C5) [17,46,66]. Different choices of standard boosts transforming the rest frame
particle to the moving one result in different expressions for the polarization vectors (connected by the so-called Melosh
rotations) [47,67]. As we consider the EMT on the light front, we only consider light front boosts ΛLFðpÞ here

ρβαðpÞ ¼
X
λ;λ0

ρðλ; λ0ÞΛLFðpÞβμϵμðk; λÞΛLFðpÞανϵ�νðk; λ0Þ

¼
X
λ;λ0

ρðλ; λ0Þϵβðp; λÞϵ�αðp; λ0Þ ¼ 1

3

�
−gβα þ pβpα

M2

�
−

i
2M

ϵβαsp − tβα; ðC9Þ

where the covariant spin vector and tensor are introduced as

pμ ¼ ΛLFðpÞμνkμ; sμ ¼ ΛLFðpÞμνsν½RF�; ðspÞ ¼ 0; ðC10aÞ
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tμν ¼ ΛLFðpÞμρΛLFðpÞνσtρσ½RF�; tβαpα ¼ pβtβα ¼ 0; tμμ ¼ 0: ðC10bÞ

To compute the spatial densities of the EMT, we need off-diagonal bilinears of spin-one polarization four vectors. We
therefore need the expression for the off-diagonal covariant density matrix. Wewrite this expression using the averaged spin
vector s̄ and tensor t̄ [68], which are obtained by boosting the rest frame ones of Eq. (C6) with the average momentum
P ¼ pþp0

2
,

s̄μ ¼ ΛLFðPÞμνsν½RF�; ðC11aÞ

t̄μν ¼ ΛLFðPÞμρΛLFðPÞνσtρσ½RF�: ðC11bÞ

The off-diagonal density matrix then becomes

ρβαLFðp; p0Þ ¼
X
λ;λ0

ρðλ; λ0ÞΛLFðpÞβμϵμðk; λÞΛLFðp0Þανϵ�νðk; λ0Þ

¼ 1

3

�
−gβα þ PβPα

M2
−
ΔβΔα

4M2
þ P½βΔα�

2M2
þ Δ½βnα� þ ξΔfβnαg

ð1 − ξ2ÞðP · nÞ þ Δ2

2ð1 − ξ2Þ
nβnα

ðP · nÞ2
�

þ i
2MD

�
ϵβαs̄P − ðD − 1Þðs̄ · nÞ M2

ðP · nÞ2 ϵ
βαþP − ðD − 1ÞP

½βϵα�ns̄P

ðP · nÞ þD
2

Δfβϵαgns̄P

ðP · nÞ

−DðD − 1Þ M2

ð1 − ξ2ÞðP · nÞ2 ðn
½βϵα�ns̄P − ξnfβϵαgns̄PÞ þ ϵnΔs̄P

2ð1 − ξ2ÞðP · nÞ2
�
−2DðD − 1Þ M2

ðP · nÞ n
βnα

− ðD − 1ÞðPfβnαg þ ξP½βnα�Þ þD
2
ðΔ½βnα� þ ξΔfβnαgÞ

�
−
nfβϵαgΔs̄P − ξn½βϵα�Δs̄P

2ð1 − ξ2ÞðP · nÞ

þ ðD − 1Þ ðs̄ · nÞðP · nÞM
2
nfβϵαgΔnP − ξn½βϵα�ΔnP

2ð1 − ξ2ÞðP · nÞ2
�
− t̄βα þ Δ½β t̄α�n

2ðP · nÞ −
n½β t̄α�Δ − ξnfβ t̄αgΔ

2ð1 − ξ2ÞðP · nÞ þ t̄nn
ΔβΔα

4ðP · nÞ2

− t̄nΔ
nfβΔαg − ξn½βΔα�

4ð1 − ξ2ÞðP · nÞ2 þ t̄ΔΔ
nβnα

4ð1 − ξ2ÞðP · nÞ2 ; ðC12Þ

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t
4M2

r
; ðC13aÞ

afμbνg ¼ aμbν þ aνbμ; a½μbν� ¼ aμbν − aνbμ: ðC13bÞ
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