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Energy correlators are field-theoretically clean and phenomenologically valuable probes of QCD
dynamics. We explore the possibility of using the information encoded in the energy correlators
of a hadronically decaying electroweak vector boson in order to extract its full decay density
matrix. The kinematics of the one- and two-point energy correlators can indeed discriminate between
longitudinal and transverse modes and reveal the interference pattern between different vector pola-
rizations. Such observables improve the sensitivity to microscopic new physics affecting the production
rate of the different helicities. We assess the impact on higher-dimensional effective field theory operators
in simple scenarios.
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I. INTRODUCTION

Scattering at high energies reveals the true nature
of massive Standard Model (SM) particles; they are a
mixture of fields with different dynamics. This difference is
commonly exacerbated in presence of some putative
microscopic physics, out of which the SM emerges. For
instance, such dynamics might have a role in the electro-
weak (EW) symmetry-breaking mechanism and couple
predominantly to longitudinal vector bosons. It is therefore
of utmost importance to develop a program centered on
observables capable to discriminate the various helicity
configurations.
Observables of this kind were proposed long ago for

WW-production at LEP [1–3], or for tt̄-production at
Tevatron [4–6], and are a substantial part of the beyond
the standard model (BSM) precision program at the LHC
[7–13]. Advantages of using such observables to constrain
BSM physics are particularly clear in the context of
effective field theories (EFTs), where microscopic physics
is encoded in higher-dimensional operators. At high
energy, a given operator modifies only certain helicity
amplitude, which is often suppressed in the SM [14,15]. As
a consequence, the interference between the SM and EFT
amplitudes gets suppressed, which translates to a poor
sensitivity and that might compromise their interpretation
within a consistent EFT framework [16,17]. Recovering the
sensitivity requires the detailed analysis of the differential
kinematic distributions of the final states. For instance, the

strategy proposed in [18] to measure the interference
between BSM and SM was later used in [19], improving
the linear constraints by an order of magnitude.
In the particular case of diboson production, while many

studies exist for leptonic decay products of vector bosons,
the case of hadronic decays is less explored and substan-
tially more challenging. Existing results rely on jet sub-
structure and, recently, on machine learning in order to
discriminate among longitudinal and transversely polarized
vector bosons [20–25].
In this paper, instead, we explore the possibility of using

energy correlators (EC) in hadronically decaying W and Z
bosons in order to extract information about their helicity.
This means not only a better discrimination of signal versus
background in searches for specific EFT deformations, but
also to design observables sensitive to interferences among
different helicity states. We follow this idea through two
simple paths. First, we show how one-point ECs can
disentangle purely longitudinal and transverse decays.
Then we prove that two-point EC can reveal the interfer-
ence pattern among different helicities. In particular this
enhances the sensitivity to EFT deformation whenever SM
and BSM amplitudes are produced in different helicity
configurations. We remark that most of our analysis will be
theoretical and illustrative. We will explore relevant sce-
narios with a simplified analysis to grasp the advantages of
using polarization-sensitive observables and comment on
how to export our results to the LHC framework.

II. ENERGY CORRELATORS AND DECAY
DENSITY MATRIX

In general, the amplitude for the production and decay of
a vector boson is described, under the narrow-width
approximation, by the product of the production and decay
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amplitudes Ahard;V
h and Ah;X that describe the production

and decay of a vector boson V with helicity h. The cross
section involves then a double sum over the helicities of the
vector in the amplitude and its conjugate. Therefore, it is
convenient to write the cross section as the trace of the
product of two matrices

dσ ¼ dρhard;Vh0h dρVh0h; ð1Þ

where dρhard;Vh0h is the so-called density matrix for the “hard”
production of the vector V ¼ W�; Z and dρVh0h is the (fully
differential) density matrix for its decay. The indexes
h; h0 ¼ þ;−; 0 run over the vector boson helicities.
Bump-hunting searches or many of the high-pT EFT
probes, which are among the most common observables
looking for BSM effects, integrate over the particular
kinematic variables of the decay products, ignoring the
differential information encoded in the decay. For instance,
since dρVh0h ∝ eiðh−h0Þϕ the decay matrix becomes diagonal
if the observable is inclusive in the azimuthal angle ϕ and
one becomes sensitive only to the diagonal entries of
dρhard;Vh0h , i.e., one loses the information on the interference
between different polarizations. This information can be in
principle recovered from the kinematic distribution of the
decay density matrix dρVh0h.
At leading order in the weak-coupling constant, the

vector boson decays into a qq̄ pair, which then interact,
radiate, and evolve according to QCD dynamics, resulting
in a jet of hadrons. It is our goal to find sensible observables
that can probe the decay density matrix dρVh0h into hadrons
in order to dissect the nature of the microscopic physics
mediating the hard process. An approach to define such
observables consists of studying jet substructure in terms of
correlation functions of light-ray operators [26–28]

Ei ¼ limr→∞

Z þ∞

0

dtr2niT0iðt; rn⃗Þ; ð2Þ

where Tμν is the stress-energy tensor. In particular, we
focus on the so-called light-ray density matrix [29], defined
as the vacuum expectation value

dρVhh0 ½fEig� ¼ N
Z

d4xeiq·xhOhðxÞE1…ENO
†
h0 ð0Þi; ð3Þ

where Oh is some operator exciting the QCD vacuum
and N is just a normalization constant. Physically,
dρVh0h½Ei…EN � measures the energy deposited in N calo-
rimeters placed at infinity in some directions n⃗i in presence
of a source. In our case, the sourceOh is a boosted on-shell
vector of helicity h and four-momentum q in the lab frame,
“injecting” a qq̄ current in the correlator of Eq. (3)

OhðxÞ ¼ ðq̄γμðgLPL þ gRPRÞqÞðxÞεμh: ð4Þ

Being infrared and collinear-safe, energy correlators are
theoretically clean and can be safely computed with the
usual rules of perturbative QCD. Moreover, they possess a
series of phenomenologically interesting features. First of
all, the insensitivity to soft radiation mitigates the need of
grooming. Then, they can be computed and measured on
tracks, improving the angular resolution, and suppressing
the effects of pileup [28,30]. As fact of matter, many state-
of-the-art jet substructure measurements are performed on
tracks [31–33]. In the recent years, there has been renewed
interest due to new theoretical insights, allowing a simpler
characterization of jet dynamics [34–37].
The dρVh0h½fEig� is in general independent of the micro-

scopic dynamics. However, in the following, we will
discuss how the detailed study of energy correlators allows
us to characterize the diagonal and off-diagonal entries of
the decay density matrix, improving sensitivity to new
physics encoded in the hard process.

A. Diagonal entries: Longitudinal and transverse

The density matrix for the one-point energy correlator,
that we denote shortly by hEi, is given by the correlator of
Eq. (3) with only one insertion of the light-ray operator En⃗,
pointing toward the direction n⃗. For clarity it useful to relate
the energy correlator to the more “phenomenologically
friendly” objects of the weighted cross section (see for
instance [38]). In particular we have

hEn⃗i ¼
1

2mVΓV

XZ
X
Ah;XA�

h0;X

X
i∈X

Ei

E
δðn⃗i − n⃗Þ; ð5Þ

where X is a generic multiparticle state to which the vector
V, of energy E, decays. The factor Ei

E weights the energies of
the partons in the decay. Notice that Eq. (5), or equiv-
alently Eq. (3) with one E insertion, depends at most
by the two variables parametrizing the direction of n⃗.
The natural choice are the two angles 0 ≤ θ < π and
0 ≤ ϕ < 2π, where θ is the angle respect to jet momentum
q. The angle ϕ is the angle between the line that connects
the center of the jet and the calorimeter, and the plane that
goes through the jet axis and the beam, see Fig. 1.
Diagonal entries have a trivial ϕ dependence and so they
are functions only of θ.
At leading order, the density matrix is determined by the

different decay amplitudes Ah (≡Ah;qq̄). In the vector rest
frame the latter are simply proportional to the Wigner-d
matrices,

A� ¼ gVmVe�iϕ1� cosθ�
2

; A0¼−gVmV
sinθ�ffiffiffi

2
p ; ð6Þ

where θ� is the angle between the direction of flight
of the vector and the helicity-plus fermion. In the
case of the W, the coupling is left-handed and gW ¼ g.
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The Z boson, instead, couples to both left and right
currents, with strength gZ ¼ ffiffiffi

2
p ðgcWT3

f − g0sWYfÞ.
In the lab frame, the vector boson is boosted up to an

energy E, which sets a characteristic angular scale z⋆ ≡
m2

V=E
2 that controls the kinematics. In this frame, we

define z to be the separation between a parton and the
direction of the vector boson, z ¼ 1−cos θ

2
≃ 1

4
θ2, see Fig. 1.

At leading order in z⋆, the energy of a quark is in one-to-
one with its separation zq,

Eq ¼ E
�
1þ 4zq

z⋆

�
−1 ≡ ExðzÞ; ð7Þ

where it is convenient to define the quark energy
fraction xðzqÞ≡ x. The rest frame angle is related to zq
by cos θ� ¼ 1−4zq=z⋆

1þ4zq=z⋆. The position of the two quarks obeys

zqzq̄ ¼ ðz⋆
4
Þ2, since z⋆=4 corresponds to θ� ¼ π

2
, so at parton

level each event has two energy depositions at each side of
z⋆=4. For z ≪ z⋆=4, the energy of the vector boson is
entirely deposited in a single quark since the other quark’s
energy is redshifted to zero. For z ∼ z⋆=4, the energy is
shared among quarks. In terms of the energy fraction of the
positive-helicity quark, the amplitudes in the lab frame at
leading order in z⋆ are given by

Aþ ≃ gVmVeiϕx; A− ≃ gVmVe−iϕð1 − xÞ;
A0 ≃ −gVmV

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
: ð8Þ

Notice that the different helicities have a different behavior,
given by the degree of overlap with the cos θ� ∼ 1 region of
the decay amplitude. When measuring the energy correla-
tor, though, we average the position of the calorimeter.
Placing it on the minus-helicity fermion is equivalent to
x → 1 − x and ϕ → π þ ϕ. The quark helicity is not
directly measurable, so the energy correlator has the
redundancy Ah → ð−1ÞhA−h. Notice also that at leading
order in z⋆ the kinematics only depend on the quantity z=z⋆.
This will be of crucial importance, later on, for our
discussion on the LHC.
The transverse and longitudinal terms in the diagonal

entries of the density matrix behave differently, since dρV00∼
xð1−xÞ while dρVTT ≡ dρVþþ þ dρV−− ∼ x2 þ ð1 − xÞ2. In
Fig. 2 we show the spectrum of the one-point energy
correlator of dρV00 (in cyan) and dρVTT (in orange) as a
function of z with ϕ integrated over, where we fix the W
boson energy at 1.5 TeV. The horizontal lines show the data
points with the statistical Monte Carlo error, clearly
negligible and in dashed we show the interpolation. The
longitudinal spectrum peaks at z ¼ 1

6
z⋆. The triangles

(circles) show the energy distributions for the longitudinal
(transverse) W boson measured only on tracks and includ-
ing a rough estimate of the detector effects. The latter are
obtained smearing the hadron energies by a normal dis-
tribution with a 4% resolution [39]. The transverse spec-
trum is actually the sum of two contributions. The one that
dominates by far has the calorimeter placed at the position
of the fermion with the same-sign helicity as the W boson
helicity, which has a peak at z ¼ 1

16
z⋆. The subdominant

contribution has it placed in the opposite-sign helicity
quark, which has a much smaller peak at larger z ¼ 3

8
z⋆ and

pushes the total transverse peak of Fig. 2 to z ≃ 11
144

z⋆.
In Fig. 2 we compare the analytic leading-order result

with the numerical simulation for a monoenergetic
(E ¼ 1.5 TeV) hadronic W jet. Concretely, we simulated
through MADGRAPH [40] the semileptonic WþW− pro-
duction from lepton-lepton scattering. The simulation is

FIG. 2. One-point energy correlator of aW jet. The coordinate z
is the angular distance between the calorimeter and the center of
the jet.

FIG. 1. One and two-point energy correlator of a hadronically
decaying electroweak boson. Dots denote energy measurements
from a calorimeter. The one point measures the energy deposit in
a calorimeter at a distance zhEi from the jet axis and azimuthal
angle ϕhEi with respect to the plane formed with the beam. The
two-point correlator depends on similar quantities, but we
integrate the distance and orientation of the calorimeters within
the jet.
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further processed via PYTHIA 8 [41,42] to include the effects
of showering and hadronization. The minimum pT for the
W is fixed at 300 GeV. Each event gives a distribution for
the correlator, obtained by measuring the energies of the
hadrons hitting the detector. In the figure we show the sum
of such distributions, corresponding to the average energy
measured by a calorimeter placed at z. The leading-order
predictions are normalized to 1, while the PYTHIA 8 ones are
fixed to have the same-height peak.
The leading-order calculation gives already a very good

prediction for the distributions from PYTHIA 8, which can be
further improved using the higher order corrections.1

In order to have an estimate of how the differences in the
longitudinal and transverse distributions allow us to dis-
criminate them, we define the simple but intuitive asym-
metryA LT ¼ ðA þ −A −Þ=ðA þ þA −Þ, whereA � is the
energy accumulated with z greater/smaller than the angle
zpeak at which the transverse distribution has a maximum.
Approximately, A LT ≃ 0 for a purely transverse sample,
while A LT ∼ 0.5 for a purely longitudinal one. At parton
level, in the vector boson rest frame, zpeak corresponds
to an angle θ� ≃ 58°. In a typical observable where one
compares the number of events at each side of a cut,
the maximal sensitivity of an excess of longitudinal events
over a purely transverse sample corresponds to a cut
at θ� ≃ 56°.2

Let us investigate the impact of the asymmetry in a
simple but relevant scenario. In the left of Fig. 3 we
consider semileptonic WþW− production at

ffiffiffi
s

p ¼ 3 TeV
with pTðWÞ > 1.2 TeV and 5=ab of integrated luminosity.3

The production of longitudinal modes is considered to be
modified by an anomalous triple gauge coupling L ⊃
igcθWδg1ZðWþ

μνW−
μ −W−

μνWþ
μ ÞZν with δg1Z ¼ 2 × 10−3

[45,46]. We interpret the cross section measurement in
the 2d parameter space defined by δg1Z and λγ, the
coefficient of L ⊃ i e

m2
W
λγWþ

μνW−
νρAρμ, which instead con-

trols the production of the transverse modes. The cross
section measurement gives the gray contour, and cannot
determine the origin of the excess. The measurement of the
asymmetry A LT, in cyan, confirms that the excess comes
from an anomalous production of longitudinal modes. We
will comment the rest of the plot later, when discussing the
interference terms.

We now turn to the two-point correlator hE1E2i, defined
in a similar way inserting two light-ray operators into
Eq. (3). Potentially, hE1E2i has a nontrivial dependence on
four angles, parametrizing the position of n⃗1 and n⃗2. In the
following, we only consider two angles, being the angular
distance z ¼ 1

2
ð1 − n⃗1 · n⃗2Þ between the two calorimeters

and the azimuthal angle ϕ between their line of separation
and the scattering plane.4 The two other coordinates will be
integrated over.
The amplitudes at leading order are given by Eq. (8), now

with the energy fraction x related to the angular separation z
between the quarks by xðzÞ¼1

2
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−z⋆=z
p Þ, where

the sign is determined by whether cos θ� is positive or
negative. At this order in the perturbative expansion, there
is a minimal separation between quarks given by z⋆, equal
for all vector polarizations. The product of the quark
energies is given by EqEq̄=E2 ¼ xð1 − xÞ ¼ z⋆

4z, so the
spectrum peaks at z ∼ z⋆ for all entries of the density
matrix. This is shown in Fig. 4 for the diagonal ones. Since
the longitudinal entry also behaves as ∝ xð1 − xÞ, the
longitudinal peak is more pronounced than the one of
the transverse distribution.
Two effects resolve the peak and give a contribution for

lower z. First, the finite decay width of the vector gives a
small width of order ∼ΓV=mV to the peak in the energy
correlator. However, this effect is subleading with respect
the one given by the QCD radiation from the quarks.
Indeed, the width of the peak corresponds to the angular
scale where the correlator enters in the scaling regime. Such
a scaling regime has received recent attention [29,37] since
it can be described as an operator product expansion of
null-ray operators [34,47]. For our purposes, it is sufficient
to say that this regime is purely controlled by QCD, the z
dependence does not depend on the quark helicity, and
apparently it does not offer any information that can be

FIG. 3. 95% confidence level (CL) contours of different
observables of WW production. In the left (right), we assume
anomalous production of longitudinal (transverse) W-bosons due
to nonvanishing δg1ZðλγÞ, indicated by the star.

1Actually, the transverse distribution can be directly imported
from [43,44], by considering their result in a center of massffiffiffî
s

p ¼ mW , and boosting it by eη ≃ 2E=mW.
2We remark that the one-point energy correlator measures the

average energy density deposited at z in a sample of jet events,
and has not to be thought as a probability distribution. However,
since zcut ≪ z⋆=4, at the left of the cut most of the energy is
deposited in a single quark and therefore the asymmetry
is roughly an event-level counting.

3The choice for the pT cut is to reduce the large forward SM
background improving the EFT sensitivity.

4With an abuse of notation, we use z and ϕ in both one-point
and two-point correlators (see Fig. 1). Should be clear from
context which case we refer to.
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used to disentangle the different contributions of the
diagonal entries of the decay density matrix. Below the
∼ðfewGeVÞ2=E2 scale, one can observe deviations due to
hadronization [48–50].

B. Off-diagonal entries: Interference

Both one- and two-point correlators of the decay density
matrix depend on the azimuthal angles ϕhEi and ϕhEEi, see
Fig. 1, which we will denote generically ϕ. The dependence
is fixed to be dρVh0h ∝ eiðh−h0Þϕ. If we use observables that
are inclusive in ϕ, like the invariant mass of the process or
the pT of the vectors, only the diagonal terms with h ¼ h0
contribute while the off-diagonal ones with h ≠ h0 integrate
to zero, giving the usual factorized picture of production
rate times decay rate. Having control on the azimuthal
angle ϕ allows us to be sensitive to the interference between
the production of different vector polarizations.
While this is inherently interesting, from a BSM per-

spective the attractiveness of being sensitive to interference
terms is twofold. First, in the case of diboson production,
while SM amplitudes are dominated by opposite-helicity
transverse vectors, dimension six operators affect the
production of either same-helicity vectors of longitudinally
polarized vectors. Therefore, interference terms between
the dominant SM amplitudes and the BSM contribution
have nontrivial ϕ dependence. Second, inclusive observ-
ables with quadratic sensitivity to EFT coefficients tend to
be dominated by the high-energy tail of the distribution,
which might induce problems with the EFT interpretation.
Interference is linearly sensitive to higher-dimension oper-
ators, allowing to interpret the constraints in a broader class
of theories [16].
There are two types of interference depending on

Δh≡ h − h0. Interference between the different transverse
polarizations has jΔhj ¼ 2, while longitudinal-transverse

interference has jΔhj ¼ 1. As mentioned previously, igno-
rance on whether the calorimeter is placed on the helicity-
plus or helicity-minus quark amounts to a x → 1 − x and
ϕ → π þ ϕ redundancy. The effect of this redundancy on
the jΔhj ¼ 1 interference will be discussed below. The
effect on jΔhj ¼ 2 terms is simpler, since the phase eiΔhϕ is
left invariant.
As an example, we study diboson production as a probe

of such interference. At high energy, the SM produces
mainly opposite-helicity vectors. Therefore jΔhj ¼ 2 inter-
ference of one vector should be studied along a jΔhj ¼ 2
interference of the other vector, making clear that interfer-
ence is a phenomenon affecting the whole amplitude, and
each process should be studied individually. However, in

presence of the operator L ⊃ cWWW
v2

Λ2

g3

m2
W
ϵABCWA

μνWB
νρWC

ρμ,

the triple gauge coupling discussed above is generated with
λγ ¼ −6g2cWWW

v2

Λ2, giving an amplitude that produces
same-sign helicity W-bosons and grows at high energy.
Therefore, a jΔhj ¼ 2 interference between the SM ampli-
tude and the one driven by the EFT operator can be
observed with a single vector while being inclusive on
the kinematics of the other vector. This is shown in Fig. 5.
We simulated the semileptonic decay of eþe− → WþW− atffiffiffi
s

p ¼ 2 TeV in the SM (cyan) and in presence of λγ ¼ 0.01
(magenta). The EFT operator induces a cos 2ϕ interfering
pattern in both one- and two-point energy correlator of the
W-boson jet. For the two-point correlator, we impose the
requirement z⋆=2 < z < 2z⋆ in order to avoid contributions
from calorimeters separated a distance z ≪ z⋆. The study of
azimuthal dependence of the energy correlators at such
small separations only reveals interference between differ-
ent quark helicities, which is suppressed by the mass and of
limited interest for the density matrix of a vector decay.5 We
impose no constraint on z in the one-point correlator.

FIG. 4. Two-point energy correlator of a W-boson jet. Both
transverse and longitudinal distributions show a peak at the
angular scale z⋆ ¼ m2

V=E
2. For lower z, one explores the scaling

regime of the individual quark subjets. At very small angular
scales z ∼ GeV2=E2, hadronization enters and cuts off the
correlator.

FIG. 5. Azimuthal dependence of the one- and two-point
energy correlators of a 1 TeV W-boson. A contribution with
λγ ¼ 0.01 shows a cos 2ϕ behavior from the interference.

5Interference inside QCD jets has received some attention in
the last years, see [51–53].
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In order to have an estimate on how well the interference
can be measured given a number of events, we design a
simple observable, considering the accumulated energy in
different quadrants of ϕ. From a distribution fðϕÞ for the
one- or two-point energy correlator, we define N þ¼
fðπ=4≤ jϕj<3π=4Þ andN −¼fð0≤ jϕj<π=4Þþfð3π=4≤
jϕj<πÞ. Then the asymmetry A int ¼ ðN þ −N −Þ=
ðN þ þN −Þ is sensitive to the interference between
different W-boson helicity production amplitudes.6 For
illustrative purposes we show in Fig. 6 the bounds on λγ
as a function of the number of events at

ffiffiffi
s

p ¼ 2 TeV with
pTðWÞ > 300 GeV. In red we show the bounds from
an inclusive measurement of the cross section assuming
10% (solid) and 3% (dashed) of systematic uncertainty. In
cyan, we add the asymmetry A int assuming negligible
systematic uncertainty. For low number of events, the
inclusive measurement saturates the sensitivity and the ϕ
distribution gives no further discrimination, while for large
number of events where precision measurements can be
made, there is a clear advantage of using the asymmetry.
Moreover, the region where the asymmetry dominates
scales faster with the number of events than the region
dominated by the cross section measurement, since the
interference term is linearly sensitive to λγ . We’ve checked
that if we only consider the terms up to 1=Λ2 in the cross
section, adding the interference improves the bound by
more than an order of magnitude, in accordance to [18,19].
A detailed study of the full kinematics of the process allows
us to further improve the constraints, as done at parton level
in [54].
We can now turn to the rest of Fig. 3. In the right plot, we

consider the same process and bin studied before in the left
plot, but instead with λγ ¼ 10−3 and δg1z ¼ 0. Now it is the
asymmetry A int the one confirming that the excess comes
indeed from an anomalous production of transverse modes.
Moreover, due to the linear sensitivity, it can discriminate

between both signs of λγ , contrary to the cross section
measurement.
We stress that the conclusions above can be imported to

LHC analyses; bins with large data samples will benefit the
most from including observables sensitive to interference
effects, since the linear sensitivity scales better with more
statistics and allows us to extend the regime of validity of
the EFT.
We finish by commenting on the more challenging and,

arguably, interesting jΔhj ¼ 1 interferences. As mentioned,
the x → 1 − x and ϕ → π þ ϕ redundancy erases the
interference pattern in ϕ if we proceed like for the jΔhj ¼
2 interference. However, the interference can be observed
by considering the dependence of both ϕ and z, since the
x → 1 − x changes the behavior in z. This is equivalent as
the necessity to observe two angles in the leptonic case as
studied in [12,18]. Therefore, the very interesting case of
longitudinal-transverse interference is necessarily at least a
two-dimensional problem. In practice, it is even more
complex. In the case of diboson production, the SM
production is dominated by opposite-sign transverse vec-
tors while the typical BSM effects reside in the longi-
tudinal-longitudinal production. Therefore, interference
requires us to observe a jΔhj ¼ 1 interference on both
vector bosons, requiring a global study of all kinematics of
the process. Such multidimensional problem is better suited
for modern machine learning approaches [12,55–59].

C. Towards the LHC

So far we have studied the energy correlators for a
monoenergetic source of electroweak bosons. In a hadronic
environment, as the LHC, one has a spectrum of energies.
However, the previous theoretical predictions can be
immediately imported due to two effects. First, it is possible
to show that the energy ratio Ei=EJ between a hadron and
jet is related to the ratio of their transverse momenta,
Ei=EJ ¼ pT;i=pT;J þOðz1=2⋆ Þ. Moreover, the angular dis-
tance z is related to the boost invariant distance ΔR2 ¼
ðΔηÞ2 þ ðΔϕÞ2 by z=z⋆ ¼ ΔR2=R2⋆ þOðz1=2⋆ Þ, where we
have defined R2⋆ ¼ 4m2

V=p
2
T;J. Second, at leading order in

z⋆, the leading-order predictions only depend on the
quantity z=z⋆. This way, by measuring z⋆ for each event,
the obtained distribution from an ensemble of events in
terms of z=z⋆ will look like a distribution from a mono-
energetic source. Therefore, the boost invariant pT-corre-
lator, where we weight the pT of the hadrons as a function
of the distance ðΔRÞ2=R2⋆, has the same distribution as the
energy correlator up to Oðz1=2⋆ Þ corrections.
In Fig. 7 we show the one- and two-point pT-correlator

as a function of ðΔRÞ2=R2⋆ for a longitudinal and transverse
W-boson, and for reference we also for a quark and gluon
jet. The jets are reconstructed using the anti-kt algorithm
[60] with R ¼ 1. The distributions for the vector coincide
with the predictions for the EC of a monoenergetic

FIG. 6. Impact of the asymmetryA int on the projected 95% CL
sensitivity to λγ .

6Notice that A int, contrary to A LT, is in one-to-one corre-
spondence to the one that can be defined at parton level.
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W beam, at least up to Oðz1=2⋆ Þ corrections. The quark and
gluon distributions for the one-point peak at lower
ðΔRÞ2=R2⋆ as expected.
Moreover, notice that the one-point correlator requires

the definition of a jet axis, which can be sensitive to soft
recoil. It would be interesting to study the one-point
correlator with a stable definition for the jet axis [61,62].
The two point shows a completely different behavior

between EW and QCD jets. While the vector distributions
peak at z⋆, the quark and gluon jets show the scaling
behavior. In fact, the tail at low ðΔRÞ2=R2⋆ of the vector
distributions coincides with the quark-jet distribution, as
expected.
We conclude that the previous monoenergetic results can

be imported for the LHCdistributions for the diagonal entries
of the density matrix. The azimuthal distribution of the off-
diagonal entries receives, however, modifications due to
boosts along the beam axis.Whilewe expectmild effects, the
assessment of the sensitivity requires further study.
An important question is the impact of the QCD back-

ground and how the spectrum of the energy correlators is
deformed after applying the selection criteria typically used
to discriminate EW and QCD jets [21–23,63,64]. In
particular, the invariant mass of the jet mJ and the D2

observable [23] are two of the main drivers that discern
between EWand QCD jets. In order to assess the impact of
such cuts in a clean environment, we consider a mono-
energetic beam of W bosons of EW ¼ 1.5 TeV in a lepton
collider. The effect of the cuts on the one-point correlator is
shown in Fig. 8, where we compare the spectrum without
cuts, after the requirement 65 GeV < mJ < 95GeV, and
after further requiring D2 < 5, 2, and 1. All curves are
normalized to 1. We observe that the cut on mJ has only
mild effects on the spectrum. However, a selection on D2

can have a large impact. The D2 observable is defined as

D2 ¼
1
E3
J

P
i<j<kEiEjEkzijzjkzki

ð 1
E2
J

P
i<jEiEjzijÞ3

; ð9Þ

where the sums run over the jet constituents. Low values of
D2 correspond to jets that look like two-prong while
larger values correspond to one-prong jets, in this way
cut selections can be designed to reject gluonic jets. In
Fig. 8 we see, however, that such selections have an
inherent bias towards rejecting the transverse vectors that
are kinematically distinct with respect the longitudinals.
This is because, as explained in the discussion of the one-
point correlator, low z is in one-to-one with having the
energy deposition dominated in a single quark, which
translates to larger D2 values. Such kinematical configu-
ration is more frequent in the transverse polarizations. The
D2 cut imposes a requirement on the kinematical configu-
ration within the jet and homogenizes the transverse and
longitudinal distributions.
We cannot end the discussion without remarking that

D2 is defined as a ratio of fully integrated energy
correlators, and therefore it is suggestive to think that
the exploration of fully differential observables might
allow a discrimination of EW and QCD jets that retains
the different character of longitudinal and transverse
vectors.

FIG. 7. One-point (left) and two-point (right) pT-correlators as a function of the boost invariant distance ΔR2=R2⋆ at the LHC, for the
transverse and longitudinal W polarizations and a quark and gluon jet.

FIG. 8. Impact on the one-point correlator of the selection cuts
typically used to discriminate EW from QCD jets.
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III. CONCLUSIONS AND OUTLOOK

In this Paper we have explored the possibility of using
the information encoded in the energy correlators of a
hadronically decaying electroweak vector boson in order to
probe its full-decay density matrix. We observe that the
dependence on the angular separation z of the one-point
energy correlator can indeed discriminate between longi-
tudinal and transverse modes. The azimuthal dependence ϕ
alone of both one- and two-point energy correlators shows
the interference pattern of the jΔhj ¼ 2 interference terms.
The jΔhj ¼ 1 interference terms require the study of the
distribution in both ϕ and z. The distributions are inde-
pendent of the W boost when expressed as a function of
z=z⋆, which allows us to predict the distributions observed
at hadron colliders, like the LHC, in terms of boost-
invariant quantities.
Kinematics of the decay allows us to dissect the

dynamics that produce an electroweak boson, enhancing
the sensitivity to EFT operators and potentially to reso-
nance searches. We presented how the energy correlators
allow us to identify the microscopic origin of an excess
of events, see Fig. 3, and how the sensitivity to EFT
operators is enhanced by unveiling the interference
pattern, see Fig. 6.
An important future avenue to pursue is the detailed

analysis of the correlators in the hadronic environment of
the LHC. The impact of QCD jets and selection criteria on
the distributions is a crucial element to explore further. We
observe that the usual D2 selection cut has a bias towards
eliminating vectors with transverselike kinematics, forcing
the exploration of other criteria that may retain the

kinematical difference between the longitudinal and trans-
verse distributions. This, together with the assessment of
the different theoretical and experimental uncertainties is
postponed for future work.
While we studied the one-dimensional distributions of

the energy correlator, extra information can be gained from
the multi-dimensional distributions. For instance, the full
four-dimensional two-point and six-dimensional three-
point correlator would constitute a generalization of the
D2 variable used to discriminate QCD and EW jets, which
might be interesting to investigate.
From a BSM perspective, a better control of hadronic

decays and the kinematical characterization of the decaying
EW vectors might open the door to study rare multiboson
processes that carry important information about the micro-
scopic dynamics in the EW sector [65].
Energy correlators are at the crossroads of conformal

field theory, QCD, experimental physics and data analysis.
As shown, they can also be used to enhance sensitivity to
BSM physics. This makes them an extremely appealing and
fruitful arena that aims to push precision physics at the
LHC to new levels.
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