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We investigate the gravitational form factors of the baryon octet within the framework of the SU(3) chiral
quark-soliton model, considering the effects of flavor SU(3) symmetry breaking, and with the
corresponding energy-momentum tensor distributions. We examine the effects of flavor SU(3) symmetry
breaking to the mass, angular momentum, pressure, and shear force distributions of the baryon octet. We
first find that a heavier baryon is energetically more compact than a lighter one. For the spin distributions of
the baryon octet, they are properly normalized to their spins and are decomposed into the flavor-singlet
axial charge and the orbital angular momentum even when the flavor SU(3) symmetry is broken. While the
effects of the flavor SU(3) symmetry breaking differently contribute to the angular momentum distributions
for the octet baryons, they are found to be rather small. The spin and orbital angular momentum almost
equally contribute to the angular momentum distributions for the octet baryons. We also estimate the effects
of the flavor SU(3) symmetry breaking to the pressure and shear force distributions. Interestingly, even if
we include the effects of the SU(3) flavor symmetry breaking, then the shear force distributions are kept to
be positive over r. It indicates that the Polyakov and Schweitzer local stability condition is kept to be intact
with the flavor SU(3) symmetry broken. Lastly, we discuss how much the gravitational form factors vary
with the effects of flavor SU(3) symmetry breaking considered.
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I. INTRODUCTION

It is of great importance to understand the mechanical
structure of a baryon as much as the electromagnetic (EM)
one, since it reveals how the baryon is mechanically shaped
by its partons. The gravitational form factors (GFFs) of a
baryon provide information on its mechanical properties
such as the mass, spin, pressure, and shear force. At an early
stage, the GFFs were considered as a purely academic
subject [1,2] due to the difficulty in having access to them
experimentally. However, the generalized parton distribu-
tions (GPDs) have paved way for extracting the GFFs
experimentally, since the EM form factors and GFFs are
defined, respectively, as the first and second Mellin
moments of the GPDs that can be measured by the hard
exclusive process such as deeply virtual Compton scattering

(DVCS) or hard exclusive meson production. Recently, the
first measurement of the nucleon D-term form factors from
DVCS was reported [3–5]. The transition GPDs will soon
be extracted from the experimental data on the hard
exclusive meson production p → Δþþπ− at Jefferson Lab
[6,7]. This measurement will lead to the N → Δ transition
GFFs [8]. Moreover, the upcoming Electric-Ion Collider
(EIC) project will unveil the fractions of the mass and spin
of the nucleon, which are taken up by quarks and gluons
inside it. It is well known that the quark content of the
nucleon spin is small (see a recent review [9]) and the
strange quark is polarized negatively (Δs ∼ −0.10 [10]).
This implies that the gluon spin and the orbital motion of the
quarks and gluon should considerably contribute to the
nucleon spin. The future EIC project will provide a clue to
the spin structure of the nucleon.
The GFFs for spin-1=2 particles parametrize the matrix

element of the energy-momentum tensor (EMT) current
[1,2,11,12]. It was recently generalized to higher-spin
particles [13] in a systematic way. Based on this para-
metrization, the GFFs of the nucleon have been intensively
investigated in various approaches [14–42]. The parity flip
transition [43–45] andN → Δ transition [8] matrix elements
of the EMT current were also parametrized. For a spin-1
particle, the model-independent formalism for the GFFs and
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distributions were studied in Refs. [46–50] and the GFFs
were obtained by many theoretical works [37,51–53].
The GFFs for a spin-3=2 particle were also examined
[37,54–56]. On the other hand, the GFFs of the baryon
octet were much less studied [57]. To compute them, we
need to consider the flavor SU(3) symmetry and its break-
down. Since the effects of the flavor SU(3) symmetry
breaking on the GFFs and related distributions have never
been examined, it is worthwhile to investigate them. In
particular, it is critical to check whether the local and global
stability conditions are satisfied with the flavor SU(3)
symmetry broken.
While the three-dimensional (3D) EMT distributions,

which show how partons are spatially distributed inside a
baryon in the Breit frame (BF) [58], were obtained by the
3D Fourier transform of the corresponding GFFs, there have
been serious criticisms of the 3D distributions of the
nucleon [59–63]. The 3D distributions depend on the shape
of the wave packet of a baryon, and this wave packet cannot
be localized below the Compton wavelength. It brings about
ambiguous relativistic effects of which the contribution is
approximated by around 20% for the nucleon. Thus, they
cannot be neglected anymore. To circumvent these ambigu-
ous relativistic effects, the two-dimensional (2D) spatial
EMT distributions have been considered in the infinite
momentum frame (IMF) or on the light front (LF). The
ambiguous relativistic corrections are kinematically sup-
pressed then [26,41,42]. However, we have to pay the price
that we lose information in the longitudinal direction.
There is yet another way of understanding the 3D

distributions by defining them using the Wigner phase-
space distribution. While it does not furnish the 3D
distributions with the probabilistic meaning, it allows us
to treat their relativistic effects. Moreover, it shows that the
3D BF and 2D IMF distributions can naturally be interpo-
lated in the Wigner sense. Thus, we can trace down the
origin of the relativistic corrections to the 2D IMF distri-
butions. At the same time, a direct connection between the
3D BF and 2D IMF distributions was found to be the IMF
Abel transform [64,65]. Note that, very recently, a novel
concept of the 3D strict probabilistic distribution was
introduced to remove ambiguous relativistic corrections
[66,67]. In this work, we first define the 3D BF distributions
in the Wigner sense and then map out the 2D IMF ones by
using the IMF Abel transform.
In the current work, we will scrutinize the GFFs of the

baryon octet and pertinent three-dimensional distributions
within the framework of a pion mean-field approach or the
chiral quark-soliton model (χQSM) [68–70]. E. Witten in
his seminal paper [71,72] inspired the idea of the meson
mean-field approach. In the limit of a large number of
colors (Nc), the quantum fluctuations are of order 1=Nc, so
that it can be ignored. Thus, a baryon can be viewed as Nc
valence quarks bound by a pion mean field that arises from

a classical solution of the equation of motion. To put more
explicitly, the presence of the Nc valence quarks polarizes
the vacuum, which produces the pion mean field. Then the
Nc valence quarks are also influenced by the pion mean
field in a self-consistent way. As a result, a classical
baryon appears as a chiral soliton with a hedgehog
symmetry, which is composed of the Nc valence quarks.
While we ignore the 1=Nc mesonic quantum fluctuations,
we have to consider the fluctuations of the pion field along
the zero-mode direction. The translational and rotational
zero modes are related to the symmetries of the baryon.
Integrating over the zero modes completely, we can
restore the correct quantum numbers of the baryon
[68,70]. The χQSM successfully described various prop-
erties of the baryon octet and decuplet such as the EM
properties [73–79], axial-vector structures [80–82], tensor
charges [83,84], GFFs [65,85–88], and partonic structures
[89–97]. It has also been extended to singly heavy baryons
[98–106]. The GFFs of the singly heavy baryons were also
studied within the χQSM [88]. The χQSM can also be
associated with quantum chromodyanmics (QCD) via the
instanton vacuum [107,108]. The low-energy QCD effec-
tive partition function can be derived from the instanton
vacuum. The dynamical quark mass, which is obtained
from the Fourier transform of the fermionic zero mode, is
originally momentum dependent. In the present work, we
turn off the momentum dependence and introduce a
regularization scheme to tame the divergence coming
from the quark loops.
The present work is organized as follows: In Sec. II, we

define the GFFs of a spin-1=2 baryon from the matrix
elements of the EMT current. In Sec. III A, we explain the
general formalism for the EMT distributions in both 3D and
2D cases. In Sec. IV, we show how the GFFs and the EMT
distributions can be computed within a framework of the
SU(3) χQSM, considering the effects of the flavor SU(3)
symmetry breaking. In Sec. V, the numerical results for the
GFFs and the EMT distributions of the octet baryons are
presented and discussed. The last section is devoted to the
summary of the present work and draws conclusions.

II. GRAVITATIONAL FORM FACTORS
OF A SPIN-1=2 PARTICLE

The symmetric EMT current in QCD can be derived by
varying the QCD action under the Poincaré transformation
according to Nöther’s theorem with the symmetrization
imposed for a particle with nonzero spin [109–111]. More
directly, one can derive the symmetric EMT current by
taking a functional derivative of the QCD action [1,112]
with respect to the metric tensor of a curved background
field. The symmetric total EMT operator consists of
the quark (q) and gluon (g) parts, which are, respectively,
expressed as
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T̂μν
q ¼ i

4

h
ψ̄qγ

μD⃗νψqþ ψ̄qγ
νD⃗μψq− ψ̄qγ

μD⃖νψq− ψ̄qγ
νD⃖μψq

i

−gμνψ̄q

�
i
2
=⃗D−

i
2
=⃖D− m̂q

�
ψq;

T̂μν
g ¼Fa;μηFa; ν

η þ1

4
gμνFa;κηFa;

κη: ð1Þ

Here, the covariant derivatives are defined as D⃗μ ¼ ∂⃗μ þ
igtaAa

μ and D⃖μ ¼ ∂⃖μ − igtaAa
μ. ta represent the SU(3)

color group generators that satisfy the commutation
relations ½ta; tb� ¼ ifabctc and are normalized to be
trðtatbÞ ¼ 1

2
δab. ψq denotes the quark field with flavor q

and m̂q designates the corresponding current quark mass.
Fa;μη stands for the gluon field strength expressed as
Fa
μν ¼ ∂μAa

ν − ∂νAa
μ − gfabcAb

μAc
ν. The total EMT operator

is conserved as follows:

∂
μT̂μν ¼ 0; T̂μν ¼

X
q

T̂μν
q þ T̂μν

g : ð2Þ

For the lowest-lying octet baryon, the matrix element of
the EMT current can be parametrized in terms of the three
GFFs [1,2,113]:

hB; p0; J03jT̂μνð0ÞjB; p; J3i

¼ ūðp0; J03Þ
�
ABðtÞPμPν

mB
þ JBðtÞ iðPμσνρ þ PνσμρÞΔρ

2mB

þDBðtÞΔμΔν − gμνΔ2

4mB

�
uðp; J3Þ; ð3Þ

which depends on the spin polarizations J3 and J03, the
average momentum P ¼ ðpþ p0Þ=2 of the initial and final
states, and the four-momentum transfer Δ ¼ p0 − p. The
squared momentum transfer is denoted by t ¼ Δ2. The on-
shell conditions of the final and initial four momenta are
given by p02 ¼ p2 ¼ m2

B, wheremB denotes the mass of the
octet baryon. In the BF, these GFFs ABðtÞ, JBðtÞ, andDBðtÞ
are traditionally understood as the mass, angular momen-
tum, and D-term form factors, respectively. Here, one
should keep in mind that in the level of the quark and
gluon degrees of freedom we have one additional form
factor c̄, which is constrained to satisfy the relationP

a¼q;g c̄
aðtÞ ¼ 0. It can be dropped because of the con-

servation of the total EMT current.

III. ENERGY-MOMENTUM TENSOR
DISTRIBUTIONS

In the BF, a 3D distribution is traditionally defined as a
Fourier transformation of the corresponding form factor.
Since, however, the baryon cannot be localized below the
Compton wavelength, it causes ambiguous relativistic
corrections. These corrections are up to 20% for the nucleon.

In the nonrelativistic picture, they are often neglected. In the
large Nc limit, the frame dependence of the distribution was
carefully examined in Ref. [114]. These 3D distributions in
the BF can be understood as quasiprobabilistic distributions
in phase space or as the Wigner distributions [26,115–117].
To obtain the quantum-mechanical probabilistic distribu-
tions, one should take the IMF or the LF frame such that the
relativistic corrections are kinematically suppressed and the
nucleon is described as a transversely localized state. This
yields 2D transverse densities in the IMF or on the LF.
The matrix element of the EMT current for a physical

state jψi can be expressed in terms of the Wigner
distribution as [116]

hT̂μνðrÞi ¼
Z

d3P
ð2πÞ3

Z
d3RWðR;PÞhT̂μνðrÞiR;P; ð4Þ

whereWðR;PÞ represents the Wigner distribution given by

WðR;PÞ ¼
Z

d3Δ
ð2πÞ3 e

−iΔ·Rψ̃�
�
Pþ Δ

2

�
ψ̃

�
P −

Δ
2

�
;

¼
Z

d3ze−iz·Pψ�
�
R −

z
2

�
ψ

�
Rþ z

2

�
: ð5Þ

The average position R and momentum P are defined
as R ¼ ðr0 þ rÞ=2 and P ¼ ðp0 þ pÞ=2, respectively.
Δ ¼ p0 − p denotes the three-momentum transfer, which
enables us to get access to the internal structure of a
particle. The variable z ¼ r0 − r stands for the position
separation between the initial and final particles. The
Wigner distribution contains information on the wave
packet of a particle

ψðrÞ ¼ hrjψi ¼
Z

d3p
ð2π3Þ e

ip·rψ̃ðpÞ;

ψ̃ðpÞ ¼ 1ffiffiffiffiffiffiffiffi
2p0

p hpjψi; ð6Þ

where the plane wave states jpi and jri are, respectively,
normalized as hp0jpi ¼ 2p0ð2πÞ3δð3Þðp0 − pÞ and hr0jri ¼
δð3Þðr0 − rÞ. The position state jri localized at r at time
t ¼ 0 is defined as a Fourier transform of the momentum
eigenstate jpi

jri ¼
Z

d3p

ð2πÞ3
ffiffiffiffiffiffiffiffi
2p0

p e−ip·rjpi: ð7Þ

If we integrate over the average position and momentum,
then the probabilistic density in either position or momen-
tum space is recovered to be
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Z
d3P
ð2πÞ3 WNðR;PÞ ¼ jψNðRÞj2;

Z
d3RWNðR;PÞ ¼ jψ̃NðPÞj2: ð8Þ

Given P and R, the matrix element hT̂μνðrÞiR;P conveys information on the internal structure of the particle localized
around the average position R and average momentum P. This can be expressed as the 3D Fourier transform of the matrix
element hB; p0; J03jT̂μνð0ÞjB; p; J3i:

hT̂μνðrÞiR;P ¼ hT̂μνð0Þi−x;P ¼
Z

d3Δ
ð2πÞ3 e

−ix·Δ 1ffiffiffiffiffiffiffiffi
2p0

p ffiffiffiffiffiffiffiffiffi
2p00p hp0; J03jT̂μνð0Þjp; J3i; ð9Þ

with the shifted position vector x ¼ r − R. Note that, very recently, a novel concept of the 3D strict probabilistic distribution
was introduced to remove ambiguous relativistic corrections [66,67].

A. Three-dimensional energy-momentum tensor distributions in the Breit frame

Having integrated over P of Eq. (4), we find that the part of the wave packet can be factorized. Thus, the target in the BF is
understood as a localized state around R from the Wigner perspective. In this frame, Eq. (9) is reduced to

Tμν
BF;Bðr; J03; J3Þ ¼

Z
d3Δ

ð2πÞ32P0

e−iΔ·rhB; p0; J03jT̂μνð0ÞjB; p; J3i: ð10Þ

From now on we use r instead of x, i.e., x ¼ r − R → r. In the Wigner sense, the temporal component of the EMT current
yields mass distribution:

T00
BF;Bðr; J03; J3Þ ¼ εBðrÞδJ0

3
J3 ¼ mB

Z
d3Δ
ð2πÞ3 e

−iΔ·r
�
ABðtÞ − t

4m2
B
ðABðtÞ − 2JBðtÞ þDBðtÞÞ

�
δJ0

3
J3 : ð11Þ

By integrating T00
BF;B over 3D space, one obviously gets the mass of a baryon in the rest frame

Z
d3rT00

BF;Bðr; J03; J3Þ ¼ mBABð0Þ ¼ mB; ð12Þ

with the normalization ABð0Þ ¼ 1. Note that, for a higher-spin particle (J ≥ 1), a quadrupole distribution of the energy
inside the particle appears [46–49,56,118,119]. The size of the mass distribution can be quantified by the mass radius. It is
given by either integral of the mass distribution or derivative of the mass form factor ABðtÞ with respect to the momentum
squared,

hr2εiB ¼
R
d3rr2εBðrÞR
d3rεBðrÞ ¼ 6

ABð0Þ
dABðtÞ
dt

����
t¼0

: ð13Þ

The 0k component of the EMT current is related to the spatial distribution of the spin carried by the partons inside a
baryon:

JiBðr; J03; J3Þ ¼ ϵijkrjT0k
BF;Bðr; J03; J3Þ;

¼ 2SjJ0
3
J3

Z
d3Δ
ð2πÞ3 e

−iΔ·r
��

JBðtÞ þ 2

3
t
JBðtÞ
dt

�
δij þ

�
ΔiΔj −

1

3
Δ2δij

�
JBðtÞ
dt

�
: ð14Þ

In principle, both the monopole and quadrupole distributions should be considered when we deal with the spin distribution.
However, we drop the quadrupole contribution for simplicity, which does not affect the normalization of the spin form
factor JBð0Þ. The quadrupole structure of the spin distribution was intensively discussed and related to the monopole
distribution in Refs. [120,121]. The monopole contribution to the spin distribution, which is the first term in Eq. (14), is
defined as
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ρBJ ðrÞ ≔
Z

d3Δ
ð2πÞ3 e

−iΔ·r
��

JBðtÞ þ 2

3
t
JBðtÞ
dt

��
: ð15Þ

Integrating JiBðr; J03; J3Þ over space gives the spin of the
baryon as follows

Z
d3rJiBðr; J03; J3Þ ¼ 2ŜiJ0

3
J3

Z
d3rρBJ ðrÞ

¼ 2ŜiJ0
3
J3
JBð0Þ ¼ ŜiJ0

3
J3
; ð16Þ

which is just the spin operator of a baryon. The quadrupole
contribution, the second term in Eq. (14), obviously
vanishes after the integration over the 3D space.
The spatial components EMT current Tij

BF;B provides
information on the mechanical properties of a baryon. It can
be decomposed into isotropic and anisotropic contribu-
tions. This anisotropic contribution plays a significant role
in the mechanical structure of a baryon [26,113]. They are,
respectively, referred to as the pressure pBðrÞ and shear
force sBðrÞ and expressed as [58,113]

Tij
BF;Bðr; J03; J3Þ ¼ pBðrÞδijδJ0

3
J3 þ sBðrÞ

�
rirj

r2
−
1

3
δij

�
δJ0

3
J3 ;

ð17Þ

where the pressure and shear force distributions are,
respectively, defined as

pBðrÞ ¼ 1

6mB

1

r2
1

dr
r2

d
dr

D̃BðrÞ;

sBðrÞ ¼ −
1

4mB
r
d
dr

1

r
d
dr

D̃BðrÞ; with

D̃BðrÞ ¼
Z

d3Δ
ð2πÞ3 e

−iΔ·rDBðtÞ: ð18Þ

From Eq. (18), it is easy to see that the 3D von Laue
stability condition for the pressure is automatically satis-
fied:

Z
d3rpBðrÞ ¼ 0: ð19Þ

It indicates that the pressure should have at least one nodal
point. In addition, the pressure and shear force distributions
automatically comply with the differential equation derived
from the total EMT conservation:

∂
iTij

BF;Bðr; J03; J3Þ ¼
rj

r

�
2

3

∂sBðrÞ
∂r

þ 2sBðrÞ
r

þ ∂pBðrÞ
∂r

�
δJ0

3
J3 ¼ 0: ð20Þ

It gives a number of the integral relations between pressure
and shear force. One of them is the 2D von Laue stability
condition that is derived as

Z
∞

0

dr r

�
−
1

3
sBðrÞ þ pBðrÞ

�
¼ 0: ð21Þ

The combination − 1
3
sBðrÞ þ pBðrÞ carries the meaning of

the tangential force distribution. It is an eigenvalue of the
stress tensor and it must at least have one nodal point such
that it complies with the 2D von Laue condition (21).
Moreover, in Refs. [26,113,122], the local stability

conditions were conjectured:

2

3
sBðrÞ þ pBðrÞ > 0; sBðrÞ > 0: ð22Þ

The combination 2
3
sBðrÞ þ pBðrÞ bears the meaning of the

normal force distribution and is again identified as an
eigenvalue of the stress tensor. Equation (22) implies that at
any distance r the normal force should be directed out-
wards. This Polyakov-Schweitzer local stability condition
was examined in various contexts [26,88,113,122]. The
value of the D-term form factor at zero momentum transfer
is obtained by integrating the pressure or shear-force
distributions over 3D space as

DBð0Þ ¼ −
4mB

15

Z
d3rr2sBðrÞ ¼mB

Z
d3rr2pBðrÞ; ð23Þ

and the positive shear force for any value of r implies the
negative D term. In addition, the positivity of the normal
forces (22) enables us to define the mechanical radius:

hr2mechiB ¼
R
d3rr2ð2

3
sBðrÞþpBðrÞÞR

d3rð2
3
sBðrÞþpBðrÞÞ ¼ 6DBð0ÞR

0
−∞DBðtÞdt : ð24Þ

B. Two-dimensional energy-momentum tensor
distributions in the infinite momentum frame

In Refs. [26,116], the elastic frame (EF) was introduced.
This frame naturally interpolates between the 2D BF and
2D IMF for both the nucleon [116,123] and the deuteron
[117]. In the EF, the average momentum and momentum
transfer of the initial and final states are, respectively, given
by P ¼ ðP0; 0⊥; PzÞ and Δ ¼ ð0;Δ⊥; 0Þ. Accordingly, the
EF distributions depend on the impact parameter x⊥
(r ¼ ðx⊥; xzÞ) and momentum P ¼ ð0; PzÞ, where an octet
baryon moves along the z direction without loss of
generality. In this frame, Eq. (9) is reduced to
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Tμν
EF;Bðx⊥; Pz; J03; J3Þ ¼

Z
d2Δ⊥

2P0ð2πÞ2
e−ix⊥·Δ⊥hB; p0; J03jT̂μνð0ÞjB; p; J3i

����
Δz¼0

: ð25Þ

To proceed to the IMF from the EF, we set Pz → ∞ in Eq. (25). As explored in Refs. [26,26,42,42,64,120,121], we obtain
the 2D IMF or 2D LF EMT distributions by taking the limit Pz → ∞. Note that we only consider the longitudinally
polarized octet baryons instead of the transversely polarized ones. As a result, the corresponding 2D distributions for the

mass EBðx⊥Þ, angular momentum ρð2DÞ;B
J ðx⊥Þ, pressure PBðx⊥Þ, and shear force SBðx⊥Þ are obtained by the 2D inverse

Fourier transform

EBðx⊥Þ ¼ mBÃ
Bðx⊥Þ; ρð2DÞ;B

J ðx⊥Þ ¼ −
1

2
x⊥

d
dx⊥

J̃Bðx⊥Þ;

SBðx⊥Þ ¼ −
1

8mB
x⊥

1

dx⊥
1

x⊥
d

dx⊥
D̃Bðx⊥Þ; PBðx⊥Þ ¼

1

16mB

1

x⊥
d

dx⊥
x⊥

d
dx⊥

D̃Bðx⊥Þ; ð26Þ

where the 2D Fourier transform of the corresponding GFFs are defined as follows

F̃Bðx⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·x⊥FBð−Δ2⊥Þ; ð27Þ

with FB ¼ AB; JB;DB. In the IMF, we divide the mass and mechanical densities, respectively, by the Lorentz factors P0=mB
and 2mB=P0 to remove the kinematical divergence and suppression in these densities [64,65]. On the other hand, since the
longitudinal boost does not mix the longitudinal component of the angular momentum, its distribution does not need to have
an additional Lorentz factor [120]. In addition, since the EB is normalized to the mass of an octet baryon, we refer to it as
“mass distribution” instead of the “momentum distribution.” It is different from the higher-twist mass distribution that arises
from the “bad” component of the EMT current.
These distributions (26) defined in the IMF can be related to those in the 3D BF (11), (15), and (18) through the IMFAbel

transform [64,65] as follows:

�
1 −

∂
2
ð2DÞ
4m2

B

�
EBðx⊥Þ ¼ 2

Z
∞

x⊥

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p
�
εBðrÞ þ 3

2
pBðrÞ þ 3

2mB

1

r2
d
dr

rρBJ ðrÞ
�
;

ρð2DÞ;B
J ðx⊥Þ ¼ 3

Z
∞

x⊥

ρBJ ðrÞ
r

x2⊥drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p ;

SBðx⊥Þ ¼
Z

∞

x⊥

sBðrÞ
r

x2⊥drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p ;

1

2
SBðx⊥Þ þ PBðx⊥Þ ¼

1

2

Z
∞

x⊥

�
2

3
sBðrÞ þ pBðrÞ

�
rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p : ð28Þ

They convey the same physical meaning from the 3D distributions to the 2D ones. Integrating those distributions over the
transversal plane x⊥, we obtain

Z
d2x⊥EBðx⊥Þ ¼ mBABð0Þ;

Z
d2x⊥ρ

ð2DÞ
J ðx⊥Þ ¼ JBð0Þ; ð29Þ

with the normalized form factor ABð0Þ ¼ 1 and JBð0Þ ¼ 1=2, respectively. We can define the 2D mass radius in the same
manner as the 3D one, which are related each other as follows

hx2⊥EiB ¼ 1

mB

Z
d2x⊥x2⊥EBðx⊥Þ ¼

2

3
hr2εiB þDBð0Þ

m2
B

: ð30Þ

Interestingly, because of the Lorentz boost effects, the 2D mass radius is associated with to the mechanical properties, i.e.,
the D term.
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The conservation of the EMT current also furnishes the
2D stability condition of the nucleon. We can easily derive
the 2D equilibrium equation from the conservation of the
EMT current

PB0ðx⊥Þ þ
SBðx⊥Þ
x⊥

þ 1

2
SB0ðx⊥Þ ¼ 0; ð31Þ

which is similar to the 3D case. One can clearly see that
Eq. (26) satisfies the equilibrium equation (31). In addition,
the 2D pressure distribution complies with the 2D von Laue
condition and that of its lower dimension subsystem in the
octet baryon as
Z

d2x⊥PBðx⊥Þ¼ 0;
Z

∞

0

dx⊥
�
PBðx⊥Þ−

1

2
SBðx⊥Þ

�
¼ 0:

ð32Þ
Furthermore, the Polyakov-Schweitzer local stability con-
dition for the 3D [122] and 2D [42] pressure and shear force
distributions can be considered. The 3D normal force
directed outward implies that the 2D normal force should
also be directed outward

1

2
Sðx⊥Þ þ Pðx⊥Þ > 0 ð33Þ

as shown in Eq. (28).
Note that the combination 1

2
SBðx⊥Þ þ PBðx⊥Þ and

− 1
2
SBðx⊥Þ þ PBðx⊥Þ mean the normal and tangential

force distributions in the 2D IMF, respectively. The
positivity of the 2D normal force is guaranteed by the fact
that the Abel image of a positive function is also positive
and vice versa. This implies that the positivity of the 3D
local stability condition is equivalent to the 2D ones. Thus,
it enables us directly to relate the 3D mechanical radius to
the 2D one

hx2⊥mechiB ¼
R
d2x⊥x2⊥ð12SBðx⊥Þ þ PBðx⊥ÞÞR
d2x⊥ð12SBðx⊥Þ þ PBðx⊥ÞÞ

¼ 4DBð0ÞR
0
−∞ dtDBðtÞ ¼

2

3
hr2mechiB: ð34Þ

IV. GRAVITATIONAL FORM FACTORS
OF THE BARYON OCTET IN THE SU(3) CHIRAL

QUARK-SOLITON MODEL

We start from the low-energy effective partition function
in Euclidean space

ZχQSM ¼
Z

DψDψ†DU exp

�Z
d4xψ†DðUÞψ

�
;

¼
Z

DU exp ½−SeffðUÞ�; ð35Þ

where Seff is the effective chiral action

SeffðUÞ ¼ −NcTr lnDðUÞ: ð36Þ

The Dirac operator DðUÞ is defined by

DðUÞ ¼ i=∂þ im̂þ iMUγ5 ; ð37Þ

where m̂ represents the diagonal matrix of the current quark
masses, i.e., m̂ ¼ diagðmu;md;msÞ, in the SU(3) flavor
space. Assuming isospin symmetry, we set the current
quark masses of u and d quarks to be equal, i.e., mu ¼ md.
So, the matrix of the current quark masses is written as

m̂ ¼ m01þm8λ
8; ð38Þ

where m0 and m8, respectively, stand for the singlet and
octet components of the current quark mass matrix. They
are written as

m0 ¼
2m̄þms

3
; m8 ¼

m̄ −msffiffiffi
3

p : ð39Þ

By introducing the average current quark mass m̄ ¼
ðmu þmdÞ=2, we can rewrite the matrix of the current
quark masses in terms of δm that will be treated perturba-
tively:

δm ¼ m̂ − m̄ ¼ ðm01 − m̄Þ þm8λ
8 ¼ M11þM8λ

8; ð40Þ

with M1 ¼ m0 − m̄ and M8 ¼ m8. M stands for the
dynamical quark mass in Eq. (37). Note that the original
dynamical quark mass depends on the quark momentum k.
It is derived from the zero-mode quark solution in the QCD
instanton vacuum [107,108] and plays a role of the natural
regulator for a quark loop. Since we turn off the momentum
dependence for simplicity, it is necessary to introduce an
explicit regularization scheme. Here, we use the proper-
time regularization.
Uγ5 denotes the SU(3) chiral field, which is defined by

Uγ5 ¼ 1þ γ5
2

U þ 1 − γ5
2

U† ð41Þ

with

U ¼ exp½iπaλa�; ð42Þ

where πa represents the pseudo-Nambu-Goldstone fields
and λa are the Gell-Mann matrices.
Introducing the hedgehog symmetry in flavor SU(2), we

regard each pion field with a ¼ 1, 2, 3 as being aligned
along the corresponding 3D space

πaðrÞ ¼ n̂aPðrÞ; ð43Þ
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where n̂a ¼ xa=r with r ¼ jrj. PðrÞ is the profile function
of the chiral soliton. It will be determined by solving the
classical equation of motion self-consistently. The SU(2)
chiral field is expressed as

Uγ5
SUð2Þ ¼ exp½iγ5n̂ · τPðrÞ�: ð44Þ

To construct the chiral soliton in flavor SU(3), we embed
the SU(2) soliton into the SU(3) one [72]:

Uγ5 ¼
�
Uγ5

SUð2Þ 0

0 1

�
: ð45Þ

The Dirac Hamiltonian hðUÞ is defined by

hðUÞ ¼ γ4γi∂i þ γ4MUγ5 þ γ4m̄1: ð46Þ

The corresponding eigenenergies and eigenfunctions are
obtained by diagonalizing the one-body Dirac Hamiltonian

hðUÞψnðrÞ ¼ EnψnðrÞ; ð47Þ

where En and ψnðrÞ denote the eigenenergies and eigen-
functions of the Hamiltonian hðUÞ, respectively.

Since we employ the saddle-point approximation in the
large Nc limit, we can easily perform the integration over
U in Eq. (35). The result is simply given by the value of
the integrand at the stationary mesonic configuration,
which can be found by solving the saddle point equation
δSeff=δPðrÞ ¼ 0. By minimizing self-consistently the
energy around the saddle point of the pion mean field,
we obtain the classical soliton mass (see review [70] in
detail), which is expressed as

Msol ¼ NcEval þ Esea: ð48Þ

Here, Eval is the energy of the discrete bound level, and
Esea is the sum of the Dirac-continuum energies.
In the χQSM, the symmetrized EMT current is derived as

T̂μν
effðxÞ ¼ −

i
4
ψ†ðxÞðiγμ∂⃗ν þ iγν∂⃗μ − iγμ∂⃖ν − iγν∂⃖μÞψðxÞ;

ð49Þ

and the matrix element of this EMT current can be
computed as follows:

hB; p0; J03jT̂μν
effð0ÞjB; p; J3i ¼ N�ðp0ÞNðpÞ lim

T→∞
exp

�
−iðp0 þ pÞT

2

�Z
d3xd3y expð−ip0 · yþ ip · xÞ

×
Z

DψDψ†DUJBðy; T=2ÞTμν
effð0ÞJ†Bðx;−T=2Þ exp

�Z
d4zψ†ðzÞDðUÞψðzÞ

�
; ð50Þ

where the baryon states jBðp; J3Þi and hBðp0; J03Þj are, respectively, defined as

jB; p; J3i ¼ lim
x4→−∞

expðip4x4ÞNðpÞ
Z

d3x expðip · xÞJ†Bðx; x4Þj0i;

hB; p0; J03j ¼ lim
y4→∞

expð−ip0
4y4ÞN�ðp0Þ

Z
d3y expð−ip0 · yÞh0jJBðy; y4Þ: ð51Þ

JB represents the Ioffe-type current consisting of the Nc valence quarks [124]

JBðyÞ ¼
1

Nc!
ϵα1���αNc

Γf1���fNc
ðTT3YÞðJJ03YRÞψf1α1ðyÞ � � �ψfNcαNc

ðyÞ;

J†BðxÞ ¼
1

Nc!
ϵβ1…βNc

Γg1���gNc�
ðTT3YÞðJJ3YRÞð−iψ†ðxÞγ4Þg1β1 � � � ð−iψ†ðxÞγ4ÞgNcβNc

; ð52Þ

where the greek and latin indices, respectively, denote the color and spin-isospin ones. The matrices ΓðTT3YÞðJJ3YRÞ carry
the spin and flavor quantum numbers of the corresponding baryon. The right hypercharge YR ¼ Nc=3 with Nc ¼ 3 selects
the lowest-lying representations of the SU(3) baryons such as the baryon octet ð8Þ and decuplet ð10Þ.
Having performed the zero-mode quantization, we obtain the collective Hamiltonian

Hcoll ¼ Hsym þHsb; ð53Þ

where
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Hsym ¼ Msol þ
1

2I1

X3
i¼1

Ĵ2i þ
1

2I2

X7
p¼4

Ĵ2p;

Hsb ¼ αDð8Þ
88 þ βŶ þ γffiffiffi

3
p

X3
i¼1

Dð8Þ
8i Ĵi: ð54Þ

I1 and I2 stand for the moments of inertia. Dð8Þ
ab denotes the

SU(3) Wigner D function. Three dynamical parameters α,
β, and γ are related to the flavor SU(3) symmetry breaking
and given as follows:

α ¼
�

1ffiffiffi
3

p ΣπN

m̄
−

ffiffiffi
3

p K2

I2
YR

�
M8; β ¼

ffiffiffi
3

p K2

I2
M8;

γ ¼ −2
ffiffiffi
3

p �
K1

I1
−
K2

I2

�
M8; ð55Þ

where K1 and K2 are anomalous moments of inertia and
ΣπN is the pion-nucleon Σ term. The collective wave
function of a baryon with flavor ðYTT3Þ and spin
ðYRJJ3Þ in the SU(3) representation μ is derived as

ψ ðμÞ
ðYTT3ÞðYRJJ3ÞðAÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðμÞ

p
ð−1ÞJ3−YR=2DðμÞ�

ðYTT3ÞðYRJ−J3ÞðAÞ;
ð56Þ

where dimðμÞ denotes the dimension of the representation
μ. In the presence of the flavor SU(3) symmetry breaking
term Hsb, the collective wave functions of the baryon octet
should be mixed with those in higher representations. Thus,
those for the baryon octet are derived as

jB81=2i ¼ j81=2; Bi þ cB
10
j101=2; Bi þ cB27j271=2; Bi; ð57Þ

with the mixing parameters

cB
10

¼ c10

2
66664

ffiffiffi
5

p

0ffiffiffi
5

p

0

3
77775
; cB27 ¼ c27

2
66664

ffiffiffi
6

p

3

2ffiffiffi
6

p

3
77775
; ð58Þ

in the basis ½N;Λ;Σ;Ξ�. The coefficients c10 and c27 are
expressed in terms of α and γ

c10 ¼ −
I2
15

�
αþ 1

2
γ

�
; c27 ¼ −

I2
25

�
α −

1

6
γ

�
: ð59Þ

The matrix elements of the various components of the
EMT current are written as in the large Nc limit,

hB; p0; J03jT̂00
eff jB; p; J3i ¼ 2m2

B

�
ABðtÞ − t

4m2
B
DBðtÞ

�
δJ0

3
J3 ;

hB; p0; J03jT̂ik
eff jB; p; J3i ¼

1

2
ðΔiΔk − δikΔ2ÞDBðtÞδJ0

3
J3 ;

hB; p0; J03jT̂0k
eff jB; p; J3i ¼ −2imBε

klmΔlŜmJ0
3
J3
JBðtÞ: ð60Þ

Having considered the rotational 1=Nc and linear ms
corrections, we obtain the final expressions of the GFFs
for a octet baryon B as follows:

ABðtÞ − t
4m2

B
DBðtÞ ¼ 1

mB

Z
d3rj0ðr

ffiffiffiffiffi
−t

p ÞεBðrÞ;

DBðtÞ ¼ 4mB

Z
d3r

j2ðr
ffiffiffiffiffi
−t

p Þ
t

sBðrÞ;

JBðtÞ ¼ 3

Z
d3r

j1ðr
ffiffiffiffiffi
−t

p Þ
r

ffiffiffiffiffi
−t

p ρBJ ðrÞ; ð61Þ

where the corresponding 3D densities εB, sB, and ρBJ are
given by

εBðrÞ ¼ EðrÞ þ
�
M1 þ

1ffiffiffi
3

p M8hD88iB
�
ðSðrÞ − 2CðrÞÞ;

sBðrÞ ¼ N 1ðrÞ − 2

�
M1 þ

1ffiffiffi
3

p M8hD88iB
�
N 2ðrÞ;

ρBJ ðrÞ ¼ −
1

2I1
I1ðrÞ þ 2M8hD83iB

�
K1

I1
I1ðrÞ −K1ðrÞ

�
:

ð62Þ

Here, h…iB denotes the matrix element of the collective
operator for a baryon state B. The explicit expressions for
the densities E, S, C, N 1, N 2, I1, and K1 are listed in
Appendix A.

V. RESULTS AND DISCUSSION

Before we discuss the numerical results for the EMT
distributions and the GFFs of the baryon octet, we first
describe how the parameters in the χQSM are fixed. Since
the quark loops cause the divergences, we need to regu-
larize them by introducing a cutoff mass Λ. It is fixed by
reproducing the experimental data on the pion decay
constant fπ ¼ 93 MeV. All other quark loops such as
the pion mass are tamed by this fixed value of Λ. The
current u- and d-quark masses are determined to be mu ¼
md ¼ 17.6 MeV by reproducing the pion mass mπ ¼
140 MeV (see Refs. [70,125] for details). In principle
the only free parameter of the χQSM is the dynamical quark
mass M. It is fixed by computing the various nucleon form
factors and mass splitting between light baryons [70]. The
most preferable value is found to be 420 MeV. Since we are
interested in the effect of flavor SU(3) symmetry breaking
on the GFFs and EMT distributions, we need to fix the
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value of the strange current quark mass. We employ it as
ms ¼ 180 MeV, which describes the mass splitting of both
the light and singly heavy baryons [70,100] very well. Note
that we consider the linear ms corrections.
The rotational and translational zero modes yield the

1=Nc corrections. While the translational corrections give
an overall shift of the mass spectra of the baryons, the
rotational corrections make the nucleon and Δ baryon
states split. In the octet and decuplet representations, the
linear ms corrections take charge of splitting hyperon
states. In this work, while we neglect the 1=Nc correc-
tions,1 we aim at scrutinizing the effects of the ms
corrections on the GFFs and the EMT distributions of
the baryon octet. In the following subsection, we will
exhibit the ms corrections to the EMT distributions of the
baryon octet.

A. Energy density

We start with examining the energy density εBðrÞ. It
comes from the temporal component of the EMT density
T00
BF;B defined as the Fourier transform of the mass form

factor (11). If we integrate εBðrÞ for a octet baryon over the
3D space, then we obtain the mass of the corresponding
baryon

Z
d3rεBðrÞ ¼

Z
d3r

�
EðrÞ þ

�
M1 þ

1ffiffiffi
3

p M8hD88iB
�
½SðrÞ − 2CðrÞ�

�
;

¼ Msol þ
�
M1 þ

1ffiffiffi
3

p M8hD88iB
�
ΣπN

m̄
≔ mB; ð63Þ

with

Z
d3rEðrÞ ¼ Msol;

Z
d3rSðrÞ ¼ ΣπN

m̄
;

Z
d3rCðrÞ ¼ 0: ð64Þ

Equation (63) coincides with the expression for the
collective Hamiltonian (53). The form factor ABðtÞ is
naturally normalized as

ABð0Þ ¼ 1

mB

Z
d3rεBðrÞ ¼ 1: ð65Þ

We list the values of the octet baryon masses in Table I. We
find an obvious fact that the mass of the baryon becomes
larger as the number of the strange quark in the valence level
increases. One may wonder why the nucleon and hyperon
masses are deviated from the experimental data. First, the
classical soliton mass is typically overestimated at around
∼300 MeV. Its origin may be understood as translational
zero-mode corrections [126] and mesonic 1=Nc corrections.
Second, the mass splittings of the hyperons are not
described well without the ms contributions mixed with

the rotational ones, i.e., OðN0
c; msÞ. Introducing this mixed

contribution [70,127], one can describe the mass splitting of
the SU(3) baryons very well. In the current work, however,
sincewe consider the baryon masses by using the mass form
factors, it is technically very complicated to take into
account such corrections. One may encounter triple sums
of the quark states. Thus, we restrict ourselves to examine
how the explicit flavor SU(3) symmetry breaking affects the
EMT distribution and stability conditions.
In the upper-left and -right panels of Fig. 1, we show

the 3D mass distributions and r2-weighted ones of the
baryon octet. The magnitude of the mass distribution over
r becomes larger as the strangeness increases, which
indicates that the mass of the corresponding octet baryon
also becomes larger with the strangeness increased.
Interestingly, as the mass of the baryon grows, the shape
of the distribution gets more closely packed. This implies
that the size of a heavier particle becomes more compact.
We will observe this fact soon. In the IMF, we draw the
corresponding 2D distributions in the middle-left and
-right panels of Fig. 1 by implementing the IMF Abel
transform (28). We find that the 2D mass distributions get
closer to the origin of the position space, compared with
the 3D ones. In the lower panel of Fig. 1, one can clearly
see a narrower 2D distribution for the nucleon as a
representative of the baryon octet. To quantify how
strongly the mass distributions stretch out over position
space, we introduce both the 2D and 3D mass radii in
Eqs. (13) and (30), respectively. They are found to be

TABLE I. Masses of the baryon octet.

Baryon Msol [MeV] ms correction [MeV] mB [MeV]

N 1256 95 1351
Λ 1256 122 1378
Σ 1256 149 1405
Ξ 1256 162 1418

1Since the Nc leading contribution to the spin distribution
arises from the 1=Nc rotational corrections, we take into account
these corrections only for the spin distribution.
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FIG. 1. 3D BF and 2D IMF mass distributions (upper- and middle-left panels) and r2-weighted ones (upper- and middle-left panels) of
the baryon octet and the classical nucleon, and comparison (lower panel) between the 3D BF and 2D IMF ones of the nucleon. The solid
(red), long-dashed (gray), short-dashed (green), dashed-dotted (blue), and dotted (black) curves denote εBðrÞ for the N, Λ, Σ, Ξ, and
classical nucleon, respectively.
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hr2εiN ¼ 0.31 ½fm2�; hr2εiΛ ¼ 0.26 ½fm2�;
hr2εiΣ ¼ 0.20 ½fm2�; hr2εiΞ ¼ 0.17 ½fm2�;

hx2⊥EiN ¼ 0.15 ½fm2�; hx2⊥EiΛ ¼ 0.11 ½fm2�;
hx2⊥EiΣ ¼ 0.07 ½fm2�; hx2⊥EiΞ ¼ 0.06 ½fm2�: ð66Þ

As mentioned above, the heavier hyperons are more
compact than the lighter ones:

hr2εiN > hr2εiΛ > hr2εiΣ > hr2εiΞ;
hx2⊥EiN > hx2⊥EiΛ > hx2⊥EiΣ > hx2⊥EiΞ: ð67Þ

Thus, we draw an important conclusion that the heavier
octet baryon is energetically more compact in both the 3D
BF and the 2D IMF. Thus, this is not changed by the IMF
Abel transformation. Interestingly, including the ms cor-
rections to the mass distributions results in the energeti-
cally more compact nucleon and yields a larger value at
the center of the distribution, compared to the classical
nucleon (see Tables II and III).

B. Angular momentum density

Before we discuss the numerical results for the angular
momentum density, we want to remark on the total
angular momentum in the χQSM. In principle, the total

angular momentum consists of the orbital angular momen-
tum and spin of the quarks and gluons. In the χQSM,
however, the gluonic degrees of freedom are absent or
integrated out through the instanton vacuum. It implies that
the baryon spin arises only from the orbital angular momen-
tum and spin of the quarks and antiquarks. The intrinsic
quark spin contribution or the singlet axial charge (g0A) can be
obtained from the experimental data on the structure function
g1 extracted from the experimental data on polarized deep
inelastic scattering. In a series of polarized deep inelastic
scattering experiments, the quarks carry a small fraction of
the nucleon spin, i.e., g0A ∼ 0.33 [9]. It leads one to posit that
the orbital angular momentum of the quarks and gluons, and
the spin of the gluon may have considerable contributions to
the nucleon spin. The futureEICprojectmay shed light on the
spin structure of the nucleon. In the χQSM, we can explicitly
decompose the intrinsic spin and orbital angular momentum
of the quarks. The singlet axial charge was already studied in
this model and found to be g0A ∼ 0.44 [70,128]. In this
subsection, we will demonstrate that the missing part of the
nucleon spin originates solely from the relativistic orbital
motion of the quarks with the effects of the flavor SU(3)
symmetry breakdown.
The spin density ρBJ ðrÞ arises from the mixed component

of the EMT current T0i
BF;B, and is normalized as the spin of a

octet baryon:

JBð0Þ ¼
Z

d3rρBJ ðrÞ ¼
Z

d3r

�
−

1

2I1
I1ðrÞ

þ 2M8hD83iB
�
K1

I1
I1ðrÞ −K1ðrÞ

��
¼ 1

2
ð68Þ

with
Z

d3rI1ðrÞ ¼ −I1;
Z

d3rK1ðrÞ ¼ −K1: ð69Þ

If we integrate the angular momentum distributions of the
octet baryon over 3D space, then we obtain the corre-
sponding spin 1=2 (see Table II). As we explained already,
one of the interesting results in the χQSM is that the total
angular momentum can be decomposed into the orbital
angular momentum and spin carried by quarks as follows:

TABLE II. Various observables for the baryon octet and the nucleon with the SU(3) symmetry in the 3D BF: energy densities at the
center εBð0Þ; mean square radii hr2εiB and hr2mechiB; normalized total angular momentum 2JBð0Þ; orbital angular momentum 2LB;
isosinglet axial charge g0;BA ; pressure densities pBð0Þ at the center of each baryon; nodal point of the pressure distribution ðr0ÞB; D term
Dð0Þ.

B εBð0Þ GeV=fm3 hr2εiB fm2 2JBð0Þ g0;BA 2LB pBð0Þ GeV=fm3 ðr0ÞB fm DBð0Þ hr2mechiB fm2

N 2.85 0.31 1.00 0.48 0.52 0.42 0.56 −2.84 0.52
Λ 3.12 0.26 1.00 0.40 0.60 0.44 0.56 −2.91 0.51
Σ 3.40 0.20 1.00 0.53 0.47 0.45 0.55 −2.98 0.50
Ξ 3.53 0.17 1.00 0.38 0.62 0.46 0.55 −3.01 0.49

SU(3) sym. 1.89 0.54 1.00 0.46 0.54 0.35 0.57 −2.60 0.55

TABLE III. Various observables for the baryon octet and the
nucleon with the SU(3) symmetry in the 2D IMF: energy
densities at the center EBð0Þ; mean square radii hx2⊥EiB and
hx2⊥mechiB; pressure densities PBð0Þ at the center of each baryon;
nodal point of the pressure distribution ðx⊥0ÞB.

B
EBð0Þ

GeV=fm3

hx2⊥EiB
fm2

PBð0Þ
GeV=fm3

ðx⊥0ÞB
fm

hx2⊥mechiB
fm2

N 2.56 0.15 0.082 0.46 0.35
Λ 2.75 0.11 0.085 0.46 0.34
Σ 2.95 0.07 0.088 0.46 0.33
Ξ 3.05 0.06 0.090 0.46 0.33

SU(3)
sym.

1.87 0.30 0.071 0.47 0.37
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JBð0Þ ¼ LB þ 1

2
g0;BA : ð70Þ

The explicit proof is provided in Appendix B. Using
Eq. (70), we can separately define the orbital angular

momentum and spin distributions. We first depict the total
angular momentum distributions and r2-weighted ones in
the 3D BF for the baryon octet in the upper-left and -right
panels of Fig. 2, respectively. The distributions of the
baryon octet are split up with respect to that with the flavor

FIG. 2. 3D BF and 2D IMF total angular momentum distributions (upper- and middle-left panels) and r2-weighted ones (upper- and
middle-right panels) of the baryon octet and the nucleon with the flavor SU(3) symmetry, and comparison (lower panel) between the 3D
BF and 2D IMF ones of the nucleon. The notations are the same as in Fig. 1.
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SU(3) symmetry. While the strengths of the distributions are
enhanced for the nucleon and Σ baryon, those for the Ξ and
Λ baryons are diminished. However, the normalizations of
the distributions are not changed at all. In Table II, we list
the properly normalized values of the JBð0Þ for the baryon

octet. In the middle-left, middle-right, and lower panels of
Fig. 2, we also present the same distributions in the 2D IMF.
Similar to the 2D mass distributions, the 2D IMF angular
momentum distributions are generically tilted inward,
compared to the 3D BF distribution.

FIG. 3. 3D BF and 2D IMF orbital angular momentum distributions (upper- and middle-left panels) and r2-weighted ones (upper- and
middle-right panels) of the baryon octet and the nucleon with the flavor SU(3) symmetry, and comparison (lower panel) between the 3D
BF and 2D IMF ones of the nucleon. The notations are the same as in Fig. 1.
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As defined in Appendix B, the total angular momentum
distribution is divided into the orbital angular momentum
ρBL and spin ρBS distributions, and we draw them for both the
3D BF and the 2D IMF in Figs. 3 and 4, respectively.
Integrating the distributions over 3D space yields

Z
d3rρBLðrÞ ¼ LB;

Z
d3rρBS ðrÞ ¼

1

2
g0;BA : ð71Þ

The separate values of the LB and g0;BA are listed in Table II.
The fractions of the orbital angular momentum and spin

FIG. 4. 3D BF and 2D IMF spin distributions (upper- and middle-left panels) and r2-weighted ones (upper- and middle-right panels)
of the baryon octet and the nucleon with the flavor SU(3) symmetry, and comparison (lower panel) between the 3D BF and 2D IMF ones
of the nucleon. The notations are the same as in Fig. 1.
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carried by quarks inside the baryon are estimated to be
around ∼50%, respectively, and they are well balanced.
Though the relativistic effects on the baryon spin JBð0Þ for
the nucleon and Σ baryon are slightly weaker than for the Λ
and Ξ baryons, the orbital angular momentum is still very
important in understanding the missing contribution to the
baryon spin. The spin distributions are solely responsible for
the nonzero values at the center of the angular momentum
distributions, and the orbital angular momentum contribu-
tions dominate over the spin ones at the outer part. It means
that the orbital angular momentum governs the outer part of
the ρBJ . From those facts, one may expect that the ordering
of the values of the ρBJ at the center is related to the ordering
of the axial charges of the baryon octet (see Table II). Note
that the axial charges of the baryon octet from the matrix
element of the EMT current coincide with those from the
matrix element of the axial-vector current [70,128,129].

C. Mechanical properties and stability conditions

We are now in a position to discuss the pressure and
shear force distributions. Before we present the numerical
results for these distributions, we want to mention how we
acquire the stability conditions in the χQSM. In the current
work, we treat 1=Nc and ms corrections perturbatively. In
the leading Nc approximation, the pressure pðrÞ naturally
satisfies the von Laue condition that is equivalent to the
equation of motion [85]. However, once we introduce the
next-to-leading-order contribution (say, ms corrections) to
pðrÞ, it breaks the von Laue condition. To remedy this
problem, two different methods can be employed. The one
is to minimize the baryon mass after quantizing the soliton,
the so-called variation after quantization method. However,
this method does not respect chiral symmetry in the large r
region [130]. Thus, instead of using this method, we
introduce the “quantization after variation” method. We
first minimize the soliton mass and then quantize the
soliton. So, the rotational corrections are considered as a
small perturbation. Of course, we also have to pay the price
in this case: the von Laue stability condition will again be
broken. However, we can circumvent this problem by
calculating the shear force distribution to avoid the viola-
tion of the stability condition instead of computing the
pressure directly. We then reconstruct the pressure distri-
bution from the obtained shear force distribution by solving
the differential equation (20). Then, both the pressure and
shear-force distributions comply with the global stability
condition [119,122].
Yet another ambiguous point appears at large r.

The chiral properties at large r are significant in the
description of the GFFs, especially theD-term form factor.
In the leading Nc contribution, it was well studied in
Refs. [85,118,122] and agrees analytically with the results
from chiral perturbation theory. However, in the present
work, this chiral property is numerically spoiled by the
finite box effects. We thus extrapolate the distribution at

large r by adopting the pion Yukawa tail [122]. At the same
time, once we take into account the next-to-leading order
of ms or 1=Nc corrections, this chiral property is broken
again. However, since we treat them perturbatively, the
next-to-leading-order corrections weakly contribute to the
distributions at any value of r. Indeed we find that the ms
correction to the shear force distribution over r is less than
50% of the leading contribution. At the large r, this
correction is saturated to 20% of the leading contribution.
Thus, we are able to safely approximate shear force
distribution at large r by using the pion tail used in the
leading Nc contribution.
The reconstructed pressure distribution obviously sat-

isfies the von Laue stability condition:

Z
drr2pðrÞ ¼ 0: ð72Þ

In Fig. 5, we present the pressure distributions of the
baryon octet in both the 3D BF and the 2D IMF, which are
reconstructed from the shear force distributions. The
comparison tells us that the size of the heavier octet
baryon is mechanically more compact than that of the
lighter octet baryon, as in the case of the mass distribu-
tions. It can be clearly seen by introducing the ðr0ÞB and
ðx⊥0ÞB at which the pressure distribution vanishes for 3D
BF and 2D IMF ones, respectively. Note that, to comply
with the von Laue condition, this nodal point is necessary.
As shown in the right panel of Fig. 5, the inner and outer
parts are explicitly canceled out, so that the von Laue
condition is satisfied. We find the following ordering for
both the 3D BF and the 2D IMF:

ðr0ÞN < ðr0ÞΛ < ðr0ÞΣ < ðr0ÞΞ;
ðx⊥0ÞN < ðx⊥0ÞΛ < ðx⊥0ÞΣ < ðx⊥0ÞΞ:

ð73Þ

Indeed, the heavier octet baryon is a more compact object
than the lighter one. We also find that for the heavier octet
baryon the pressures for both the 3D BF and the 2D IMF at
the core part are larger than the lighter ones (see Tables II
and III).
In Fig. 6, we draw the shear-force distributions of the

baryon octet in the 3D BF and the 2D IMF. We find that
they are always positive over r. We can deduce from the
fact that the 3D normal force is also positive for all values
of r [see Eq. (20)]:

2

3
sBðrÞ þ pBðrÞ > 0; sBðrÞ > 0: ð74Þ

It implies that the 2D one should also be positive over r:

1

2
SBðx⊥Þ þ PBðx⊥Þ > 0; SBðx⊥Þ > 0: ð75Þ
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This positive shear-force distribution, sBðrÞ > 0 or
SBðx⊥Þ > 0, is the signature of the negative D-term
form factor at the zero momentum transfer. In Fig. 7,
we also present the 3D BF and 2D IMF normal
force distributions as a function of r for the baryon

octet. They indeed satisfy the positivity over r. By
integrating either r2-weighted pressure or shear-force
distributions, one can obtain the D terms. The numeri-
cal results for the D terms of the baryon octet are
derived as

FIG. 5. 3D BF and 2D IMF pressure distributions (upper- and middle-left panels) and r2-weighted ones (upper- and middle-right
panels) of the baryon octet and the nucleon with the flavor SU(3) symmetry, and comparison (lower panel) between the 3D BF and 2D
IMF ones of the nucleon. The notations are the same as in Fig. 1.
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DNð0Þ ¼ −2.84; DΛð0Þ ¼ −2.91;

DΣð0Þ ¼ −2.98; DΞð0Þ ¼ −3.01: ð76Þ
As expected, we obtain the negative D terms for the
baryon octet. Interestingly, we find that the heavier

octet baryon has a larger value of the D term. To
quantify the mechanical size of the octet baryon, we
estimate the 3D BF and 2D IMF mechanical radii of the
baryon octet as follows:

FIG. 6. 3D BF and 2D IMF shear-force distributions (upper- and middle-left panels) and r2-weighted ones (upper- and middle-right
panels) of the baryon octet and the nucleon with the flavor SU(3) symmetry, and comparison (lower panel) between the 3D BF and 2D
IMF ones of the nucleon. The notations are the same as in Fig. 1.
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hr2mechiN ¼ 0.52 ½fm2�; hr2mechiΛ ¼ 0.51 ½fm2�;
hr2mechiΣ ¼ 0.50 ½fm2�; hr2mechiΞ ¼ 0.49 ½fm2�;
hx2⊥mechN ¼ 0.36 ½fm2�; hx2⊥mechiΛ ¼ 0.35 ½fm2�;
hx2⊥mechiΣ ¼ 0.35 ½fm2�; hx2⊥mechiΞ ¼ 0.35 ½fm2�: ð77Þ

This indicates that the heavier octet baryon is mechan-
ically a more compact object than the lighter one.
Since, however, the ms corrections to the mechanical
radii are negligible, the mechanical sizes of octet
baryons are rather comparable. All the relevant physical
observables are listed in Tables II and III. Last but not
least, it is of great interest to see the ordering of the
magnitude of the nucleon radii with the flavor SU(3)
symmetry breaking. We observe the following ordering:

hr2εiN < hr2mechiN < hr2chargeiN; ð78Þ

where hr2chargeiN is the charge radius of the nucleon
taken from Ref. [70]. We find that the ordering of the
radii are kept to be the same as the results with flavor
SU(3) symmetry for both the 3D BF and the 2D IMF.

D. Results for the gravitational form factors

The GFFs are obtained by the Fourier transform of the
corresponding EMT distributions. In Fig. 8, we present the
numerical results for the GFFs of the baryon octet as
functions of the momentum transfer t. In the upper left
panel of Fig. 8, the results of the ABðtÞ show that the form
factor of the heavier octet baryon falls off slowly in
comparison with that of the lighter one. It reflects the fact
that the heavier octet baryon is energetically more compact
than the lighter one. A similar feature was found in the case
of mass distribution of the heavy baryon [88]. In the upper
right panel of Fig. 8, the results of the JBðtÞ show somewhat
different features as observed in the angular momentum
distribution in the previous subsection. The form factor

JBðtÞ for the nucleon and Σ baryon falls off slowly in
comparison with those for the Ξ and Λ baryons. Lastly, in
the lower panel of Fig. 8, theD-term form factors are drawn.
The negativity of theD term for the octet baryon can be also
deduced from the positive shear-force distributions over r.
Thus, the negative D term is connected to the positivity of
the normal force distribution. We find that the heavier octet
baryon possesses the larger absolute value of the D term.
The mechanical radius can be also obtained from theD-term
form factor, but unlike a typical form factor, the slope of the
D-term form factor does not give the mechanical radius of a
baryon. Interestingly, the mechanical radii have opposite
behavior compared to the D term. The heavier octet baryon
possesses a smaller size of mechanical radius than the
lighter one.

VI. SUMMARY AND OUTLOOK

In the present work, we aimed at investigating the
gravitational form factors of the baryon octet and the
corresponding energy-momentum tensor distributions
within the SU(3) chiral quark-soliton model, considering
the effects of flavor SU(3) symmetry breaking. Starting
from the matrix element of the energy-momentum tensor
current for the baryon octet, we were able to compute the
four different densities: mass, angular momentum, pressure,
and shear force in both the 3D Breit and 2D infinite
momentum frames. Integrating the energy density over
position space yielded the masses of the baryon octet, so
that the mass form factor was properly normalized to be
ABð0Þ ¼ 1. We also found that, with the flavor SU(3)
symmetry breaking, the mass radius of the heavier octet
baryon is larger than that of the lighter one. It implies that
the heavier octet baryon is energetically a more compact
object, compared with the lighter one. We then examined
the angular momentum densities of the octet baryons.
Integrating the angular momentum densities over position
space gave the spins of the baryon octet even in the flavor
SU(3) symmetry broken case, so that the spin form factors

FIG. 7. 3D BF and 2D IMF normal force distributions of the baryon octet and the nucleon with the flavor SU(3) symmetry. The
notations are the same as in Fig. 1.
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were properly normalized to be JBð0Þ ¼ 1=2. Interestingly,
the total angular momentum was decomposed into the
flavor-singlet axial charge and orbital angular momentum
JB ¼ LB þ g0;BA =2. The quark spin contributions to the
angular momentum of the octet baryon were estimated at
around 50%. Since there are no gluonic degrees of freedom
in the chiral quark-soliton model, the missing contributions
were solely explained by the orbital motion of the quarks.
While the ms corrections differently contribute to the
angular momentum distributions for the octet baryons, their
effects were rather mild. So, both the spin and the orbital
angular momentum contributions to the angular momentum
distributions for the octet baryons are well balanced overall.
Lastly, we computed the shear-force distribution from the
model calculation and then reconstructed the pressure
distribution from the shear-force distribution by using the
equilibrium differential equation. In addition, we extrapo-
lated the shear-force distribution at large r to remove the
numerical redundancy by tagging the pion Yukawa tail. So,

the pressure obviously complied with the von Laue con-
dition. One of the remarkable results observed in this work
is that the shear force is always positive for any values of the
r. It indicates the positive normal force over r and the
negativeD term. It means that the local stability condition is
still preserved even if we take into account the effects of the
flavor SU(3) symmetry breaking. We also estimated the D
terms for the octet baryons and found that the heavier octet
baryon has a larger absolute value of the D term than the
lighter one. On the other hand, the mechanical radius of the
heavier octet baryon was smaller than that of the lighter one.
It implies that the heavier octet baryon is mechanically a
more compact object than the lighter one. We presented the
numerical results for the gravitational form factors of the
baryon octet as functions of the momentum transfer t by the
Fourier transform of the given energy-momentum tensor
distributions. The mass and angular momentum form factor
ABðtÞ and JBðtÞ were properly normalized to 1 and 1=2,
respectively, their slopes reflect the values of the distribution

FIG. 8. Results for the EMT form factors ABðtÞ,DBðtÞ, and JBðtÞ of the baryon octet and the nucleon with the flavor SU(3) symmetry.
The solid (red), long-dashed (gray), short-dashed (green), dashed-dotted (blue), and dotted (black) curves denote sBðrÞ for the N, Λ, Σ,
Ξ, and nucleon with the flavor SU(3) symmetry, respectively. The notations are the same as in Fig. 1.
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radius. When it comes to the D-term form factors, as expected, their negative values were obtained. In addition, ms
corrections to the D terms were found to be rather small.
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APPENDIX A: DENSITIES AND REGULARIZATION FUNCTIONS

In this section, we collect the explicit expressions for the EMT distributions. The mass distribution is written as

1

Nc
EðrÞ ¼ Evψ

†
vðrÞψvðrÞ þ

X
n¼all

ψ†
nðrÞψnðrÞR0ðEnÞ;

1

Nc
SðrÞ ¼ ψ†

vðrÞγ0ψvðrÞ þ
X
n¼all

ψ†
nðrÞγ0ψnðrÞR1ðEnÞ;

1

Nc
CðrÞ ¼ 1

2

X
n≠v

En þ Ev

En − Ev
hnjγ0jviψ†

vðrÞψnðrÞ þ
1

4

X
n¼all
m¼all

ðEn þ EmÞhnjγ0jmiψ†
mðrÞψnðrÞR5ðEn; EmÞ; ðA1Þ

and the angular momentum distribution is given by

1

Nc
I1ðrÞ ¼

X
n≠v

1

En − Ev
hnjτ3jviψ†

vðrÞĴ3ψnðrÞ þ
1

2

X
n¼all
m¼all

hnjτ3jmiψ†
mðrÞĴ3ψnðrÞR3ðEn; EmÞ;

1

Nc
K1ðrÞ ¼

X
n≠v

1

En − Ev
hnjγ0τ3jviψ†

vðrÞĴ3ψnðrÞ þ
1

2

X
n¼all
m¼all

hnjγ0τ3jmiψ†
mðrÞĴ3ψnðrÞR5ðEn; EmÞ: ðA2Þ

The shear-force distributions are expressed as

1

Nc
N 1ðrÞ ¼

3

2

�
ψ†
vðrÞ

�
γ0ðn̂ · γÞðn̂ · pÞ − 1

3
γ0ðγ · pÞ

�
ψvðrÞ þ

X
n¼all

ψ†
nðrÞ

�
γ0ðn̂ · γÞðn̂ · pÞ − 1

3
γ0ðγ · pÞ

�
ψnðrÞR1ðEnÞ

�
;

1

Nc
N 2ðrÞ ¼

3

2

�X
n≠v

1

En − Ev
hnjγ0jviψ†

vðrÞ
�
γ0ðn̂ · γÞðn̂ · pÞ − 1

3
γ0ðγ · pÞ

�
ψnðrÞ

þ 1

2

X
n¼all
m¼all

hnjγ0jmiψ†
mðrÞ

�
γ0ðn̂ · γÞðn̂ · pÞ − 1

3
γ0ðγ · pÞ

�
ψnðrÞR2ðEn; EmÞ

�
; ðA3Þ

where the regularization functions are defined by

R0ðEnÞ ¼
1

4
ffiffiffi
π

p
Z

du

u3=2
ϕðu;ΛÞe−uE2

n ;

R1ðEnÞ ¼ −
En

2
ffiffiffi
π

p
Z

duffiffiffi
u

p ϕðu;ΛÞe−uE2
n ;

R2ðEn; EmÞ ¼
1

2
ffiffiffi
π

p
Z

duffiffiffi
u

p ϕðu;ΛÞEne−uE
2
n − Eme−uE

2
m

En − Em
;

R3ðEn; EmÞ ¼
1

2
ffiffiffi
π

p
Z

duffiffiffi
u

p ϕðu;ΛÞ
�
1

u
e−uE

2
n − e−uE

2
m

E2
m − E2

n
−
Ene−uE

2
n þ Eme−uE

2
m

En þ Em

�
;

R5ðEn; EmÞ ¼
1

2

signðEnÞ − signðEmÞ
En − Em

; ðA4Þ
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with ψvðrÞ ≔ hrjvi, ψnðrÞ ≔ hrjni and Ĵ3 ¼ L̂3 þ Ŝ3. jvi and jni denote the states of the valence and sea quarks with the
corresponding eigenenergies Ev and En of the single-quark Hamiltonian hðUÞ, respectively. In addition, the dynamical
parameters are defined as follows:

1

Nc
I1 ¼

1

2

�X
n≠v

1

En − Ev
hnjτ3jvihvjτ3jni þ

1

2

X
n¼all
m¼all

hnjτ3jmihmjτ3jniR3ðEn; EmÞ
�
;

1

Nc
K1 ¼

1

2

�X
n≠v

1

En − Ev
jnjγ0τ3jvijvjτ3jni þ

1

2

X
n¼all
m¼all

hnjγ0τ3jmijmjτ3jniR5ðEn; EmÞ
�
: ðA5Þ

APPENDIX B: ANGULAR-MOMENTUM DECOMPOSITION

We show how the total angular momentum can be decomposed into the spin and orbital angular momentum
contributions. It was derived in the SU(2) χQSM [85,131], and we generalize it in SU(3). The angular momentum
distribution is obtained to be

ρBJ ðrÞ ¼ −
1

2I1
I1ðrÞ þ 2M8hD83iB

�
K1

I1
I1ðrÞ −K1ðrÞ

�
; ðB1Þ

where each density is given by

I1ðrÞ ¼
Nc

4

�X
n≠v

1

En − Ev
hnjτ3jviψ†

vðrÞð2L̂3 þ ðEn þ EmÞγ5ðr̂ × σÞ3ÞψnðrÞ

þ 1

2

X
n¼all
m¼all

hnjτ3jmiψ†
mðrÞð2L̂3 þ ðEn þ EmÞγ5ðr̂ × σÞ3ÞψnðrÞR3ðEn; EmÞ

�
;

K1ðrÞ ¼
Nc

4

�X
n≠v

1

En − Ev
hnjγ0τ3jviψ†

vðrÞð2L̂3 þ ðEn þ EmÞγ5ðr̂ × σÞ3ÞψnðrÞ

þ 1

2

X
n¼all
m¼all

hnjγ0τ3jmiψ†
mðrÞð2L̂3 þ ðEn þ EmÞγ5ðr̂ × σÞ3ÞψnðrÞR5ðEn; EmÞ

�
: ðB2Þ

To avoid numerical error discussed in Ref. [129], we manipulate the given densities. The second terms of each density can
be easily converted into the spin and orbital angular momentum operators as follows:

ψ†
mðrÞððEn þ EmÞγ5ðr̂ × σÞ3ÞψnðrÞ ¼ ε3jkψ

†
mðrÞfH; γ5r̂jσkgψnðrÞ ¼ ψ†

mðrÞð2L̂3 þ 2σ3ÞψnðrÞ: ðB3Þ

After that we are able to rewrite the densities as follows:

1

Nc
I1ðrÞ ¼

X
n≠v

1

En − Ev
hnjτ3jviψ†

vðrÞĴ3ψnðrÞ þ
1

2

X
n¼all
m¼all

hnjτ3jmiψ†
mðrÞĴ3ψnðrÞR3ðEn; EmÞ;

1

Nc
K1ðrÞ ¼

X
n≠v

1

En − Ev
hnjγ0τ3jviψ†

vðrÞĴ3ψnðrÞ þ
1

2

X
n¼all
m¼all

hnjγ0τ3jmiψ†
mðrÞĴ3ψnðrÞR5ðEn; EmÞ; ðB4Þ

where Ĵ3 ¼ L̂3 þ Ŝ3 and the spin operator Ŝ are defined as Ŝ3 ¼ 1
2
σ3. Thus, we can define the orbital and spin densities by

replacing the total angular momentum operator Ĵ3 by either L̂3 or Ŝ3:

ρBJ ðrÞ ¼ ρBLðrÞ þ ρBS ðrÞ: ðB5Þ

Here we are able to simplify Eq. (B4) by using the fact that the quark states are eigenstates of the grand spin operator
(Ĝ3 ¼ Ĵ3 þ T̂3):
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1

Nc

Z
d3rI1ðrÞ ¼

X
n≠v

1

En − Ev
hnjτ3jvihvjðĜ3 − T̂3Þjni þ

1

2

X
n¼all
m¼all

hnjτ3jmihmjðĜ3 − T̂3ÞjniR3ðEn; EmÞ;

1

Nc

Z
d3rK1ðrÞ ¼

X
n≠v

1

En − Ev
hnjγ0τ3jvihvjðĜ3 − T̂3Þnþ 1

2

X
n¼all
m¼all

hnjγ0τ3jmihmjðĜ3 − T̂3ÞnR5ðEn; EmÞ: ðB6Þ

Note that the matrix elements hmjĜ3jni ¼ G3δmn vanish for both densities. By integrating both sides over the 3D space, the
densities I1 and K1 becomes the dynamical parameter I1 and K1 defined in Eq. (A5):

Z
d3rI1ðrÞ ¼ −I1;

Z
d3rK1ðrÞ ¼ −K1: ðB7Þ

Therefore, the integration of the angular momentum density over the 3D space always gives the spin normalization

Z
d3rρBJ ðrÞ ¼

1

2
: ðB8Þ
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[13] S. Cotogno, C. Lorcé, P. Lowdon, and M. Morales, Phys.

Rev. D 101, 056016 (2020).
[14] M. V. Polyakov and A. G. Shuvaev, arXiv:hep-ph/

0207153.
[15] X.-D. Ji, W. Melnitchouk, and X. Song, Phys. Rev. D 56,

5511 (1997).
[16] P. Schweitzer, S. Boffi, and M. Radici, Phys. Rev. D 66,

114004 (2002).
[17] J.-H. Jung, U. Yakhshiev, and H.-C. Kim, J. Phys. G 41,

055107 (2014).
[18] P. Hagler, J. W. Negele, D. B. Renner, W. Schroers, T.

Lippert, and K. Schilling (LHPC, SESAMCollaborations),
Phys. Rev. D 68, 034505 (2003).

[19] M. Gockeler, R. Horsley, D. Pleiter, P. E. L. Rakow, A.
Schafer, G. Schierholz, and W. Schroers (QCDSF Col-
laboration), Phys. Rev. Lett. 92, 042002 (2004).

[20] B. Pasquini and S. Boffi, Phys. Lett. B 653, 23 (2007).

[21] D. S. Hwang and D. Mueller, Phys. Lett. B 660, 350
(2008).

[22] Z. Abidin and C. E. Carlson, Phys. Rev. D 77, 115021
(2008).

[23] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 78,
025032 (2008).

[24] B. Pasquini, M. V. Polyakov, and M. Vanderhaeghen,
Phys. Lett. B 739, 133 (2014).

[25] D. Chakrabarti, C. Mondal, and A. Mukherjee, Phys. Rev.
D 91, 114026 (2015).
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