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The chiral quark soliton model has been successfully applied to describe the heavy baryon spectrum,
both for charm and bottom, leading to the conclusion that the heavy quark has no effect on the soliton. This
suggests that replacing a heavy quark by a heavy antidiquark Q̄Q̄ in color triplet should give a viable
description of heavy tetraquarks. We follow this strategy to compute tetraquark masses. To estimate heavy
diquark masses, we use the Cornell potential with appropriately rescaled parameters. The lightest charm
tetraquark is 70 MeV above the DD� threshold. On the contrary, both nonstrange and strange bottom
tetraquarks are bound by approximately 140 and 60 MeV, respectively.

DOI: 10.1103/PhysRevD.106.114005

I. INTRODUCTION

Recent discovery of a doubly charmed tetraquark T þ
cc

with a mass of ∼3875 MeV, approximately ∼300 keV
below the D�þD0 threshold, by the LHCb Collaboration
[1,2] triggered a number of theoretical studies of exotic
heavy-light states. A comprehensive review of multiquark
states, both experimental and theoretical, before T þ

cc dis-
covery can be found in Ref. [3] and more recently after the
discovery of T þ

cc in Ref. [4] and references therein. The up
to date compilation of theoretical results is best illustrated
in Fig. 42 of Ref. [4].
The existence of heavy tetraquarks has been anticipated

theoretically already many years ago [5]. In 1993, Manohar
and Wise [6] showed using heavy quark symmetry [7] that
QQq1q2 tetraquarks are bound in the limit mQ → ∞ (see
also [8,9]). This has been also pointed out more recently in
Ref. [10]. To the best of our knowledge, the first estimate of a
doubly heavy tetraquark mass is from Lipkin in 1986 [11]
(although the fourfold heavy tetraquarks were discussed
even earlier in 1982 [12]). We have reviewed the variational
approach of Ref. [11] in Ref. [13] adding new information
coming from the discovery of Ξþþ

cc ð3621Þ [14] and showing
that the upper bound on aT þ

ccmass is approximately 60MeV
above the DD� threshold. On the contrary, the bound on a
T bb mass was 224 MeV below the threshold. In the same
paper, we advocated the possibility of using the chiral quark
soliton model (χQSM) to estimate the T QQ mass.

A mean field description of heavy baryons as a light
quark-soliton and a heavy quark has been introduced and
developed in Refs. [15–18]. This approach is a modifica-
tion of the χQSM used previously to describe light baryons
(see [19] and Refs. [20–22] for review) where the soliton is
constructed from Nc light quarks. To describe heavy
baryons, one has to remove one light quark from the
valence level and add a heavy quark instead. In the large Nc
limit, this replacement hardly changes the mean fields of
the soliton.
Support for such a treatment can be inferred from

Ref. [23] where the authors studied soliton behavior in
the limit where the current quark masses are m → ∞.
Although such a limit may at first sight be in contradiction
with the chiral symmetry, which is the main theoretical
basis of the model, it gave very good phenomenological
results when compared to lattice data at finite mπ . At
sufficiently large m, the soliton ceases to exist, and the
correct heavy quark limit is achieved.
In the χQSM, the soliton mass is given as a sum over the

energies of the valence quarks and the sea quark energies
computed with respect to the vacuum and appropriately
regularized [23],

Msol ¼ Nc

�
Eval þ

X
En<0

ðEn − Eð0Þ
n Þ

�
: ð1Þ

In the present context, Eq. (1) takes the following form:

Msol ¼ ðNc − 1Þ
�
Eval þ

X
En<0

ðEn − Eð0Þ
n Þ

�

þ
�
EvalðmQÞ þ

X
En<0

ðEnðmQÞ − Eð0Þ
n ðmQÞÞ

�
: ð2Þ
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As has been argued in Ref. [23], for largemQ, the sum over
the sea quarks in the second line of Eq. (2) vanishes, and
EvalðmQÞ ≈mQ. One copy of the soliton ceases to exist;
however, the remaining Nc − 1 quarks still form a stable
soliton.
Such a soliton does not carry any quantum numbers

except for the baryon number resulting from the valence
quarks. Spin and isospin appear when the soliton rotations
in space and flavor are quantized. This procedure results in
a collective Hamiltonian analogous to the one of a quantum
mechanical symmetric top; however, due to the Wess-
Zumino-Witten term [24,25], the allowed Hilbert space is
truncated to the representations that contain states of
hypercharge Y 0 ¼ Nval=3. For Nval ¼ Nc ¼ 3 (1), these
are octet and decuplet of ground state baryons. For Nval ¼
Nc − 1 ¼ 2 (2), we have antitriplet of spin 0 and sextet of
spin 1. It is therefore convenient to label heavy quark
baryons (and tetraquarks as well) by the SUð3Þflavor
representation of the light subsystem.
From this perspective, the soliton is reminiscent of a

diquark, and the quantization rule Y 0 ¼ ðNc − 1Þ=3 selects
SUð3Þflavor representations identical as the ones of the quark
model. Given the success of the χQSM in reproducing the
data [15–18], we propose here to use the same strategy to
describe the doubly heavy tetraquarks replacing heavy
quark Q by a heavy (anti)diquark Q̄Q̄.
We observe that two heavy quarks of the same flavor

(say cc or bb) can form a color antitriplet (antisymmetric in
color) provided they are symmetric in spin [26]. Therefore,
they form a tight object of spin 1. Hence, two heavy
antiquarks are in color 3 and spin 1, behaving as a spin 1
heavy quark. A tetraquark can be therefore viewed as being
composed of a heavy (anti)diquark of spin 1 and a
(Nc − 1)-quark soliton.1

There are three main lessons that we have learned from
our previous studies of heavy baryons [15–18]:

(i) the soliton properties do not depend on the mass of
the heavy quark,

(ii) neither do they depend on the spin coupling between
a soliton and a heavy quark,

(iii) hyperfine splittings scale like 1=mQ.
This is discussed in detail in Sec. II.
Therefore, a very simple and predictive picture of a

solitonþ heavy object (that is 3̄ in color) bound state
emerges, where the mass is simply given as a sum of the
soliton mass (including ms and rotational splittings), mass
of a heavy object (quark or a diquark), and the hyperfine
splitting. This picture is very reminiscent to the one of
Ref. [10]. Mass formulas for such states are therefore
identical to the ones of heavy baryons, with some modi-
fication due to the spin 1 character of the heavy diquark;
this is elaborated on in detail in Sec. III. So the main

problem is to estimate the diquark mass. Here, we propose
to use the Cornell potential as described later in Sec. IV.
We find that only bottom antitriplet tetraquarks, both

nonstrange and strange, are bound by approximately 140
and 60 MeV, respectively. We present numerical results for
antitriplet and sextet tetraquarks in Sec. V and conclude
in Sec. VI.

II. CHIRAL QUARK SOLITON MODEL FOR
BARYONS

Let us first recall how baryon masses are calculated in the
present model. We quantize the soliton as if it were
constucted from Nc − 1 rather than Nc light quarks.
Then, in the chiral limit, the soliton energy is given as

Esol ¼ Msol þ
JðJ þ 1Þ

2I1
þ C2ðp; qÞ − JðJ þ 1Þ − 3=4Y 02

2I2
:

ð3Þ

Here, Msol is a classical soliton mass, I1;2 denote moments
of inertia, C2ðp; qÞ is the SUð3Þflavor Casimir, and J
corresponds to spin. In our case, Y 0 ¼ 2=3 and the allowed
SU(3) representations correspond to 3̄ with spin J ¼ 0 and
6 with spin J ¼ 1 [15].
SU(3) splittings are given by the operator

Hbr ¼ αDð8Þ
88 þ βŶ þ γffiffiffi

3
p

X3
i¼1

Dð8Þ
8i Ĵi; ð4Þ

where constants α, β, and γ can be expressed through
generalized moments of inertia (see, e.g., Eq. (4) in
Ref [15]) and can be computed ab initio in some specific
versions of the model. In the most simple case with the
pseudoscalar fields only, the numerical values can be
found, e.g., in Ref. [27], and in the context of heavy
baryons in Ref. [28]. In both cases, they lead to reasonable
phenomenology. However, in reality, one should take into
account all possible chiral fields: scalar, pseudoscalar,
vector, axial, and tensor [29], for which full numerical
analysis has not been performed. Here, the explicit forms of
α, β, and γ are not needed as we treat them as free
parameters.
Heavy baryon masses are calculated by adding the mass

of the heavy quark to the soliton mass and by taking into
account the hyperfine splitting given by the following
Hamiltonian:

HSQ ¼ 2

3

ϰ

mQ
J · SQ; ð5Þ

where J and SQ stand for the soliton and heavy quark spin,
respectively. We have assumed here that the possible mQ
dependence of ϰ, due to the presence of the wave function
squared in (5), can be ignored. Since the spin of the 3̄

1In what follows, we use term diquark referring both to QQ
and Q̄ Q̄ states.
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representation is zero, there is no hyperfine splitting in this
case. In the case of 6, we have two sets of heavy baryons
with spins 1=2 and 3=2. This pattern is seen in the
experimental data [30].
Mass formulas for heavy baryons read therefore as

follows [13]:

MB;3̄ ¼ mQ þMsol þ
1

2I2
þ δ3̄YB;

MB;6;s ¼ mQ þMsol þ
1

2I2
þ 1

I1
þ δ6YB

þ ϰ

mQ

�−2=3 for s ¼ 1=2

þ1=3 for s ¼ 3=2
: ð6Þ

Here, splitting parameters δ3̄ and δ6 are known functions of
parameters α, β, and γ (see Eq. (9) in Ref. [15]), and YB
stands for a hypercharge of a given baryon.
Let us examine the consequences of the mass formu-

las (6). First of all, as has been already observed in [15],
Eqs. (6) admit one parameter independent sum rule in the
sextet

MΩ�
Q
¼ 2MΞ0

Q
þMΣ�

Q
− 2MΣQ

; ð7Þ

which for charm is satisfied at the level 1.4 MeV.We use (7)
to estimate MΩ�

b
¼ 6076.37 MeV when we compute aver-

age sextet masses in the b sector.
To get rid of the hyperfine splittings, we average out spin

dependence in sextets by defining

MB;6 ¼
1

3
ðMB;6;1=2 þ 2MB;6;3=2Þ: ð8Þ

Average masses MB;6 and masses in triplets should be
equally spaced with YB independently of the heavy quark.2

For 3̄, we have (in MeV)

−δ3̄ ¼ 182.6jΞc−Λc
¼ 174.9jΞb−Λb

; ð9Þ

which is satisfied with 2% accuracy. In the case of 6, we
have more relations (in MeV),

−δ6 ¼ 126.7jΞc−Σc
¼ 119.1jΩc−Ξc

¼ 121.5jΞb−Σb
¼ 118.4jΩb−Ξ�

b
; ð10Þ

which are satisfied with 4% accuracy.3

We can also form differences of average multiplet
masses between the b and c sectors to compute the heavy
quark mass difference (in MeV),

mb −mc ¼ 3328j3̄ ¼ 3327j6: ð11Þ

Furthermore, we can extract the hyperfine splitting
parameter testing our assumptions concerning the
Hamiltonian (5),

ϰ

mc
¼ 64.6jΣc

¼ 67.2jΞc
¼ 70.7jΩc

;

ϰ

mb
¼ 19.4jΣb

¼ 18.8jΞb
ð12Þ

(in MeV). From these estimates, we get

mc

mb
≃ 0.27 ÷ 0.30; ð13Þ

with the average value of 0.283. The PDG values of the MS
heavy quark masses lead to mc=mb ¼ 0.3 where both
masses are evaluated at the renormalization point μ ¼
mQ [30]. Of course, heavy quark masses in the effective
models, like the one considered in this paper, may differ
from the QCD masses. It is therefore encouraging that
we get a mass ratio close to the ratio of the QCD masses.
Nevertheless, quark masses extracted from Eqs. (11)
and (13),

mc ¼ 1206–1426 MeV;

mb ¼ 4533–4753 MeV; ð14Þ

are a bit higher (especially for mb) than those quoted by
PDG [30]. For mc=mb ¼ 0.283, we get mc ¼ 1314.1 MeV
and mb ¼ 4641.5 MeV, which are still lower than the
effective values used, e.g., in Ref. [31].
Finally, to test heavy quark dependence of the mass

formulas (6), we can compute the nonstrange moment of
inertia from the sextet-3̄ average mass differences,

1

I1
¼ MQ

6 −MQ
3̄
¼ 171.5jc ¼ 170.4jb ð15Þ

in MeV.We see that indeed heavy quark masses cancel with
very high precision. This, together with Eq. (11), suggests
that possible nonlinear in mQ binding effects are very small
if not vanishing. We can therefore safely assume that
formulas (11) are valid for any heavy object replacing
Q. We pursue this possibility in the next section.

III. CHIRAL QUARK SOLITON MODEL FOR
TETRAQUARKS

In the present case, instead of a heavy quark, we add
to the soliton a heavy diquark Q̄Q̄ of spin 1. Assuming that
the soliton is not changed by this replacement we arrive
at the following mass formulas for tetraquarks:

2We neglect small isospin violation.
3Note that for numerical analysis in the present paper, we have

used most recent version of PDG [30], and therefore, there are
small numerical differences with respect to Ref. [15].
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Mtetra 3̄
Q ¼ MB;3̄ þmQ̄Q̄ −mQ;

Mtetra 6
Q ¼ MB;6 þmQ̄Q̄ −mQ þ Cs

2

3

ϰ

mQ

mQ

mQ̄Q̄
; ð16Þ

where Cs is a spin factor arising from the fact that both the
sextet soliton and the diquark have spin 1,

Cs ¼

8><
>:

−2 for s ¼ 0

−1 for s ¼ 1

1 for s ¼ 2

: ð17Þ

Here, MB;3̄ is a heavy baryon mass in SUð3Þflavor 3̄ and
MB;6 is a spin averaged mass of a sextet baryon (8).
Sextet splittings satisfy the following relation:

Δ6
spin ¼ ðMtetra 6

Q ðs ¼ 1Þ −Mtetra 6
Q ðs ¼ 0ÞÞ

¼ 1

2
ðMtetra 6

Q ðs ¼ 2Þ −Mtetra 6
Q ðs ¼ 1ÞÞ

¼ 2

3

ϰ

mQ

mQ

mQQ
: ð18Þ

Before proceeding to numerical calculations let us
discuss strong decay thresholds. Since the ground state 3̄
tetraquarks have JP ¼ 1þ, they can decay to DþD� or
Bþ B�. The corresponding thresholds are listed in the
second rows of Tables I and II for nonstrange and strange
tetraquarks, respectively. In the latter case, DsD� and BsB�
thresholds are lighter than DD�

s or BB�
s.

In the case of the sextet tetraquarks, we have three
families of spin 0, 1, and 2 of nonstrange, strange, and
doubly strange tetraquarks. Pertinent thresholds (averaged
over isospin) are listed in Tables I–III.
Mass formulas (17) relate tetraquark masses directly to

heavy baryon masses and therefore are fairly model
independent. They are analogous to the masses given in
Eq. (1) of Ref. [10]. The spin part has been discussed in
[10] and in [32]; however, the hyperfine coupling has not

been specified. Here, we know the value of ϰ=mc;b (12), so
in order to estimate tetraquark masses, we only need the
heavy diquark mass mQ̄Q̄ for mQ in the range (14).

IV. HEAVY DIQUARK MASS

The main problem in predicting heavy tetraquark masses
in the present model is to have a reliable estimate of the
heavy diquark mass, as it is beyond the large Nc effective
theory that we have used for the light sector. To this end, we
propose to apply a nonrelativistic Schrödinger equation
with the Cornell potential [33]

VðrÞ ¼ −
κ

r
þ σr; ð19Þ

with κ ¼ CFαs, which has been successfully used to
describe heavy QQ̄ spectra (see, e.g., Ref. [34]).
There are two practical reasons to use the Cornell

potential in the present context. The first one is that in
order to compute QQ (or Q̄Q̄) masses one has to rescale
model parameters by a factor of 2. This follows from the
fact that the color charge hλ · λi is factor 2 smaller when
quark color charges are in an (anti)triplet than in a singlet
(see, e.g., Table III in Ref. [31]). As this is quite obvious for
the Coulomb term, lattice calculations suggest the same
behavior of the confining part [35]. Also the chromomag-
netic spin interaction, which we neglect in the following,
scales in the same way.
The second reason is that the Coulomb part in potential

(19) can be in fact considered as a perturbation to the linear
potential, for which solutions in terms of the Airy functions
are known semianalytically. We have checked that it is
enough to consider only the first order perturbation theory.
We are interested in the S states only, so we put l ¼ 0 in

the pertinent Schrödinger equation. The reduced mass of
the equal mass system entering the Schrödinger equation is
μ ¼ mQ=2. So we are looking for a solution in terms of a un
function defined as follows:

ψnlmðr; θ;φÞ ¼ Rn
0ðrÞY00ðθ;φÞ ¼

unðrÞ
r

1ffiffiffiffiffiffi
4π

p : ð20Þ

It is convenient to introduce a dimensionless variable ρ,

r ¼
�

ℏ2

σmQ

�
1=3

ρ; ð21Þ

TABLE II. Thresholds for strange tetraquark decays.

JP Channel Thresholds [MeV]

0þ DsD; BsB 3836.4 10646.4
1þ DsD�; BsB� 3977.5 10691.6
2þ D�

sD�; B�
sB� 4121.3 10740.1

TABLE III. Thresholds for doubly strange tetraquark decays.

JP Channel Thresholds [MeV]

0þ DsDs; BsBs 3936.7 10733.8
1þ DsD�

s ; BsB�
s 4080.6 10782.3

2þ D�
sD�

s ; B�
sB�

s 4224.4 10830.8

TABLE I. Thresholds for nonstrange tetraquark decays.

JP Channel Thresholds [MeV]

0þ DD; BB 3736.1 10558.9
1þ DD�; BB� 3877.2 10604.2
2þ D�D�; B�B� 4018.3 10649.4
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and rescaled dimensionless parameters λ and ζ,

λ ¼
�

mQ

σ1=2ℏ2

�
2=3

κ; ζ ¼
�
mQ

σ2ℏ2

�
1=3

E: ð22Þ

With these substitutions, the Schrödinger equation takes a
very simple form,

u00 þ
�
λ

ρ
− ρþ ζ

�
u ¼ 0: ð23Þ

For λ ¼ 0, Eq. (23) reduces to the Airy equation, and the
unperturbed energies are given in terms of the zeros zn of
the Airy function Aiðρ − ζÞ. This follows from the boun-
dary condition unð0Þ ¼ 0. Therefore, we have energy
quantization,

ζð0Þn ¼ −zn: ð24Þ

Note that these zeros are negative, so the energy ζð0Þn is
positive. The normalized solution is

unðρÞ ¼ N nAiðρ − ζð0Þn Þ ¼ N nAiðρþ znÞ: ð25Þ

First order perturbative correction is linear in λ, so the
full energy reads

ζn ¼ −zn − λan: ð26Þ

We need energies for two first levels only, for which a1 ¼
0.835 and a2 ¼ 0.582. Masses of the QQ̄ states read

Mn ¼ 2mQ þ
�
σ2ℏ2

mQ

�
1=3

ð−zn − λanÞ

¼ 2mQ − εQzn −
κ̃

εQ
an; ð27Þ

where we have introduced two new parameters,

εQ ¼
�
σ2ℏ2

mQ

�
1=3

and κ̃ ¼ κσ ¼ ε2Qλ: ð28Þ

For a given mQ from the range covering (14), we have
computed parameters εQ and κ̃ from the two lowest QQ̄
states.4 Sincewe need to estimate themass of a spin 1 diquark,
we have chosen as inputs J=ψð3096.6Þ and ψ2Sð3686.1Þ
for charm and ϒ1Sð9399.0Þ and ϒ2Sð10023.3Þ
for bottom. We have checked that the original parameters
κ and σ obtained that way are in qualitative agreement with
numerical results of Ref. [34].

Having εQ and κ̃ fixed, we can easily compute diquark
masses in color (anti)triplet by rescaling κ → κ=2 and
σ → σ=2, leading to εQ → εQ=41=3 and κ̃ → κ̃=4. It is
important to realize that the two terms in Eq. (27) scale
differently with this change of parameters. The confining
positive part is reduced by a factor ð1=4Þ1=3 ≃ 0.63, while
the Coulomb negative part is reduced by ð1=4Þ2=3 ≃ 0.4.
This delicate balance can make the diquark mass higher
than the QQ̄ ground state. This happens, however, only at
sufficiently high mQ where the first order perturbation
theory breaks down.
The diquark masses for charm and bottom are plotted in

Fig. 1. One can see that at sufficiently large mass the
Coulomb term becomes equal to the confining term, and the
diquark mass becomes lighter than 2mQ signaling the break
down of the first order perturbation theory. However, in the
range of model masses (14), the linear confining term
dominates, and the first order perturbation theory is suffi-
cient. In Ref. [13], we have naively approximated mQQ≃
2mQ, whereas for the Cornell potential, we get mQQ ≃
ð2.1–2.3ÞmQ in the mass range (14). This seemingly small
difference led to the overbinding observed in [13].
It is of course legitimate to ask how the diquark masses

depend on the potential that one chooses to describe heavy
quark dynamics. One could try, for example, a harmonic
oscillator potential, which for mc ¼ 1400 MeV and
ω ¼ 590 MeV reproduces masses of J=ψ and ψ2S. After

FIG. 1. Diquark masses from the Cornell potential (19) as
functions of mQ (solid). Horizontal dashed blue lines correspond
to J=ψ or ϒ for charm and bottom, respectively. Oblique orange
dashed lines show 2mQ. Shaded areas indicate the heavy quark
mass ranges (14) deduced from the heavy baryon spectra.

4Parameters εQ and κ̃ must be positive. It turns out that there
are no such solutions for too low mQ.
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rescaling ω2 → ω2=2 (which is a naive implementation of
the rescaling valid for the Cornell potential), one obtains
mcc ¼ 3008 MeV, 60 MeV below the mass following from
the Cornell potential formc ¼ 1400 MeV. Nevertheless, as
we shall shortly see, this reduction does not lead to a bound
tetraquark state.

V. TETRAQUARK MASSES

A. Antitriplet masses

It is now straightforward to compute predictions for the
tetraquarks in flavor 3̄ with the help of Eqs. (16) and the
numerical results for the diquark masses from the previous
section. The results are plotted in Fig. 2 and listed in
Table IV. We can see that charm tetraquark masses are above
the threshold, while in the case of bottom we see rather
deeply bound states both for nonstrange and strange
tetraquarks. The lightest nonstrange charm tetraquark is
approximately 70 MeV above the DD� threshold, so even
the harmonic oscillator model for the heavy diquark would
not lead to binding. Our results are in a very good agreement
with predictions of Ref. [10], although up to 30 MeV lower.

B. Sextet masses

The only difference between the antitriplet masses
and sextet masses is the presence of the hyperfine
splitting. Interestingly, from (18), we expect for charm
Δ6

spin ≃ 19–21 MeV, as mQ=mQQ in the range (14) is
approximately 0.43–0.48. On the contrary, hyperfine split-
ting D� −D ≃ 140 MeV is 7 times larger (and similarly in
the b sector). So in fact different spin states in the sextet are
almost degenerate. We see this clearly in Fig. 3 where we
plot predictions for the sextet tetraquark masses (solid
lines) and the pertinent thresholds (dashed lines). Different
colors correspond to spin. The only possible candidate for a
bound state, given the accuracy of the present model, is a

nonstrange bottom tetraquark of spin 2, which is only
∼30 MeV above the threshold. Numerical values can be
found in Table V.

VI. SUMMARY AND CONCLUSIONS

Motivated by the success of the chiral quark soliton
model in describing the heavy baryon spectra, we have
constructed mass formulas for heavy tetraquarks with two
heavy quarks of the same flavor. We first discussed baryon
phenomenology to conclude that the properties of the light
sector do not depend on the heavy quark properties. This is
quite expected on the grounds of heavy quark symmetry. It
is therefore legitimate to replace heavy quark Q in color 3
by a heavy antidiquark, that differs from Q by mass and
spin. Mass formulas (6) relate tetraquark masses to the
masses of heavy baryons, and the only model parameter
borrowed from the baryon phenomenology is the hyperfine
splitting parameter (12) ϰ=mQ. In this sense, our approach,
although derived from the χQSM, is fairly model indepen-
dent. This is why formulas (6) are identical to the ones
derived in the heavy quark limit from QCD in Ref. [10].
The only unknown ingredient of the present approach is

the heavy diquark mass. To this end, we have used the
Cornell potential, first to fit potential parameters to repro-
duce lowest spin 1 onia, both in charm and bottom sectors,
and then, after rescaling these parameters, to compute the
spin 1 diquark masses. We find that only bottom tetraquarks
in flavor antitriplet are bound, while the charm ones are

FIG. 2. The lightest nonstrange (solid blue, bottom) and strange (solid red, top) antitriplet tetraquark masses (charm, left panel;
bottom, right panel) as functions of the heavy quark mass. Horizontal dashed lines correspond to the pertinent thresholds (nonstrange,
bottom; strange, top) discussed in Sec. III. Shaded areas indicate the heavy quark mass range (14). Solid vertical lines correspond to
mc ¼ 1314 MeV or mb ¼ 4641.5 MeV.

TABLE IV. Masses of antitriplet tetraquarks in GeV.

Charm Bottom

mQ 1.31 4.64

T 3̄
QQq1q2

3.95 10.47

T 3̄
QQsq 4.13 10.64
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above the threshold. This is true also in the case when the
structure of a heavy diquark can be resolved by the light
quarks and repulsive color 6 channel is included [36].
Numerical results presented in Tables IV and V are in a

very good agreement with the results of Ref. [10] where all

necessary parameters have been extracted from data,
including the mass of Ξþþ

cc [14]. No model calculations
have been performed in Ref. [10], and in turn, we did not
use any input from doubly charmed Ξ. This is a strong
argument in favor of our approach to the heavy
diquark mass.
It is interesting to observe that our model has a

completely different Nc counting than typical models
discussed, e.g., in Refs. [26] or [36], where tetraquarks
are composed from four quarks for any Nc. In our case, the
soliton for large Nc belongs to a color representation R
corresponding to an antisymmetric product on Nc − 1
quarks. This is because we have to take one light quark
from the soliton and add one heavy quark to construct a
heavy baryon. For Nc ¼ 2, this is R ¼ 3̄. In order to
construct a tetraquark, we need to put heavy antiquarks in a

FIG. 3. The lightest nonstrange, strange, and doubly strange sextet tetraquark masses (charm, left; bottom, right) of spin 0 (solid blue,
bottom), spin 1 (solid orange, middle), and spin 2 (solid green, top) as functions of the heavy quark mass. Horizontal dashed lines
correspond to the pertinent thresholds (in the same order from bottom to top as the masses) shown in Tables I, II, and III. Shaded areas
indicate the heavy quark mass range (14). Solid vertical lines correspond to mc ¼ 1314 MeV or mb ¼ 4641.5 MeV.

TABLE V. Masses of sextet tetraquarks in GeV.

Charm Bottom

mQ 1.31 4.64

s 0 1 2 0 1 2

T6
QQq1q2

4.12 4.14 4.18 10.66 10.67 10.68

T6
QQsq 4.25 4.27 4.31 10.78 10.79 10.80

T6
QQss 4.37 4.38 4.42 10.90 10.91 10.92
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complex conjugate representation R̄ corresponding to
Nc − 1 antisymmetrized antiquarks. For Nc ¼ 2, this is
3. So for arbitrary Nc, our tetraquark consists of Nc − 1
light quarks and Nc − 1 heavy antiquarks, see Fig. 4. Such
a configuration has been briefly discussed in Ref. [26]. A
system composed ofNc − 1 heavy (anti)quarks is amenable
to semiclassical treatment. It would be interesting to pursue
this possibility in constructing a model for a diquark.
Finally, we have to confront the LHCb tetraquark [1,2]

which is just below the DD� threshold. Here, two pos-
sibilities exist. Either our model is not accurate enough to
deal with dynamics which gives binding energies of the
order of hundreds keV, or the LHCb tetraquark corresponds
to a different configuration that is out of reach for the soliton
models. Obviously charm quark mass is far from infinity,
and 1=mc corrections might finally lower our predictions. In
the present approach, however, we have no systematic
scheme that would allow one to include such effects. Also

the diquark model can be responsible for overshooting the
physical mass. Nevertheless, given the very good accuracy
of the χQSM predictions for heavy baryon masses and very
good agreement with the phenomenological analysis of
Ref. [10], one is perhaps more inclined towards the second
possibility. Indeed, the LHCb [2] estimated the size of T þ

cc
to be of the order of 7 fm, significantly larger than the
typical size of heavy flavor hadrons. This suggests a
molecular structure of T þ

cc [37,38].
In order to compute the space (or momentum) structure

of tetraquarks in the present model, one should resort to a
dynamical description of the soliton in terms of quark
degrees of freedom. Some studies in this direction within
χQSM have been undertaken in the case of singly heavy
baryons. In Ref. [39] electromagnetic form factors and in
Refs. [40,41] gravitational form factors have been studied.
It follows that heavy baryons are more compact than the
proton. That conclusion should also apply to the present
case, as the heavy quark or diquark is treated here merely as
a static color source. The internal structure of heavy
tetraquarks certainly deserves detailed studies; it is, how-
ever, beyond scope of the present paper.
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