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By making use of the hybrid collinear and high-energy factorization, where the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) resummation of leading and next-to-leading energy logarithms is combined with the
standard description in terms of collinear parton densities, we compare predictions for Mueller-Navelet jet
rapidity and angular differential rates with data collected by CMS at

ffiffiffi
s

p ¼ 7 TeV. We provide an evidence
that the study of azimuthal distributions, calculated as a Fourier sum of correlation moments and
embodying the high-energy signal coming from all conformal-spin modes, permits us to overcome the
well-known issues emerging in the description of Mueller-Navelet final states at natural values of the
renormalization scale. We come out with a clear indication that the next-to-leading BFKL description of
these observables at natural scales is valid when the rapidity interval between the two jets is large, and it
allows us to catch the core high-energy dynamics emerging from data.
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I. INTRODUCTION

The study of the dynamics behind fundamental inter-
actions at the energy frontier of the Large Hadron Collider
(LHC), as well as of new-generation machines and facilities
[1–22], relies upon our ability of doing more and more
accurate calculations by means of higher-order perturbative
techniques. Here, important challenges come from quan-
tum chromodynamics (QCD), its (non)perturbative dual
nature bringing to yet unresolved puzzles. The founding
pillar of QCD is the well-established collinear factorization
between hard-parton scatterings and nonperturbative parton
distribution functions (PDFs) and fragmentation functions
(FFs), whose validity has been corroborated by a long list
of theoretical achievements and experimental evidences.
There exist kinematic regions where, however, a pure
collinear, fixed-order description fails because it misses
large contributions which are logarithmically enhanced
in the considered phase-space corner(s). Thus, collinear

factorization must be improved and supplemented by
including those large terms via all-order techniques, known
as resummations.
One of this region is the Regge-Gribov or semihard

regime [23], where the stringent scale hierarchy s ≫
fQg2 ≫ Λ2

QCD (s is the center-of-mass energy squared,
while fQg stands for one or a set of hard scales typical of
the considered final state) leads to the rise of lnðs=Q2Þ type
logarithms, which enter the perturbative series with a power
increasing with the order of the strong coupling, αs. The
most powerful formalism that allows us to account for these
large energy logarithms to all orders is the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) resummation [24–27]. It permits
us to systematically catch all contributions proportional to
½αs lnðsÞ�n, in the leading-logarithmic (LL) approximation,
and of those accompanying powers of αs½αs lnðsÞ�n, in the
next-to-leading logarithmic (NLL) approximation.
BFKL cross sections are cast as high-energy convolutions

between aGreen’s function, which encodes the resummation
of energy logarithms and does not depend on the given
process, and two impact factors, portraying the fragmenta-
tion of each incoming object. The evolution of the Green’s
function is controlled by an integral equation, whose kernel
was calculated within the next-to-leading order (NLO) in the
perturbative expansion for any fixed, not increasing with s,
momentum transfer t and for any possible two-gluon colored
exchange in the t-channel [28–34]. Impact factors depends
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on the process, so that they represent the most challenging
pieces of the cross section. They are known at NLO for
a limited selection of final states: (i) quarks and gluons
[35–39], namely the building blocks to compute (ii) forward-
jet [40–44] and (iii) forward light-hadron [45] impact factors,
then (iv) the impact factor for the light vector-meson electro-
production, (v) the (γ� → γ�) impact factor [46–52], and
(vi) the one describing the forward-Higgs production in
gluon fusion in the infinite top-mass limit [53,54].
Suitable channels whereby to hunt for the onset of

BFKL dynamics are reactions featuring the scattering of
particles with small transverse sizes, such as the ones that
can be investigated in lepton-antilepton collisions. Here, the
absence of any initial-state hadronic activity permits us to
pick the high-energy signal in a very clean way. The growth
with energy of cross sections, predicted by BFKL, was
observed in total ðγ�γ�Þ rates [55–60]. However, compar-
isons with the only available data at LEP2 were unsatisfac-
tory, due to the low center-of-mass energies and insufficient
detector accuracies. NLL results were provided for the
exclusive diffractive electroproduction of two light vector
mesons [61–63] and for the photoproduction of two J=ψ
particles [64]. The leading-order (LO) impact factor depict-
ing the photoproduction of forward heavy-quark pairs
was recently obtained in Ref. [65] (see Ref. [66] for the
corresponding calculation in hadroproduction), while first
results for rapidity distributions and azimuthal-angle corre-
lations for the double heavy-quark pair photoemission were
studied at LEP2 energies as well as at nominal ones of future
lepton linear colliding machines [65,67].
Notably, the high-energy resummation offers us an in-

triguing opportunity to access the proton structure at small-x
via single-forward detections. In particular, it provides us
with a formal definition of the unintegrated gluon distribu-
tion (UGD) in the proton, written in terms of a convolution in
the transverse-momentum space [68–72] between the BFKL
Green’s function and a soft, nonperturbative proton impact
factor. Extensive tests of the UGD were done through deep-
inelastic-scattering structure functions [73,74] and light
vector-meson polarized amplitudes and cross sections at
HERA [75–82] and, quite recently, at the Electron-Ion
Collider (EIC) [83–87]. Further studies were done in the
context of forward Drell-Yan [88–91] and vector-quarko-
nium [92–100] final states. Starting from the information
about thegluonmotion inside the proton carried by theUGD,
first determinations of small-x improved collinear PDFs and
transverse-momentum-dependent (TMD) polarized gluon
TMDs were achieved in Refs. [101,102] and [103–111],
respectively.
The weight of small-x effects from BFKL in hadronic

collisions was quantified by studying inclusive rates for the
single-central emission of a Higgs boson in gluon fusion
[112–114]. By making use of the Altarelli-Ball-Forte
(ABF) prescription [115–119] to embody small-x logari-
thms inside the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) approach, studies in Refs. [120,121] have

provided an evidence that the BFKL resummation becomes
more and more relevant as the center-of-mass energy
increases, up to correct the Higgs total cross section by
10% when

ffiffiffi
s

p
reaches 100 TeV, i.e., the nominal energy of

the Future Circular Collider (FCC) [122]. Coming back to
present-day opportunities, the important task of hunting for
high-energy dynamics at current energies and kinematic
ranges of the LHC relies on identifying a suitable class
of semihard reactions that offer us (i) the possibility of
comparing data already collected with NLL predictions, as
well as (ii) a solid stability of related differential distributions
under higher-order corrections. Such a family of processes
was proposed almost two decades ago, when the study
of azimuthal-angle correlations between two Mueller-
Navelet jets [123] emitted with high transverse momenta
and large rapidity separation1 became feasible via the
development of the hybrid collinear and high-energy
factorization [140] (see Refs. [141–148] for another
formalism similar to our one). Mueller-Navelet final states
probe incoming protons at moderate x-values. Thus, a
collinear description in terms of PDFs remains affordable.
On the other hand, however, large rapidity distances bring
to t-channel exchanges of high transverse momenta, so that
energy logarithms are enhanced. Thus, a hybrid formalism
was set, where high-energy resummed partonic hard
factors are natively calculated within BFKL, and then
convoluted with collinear PDFs.
A remarkable number of phenomenological studies

for Mueller-Navelet jet emissions has appeared so far. A
limited selection includes works in Refs. [149–163]. The
first comparison of NLL predictions for Mueller-Navelet
azimuthal-correlation moments with the only experimental
data analyzed so far, namely the CMS ones at

ffiffiffi
s

p ¼ 7 TeV
and for symmetric windows of jet transverse momenta
[164] was done almost ten years ago [151,152,154]. It led
to the conclusion that the kinematic regime accessed by
current data stays in between the nominal-validity regions
of BFKL and DGLAP. Then, a clear evidence was pro-
vided [156,157] that high-energy effects can be sharply
singled out from the fixed-order background at the same
energies and rapidity configurations adopted in Ref. [164]
by simply imposing asymmetric cuts for the observed
transverse momenta. In Ref. [160] it was pointed out that
Mueller-Navelet azimuthal correlations have a very mild
dependence on dynamic constraints in the central-rapidity
region.
The calculation of the NLO correction to the forward

light-hadron impact factor [45] made a full NLL analysis
of two-hadron [165–169] and hadron-jet [170–176] semi-
hard distributions possible. Reference [173] confirmed that
the BFKL dynamics fairly decouples from the high-
energy DGLAP pattern also when hadrons are detected

1Similar analyses on J=ψ plus jet, Drell-Yan plus jet, and
multijet tags were proposed in Refs. [124,125], and [126–139],
respectively.
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(eventually, in association with jets) in asymmetric trans-
verse-momentum windows. The same study, however,
highlighted difficulties emerging when these light objects,
jets or hadrons, enter the definition of BFKL cross sections
and angular distributions studied around the natural
renormalization and factorization scales suggested by the
process kinematics. They are due to resummation insta-
bilities generated by the weight of NLL corrections, which
are large and with opposite sign of pure LL contributions.
As a result, differential cross sections can easily reach
negative values for large values of the rapidity interval
between the detected particles. Furthermore, angular cor-
relations written in terms of cosines of multiples of the
azimuthal-angle distance, hcosðnφÞi, exhibit an unphysical
behavior, with values larger than one both in the small and
in the large rapidity range.
Different strategies were proposed to cure this

issue. The Brodsky-Lepage-Mackenzie (BLM) method
[55,56,177,178], as designed in its semihard version
[158], became rapidly popular, since it permitted to
partially quench these instabilities on azimuthal correla-
tions and to marginally improve the agreement with data.
However, its application was ineffective on cross sections
for hadron-jet final states. Indeed, the resulting optimal
energy scales turned out to be sensibly larger than the
natural ones [170,173,179], with a substantial lowering of
the total cross section. Thus, any attempt at reaching the
precision level was unsuccessful.
A big step forward in semihard phenomenology was

taken very recently, by proposing the use of the forward-
hadron NLO impact factor computed in Ref. [45] to depict
emissions of heavy-flavored particles at large transverse
momenta. An evidence was provided that the description
of forward single-charmed (Λc baryons [180,181]) or
single-bottomed (Bmesons together withΛb baryons [182])
hadrons is valid when heavy-flavor FFs [183–187] deter-
mined in the variable-flavor number-scheme (VFNS)
[188,189] are embodied in the hybrid factorization.
However, the most striking success was the discovery that
the peculiar behavior in energy of the gluon fragmentation to
a heavy hadron leads to a natural stabilization of the high-
energy series, with a substantial dampening of instabilities
associated to higher-order corrections. Thus, fair studies of
rapidity- and angular-differential distributions became fea-
sible at natural scales, with NLL results for heavy-flavored
species being much closer to LL ones than what happens
for light jets and hadrons. A subsequent analysis on vector

quarkonia [190] and Bð�Þ
c mesons [191] done by combining

BFKL, collinear PDFs and nonrelativistic-QCD FFs
[192–196], highlighted that the natural stability is an
intrinsic property of heavy-flavor emissions. It emerges
whenever a heavy-flavored bound state is tagged, independ-
ently of the Ansätz made in determining or modeling its
production from single-parton fragmentation. An analogous
stabilization pattern was found in partially-NLL resummed

distributions sensitive to the hadroproduction of a Higgs-jet
system [197–200].
With the discovery of the natural stability, the hybrid

factorization gained enough reliability to be employed as a
powerful tool to gauge the possibility of making precision
studies of high-energy QCD in ultraforward rapidity
directions reachable at new-generation infrastructures.
Novel studies on light mesons plus heavy flavor [201]
and on charmed hadrons plus Higgs bosons [202] have
supported experimental plans of making ATLAS and the
Forward-Physics-Facility (FPF) detectors [2,3] work in
coincidence via a narrow-timing setup. The main goal
there has been increasing the motivation toward high-
energy QCD studies, as a core element of the multifrontier
activities which give life to FPF research programs.
In the present work we come back to comparing NLL

results for Mueller-Navelet jet distributions calculated in
hybrid factorization with data collected by CMS at 7 TeV.
First, by providing a prime analysis of systematic effects
coming from scale variations around their natural or BLM-
optimized values, we highlight how difficulties in the
description of angular-correlation moments rise both from
intrinsic instabilities inside BFKL and from the emergence
of Sudakov threshold logarithms which are genuinely
discarded in our formalism.
Then, by analyzing the behavior of novel predictions for

azimuthal-angle distributions, we corroborate the statement,
formulated in the context of more exclusive semihard final
states, that picking the whole signal coming from the
azimuthal modes allows us to enhance the stability of
BFKL at NLL. Starting from this checkpoint, we build
truncated azimuthal distributions that collect the first seg-
ment of the experimental signal. Their agreement with
corresponding theory results at NLL becomes clearer and
clearer as the rapidity interval between the two jets grows.
Thus, we brace the message that current CMS data definitely
contain strong high-energy imprints, which can be singled
out by studying angular-dependent distributions. The out-
come of this work can serve as a useful guidance for
forthcoming experimental analysis on Mueller-Navelet jet
correlations at 13 TeV collision energies.

II. THEORETICAL SETUP

In this section we present theoretical ingredients to build
Mueller-Navelet differential distributions via the hybrid
factorization. The NLL resummed cross section in presented
in Sec. II A, while our selection for final-kinematics is shown
in Sec. II B. Secs. II C and II D provide us with useful
information on the BLM scale-optimization procedure and
on our strategy to assess the weight of main uncertainties
affecting our phenomenological analysis, respectively.

A. NLL=NLO+ cross section

We consider the inclusive semihard production in proton
collisions of a Mueller-Navelet system (see Fig. 1)
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pðPaÞ þ pðPbÞ → jetðq1; y1Þ þ X þ jetðq2; y2Þ; ð1Þ

The two tagged jets feature high momenta, jqT1;2
j ≫ ΛQCD,

and large rapidity separation, ΔY ≡ y1 − y2. An unde-
tected gluon system, X , is inclusively emitted together
with jets. Our Sudakov vector basis is the one generated
by incoming protons’ momenta, Pa;b, with P2

a;b ¼ 0 and
ðPa · PbÞ ¼ s=2. Thus, we decompose the final-state
transverse momenta on that basis

q1;2 ¼ x1;2Pa;b þ
q2T1;2

x1;2s
Pb;a þ q1;2⊥; ð2Þ

with q21;2⊥ ≡ −q2T1;2
. Working in the center-of-mass frame,

one has the following relations between jet longitudinal
fractions, rapidities, and transverse momenta

x1;2 ¼
jqT1;2

jffiffiffi
s

p e�y1;2 ; dy1;2 ¼ � dx1;2
x1;2

; ð3Þ

and

ΔY ≡ y1 − y2 ¼ ln
x1x2s

jqT1
jjqT2

j : ð4Þ

The first step to build the high-energy resummed
Mueller-Navelet cross section is the use of collinear
factorization

dσ
dx1dx2d2qT1

d2qT2

¼
X

α;β¼q;q̄;g

Z
1

0

dz1

Z
1

0

dz2

× fαðz1; μFÞfβðz2; μFÞ

×
dσ̂α;βðz1z2s; μFÞ
dx1dx2d2qT1

d2qT2

; ð5Þ

where the (α, β) indices run over quarks, antiquarks,
and gluons, fα;βðx; μFÞ are initial-proton PDFs, μF is the
factorization scale, dσ̂α;βðz1z2s; μFÞ stands for the partonic-
subprocess cross section, z1z2s being the squared center-of-
mass energy of the partonic collision, equal to x1x2s at LO.
It is possible to rewrite the cross section as a Fourier sum

of the azimuthal-angle coefficients, Cn≥0,

ð2πÞ2dσ
dy1dy2djqT1

jdjqT2
jdφ1dφ2

¼
�
C0þ 2

X∞
n¼1

cosðnφÞCn
�
; ð6Þ

with φ1;2 the jet azimuthal angles φ≡ φ1 − φ2 − π.
By making use of the BFKL formalism, we come out

with a consistent definition of NLL-resummed azimuthal
coefficients. Working in the MS renormalization scheme,
one has (see Ref. [150] for technical details)

CNLL=NLO
þ

n ¼ x1x2
jqT1

jjqT2
j
Z þ∞

−∞
dνeΔYᾱsðμRÞχNLOðn;νÞ

× α2sðμRÞcNLOJ1
ðn; ν; jqT1

j; x1Þ
× ½cNLOJ2

ðn; ν; jqT2
j; x2Þ��; ð7Þ

where ᾱsðμRÞ≡ αsðμRÞNc=π, with Nc the color number,
and β0 ¼ 11Nc=3 − 2nf=3 the first coefficient of the QCD
β-function. We adopt a two-loop running-coupling setup
with αsðMZÞ ¼ 0.118 and a dynamic number of flavors, nf.
The BFKL kernel at the exponent of Eq. (7) embodies the
NLL resummation of energy logarithms

χNLOðn; νÞ ¼ χðn; νÞ þ ᾱsχ̂ðn; νÞ; ð8Þ

with χðn; νÞ the eigenvalues of the LO BFKL kernel

χðn; νÞ ¼ −2γE − 2Re

�
ψ

�
1þ n
2

þ iν

��
; ð9Þ

where γE is the Euler-Mascheroni constant and ψðzÞ≡
Γ0ðzÞ=ΓðzÞ the logarithmic derivative of the gamma func-
tion. Furthermore, the χ̂ðm; νÞ function in Eq. (8) represents
the NLO BFKL kernel correction

χ̂ðn; νÞ ¼ χ̄ðn; νÞ þ β0
8Nc

χðn; νÞf−χðn; νÞ þ 10=3

þ 2 ln½ðμ2R=ðjqT1
jjqT2

jÞ�g; ð10Þ

FIG. 1. Diagrammatic representation of the Mueller-Navelet
jet hadroproduction. Red blobs denote proton collinear PDFs,
while green and blue arrows denote final-state jets. The BFKL
ladder, portrayed by the yellow blob, is connected to impact
factors trough Reggeon (zigzag) lines. Diagrams were done via
JAXODRAW 2.0 [203].
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the characteristic χ̄ðm; νÞ function being calculated in
Ref. [204].
The two expressions

cNLOJ1;2
ðn; ν; jqT j; xÞ ¼ cJ1;2 þ αsðμRÞĉJ1;2 ð11Þ

stand for the forward-jet NLO impact factors, calculated
in the Mellin space via the projection onto LO BFKL
eigenfunctions. The LO impact factor takes the following
form:

cJðn;ν; jqT j; xÞ ¼ ρcjqTj2iν−1
�
τcfgðxÞþ

X
α¼q;q̄

fαðxÞ
�
; ð12Þ

with ρc ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CF=CA

p
, and τc ¼ CA=CF, where CF ¼

ðN2
c − 1Þ=ð2NcÞ and CA ≡ Nc are the Casimir factors

connected to gluon emission from quark and gluon,
respectively. The formula for the NLO impact factor can
be obtained by combining Eq. (36) of [150] with
Eqs. (4.19)–(4.20) of [44]. It is based on calculations done
in Refs. [43,45], suited to numerical studies, which encode
a jet algorithm calculated in the “small-cone” approxima-
tion (SCA) [205,206] with a cone-type selection (see
Ref. [44] for further details).
Equations (7) and (12) elegantly show how our hybrid

collinear and high-energy factorization is realized. The
cross section is factorized à la BFKL in terms of the gluon
Green’s function and the impact factors. The latter ones

encode collinear PDFs. The þ superscript in the CNLL=NLO
þ

n

label reflects that our representation for azimuthal coef-
ficients in Eq. (7) contains terms beyond the NLL accuracy
generated both by the NLO exponentiated kernel and by
the cross product of the NLO impact-factor corrections.
Finally, by neglecting all NLO contributions in Eq. (7), we
get the pure LL limit of our azimuthal coefficients

CLL=LOn ¼ x1x2
jqT1

jjqT2
j
Z þ∞

−∞
dνeΔYᾱsðμRÞχðn;νÞα2sðμRÞ

× cJ1ðn; ν; jqT1
j; x1Þ½cJ2ðn; ν; jqT2

j; x2Þ��; ð13Þ

which wewill employ in our phenomenological analysis for
comparisons with corresponding NLL=NLOþ calculations.
In previous studies on Mueller-Navelet jets [156,157]

and hadron-jet [173] final states a high-energy DGLAP
formula was developed to mimic the high-energy limit of a
pure NLO calculation. In our jet-jet case, it can be obtained
by truncating the NLL resumed azimuthal coefficients in
Eq. (7) up to the Oðα3sÞ order. In this way we isolate
the leading-power asymptotic signal of a pure NLO
DGLAP calculation, discarding at the same time factors
which are suppressed by inverse powers of x1x2s. BFKL
versus high-energy DGLAP analyses leads to a clear
discrimination between the two approaches where asym-
metric transverse-momentum configurations are adopted

[156,157,173,174,180,191,201]. However, the use of our
high-energy fixed order method in a theory versus experi-
ment quest for Mueller-Navelet jets would be less adequate,
since data collected by CMS are for symmetric transverse-
momentum ranges only [164]. Thus, instabilities emerging
from higher-order calculations [207,208] as well as NLL
energy-momentum violations NLL [209], which would
be quenched by asymmetric cuts, prevent us to use our
DGLAP expansion of resummed azimuthal coefficients.

B. Final-state kinematics

Core ingredients to build our observables are the
azimuthal coefficients integrated over rapidity and trans-
verse momenta of the two detected jets, while their rapidity
interval is kept fixed

Cn ¼
Z

ymax
1

ymin
1

dy1

Z
ymax
2

ymin
2

dy2δðy1 − y2 − ΔYÞ

×
Z

qmax
T1

qmin
T1

djqT1
j
Z

qmax
T2

qmin
T2

djqT2
jCnðjqT1

j; jqT2
j; y1; y2Þ:

ð14Þ

Here, the Cn and Cn coefficients can refer to corresponding
calculations taken within the NLL [Eq. (7)] or the LL
[see Eq. (13)] accuracy. In order to match realistic LHC
kinematic cuts, we consider standard CMS configura-
tions [164]. In particular, jet rapidities lies in the interval
jy1;2j < 4.7, while jet transverse momenta stay in the
symmetric range 35 GeV < jqT1;2

j < 60GeV. The center-
of-mass energy is fixed to

ffiffiffi
s

p ¼ 7 TeV.

C. BLM scale optimization

The BLM method prescribes that the optimal value for
the renormalization scale, denoted as μBLMR , is the one at
which all the nonconformal, β0-dependent terms entering
the analytic structure of a given observable, vanish. A
specific procedure was built to remove all the β0-dependent
pieces of semihard distribution [158], namely both the ones
in the NLO BFKL kernel and in the NLO impact factors.
We refer to this method as an “exact” BLM approach. It
was used for the first time in light-hadron correlations
[165,167], and then applied to Mueller-Navelet jet phe-
nomenology in Refs. [160,173]. Some approximated,
semianalytic BLM procedures aimed at removing either
the nonconformal parts of the kernel or the ones encoded in
the impact factors were applied in previous studies (see,
e.g., Refs. [151,152,154]). As a result, μBLMR turns out to be
dependent on s and therefore on ΔY. The BLM procedure
can in principle be applied in any renormalization scheme.
In Refs. [55,56] it was suggested that, in the case of BFKL
calculations, the BLM should be applied after first tran-
sitioning to the MOM scheme [210–212]. This prescription
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is also known as BFKLP, after the Authors of Refs. [55,56].
Therefore, our first step consists in making a finite trans-
formation from the MS scheme to the MOM one. The
expression for the strong coupling in the MOM scheme,
αMOM
s , can be obtained by inverting the following relation

αMS
s ¼ αMOM

s

�
1þ τβ þ τc

π
αMOM
s

�
; ð15Þ

with

τβ ¼ −
�
1

2
þ I

3

�
β0;

τc ¼ CA

8

�
17

2
I þ 3

2
ðI − 1Þξþ

�
1 −

I
3

�
ξ2 −

1

6
ξ3
�
;

where I ¼ −2
R
1
0 dγ

ln γ
γ2−γþ1

≃ 2.3439, with the gauge

parameter ξ fixed to zero in the following. Then, to find
the BLM scale of a given azimuthal coefficient, Cn, one has
to solve the following integral equation

C½β�
n ¼

Z
dΦ1;2ðy1;2; jqT1;2

j;ΔYÞC½β�n ¼ 0; ð16Þ

with dΦ1;2ðy1;2; jqT1;2
j;ΔYÞ the final-state differential phase

space (see Sec. II B), and

C½β�n ∝
Z

∞

−∞
dνeΔYᾱ

MOM
s ðμBLMR Þχðn;νÞ

× cJ1ðn; ν; jqT1
j; x1Þ½cJ2ðn; ν; jqT2

j; x2Þ��

×

�
F ðνÞ þ ᾱMOM

s ðμBLMR ÞΔY
2

χðn; νÞF̃ ðn; νÞ
�
; ð17Þ

where

F̃ ðn; νÞ ¼ F ðνÞ − χðn; νÞ
2

; ð18Þ

F ðνÞ ¼ −
1þ 4I

3
þ 2 ln

μBLMR

μN
: ð19Þ

It is convenient to introduce the ratio between the BLM
scale and the natural one, suggested by the process
kinematics μN ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijqT1

jjqT2
jp
, so that CBLM

μ ≡ μBLMR =μN .
We look for Cμ ≡ CBLM

μ values which solve Eq. (16). We
set μF ¼ μR everywhere. Finally, the BLM scale value is
plugged into expressions for the integrated coefficients, and
we obtain the following NLL=NLOþ expression in the
MOM scheme

CNLL=NLOþ
n;BLM−MOM

¼
Z

dΦðy1;2; jqT1;2
j;ΔYÞ x1x2

jqT1
jjqT2

j

×
Z þ∞

−∞
dν½αMOM

s ðμBLMR Þ�2eΔYᾱMOM
s ðμBLMR Þχ̃NLOðn;νÞ

×

�
c̃NLOJ1

ðn; ν; jqT1
j; x1Þ½c̃NLOJ2

ðn; ν; jqT2
j; x2Þ��

þ αMOM
s ðμBLMR Þ 2τ

c

π

�
; ð20Þ

with

χ̃NLOðn; νÞ ¼ χðn; νÞ þ ᾱMOM
s ðμBLMR Þ

�
χ̄ðn; νÞ þ τc

3
χðn; νÞ

�

ð21Þ

c̃NLOJ1;2
ðn; ν; jqT j; xÞ ¼ cJ1;2 þ ᾱMOM

s ðμBLMR Þc̄J1;2 ; ð22Þ

where cJ1;2 are the LO impact factors [Eq. (12)], while
c̄1;2ðn; ν; jqT1;2

j; x1;2Þ denotes the NLO impact-factor cor-
rections after the removal of β0-dependent factors, the
being universal factors proportional to LO impact factors.
We have

c̄J1;2 ¼ ĉJ1;2 þ
β0
4Nc

�
∓ i

d
dν

þ
�
ln μ2R þ 5

3

��
cJ1;2 : ð23Þ

In order to compare data with resummed predictions both at
natural scales and at BLM-optimized ones in the same
renormalization scheme, we need the corresponding for-
mula of Eq. (20) in the MS scheme. It can be obtained by
making the two following substitutions in Eq. (20)

αMOM
s ðμBLMR Þ → αMS

s ðμBLMR Þ;
τc → −τβ: ð24Þ

More in particular, we replace the analytic expression of the
αs in the MOM scheme, which was obtained by inverting
Eq. (15), with the corresponding MS one, meanwhile the
value of μR is left unchanged.

D. Uncertainty estimation

To get an accurate description of our process we need
to identify the main potential sources of uncertainty.
Assessing the sensitivity of our observables on variations
of renormalization and factorization scales is a strategy,
largely used in perturbative calculations, to guess the
weight of higher-order corrections. In a recent study on
semihard emissions of light and heavy hadrons [201], it
came out that the sensitivity on the energy-scale variation
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and the collinear-FF set choice gives a major contribution
to the global uncertainty of cross sections. Since the
theoretical description of our Mueller-Navelet final states
does not rely on any fragmentation mechanism, we can
reasonably assume that scale variation is the main source of
uncertainty. We will gauge the effect of simultaneously
varying μR and μF around their natural values or their BLM
optimal ones, in the range 1=2 to two. The Cμ parameter
entering the figures in Sec. III stands for the ratio Cμ ¼
μR=μN or Cμ ¼ μBLMR =μN, respectively. In both cases, we
will set μF equal to μR.
Another potentially relevant uncertainty could come

from proton collinear PDFs. However, recent analyses on
high-energy distributions highlighted that the selection
of different PDF parametrizations as well as of different
members inside the same set produces no relevant impact
(see Refs. [170,173,182,201]). For this reason, we will
employ the central member of just one PDF set, namely
the novel NNPDF4.0 one [213,214]. It was extracted via
global fits and through the replica method originally
proposed in Ref. [215] in the context of neural-network
techniques (for the sake of completeness, we refer to
Ref. [216] for a detailed study on ambiguities rising from
correlations between different PDFs sets). In order to be
consistent with our NLL=NLOþ treatment, we will use
the NNPDF4.0 NLO determinations at NLO, as provided
by the LHAPDF interface [217]. Two further potential
uncertainty sources could come from (i) the collinear
improvement of the NLO BFKL kernel [218–224], which
prescribes the inclusion of terms generated by renorm-
alization group (RG) to impose a compatibility with the
DGLAP equation in the collinear limit, and from (ii) the
change of renormalization scheme. Point (i) was
addressed in Ref. [201], and the outcome is that the
effect of the collinear improvement on cross sections
stays fairly inside error bands generated by energy-scale
variations, and it is even less relevant in the case of
azimuthal distributions. The same study provided us with
a guess of (ii) the upper limit of the impact of passing
from MS to MOM renormalization scheme. It emerged
that MOM predictions for cross sections are systemati-
cally larger than MS ones, but still inside the error band
generated by scale variation. We stress, however, that a
consistent MOM analysis would rely on MOM-evolved
PDFs, not available so far. Therefore, the complete effect
of changing the renormalization scheme in semihard
reactions still needs to be quantified. In view of these
considerations, we will produce uncertainty bands for
our predictions by combining the effect of μR and μF
variation together with the numeric error coming from the
final-state multidimensional integration [Eq. (14)]. The
former will be included for the first time in the context
for Mueller-Navelet jet studies, and it is the most relevant
one. The latter will be constantly kept below 1% by
integration routines.

III. PHENOMENOLOGICAL ANALYSIS

In this section we present results of our phenomeno-
logical study. Section III A contains a comparison with
CMS data of our high-energy predictions for azimuthal-
correlation moments. Section III B brings an inspection of
the high-energy signal rising from all azimuthal modes. In
Sec. III C we provide evidence of a stabilization pattern
emerging from azimuthal distributions. In Sec. III D we
present a strategy to compare truncated azimuthal distri-
butions with the same CMS data for azimuthal correlations,
together with an indication that these data collected atffiffiffi
s

p ¼ 7 TeV encode clear high-energy signals. All pre-
dictions were obtained by making use of JETHAD, a hybrid
and multimodular interface aimed at the calculation,
management, and processing of observables defined by
the hands of distinct formalisms [173,201].

A. Azimuthal-correlation moments

Starting from the integrated azimuthal coefficients of
Eq. (14), we study their ratios, Rnm ≡ Cn=Cm. The physical
interpretation of Rn0 ratios is immediate. Indeed they
represent the correlation moments of the cross section,
hcos nφi, while the ones with n, m > 0 are ratios of
correlations, hcos nφi=hcosmφi, proposed for the first time
in Refs. [225,226]. In Fig. 2 we compare with CMS data the
ΔY-shape of LL=LO NLL=NLOþ Rn0 ratios, with n ¼ 1,
2, 3, at natural scales (left panels) and after applying the
BLM optimization (right panels). The overall behavior
emerging here is a decreasing pattern of our predictions
with ΔY. This is an expected feature, which is shared also
by data. Indeed, when the rapidity interval between the two
jets grows, the phase space opens up and the weight of
undetected gluons forming the X system of Eq. (1)
becomes more and more relevant, as predicted by
BFKL. Thus, the decorrelation of the two jets on the
azimuthal plane becomes stronger and stronger. A pure
leading-logarithmic treatment clearly overestimates such a
decorrelation, with all LL=LO predictions (blue bands)
staying below data. Conversely, considering next-to-lead-
ing corrections produces a recorrelation effect. This is
due to the fact that NLL BFKL terms generally have an
opposite sign with respect to LL ones.2 As already pointed
out [151,152,154], the NLL recorrelation pattern is too
strong when azimuthal ratios are studied at natural scales
(left panels). In particular, we note that NLL=NLOþ results
(green bands) stays well above data. Furthermore, their
distance between corresponding LL=LO predictions is
large, and their width grows with ΔY. This represents a
clear manifestation of instability of the BFKL series.

2This feature holds for the BFKL Green’s function and for the
forward-jet NLO impact factor. In other NLO impact factors the
situation could change. As an example, the Cgg coefficient in
the forward light-hadron NLO impact factor contains corrections
with the same sign of LL contributions, see Refs. [167,173].
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FIG. 2. Azimuthal-correlation moments, Rn0 ≡ hcos nφi, as functions of ΔY and for
ffiffiffi
s

p ¼ 7 TeV, calculated at natural scales (left) or
after BLM optimization (right) and compared with CMS experimental data. Text boxes inside panels exhibit final-state kinematic cuts.
Uncertainty bands embody the effect of energy-scale variations. Ancillary panels below primary plots show reduced ratios, namely
divided by their central values, Cμ ¼ 1 (left) or Cμ=CBLM

μ ¼ 1 (right).
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Indeed, if the series were stable, the two bands would at
least partially overlap and their width would shrink when
the resummation accuracy increases. Further signs of insta-
bility at natural energy scales rise from the NLL=NLOþ
prediction for the R10 correlation, whose uncertainty band
always contains values larger than one (left upper panel),
and from negative values of all the Rnm ratios, not shown in
our plots, got when ΔY is larger than 8.5. When the BLM
procedure is at work (right panels), the situation improves.
Here, NLL=NLOþ and LL=LO have bands closer to each
other and similar in width. However, none of them is able to
catch data in the full ΔY-range, the NLL=NLOþ over-
lapping with experimental points in the intermediate
ΔY-range. The last observation deserves an important
discussion on the interplay between the high-energy resum-
mation and other approaches. When ΔY is small, say
ΔY ≳ 3 ÷ 4, BFKL is pushed toward its limit of applicabil-
ity, since the phase space opened up for secondary gluon
emissions is very limited. In this region, a pure DGLAP-
based approach turns out to be valid. When ΔY is large, say
ΔY > 8, we enter the so-called threshold region, namely
where the energy of theMueller-Navelet system approaches
the value of the center-of-mass energy. Here, collinear PDFs
are probed at longitudinal fractions to the endpoints of
their definition, where they become affected by significant
scaling violations and uncertainties. Moreover, since our
observables are sounded at the edges of their phase space,
Sudakov effects coming from emissions of soft and collinear
gluons become more and more relevant and they must be
accounted for by an appropriate resummation. Different
strategies to resum threshold logarithms in rapidity-
inclusive rates have been developed so far [227–234]. A
procedure to combine together both small-x effects from
BFKLand large-x threshold oneswas set up in the context of
central-inclusive Higgs-boson production [120,121,235]. A
similar result for Mueller-Navelet jets is not yet available.
Here, the major difficulty emerges from the presence of a
fixed rapidity interval between the two jets, which calls for
an extension of methods mentioned above to the case of
rapidity-differential rates. A consistent method to exactly
resum the two species of logarithms (energy and threshold)
and remove the associated double counting both in the NLL
Green’s function and in the NLO impact factor is a
demanding task, which clearly goes beyond the scope of
the present study. We limited ourselves to performing
preliminary and simpler tests on gauging the impact of
effectively including threshold effects by replacing the
NNPDF4.0 PDF set with the large-x NNPDF3.0lx one [236].
We discovered that this change produces no visible effects
on semihard observables. This is in line with the statement
that threshold effects are more relevant in off-shell coef-
ficients functions (namely impact factors) than in collinear
parton densities [121]. As already mentioned, Rnm ratios
of correlations were proposed as possibly more favorable
observables in the search for a clearer signals of high-energy

effects [225,226]. This comes out from the observation that
eliminating the collinear poles via RG-improvement tech-
niques has a sizable effect on the asymptotic intercept of the
φ-averaged cross section, C0, while the intercepts corre-
sponding to Cn>0 coefficients are hardly affected. This
translates in a stronger convergence of the latters with
respect to C0. Thus, investigating observables not sensitive
to the n ¼ 0 conformal-spin mode should be more prom-
ising. In Fig. 3 we present the ΔY-behavior of R21 and R32

ratios of azimuthal correlations. We clearly observe that,
although being very close to each other and partially nested,
neither LL=LO nor NLL=NLOþ bands taken at natural
scales (left panels) are compatible with CMS data in the full
ΔY-range. At variance with Rn0 correlations, the situation
worsens when the BLM optimization is employed (right
panels). Even if they exhibit more stable patterns when
passing from a pure leading to the next-to-leading accuracy,
Rnm ratios fail to complete the theory versus experiment
quest. This brings us to the guess that the high-energy signal
encoded in data could be caught by other observables that
genuinely embody the full high-energy signal coming both
from C0 and the higher-order modes (see Sec. III B).

B. High-energy signals from azimuthal modes

The main outcome of the previous section was the need
for identifying observables sensitive to the BFKL dynam-
ics, different from the azimuthal-correlation moments and
their ratios. In particular, these novel observables should be
defined as functions of all the azimuthal coefficients Cn,
and not just of C0 or of a given Rnm ratio. To prove the
robustness of this requirement, we present in Fig. 4 the
distribution of NLL=NLOþ Rn0 moments, with n ranging
from one to 10, organized in bar charts produced at fixed
values of the rapidity interval, ΔY ¼ 3, 5, 7. Left (right)

panels are for R½NS�
n0 (R½BLM�

n0 ) predictions at natural (BLM)
energy scales. To emphasize the weight of the first angular-
dependent coefficient, C1, over C0, bars associated to R10

are given with a different color with respect to higher
moments: red versus orange at natural scales, blue versus
green at BLM ones. For the sake of brevity, uncertainty
bands connected to scale variations around their natural or
BLM values are not shown. A remarkable, twofold pattern
emerges from the inspection of the bar charts. On one hand,
lower Rn0 moments, say the ones with n ≤ 5, are larger at
natural scales when compared with corresponding ones

obtained with BLM. This is particularly true for R½NS�
10 ,

which almost saturates one when ΔY ¼ 3, and it decreases
for larger ΔY-values, although staying well above 0.9.

Conversely, R½BLM�
10 roughly goes from 0.9 down to 0.6

when ΔY grows. On the other hand, higher Rn0 moments,
say the ones with 5 < n ≤ 10, exhibit an opposite behavior,

with R½NS�
n0 being constantly lower than R½BLM�

10 . The origin of
such a duplex pattern has to be sought by analyzing the net
effect of the BLM method. From an operational viewpoint,
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applying BLM leads to an expansion of scale values, which
can become 10 times (or even more) larger than natural
ones (see Ref. [173], Fig. 4). The χðn; νÞ function entering
the NLO kernel [see Eqs. (9) and (10)] gives a major
contribution to the exponential factors in Eqs. (7) and (20)
for lower values of n. In the very low-ðn; νÞ range χðn; νÞ is
positive. In this case, the larger is μR, the smaller is the
running coupling and thus, the exponential term. This
explains why BLM scales bring to a reduction of low-n
correlations. Conversely, in the large-n and large-ν” range
χðn; νÞ is negative. Thus, the larger is μR, the larger is the
exponential term. This is why large-n correlations are
smaller at natural scales than at BLM ones. The overall
indication guessed from results of Fig. 4 is that (i) higher

azimuthal modes are particularly important at natural
scales and they should be encoded in the definition
of BFKL-sensitive distributions, and (ii) the dynamic

hierarchy between R½NS�
n0 and R½BLM�

n0 as n varies could
balance in these novel observables. This would translate
in a stabilization pattern when passing from natural to BLM
scales.

C. Stabilization pattern from azimuthal distributions

A straightforward way to probe the high-energy spec-
trum of our process in terms of all the azimuthal modes is
considering azimuthal-angle distributions, defined as the
following multiplicities

FIG. 3. Ratios of azimuthal-correlation moments, Rnm ≡ hcos nφi=≡ hcosmφi, as functions of ΔY and for
ffiffiffi
s

p ¼ 7 TeV, calculated
at natural scales (left) or after BLM optimization (right) and compared with CMS experimental data. Text boxes inside panels exhibit
final-state kinematic cuts. Uncertainty bands embody the effect of energy-scale variations. Ancillary panels below primary plots show
reduced ratios, namely divided by their central values, Cμ ¼ 1 (left) or Cμ=CBLM

μ ¼ 1 (right).
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1

σ

dσðφ;ΔY; sÞ
dφ

¼ 1

2π

�
1þ 2

X∞
n¼1

cosðnφÞhcosðnφÞi
�

≡ 1

2π

�
1þ 2

X∞
n¼1

cosðnφÞRn0

�
: ð25Þ

As shown in Eq. (25), they are built as a Fourier sum of all
the Rn0 ≡ hcosðnφÞi correlations and thus, in terms of C0

and the higher azimuthal coefficients, Cn>0. These φ-
dependent observables were first employed for Mueller-
Navelet jets in pioneering LL analyses [237], then used to
evaluate the effect of the collinear improvement [226], to
perform a first NLL versus experiment study at 7 TeV LHC
[151], and finally to access hadron-jet correlations [173].
Their study turned out to be novel in the more general
context of semihard reactions, where a natural stabilization
pattern was recently discovered when Higgs bosons
[197,202], heavy jets [238,239], singly [180,182,201], or

doubly heavy-flavored hadrons [190,191,240] are inclu-
sively produced in forward-rapidity directions at the LHC.
Besides encoding the full high-energy azimuthal signal
and the emergence of the natural stability, relevant from a
theoretical perspective, measuring azimuthal distributions
is particularly advantageous from an experimental point of
view. Indeed, since detector acceptances cannot cover the
entire (2π) azimuthal-angle range, confronting theory with
data for a φ-differential distribution is much easier than for
a standard Rnm ratio. A potential issue on the computational
side could rise from the infinite sum over n in Eq. (25),
which must be necessarily truncated by the machine to a
numerical cutoff, νcut½num�. We found a fair numerical con-

vergence for νcut½num� ¼ 50. In Fig. 5 we show LL=LO (upper)

and NLL=NLOþ (lower) predictions for Mueller-Navelet
azimuthal distributions at natural (left) and BLM (right)
scales, calculated atΔY ¼ 3, 5, 7. A first glance at left plots
fairly confirms the possibility of studying our distributions

FIG. 4. NLL=NLOþ distributions of moments, Rn0, for distinct values ofΔY and for
ffiffiffi
s

p ¼ 7 TeV, at natural scales (left) or after BLM
optimization (right). Text boxes inside panels exhibit final-state kinematic cuts.
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at natural scales, the instability emerging in Rnm ratios (see
Sec. III A) being absent here. Then, a clear evidence of
high-energy dynamics rises from the presented analysis.
The general trend consists in the presence of a definite peak
when φ ¼ 0. At this value, the two jets are produced back-
to-back. In all the cases the peak height substantially lowers
when ΔY increases, whereas the width of the distribution
slightly broadens.
As predicted by BFKL, the weight of the secondary

gluon radiation, emitted with a strong ordering in rapidity,
grows with ΔY. This leads to a downtrend of the jet
azimuthal correlation, so that the amount of back-to-back
events falls off. The distance between peaks taken at
different ΔY-values is generally smaller in NLL=NLOþ
cases. This is in line with the recorrelation pattern
generated by NLL contributions both in the kernel and
in the jet impact factors (see a related discussion in
Sec. III A). Furthermore, we note that variations of
distribution shapes when passing from natural scales to
BLM ones (from left to right plots) are more evident at
LL=LO and milder at NLL=NLOþ. In particular, these
variations are quantitatively smaller then the ones
observed in Rn0 ratios (Fig. 2).

A clear physical explanation for the fact that azimuthal-
angle distributions suffer from instabilities less than
azimuthal coefficients, which are themselves physical
observable, is lacking. We argue that some cancellation
is at play among different harmonics, producing a com-
pensation of the instabilities affecting the different Fourier
terms. The region around φ ¼ 0 is affected by Sudakov
resummation effects and the strong peak around zero could
make hard the to distinguish between the calculations away
from this region. However, this peak is broad enough to
possibly leave out a window useful for comparison with
data and/or other approaches.
By starting from CMS data available for the first Rnm

correlations, namely the ones with n ranging from 1 to 3,
and m from 0 to 2 [164], is it possible to compare the
experimental signal, obtained by a suitable combination of
those data, with predictions for azimuthal-angle observ-
ables derived from distributions in Eq. (25), as presented
in Sec. III D.

D. Hunting CMS data at 7 TeV

By summing à la Fourier the three azimuthal correlations
provided by CMS, R10;20;30, we can reconstruct the first

FIG. 5. LL=LO (upper) and NLL=NLOþ (lower) azimuthal distributions for distinct values of ΔY and for
ffiffiffi
s

p ¼ 7 TeV, at natural
scales (left) or after BLM optimization (right). Text boxes inside panels exhibit final-state kinematic cuts. Uncertainty bands embody the
effect of energy-scale variations.
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FIG. 6. Azimuthal distributions truncated at nmax ¼ 3 for distinct values of ΔY and for
ffiffiffi
s

p ¼ 7 TeV, calculated at natural scales and
compared with CMS experimental data. Text boxes inside panels exhibit final-state kinematic cuts. Uncertainty bands of LL=LO and
NLL=NLOþ predictions embody the effect of energy-scale variations, while shaded red bands are built in terms of experimental
uncertainties.
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segment of the experimental signal for the azimuthal
distribution. From an operational point of view, we build
a truncated azimuthal distribution, with νcut½exp� ¼ 3 dictated

by the experimental analysis

1

σ

dσ½3�ðφ;ΔY; sÞ
dφ

¼ 1

2π

�
1þ 2

X3
n¼1

cosðnφÞRn0

�
: ð26Þ

In Fig. 6 we compare LL=LO and NLL=NLOþ predic-
tions for the truncated azimuthal distribution, taken at
natural scales, with combined CMS data. To build the
upper (lower) uncertainty bound on CMS data, we
considered in Eq. (26) the values of the three Rn0 ratios
plus (minus) their uncertainties. Each panel shows the
φ-shape of our distributions for a given value of ΔY
taken from the experimental analysis [164]. A visible
effect of the truncation in n is the presence of oscillations
leading to relative maxima and minima on large-φ tails,
generated by 1 ≤ n ≤ 3 modes and leading to negative
values of the distribution around the corresponding wave
troughs. At small values of ΔY, the experimental curve
(red) stays above the LL=LO (blue) and below the
NLL=NLOþ (green) one. As remarked in Sec. III A,
this region crosses the limit of applicability of BFKL.
Thus, the LL resummation overestimates the jet azimu-
thal decorrelation, namely it predicts a lower number of
back-to-back events. At the same time, NLL corrections
bring to a very strong recorrelation effect, not compatible
with data. As ΔY increases, the experimental curve
comes progressively closer to the NLL=NLOþ one, up
to starting overlap with it when ΔY ≥ 6.5. Moreover,
while these two shapes are always similar, with a clear
peak at φ ¼ 0 which persists also at large values of ΔY,
the peak of the LL=LO band drops of very fast, with the
two jets being almost completely decorrelated when
ΔY ≥ 7.50. As a main outcome, we conclude that the
high-energy signal is encoded in LHC data at 7 TeV and
can be caught from a NLL BFKL treatment, but not from
a pure LL one. We believe that the agreement between
the NLL=NLOþ theory and the experiment would be
even stronger if data for Rn0 correlations with n > 3 were
available. In particular, it would be intriguing to see how
the green and the red bands progressively collapse to
each other as νcut½exp� increases. Another way to accelerate

the convergence between the two curves would be
studying φ-distributions at larger center-of-mass energies,
say

ffiffiffi
s

p ¼ 13 TeV, for which data have been not yet
analyzed, unfortunately. Indeed, the larger is s, the faster
we move away from endpoints of longitudinal-momen-
tum fractions [see relations in the left part of [Eq. (3)],
where the already mentioned threshold contaminations
become relevant. To better assess this point, we present a
comparison with data of LL and NLL azimuthal distri-
butions as in Eq. (25), but this time integrated over the

rapidity interval, ΔY. More in particular, we build ΔY-
integrated φ-azimuthal distribution

1

σ

dσðφ; sÞ
dφ

¼ 1

2π

�
1þ 2

X∞
n¼1

cosðnφÞR½ΔY−int�
n0

�
ð27Þ

as the Fourier sum of azimuthal-correlation ratios

R½ΔY−int�
n0 ¼ C½ΔY−int�

n

C½ΔY−int�
0

; ð28Þ

where C½ΔY−int�
n are the azimuthal coefficients integrated

over the final-state phase space as in Eq. (14) and also
over ΔY. A limited amount of data for ΔY-integrated
φ-distributions was collected by CMS at

ffiffiffi
s

p ¼ 7 TeV
and for symmetric transverse-momentum windows. As
shown in Fig. 1 of Ref. [164], these data fall into three
ΔY-bins. For the sake of clarity, we consider just the
6 < ΔY < 9.4 one, namely where distinctive high-energy
signatures are expected due to large rapidity intervals.
We compare resummed predictions with CMS data from
Ref. [164] divided by a factor two, due to the fact that in
our analysis only ΔY > 0 values are considered, namely
when the first jet is always more forward than the second
one. From the inspection of results in Fig. 7 (see also
Refs. [152,241] for a quite similar study), it emerges that
a pure LL treatment does not catch data. Conversely,
NLL predictions are in a fair agreement with data in the
φ≲ π=2 region, namely where the jets are emitted
(almost) back to back, or their transverse-momentum
imbalance is small. Then, the NLL description signifi-
cantly worsen as φ grows, up to reaching unphysical
values not shown in our plot. Here we enter a region

FIG. 7. Comparison of LL=LO and NLL=NLOþ azimuthal
distribution, integrated over the 6 < ΔY < 9.4 range, with CMS
data at

ffiffiffi
s

p ¼ 7 TeV. Text boxes exhibit final-state kinematic
cuts. Uncertainty bands embody the effect of energy-scale
variations.
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where the two observed transverse momenta are different,
which is not an optimal condition for BFKL. Therefore,
other resummation effects, not caught by our hybrid
factorization, could be relevant.

IV. FUTURE PERSPECTIVES

We compared predictions for Mueller-Navelet jet rap-
idity and azimuthal-angle differential distributions with
data collected by CMS at

ffiffiffi
s

p ¼ 7 TeV. We made use of the
hybrid collinear and high-energy factorization as specifi-
cally designed for inclusive Mueller-Navelet emissions
[140,151–154,156,158,160,161], where the collinear
description in terms of PDFs is supplemented by the
BFKL resummation of NLL energy logarithms. To be
close to standard methodologies widely employed for
precision studies of high-energy reactions done by the
hands of fixed-order calculations as well as of other
resummations, we gauged the size of higher-order correc-
tions by generating scale-variation driven uncertainty
bands. This procedure was introduced in the context of
semihard process through a study on Higgs-plus-jet corre-
lations done by our group [197], but it turns out to be novel
for Mueller-Navelet jets, which represents the “mother” of
the forward-plus-backward subclass of semihard reactions.
We provided an evidence that considering azimuthal-

angle dependent distributions, calculated as a Fourier sum
of azimuthal correlations and carrying the complete high-
energy signal emerging from all conformal-spin modes,
allows us to dampen instabilities rising when inclusive tags
of light objects are theoretically investigated at the natural
scales provided by kinematics. We came out with a clear
indication that the NLL BFKL treatment of φ-distributions
becomes more and more valid as ΔY grows, and it permits
us to catch the core high-energy dynamics emerging from

CMS data collected so far. In particular, we observed that
azimuthal-angle distributions at the NLO are more stable
and less dependent on the choice of the renormalization and
factorization scales, with respect to the single azimuthal
coefficients from which they are built.
In view of these considerations, we warmly suggest

experimental collaborations to include in forthcoming
analyses at

ffiffiffi
s

p ¼ 13 TeV (i) a dedicated study of
Mueller-Navelet azimuthal distributions as well as (ii) an
asymmetric-window selection for the observed transverse
momenta. We believe that combining these ingredients is
relevant to accelerate our progresses in unveiling the
presence of high-energy dynamics in Mueller-Navelet final
states, and to better disengage the BFKL signal from the
DGLAP background.
Concerning future developments on the theory side, we

are aware that our path toward reaching the precision level
in the description of high-energy Mueller-Navelet emis-
sions and, more in general, of semihard reactions, moves
through a robust enhancement of our hybrid factorization.
Starting from our hybrid factorization, we plan the develop-
ment of a multilateral and unified formalism where distinct
resummation mechanisms, in particular BFKL, threshold
and Sudakov [159,242–246] ones, are simultaneously
embodied.
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