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The last two decades are marked by a renaissance in hadronic spectroscopy caused by the arrival of vast
experimental information on exotic states in the spectrum of charmonium and bottomonium. Most of such
states have properties at odds with the predictions of the quark model and reside very close to strong
hadronic thresholds. Prominent examples are provided by the glorious Xð3872Þ charmoniumlike state and
the doubly charmed tetraquark Tþ

cc with the masses within less than 1 MeV from the DD̄� and DD� open-
charm thresholds, respectively. The universality of this feature hints towards the existence of a general
pattern for such exotic states. In this work we discuss a possible generic mechanism for the formation of
near-threshold molecular states as a result of the strong coupling of compact quark states with a hadronic
continuum channel. The compact states that survive the strong coupling limit decouple from the continuum
channel and therefore also from the formed hadronic molecule—if realized this scenario would provide a
justification to treat hadronic molecules isolated, ignoring the possible influence from surrounding,
compact quark-model states. We confront the phenomenology of the Ds1ð2460Þ and Ds1ð2536Þ with this
picture and find consistency, although other explanations remain possible for those states.
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I. INTRODUCTION

Recent discoveries in the spectroscopy of hadrons
containing heavy quarks resulted in the appearance of a
new and fast developing branch of hadronic physics which
deals with exotic states. The very notion of exotics
emphasizes a special status of such states as opposed to
the ordinary ones, predicted and well described by the
quark model. A considerable progress in this field has been
achieved due to the intensive and fruitful experimental
studies of the spectrum of heavy quarkonia above the open-
flavor threshold, that is, above the energy when decays of
the heavy quarkonium to a pair of heavy-light mesons
becomes available. The first state in the family—
the charmoniumlike state χc1ð3872Þ also known as
Xð3872Þ—was discovered by the Belle Collaboration in
2003 [1]. Since then it attracts a lot of attention of both
theorists, in attempts to understand its nature, and exper-
imentalists, who keep on searching for this state in addi-
tional decay and production channels and provide more

precise data for the already known modes. In general, the
progress in the field of exotic hadrons containing heavy
quarks achieved in the two decades after the discovery of
the Xð3872Þ is tremendous, and already several dozen well
established states in the spectrum of charmonium and
bottomonium are conventionally qualified as exotic—see,
for example, the recent dedicated reviews [2–8].
Many exotic charmonium- and bottomoniumlike states

reside near strong hadronic thresholds. The most prominent
examples are provided by the aforementioned Xð3872Þ and
the charged state Tþ

cc discovered recently by the LHCb
Collaboration [9]. In both cases the proximity of the
resonance to a nearby hadronic threshold (D0D̄�0 and
D�þD0, respectively) is remarkable and hints towards
the existence of a deep general reason for the pole of
the amplitude to approach the strong threshold located near
by. On the other hand there is a striking difference between
the Xð3872Þ and the Tþ

cc: The former shares its quantum
numbers with c̄c states while the latter does not. In other
words, while the Xð3872Þ might contain a prominent
quark-antiquark component, the Tþ

cc must contain (at least)
four quarks. Thus, a physical picture that claims a common
understanding of both states must also explain why it is not
distorted significantly by the c̄c states present in the one
case but absent in the other. Indeed, in some works the
impact of quarkonium states on exotics is studied, and a
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strong cross talk of the two is observed—see, for example,
[10–14] as well as a recent review [15] and the references
therein.
In this paper we propose a mechanism based on a strong

interplay of compact poles with a continuum channel, which
could explain the appearance of near-threshold molecular
states as a general feature of the system rather than a strongly
fine-tuned effect for systems with and without Q̄Q states
present. The picture that emerges implies that, when
molecular type states appear in a given two-hadron channel,
the Q̄Q states with the same quantum numbers decouple
from this two-hadron channel. Thus it provides an argument
that the mixing of molecular states with compact quark
model states is suppressed. We also argue that this picture is
in linewith the large-Nc limit, where infinite towers of stable
Q̄Q states are predicted to exist. It is also consistent with the
proposed existence of analogous towersmade of four quarks
[16–18] as well as their absence—this will be discussed
towards the end of this paper.
Ideologically this work can be regarded as a further

development of the ideas of the interplay between the quark
and hadronic degrees of freedom in near-threshold reso-
nances investigated previously: (i) in Ref. [19] for one
quark compact state and one continuum channel, (ii) in
Ref. [20] for multiple hadronic channels, and in Ref. [21],
where a multiresonance situation was considered and a
collectivelike behavior of some compact states as a result of
strong coupled-channel effects was observed. This study
develops further Ref. [21] as it provides various analytic
insights (see, in particular, Secs. III and VI) as well as the
confrontation of the emerging phenomenology to the case
of the Ds1ð2460Þ and Ds1ð2536Þ mesons.

II. WEINBERG APPROACH AND POLE
COUNTING

We start from a brief introduction into the Weinberg
approach to establishing the nature of hadronic states from
the data [22], largely following Ref. [7]. Consider the
simplest coupled-channel problem for an elementary (com-
pact, that is, formed by the QCD confining forces—no
particular assumptions on its quark content are required)
state jψ0i and a S-wave two-meson channel jM1M2i
described by the two-component wave function,

jΨi ¼
�

λjψ0i
χðpÞjM1M2i

�
; ð1Þ

which obeys a Schrödinger equation (the energy is counted
from the two-body threshold, E ¼ M −Mth),

HjΨi ¼ EjΨi; H ¼
�
E0 v̂

v̂ p2=ð2μÞ

�
; ð2Þ

where E0 is the bare energy of the compact state, p is the
relative momentum in the two-body system, μ is the

reduced mass of the mesons M1 and M2, and the off
diagonal potential v̂ provides transitions between the two
components of the wave function (w.f.) defined in Eq. (1),

hψ0jv̂jM1M2i ¼ hM1M2jv̂jψ0i ¼ fðpÞ: ð3Þ

In the expression for the Hamiltonian it is used that, via a
proper field redefinition, nonperturbative two-particle inter-
actions can be absorbed into a pole leaving only perturba-
tive two-particle interactions1—thus in leading order the
meson-meson Hamiltonian is given by the two-meson
kinetic energy only.
Naturally, the factor λ quantifies the admixture of the two

components in the physical state since

jhψ0jΨij2 ¼ λ2 ð4Þ

defines the probability to find the compact component in
the physical wave function.
If there is a bound state in the system with the

eigenenergy EB, the Schrödinger equation provided in
Eq. (2) gives for the two-meson wave function at the pole,
E ¼ −EB,

χðpÞ ¼ λ
fðpÞ

EB þ p2=ð2μÞ ; ð5Þ

and the normalization condition for the w.f. (1) reads

hΨjΨi ¼ λ2 þ
Z

d3p
ð2πÞ3 jχðpÞj

2

¼ λ2
�
1þ

Z
d3p
ð2πÞ3

�
fðpÞ

EB þ p2=ð2μÞ
�

2
�

¼ 1: ð6Þ

This expression provides a connection between the tran-
sition form factor fðpÞ and λ,

1

λ2
− 1 ¼

Z
d3p
ð2πÞ3

�
fðpÞ

p2=ð2μÞ þ EB

�
2

¼ μ2f2ð0Þ
2πγ

þO
�
γ

β

�
; ð7Þ

where we introduced the binding momentum γ ¼ ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p
,

and β is the mass scale of change of fðpÞ, which implies
that fðpÞ ¼ fð0Þ þOðp=βÞ. The size of β is determined
either by the mass of the lightest exchange particle (in
particular, the mass of the pion, if pion exchange is allowed
for the system at hand) or the next threshold (for a detailed
discussion of the latter effect see Ref. [23]). For a
discussion of possible range corrections to the Weinberg
expressions we refer to the works [24–27]. As one can read

1This holds only if just a single state resides in the kinematic
regime of interest [19].
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off from Eq. (6), λ2 is identical to the wave function
renormalization constant Z. In particular, the zero-binding
limit of EB → 0 implies that Z → 0—see also Ref. [28]
where the latter observation is formulated and proved in the
form of a theorem.
We therefore get from Eq. (7),

f2ð0Þ ¼ 2π

μ

�
γ

μ

��
1

λ2
− 1

�
: ð8Þ

It is also of interest below to extract within the formalism
just outlined the residue of the T-matrix at the bound state
pole which comes as the unrenormalized coupling f2ð0Þ
multiplied by the renormalization constant (as explained
above, it is identical to λ2) and the relativistic normalisation
factor,

g2eff ¼ 8m1m2ðm1 þm2Þλ2f2ð0Þ

¼ 16πðm1 þm2Þ2
�
γ

μ

�
ð1 − λ2Þ; ð9Þ

where the chosen name for the residue reflects that it is the
parameter that controls the coupling of the molecule to its
constituents.
To connect the quantities discussed above to observables

we may take a step back and evaluate the scattering
amplitude in the hadronic channel, again neglecting range
corrections. Then one finds [7]

TðkÞ ¼ f2ð0Þ
�
Eþ EB þ μ

2π
f2ð0Þðikþ γÞ

�
−1

¼ −
2π

μ

�
a−1 þ 1

2
rek2 − ik

�
−1
; ð10Þ

where the momentum k is defined as

kðEÞ ¼
ffiffiffiffiffiffiffiffiffi
2μE

p
ΘðEÞ þ i

ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p
Θð−EÞ; ð11Þ

withΘ for the steplike function. Equation (10) can be easily
recognized as the celebrated Flatté distribution for a single
resonance coupled to an S-wave hadronic channel, with the
coupling constant

gf ¼ μ

π
f2ð0Þ; ð12Þ

while the last formula in Eq. (10) is no more than the
effective range expansion with the low-energy parameters

a−1 ¼ −2EB=gf − γ; re ¼ −2=ðμgfÞ; ð13Þ

for the inverse scattering length and the effective range,
respectively. Employing Eq. (8) one finds

a ¼ 2ð1 − λ2Þ
ð2 − λ2Þ

1

γ
þO

�
γ

β

�
;

re ¼ −
λ2

ð1 − λ2Þ
1

γ
þO

�
γ

β

�
; ð14Þ

so that the information on the nature of a near-threshold
resonance can be extracted directly from data. Relations (14)
imply that the case of a compact state, λ2 ≈ 1, corresponds to
a large, negative effective range and small scattering length.
Then the amplitude (10) possesses two nearly symmetric
near-threshold poles. In the opposite limit of the molecular
statewith λ2 → 0, one has a large scattering length and small
effective range, so that only one near-threshold pole sur-
vives. These conclusions are in line with the pole counting
rules proposed in Ref. [29]. FromEq. (13) one can easily see
that the weak coupling regime (gf → 0) corresponds to a
compact state while the strong coupling regime (gf → ∞) is
compatible with a molecule, in agreement with natural
expectations as long as we look at a single, isolated state.
In conclusion of these general considerations and before

we discuss a particular model to study the properties of a
multiresonance system, we would like to comment on some
basic notions often referred to in this work. First, we call a
state “near-threshold” as soon as the corrections to the
Weinberg formulae introduced above are small. This
implies that γ=β ≪ 1 and that the energy dependence of
the contribution of the corresponding hadronic channel to
the self-energy of the studied resonance, which is propor-
tional to the momentum kðEÞ [see Eq. (11)], is essential for
understanding its properties.
Second, the proximity of a resonance to a hadronic

threshold hints towards but does not automatically guar-
antee its molecular nature. Indeed, in addition, the reso-
nance must couple to the corresponding hadronic channel
sufficiently strongly. For example, as follows from Eq. (13)
above, the coupling gf needs to be large enough to suppress
the effective range re and thus move one of the poles of the
amplitude (10) sufficiently far away from the threshold.
This implies that the probability to observe the resonance as
a compact object decreases, that is λ2 → 0, as it follows
from the second formula in Eq. (14).
All above arguments can be put together to claim that

a near-threshold molecular state can be formed in the
spectrum only if (i) it resides sufficiently close to the
corresponding S-wave hadronic threshold and (ii) couples
to it sufficiently strongly, so that the amplitude develops a
single near-threshold pole which leaves a significant
imprint on observables. As argued in Ref. [30] the thresh-
old nonanalyticity alone is in general not strong enough for
this effect and needs a nearby pole as an amplifier.

III. GENERAL CONSIDERATIONS

In this section we propose a simple coupled-channel
model, which allows us to study the trajectories of the poles
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in the complex momentum plane and understand the fate of
the compact resonance states after they couple to a single
continuum channel. In particular, following Ref. [21]
we consider a set of N scalar resonances, Rn ¼ ðQ̄QÞn,
coupled to a continuum channel φφ̄ with φ ¼ q̄Q
(φ̄ ¼ Q̄q) being a scalar (anti)meson,

L ¼ 1

2
½ð∂μφÞ2 −m2φ2� þ 1

2
½ð∂μφ̄Þ2 −m2φ̄2�

þ
XN
n¼1

�
1

2
ð∂μRnÞ2 −

1

2
M2

nR2
n þ GnRnφ̄φ

�
: ð15Þ

The quarks Q and q have the masses MQ and mq,
respectively, and it is assumed that MQ ≫ mq, so that the
model (15) mimics interactions of quarkonia with open-
flavor channels in the hadronic spectrum of heavy quarks.
The φφ̄ scattering potential through the resonances Rn

takes the form,

VðsÞ ¼ −
XN
n¼1

G2
n

s −M2
n
¼ −ð2mÞ2

XN
n¼1

g2n
s −M2

n
; ð16Þ

where we defined the dimensionless couplings gn ¼
Gn=ð2mÞ to be used in what follows.
The φφ̄ scattering amplitude TðsÞ is a solution of the

Lippmann-Schwinger equation,

TðsÞ ¼ VðsÞ þ VðsÞGðsÞTðsÞ; ð17Þ

where GðsÞ denotes the so-called scalar loop of a φ and φ̄
propagating from a pointlike source to a pointlike sink,
often named polarisation operator. Combining Eqs. (16)
and (17) one finds that

T−1ðsÞ ¼ V−1ðsÞ − GðsÞ

¼ −
�
4m2

XN
n¼1

g2n
s −M2

n

�−1
−GðsÞ: ð18Þ

Physical states are defined as the poles of TðsÞ or,
alternatively, the zeros of T−1ðsÞ.
It needs to be mentioned that the amplitude given in

Eq. (18) possesses relatively simple analytical properties,
which is a result of a very simple approach used to obtain it.
Indeed, the potential provided in Eq. (16) relies entirely on
s-channel exchanges between stable particles φ and φ̄.
Thus, in the absence of the t- and u-channel exchanges and
additional branch points related to the decay modes of the
particles φ, one does not encounter subtleties with a
sophisticated structure of the amplitude in the energy
complex plane such as left-hand cuts, anomalous thresh-
olds, multibody thresholds, and so on. While a more
realistic model clearly calls for their consideration, we

do not expect that their presence will change the qualitative
behavior of the amplitude reported in this work.
For further convenience and unless stated otherwise we

pass over to the unitary-cut-free complex plane of the three-
momentum k by setting

s ¼ 4ðk2 þm2Þ: ð19Þ

Then the equation for the poles reads

1þm2

�XN
n¼1

g2n
k2 − Δ2

n

�
GðkÞ ¼ 0; ð20Þ

where each quantity Δn ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n − 4m2
p

takes either a real
or imaginary value, depending on the position of the nth
resonance with respect to the two-body threshold 2m.
It is instructive to consider the single-resonance case

(N ¼ 1) first and concentrate on the near-threshold region
only, so that a nonrelativistic form of the loop operator can
be employed,

GnrðkÞ ¼
1

16πm
ðϰ þ ikÞ; ð21Þ

where ϰ is the properly regularized and renormalized real
part of the loop treated as a free (input) parameter. Its sign is
not fixed, and it is only assumed that jϰj ≪ m—for the
setting studied here, where doubly heavy Q̄Q states couple
to a pair of heavy light states, this relation emerges
naturally since the size of the real part of the loop is
predominantly set by the light quark physics. Then, after
straightforward algebraic transformations, one finds that
the scattering amplitude (18) takes the form of the Flatté
distribution, introduced in Eq. (10), with E ¼ k2=m and the
parameters

Ef ¼ Δ2
0

m
−
1

2
gfϰ; gf ¼ g2

8π
; Δ2

0 ¼
1

4
ðM2

0 − 4m2Þ;
ð22Þ

where M0 and g are the bare mass of the resonance and its
coupling to the field φ, respectively.
In the weak coupling regime (g → 0) the amplitude

possesses two symmetric poles in the complex momentum
plane, k1;2 ¼ �Δ0, both located either on the real or
imaginary axis, depending on whether the bare resonance
appears above (M0 > 2m) or below (M0 < 2m) the thresh-
old. These symmetric poles describe a compact quark state,
in agreement with the original setup. On the contrary, in the
strong coupling limit (g → ∞), the amplitude possesses
only one pole located at k0 ¼ iϰ which, according to the
pole counting rules of Ref. [29] and in line with the
Weinberg picture introduced above, corresponds to a
molecule. Depending on the sign of ϰ, this is either a
bound or virtual state. Its formerly present counterpart pole
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has left the near-threshold region and moved to −i∞ along
the imaginary axis in this limit.
Let us now turn to the multiresonance case and inves-

tigate the properties of the solutions of Eq. (20). For
vanishing couplings, gn ¼ 0, we start from a set of 2N

symmetric poles at kð�Þ
n ¼ �Δn which represent N com-

pact resonances. Depending on the values taken by the Δ’s
(real or imaginary), the corresponding poles reside either on
the real or imaginary axis in the complex momentum plane.
Consider now the strong coupling limit. We will dem-

onstrate now that there is one pole diving to −i∞ in the k
plane in this regime, like in the single-resonance case
considered above. This is a general feature of the system at
hand, irrespective of the number of resonances and their
original positions fΔng. Since, for the considered pole,
s → −∞, then to study this case we obviously need to
employ relativistic kinematics. A convenient representation
valid for real s on the physical (thence superscript ðIÞ) sheet
reads

GðIÞ
rel ðsÞ ¼

1

16π2

8>>>>><
>>>>>:

πϰ
m − r ln

			 1þr
1−r

			; s < 0

πϰ
m − 2r arctan



1
r

�
; 0 < s < 4m2

πϰ
m − r



ln
			 1þr
1−r

			 − iπ
�
; 4m2 < s;

ð23Þ

where r ¼ 2jkj= ffiffiffiffiffijsjp
. In the nonrelativistic limit of jkj ≪ m

the expression for Gnr from Eq. (21) is readily reproduced.
In the opposite limit of s → −∞ we get

lim
s→−∞

GðI;IIÞ
rel ðsÞ ¼ ∓ 1

16π2
ln

�
−

s
m2

�
; ð24Þ

where the upper and lower signs correspond to the loop
operator evaluated on the first and second Riemann sheets
indicated by the superscripts (I) and (II), respectively.
To proceed with the argument we turn to the potential

and make a natural assumption that the number of the
below-threshold bare resonances is finite. Moreover we
take a value of the momentum sufficiently large to ensure
that jsj ≫ jΔ2

1j, where Δ1 corresponds to the lowest
resonance in the spectrum. We do not need to assume a
finite number of the bare above-threshold resonances since,
in the considered limit, a remote above-threshold resonance
n contributes to the potential only a small (and gradually
decreasing with n) amount ∝ 1=ð−sþ Δ2

nÞ with both −s
and Δ2

n positive for the given kinematics. Moreover, it is
natural to assume that the couplings gn decrease with n, so
that more remote resonances are weaker coupled to the two-
hadron channel. These conditions together allow one to
truncate the sum in the potential at some sufficiently large
number nmax, neglect the contribution of all resonances

with n > nmax, and stick to the values of s such that
jsj ≫ Δ2

nmax
. Then, in the considered limit, the potential

reduces to

VðsÞ ≈
�
−
m2

s

�Xnmax

n¼1

g2n > 0; ð25Þ

where all Δ’s were neglected compared with s. Then, for
−s ≫ m2, the equation V−1ðsÞ −GðsÞ ¼ 0 takes the form,

�
−

s
m2

�
¼ ∓ 1

16π2

�Xnmax

n¼1

g2n

�
ln

�
−

s
m2

�
: ð26Þ

Equation (26) possesses a sought solution with −s ≫ m2

only for the lower sign on the right-hand side, that is, for a
virtual state. This solution cannot be presented in quad-
rature; however, its leading behavior in the strong coupling
regime is provided by the expression,

s ≈ −
m2

16π2

�X
n

g2n

�
ln

�X
n

g2n

�
; ð27Þ

which tends to infinity as the couplings increase.
Importantly, such a solution exists for any N (more
precisely, for any nmax), however, it is always unique. In
particular, as argued above, the pole which disappears to its
infinitely far location is a virtual and not bound state pole.
Thus we have demonstrated on very general grounds

that the number of poles of the T-matrix gets reduced by
one, when going from the weak coupling limit to the
infinite coupling limit. If we combine this nearly model-
independent finding with the pole counting approach we
must conclude that the appearance of hadronic molecules in
the spectrum is natural, however, not necessary, only in the
strong coupling limit. We come back to this statement in
Sec. VII.
Let us now investigate the ultimate location of the other

poles in the strong coupling limit, switching back to
working in terms of the 3-momentum k. In this regime,
the unity on the left-hand side (lhs) of Eq. (20) can be
neglected, so that the pole positions come as solutions of
the equation,

GðkÞ
XN
n¼1

g2n
k2 − Δ2

n
¼ 0 ð28Þ

or, equivalently,

GðkÞ
XN
n¼1

g2n
YN
l¼1
l≠n

ðk2 − Δ2
l Þ ¼ GðkÞPN−1ðk2Þ ¼ 0; ð29Þ

where PN−1 is a polynomial of the order N − 1 with real
coefficient. Solutions of equation PN−1ðk2Þ ¼ 0 form a set
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of N − 1 pairs of symmetric poles in the complex plane,
which represent dressed resonances, or bound states. Their
positions appear somewhat shifted with respect to the
original ones given by f�Δng. However, at least as long
as we can assume that the strong coupling regime is
reached by

gn → gfðnÞ; ð30Þ

where g is some universal factor and fðnÞ accounts for the
influence of the resonance label n on the coupling strength,
those pole locations will converge to certain locations with
a stable g → ∞ limit. Note that a relation of the kind of
Eq. (30) emerges naturally when following the Nc scaling
of QCD, since then gn ∝ 1=

ffiffiffiffiffiffi
Nc

p
.

In the meantime, the loop operator GðkÞ provides an
additional zero k0 such that

Gðk0Þ ¼ 0: ð31Þ

As was argued above, for heavy quark systems it appears to
be natural that ϰ is small compared to m. Then the
nonrelativistic form of the loop operator from Eq. (21)
can be employed, which gives

k0 ¼ iϰ: ð32Þ

Depending on the sign of ϰ the corresponding pole of the
amplitude represents either a bound or virtual molecu-
lar state.
The consideration presented above allows one to deduce

a general pattern for the motion of the poles in the studied
system, which holds irrespective of particular details of the
model. Namely, starting from N stable states in the limit
gn → 0 and coupling them to each other through the
propagation of the φφ̄ pairs with an increasing coupling
strength, we finally arrive at N − 1 compact dressed states
plus a molecular near-threshold state. It is instructive to
estimate the values of the couplings necessary to approach
the strong coupling regime when there appears the molecu-
lar pole. To this end we notice that, away from the poles, the
strong coupling regime implies that the product VðkÞGðkÞ
is large compared with unity [see Eq. (20)]. Then, for
simplicity, considering all coupling of the same order g and
taking into account that (i) the denominator of the potential
is of the order of the spacing between the resonances
Δ2

nþ1 − Δ2
n ≃ Λ2

QCD, such that V ≃m2g2=Λ2
QCD and (ii) the

loop operator takes values of the order ϰ=m [see Eq. (21)],
we arrive at the estimate,

g ≫
ΛQCDffiffiffiffiffiffiffi
mϰ

p ∝
1ffiffiffiffiffiffiffiffi
MQ

p ; ð33Þ

where the massm of the field φwas substituted by the mass
of the heavy quark MQ.

We conclude, therefore, that the appearance of near-
threshold molecular hadronic states is a natural (imminent)
consequence of the strong interactions between hadrons
and, given the estimate (33), it is easier to reach the limit of
a sufficiently strong coupling in the spectrum of heavy
quarks. In other words, we conclude that

(i) the spectrum of bottomonium may be rather rich in
near-threshold exotic states;

(ii) the considered mechanism may not apply to light
quarks, where the strong coupling regime is much
more difficult to reach.

IV. A CONCRETE MODEL

We now turn to a more quantitative analysis. To avoid
unnecessary technical complications, we start from
coinciding coupling constants, gn ¼ g for all n’s. For the
masses of the resonances Rn we stick to a linear depend-
ence on the radial quantum number n compatible with the
linear confinement between quarks,

M2
n ¼ ð2MQÞ2 þ σn; n ¼ 1; 2;…; N; ð34Þ

where σ is a parameter of the model of the dimension of
mass squared. At the first step, we assume that all bare
resonances reside above the threshold, Mn > 2m.
Then the evolution of the poles is described by the

equation

4m2GðsÞ
�XN
i¼1

1

s −M2
i

�
¼ −

1

g2
; ð35Þ

and, for the spectrum (34), the sum over the resonances can
be evaluated explicitly,

XN
i¼1

1

s −M2
i
¼ 1

σ

�
ψ

�
1 −

s − 4M2
Q

σ

�

− ψ

�
N þ 1 −

s − 4M2
Q

σ

��
; ð36Þ

where ψðzÞ is the polygamma function,

ψðzÞ≡ ψ ð0ÞðzÞ ¼ −γ þ
X∞
i¼0

�
1

iþ 1
−

1

iþ z

�
; γ ≈ 0.57:

In the weak coupling regime (g → 0) Eq. (35) describes

N real poles sð0Þn ¼ M2
n. As the couplings g deviates slightly

from zero, the poles start to move into the complex s-plane,

sn ¼ M2
n þ δsn; jδsnj ≪ M2

n; ð37Þ

and the equation for δsn, as follows from Eq. (35), takes the
form (for simplicity, only the leading, singular in δsn term
is retained, which is sufficient for arguing)
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4m2GðM2
nÞ
�

1

δsn
−
1

σ
½ψðNþ1−nÞ−ψðnÞ�

�
¼−

1

g2
; ð38Þ

where it was used that

Xn−1
i¼1

1

s −M2
i
¼ 1

σ
½ψðnÞ þ γ�;

XN
i¼nþ1

1

s −M2
i
¼ −

1

σ
½ψðN − nþ 1Þ þ γ�;

and the term with i ¼ n was considered separately.
The quantity ψðN þ 1 − nÞ − ψðnÞ has different signs

for n < ðN þ 1Þ=2 and n > ðN þ 1Þ=2 and thus the
expression in the square brackets in Eq. (38) may change
the sign, too. Then, since the sign of δsn crucially depends
on the latter, there typically exists a boundary value n0 such
that all poles with n < n0 are shifted to the right with
respect to their original location for g ¼ 0 (ReðδsnÞ > 0)
while all poles with n > n0 are shifted to the left
[ReðδsnÞ < 0]. At the same time, the pole with the serial
number n0 is pushed away deep to the complex plane to
travel a long path and thus to become a “collective” state—
this behavior of the poles is discussed in Ref. [21].
Generalization of the results obtained to more realistic

versions of the model is straightforward. Namely, it is
natural to assume that the coupling constants gn decrease
with the serial number of the pole n, that is, the further
the resonance resides from the threshold the weaker it
couples to the hadronic channel. Meanwhile, from the
consideration above it is easy to conclude that the appear-
ance of the collective state depends on the combination
S−ðn0Þ − Sþðn0Þ, with

S−ðn0Þ ¼
X
n<n0

g2n
M2

n0 −M2
n
;

Sþðn0Þ ¼
X
n>n0

g2n
M2

n −M2
n0

: ð39Þ

Therefore, changing the dependence of the couplings gn
and masses Mn on n, one can vary the serial number of the
collective state n0. However, from the discussion above it is
clear that even for a scenario with the couplings decreasing
extremely fast with n, still everything said above applies:
indeed, as demonstrated in Sec. II, even a single resonance
turns into a molecular structure in the coupling to infin-
ity limit.

V. NUMERICAL ANALYSIS

After the qualitative analysis of the model (15) presented
in the previous sections we now turn to a numerical
investigation of the pole trajectories. In particular, for
definiteness we set the parameters of the model as

MQ ¼ 2 GeV; σ ¼ 2 GeV2: ð40Þ

Then the masses of the lowest resonances evaluated
according to Eq. (34) take the values

M1¼4.24GeV; M2¼4.47GeV; M3¼4.69GeV;…

In the heavy-quark limit, the mass of the heavy-light
meson φ can be presented in the form

m ¼ MQ þ Λ̄þOð1=MQÞ; ð41Þ

where Λ̄ is a MQ-independent constant related to the
dynamics of the light quark, that is, Λ̄ ≃ ΛQCD. We consider
two cases:

(i) Model A:

Λ̄ ¼ 0.1 GeV ⇒ m ¼ 2.1 GeV ðMth ¼ 4.2 GeVÞ
ð42Þ

(ii) Model B:

Λ̄ ¼ 0.2 GeV ⇒ m ¼ 2.2 GeV ðMth ¼ 4.4 GeVÞ
ð43Þ

It is easy to verify that in model A Mn > 2m for all n’s
while in model B M1 < 2m and Mn > 2m for n > 1. In
other words, in the decoupling regime of g ¼ 0, all
resonances reside above the threshold in model A while,
in model B, the lowest state appears below the threshold. In
both models the loop operator is taken in the nonrelativistic
form of Eq. (21).

A. Model A

The pole trajectories in the complex momentum plane
for model A are visualized in Fig. 1—for an illustration we
choose N ¼ 6 and N ¼ 10. In the weak coupling regime,
we start from 2N poles located symmetrically on the real
axis. As the coupling grows, the poles get shifted to
the complex plane, and their trajectories start to bend.
For N ¼ 6 (left plot in Fig. 1) all poles trajectories bend in
the same direction while for N ¼ 10 (right plot in Fig. 1)
the trajectories of the poles with n < 4 and n > 4 behave
differently (n0 ¼ 4 corresponds to the collective state).
Then, in the strong coupling regime (the red point at the end
of each trajectory), 2ðN − 1Þ “ordinary” symmetric poles
return back very close to the real axis and take positions
between the original bare poles. On the contrary, the two
poles for one selected resonance (collective state) travel a
longer distance to hit each other on the imaginary axis in
the lower half-plane. Then one pole from the pair dives fast
towards the complex minus infinity [see Eq. (27)] while
the remaining one approaches its fixed final destination at
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k0 ¼ iϰ (see the red square centered at this point at each
plot) which is the solution of the equation,

Gðk0Þ ¼
1

16πm
ðϰ þ ik0Þ ¼ 0; ð44Þ

that is, it turns to a bound statewith the bindingmomentumϰ
(the case of ϰ < 0which corresponds to a virtual state looks
similar and does not bring new understanding, so we do not
discuss it here). According to the pole counting procedure
discussed above, this single pole represents a molecular
state. In other words, the behavior of the poles for the
collective state is identical to the behavior of the poles in the
single-resonance problem discussed above—see Sec. II. In
particular, in the strong coupling limit all other (compact)
states have decoupled from the collective one, which
naturally appears as a near-threshold hadronic molecule.
If this scenario is realized, it provides a justification for the
studies of isolated hadronic molecules, neglecting the
influence from neighboring quark model states.
As one can see from Fig. 1, depending on particular

model settings, the exceptional (collective) state is not
necessarily the closest one to the threshold, like for the case
of N ¼ 6 depicted in the left plot in Fig. 1. Indeed,
changing the parameters of the model by, for example,
increasing the number of the resonances N [clearly, what
matters is the balance between the partial sums S− and Sþ
defined in Eq. (39)], one can change the serial number of
the state which turns to the molecule, as shown in the right
plot in Fig. 1: The poles forming the resonance with n ¼ 4
travel long symmetric paths to bypass the trajectories of the
poles with n ¼ 1, 2, 3. More detailed discussions on the
emergence of the collective state can be found in Ref. [21].
In the cited paper, also the dependence of the trajectory of

the collective state on the parameters ofGðsÞ is discussed—
for the examples here we use the parameters quoted in
Eqs. (40) and (42), (43).
Reverting the sign of ϰ results in a similar picture,

however with a virtual state pole at k ¼ −ijϰj, so we do not
discuss it in detail here.

B. Model B

The motion of the poles in model B demonstrates a
certain similarity to that in model A, however, with some
subtleties. Thus, to avoid unnecessary complications, we
consider the case ofN ¼ 2 and the bare resonances with the
serial numbers n ¼ 1 and n ¼ 2 located below and above
the threshold, respectively. Then the following two cases
need to be considered separately: ϰ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

1=4
p

and
ϰ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

1=4
p

—see the two panels of Fig. 2. In both
panels the pole positions in the weak coupling regime are
given by the open circles: orange and blue for the below-
(n ¼ 1) and above-threshold (n ¼ 2) bare resonances,
respectively, and the pole positions in the strong coupling
regime are given by the three (two blue and one red) filled
circles.
Thus, for ϰ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

1=4
p

(left panel of Fig. 2) in the
limit of g → ∞, the n ¼ 1 resonance turns to the molecule
(the red filled circle) while the n ¼ 2 resonance gets
dressed and moves below the threshold (the two
symmetric blue filled circles), even closer to threshold
than the molecular state. On the other hand, for ϰ <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

1=4
p

(right panel of Fig. 2) a kind of reordering
of the poles takes place, for now the molecular pole (the red
filled circle) originates from the n ¼ 2 resonance, while the
two symmetric poles (the blue filled circles) for the dressed

FIG. 1. The trajectories of the poles for N ¼ 6 (left plot) and N ¼ 10 (right plot) for model A. The black arrows show the directions of
the motion for the poles after they collide on the imaginary axis. The pole moving downwards dives to −i∞ fast. The red square is
centered at the point k ¼ iϰ ¼ 0.1 GeV which is the final destination of the “molecular” pole in the limit g → ∞.
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compact resonance come from different bare resonances.
While in this case the pole trajectories are nontrivial, the
outcome in the large coupling regime is as discussed in
Sec. III: In this limit we again arrive at one molecule and
one compact state.
In case of a strongly fine-tuned system with ϰ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

1=4
p

it is easy to verify that the bound state pole
gets independent of the coupling constant g and keeps its
original position at k0 ¼ iϰ for all values of g, while its
counterpart starts at k00 ¼ −iϰ and then, as g grows, dives to
−i∞ fast, in agreement with the general considerations
presented above.
Increasing the number of bare resonances and/or chang-

ing the number of below-threshold ones would not bring
new insight since, in the strong coupling regime, the
behavior of the poles always follows the pattern outlined
above, namely,

(i) if there are no bare below-threshold resonances, at
least one of the above-threshold resonances (not
necessarily the closest one to the threshold), after
dressing, moves below the threshold;

(ii) the lowest pole lying on the imaginary axis in the
lower half plane moves towards −i∞;

(iii) one of the poles lying on the imaginary axis in the
upper (lower) half plane approaches the zero of the
loop operator at iϰ (−ijϰj) to represent a molecular
bound (virtual) state with the binding momentum
ϰ > 0 (ϰ < 0);

(iv) all other poles compose symmetric pairs to represent
the dressed compact resonances—whether the poles
for a given dressed resonance stem from the same
bare resonance or a rearrangement of poles takes

place depends on the value of the parameter ϰ in
relation with the bare pole positions.

VI. RESIDUES

In the vicinity of the pole sp, such that

V−1ðspÞ −GðspÞ ¼ 0; ð45Þ

the amplitude takes the form,

TðsÞ ¼ 1

V−1ðsÞ −GðsÞ
≈

s→sp

1

ðd=dsÞ½V−1ðsÞ −GðsÞ�js¼spðs − spÞ

¼ ResðspÞ
s − sp

: ð46Þ

We, therefore, have

ResðspÞ ¼
8kp

ðd=dkÞ½V−1ðkÞ −GðkÞ�jk¼kp

; ð47Þ

where we used s ¼ 4ðk2 þm2Þ to switch from the deriva-
tive with respect to s to that with respect to k. Using the
explicit form of the propagator provided in Eq. (21) as well
as the relations (45) and (30), this can be written as

FIG. 2. The trajectories of the poles for N ¼ 2 for model B. Left plot: ϰ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

1=4
p

(ϰ ¼ 0.7 GeV); right plot: ϰ <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

1=4
p

(ϰ ¼ 0.1 GeV). The open circles of the same color (orange and blue) show the pairs of symmetric poles which correspond
to the bare resonances at g ¼ 0. The blue filled circles show the position of the poles which correspond to the dressed resonance in the
strong coupling regime of g → ∞. The red filled circle shows the position of the molecular pole in the strong coupling regime. The
magenta square is centered at k0 ¼ iϰ to pinpoint the asymptotic position of the molecular bound state pole. The black arrows show the
directions of the motion of the poles as the coupling g grows.
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Resp ≡ ResðspÞ ¼ −
8kp

G0ðkpÞ þ V−2ðkpÞV 0ðkpÞ

¼ −
8kp

i=ð16πmÞ þ g2G2ðkpÞðV 0ðkpÞ=g2Þ
: ð48Þ

As argued below Eq. (30), it is natural to assume that
ðV 0ðkpÞ=g2Þ is independent of g. Thus, in Eq. (48) the
g-dependence of the residue is explicit and we can
straightforwardly discuss the scaling of the residues in
the large-coupling limit.
The collective pole emerges from the zero of GðkÞ,

k0 → iϰ, in the strong coupling regime of g → ∞.2

Therefore, in this limit, the amplitude takes the form
(see the discussion in Sec. II)

Tðs0Þ ¼ −
g2eff

s − s0
; s0 ¼ 4ðm2 þ k20Þ; ð49Þ

with

g2eff
4π

¼ 32ϰm; ð50Þ

which agrees to the Weinberg’s universal coupling—see
Eq. (9) with λ ¼ 0 (pure molecule) and m1 ¼ m2 ¼ m
which gives μ ¼ m=2.
For all other poles GðkpÞ ≠ 0, so that the leading

dependence of the residue (48) on the coupling constant
appears to be

Resp ∝
1

g2
: ð51Þ

The pole positions depend on g as well, however, all
poles related to the nonmolecular states approach a well
defined location in the large coupling limit. Therefore, this
dependence does not change the general pattern that the
residues of all “ordinary” poles decrease as 1=g2 in the
strong coupling regime.
The behavior of the residues for model B with ϰ ¼

0.1 GeV is exemplified in Fig. 3. For the parameters used
the asymptotic value of the residue for the collective state
calculated as given in Eq. (50) equals 6.88 GeV2 (see the
horizontal black dashed line in Fig. 3).

VII. DISCLAIMER AND DISCUSSION

While the properties of the model outlined here appear to
emerge very generally when the coupling parameter is
varied, we should stress that it is still a model. The only
feature that is solidly nested within QCD is the weak
coupling regime that is reached in the large-Nc limit, as
already mentioned above. The large-Nc limit is known to
provide an idealized but quite instructive limit for QCD
which shares many important features of the theory realized
in nature with Nc ¼ 3. In this limit, the coupling of a
quarkonium to a pair of mesons scales as 1=

ffiffiffiffiffiffi
Nc

p
and

vanishes as Nc grows. This provides a natural realization of
the weak coupling regime where an infinite tower of stable
states with the Nc-independent masses appears—for the
reasoning here it does not matter if those are Q̄Qmesons or
more complicated structures like tetraquarks which might
also survive the large-Nc limit [16–18]. However, as one
starts to reduce Nc thus increasing the coupling, not
only start the poles to talk to each other in the way outlined
here via simple meson loops, but also t- and u-channel

FIG. 3. The values of the jRespj=ð4πÞ at the poles [see Eq. (48)] as functions of the dimensionless coupling g for model B with
ϰ ¼ 0.1 GeV and N ¼ 2 (left panel) and N ¼ 4 (right panel). The blue curve is for the below-threshold pole with n ¼ 1. The orange
curve which represents the collective state with n ¼ 2 asymptotically approaches the limiting value quoted in Eq. (50) (shown with the
horizontal black dashed line). The green and red curves in the right panel are for the poles with n ¼ 3 and n ¼ 4, respectively.

2Clearly here one first has to approach the pole and then take
the g → ∞ limit, following the pole.
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meson exchanges between hadrons involved become
possible introducing additional scales into the problem.
Moreover, in the simple scheme outlined here the two-
hadron loops GðsÞ come with the same sign at all energies
and thus the resonance potentials all add coherently, which
eventually drives the emergence of the collective state.
In more realistic settings, where also t- and u-channel
exchanges are present, this coherence can get spoiled—had
we formulated the model in terms of meson exchanges,
in this scenario we would have a repulsive potential.
Then clearly no collective state gets generated. On the
other hand, in all those cases where the emerging meson
exchanges do not spoil the coherence, it follows from
the consideration of this paper that the emergence of the
collective state or hadronic molecule is very natural. Still,
the meson exchanges leave an imprint in the results. The
implications of this observation are most easily explained
by their impact on Eq. (50): In the scenario discussed in
this paper this equation is exact in the infinite coupling
limit. In a more realistic model the same relation emerges;
however, it is subject to corrections that scale either as
the binding momentum times the range of forces or the
binding momentum divided by the distance to the closest
threshold [23].
Another comment is also in order: quark-hadron duality

tells us that an infinite sum of s-channel poles can but does
not have to map onto an infinite sum of t-channel poles.
Therefore our study here does not allow for any conclu-
sions on the binding mechanism. It does not even imply that
there needs to be an infinite tower of s-channel poles
present in the large-Nc limit, for t-channel exchanges can
still be operative (and bind) even in the absence of those.
What this paper does provide, however, is a mechanism

that connects the large-Nc limit of QCD with a scenario in
the real world where hadronic molecules naturally emerge
and decouple from the surrounding quark model states. If
this scenario is indeed realized in nature, it provides a
justification to investigate hadronic molecules independ-
ently from compact quark-model states that might or might
not exist in their neighborhood.

VIII. AN OPTION FOR THE Ds1ð2460Þ
An obvious question to ask now is what would be a

signature of the scenario discussed above in the hadron
physics phenomenology. The prediction is that in a channel
where there is a hadronic molecule and at the same time
compact quark states, the latter should (largely) decouple
from the channel that forms the molecule. A promising
system that one can confront with this prediction is
provided by the strange charm mesons with JP ¼ 1þ.
Indeed, in this channel not only a promising candidate
for the D�K molecule—the Ds1ð2460Þ—exists which lies
only 42 MeV below the corresponding threshold, but
also an additional state with the same quantum numbers
lies somewhat higher up in the spectrum, namely the

Ds1ð2536Þ. As we discuss below in this section, the
properties of these two states can be well described in
both weak and strong coupling scenarios, although the
former requires some fine tuning while the latter emerges
naturally.
To set the stage let us start from the quark model. Then,

for an arbitrary heavy-quark mass MQ, the doublet of
the physical observed states with the quantum numbers
JP ¼ 1þ, denoted below as Pl

1 and Ph
1 for the light and

heavy members of the doublet, respectively, come as
particular combinations of the f2Sþ1LJg basis vectors
1P1 and 3P1,

�
Pl
1

Ph
1

�
¼

�
cos θðMQÞ − sin θðMQÞ
sin θðMQÞ cos θðMQÞ

�� 1P1

3P1

�
: ð52Þ

The mixing originates from spin-dependent terms in the
Hamiltonian of the Qq̄ (qQ̄) meson and, in the strict limit
of MQ → ∞, is described by the ideal mixing angle
cosðθð∞ÞÞ ¼ 1=

ffiffiffi
3

p
. In this limit, the physical states

correspond to the total momentum of the light degree
of freedom j ¼ l þ s equal to j ¼ 1=2 and j ¼ 3=2.
For the physical c-quark mass, however, given that
ΛQCD=mc ∼ 0.3, the mixing angle should deviate from
its ideal value. As a result, the Ds1ð2460Þ and its counter-
part Ds1ð2536Þ are expected to be particular combinations
of the 11P1 and 13P1 quark-antiquark states. In this
scenario the mixing angle may be fixed from the width
of the Ds1ð2536Þ which decays predominantly to the D�K
pair. In Ref. [31] it is found that the width of the Ds1ð2536Þ
is consistent with the data [32],

Γ½Ds1ð2536Þ� ¼ 0.92� 0.05 MeV; ð53Þ

only if the mixing angle is very close to the ideal one.
It is easy to see that the scenario described in Ref. [31]

corresponds to the regime of a weak coupling with the
continuum channel D�K. In this regime the poles get only
slightly shifted from their original positions to represent
the physical states Ds1ð2460Þ and Ds1ð2536Þ. Thus in this
scenario the quark model, without couplings to the con-
tinuum, should already produce states in a close vicinity of
their physical pole positions. However, as soon as the
mixing angle deviates from the ideal one, which should be
expected in the charm sector, the partial decay width
Ds1ð2536Þ → D�K grows fast to take values ∼10 MeV
[31], an order of magnitude larger than the experimental
Ds1ð2536Þ total width (53). Thus, the small Ds1ð2536Þ
width comes in this scenario as a result of a certain fine
tuning for the mixing angle. In this scenario, both
Ds1ð2460Þ and Ds1ð2536Þ are compact quark states.
This scenario is visualized in the left panel of Fig. 4.
The strong coupling regime as proposed in this work can

provide an alternative explanation for the properties and
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structure of the two Ds1 states. As before, we start from the

bare quark resonances Dð1Þ
s1 and Dð2Þ

s1 . At least one of them
should appear above the threshold while no constraint is
imposed on the position of the other one. As the coupling
with the continuum channel D�K grows, the width of the
upper state increases first and then starts to decrease to
approach some small value provided the coupling is
sufficiently large. The poles in the complex momentum
plane, which represent this state, always remain symmetric,
so that the physical Ds1ð2536Þ meson survives as a
compact quark state, however, with an effective coupling
to D�K much smaller than expected by the quark model. In
the meantime, the poles representing the lower state behave
differently: as explained above, one of them disappears
from the near-threshold region while the other one
approaches a certain position defined by the properties
of the D�K system. Thus, in this strong coupling scenario,
the physicalDs1ð2460Þ state appears to be a molecule—see
the right panel in Fig. 4.
A comment on how the strong-coupling regime

can be reached in this system appears helpful here.
Employing the estimate (33) with the reduced mass
of the D�K system m ≈ 400 MeV and the binding momen-
tum ϰ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEB
p

≈ 180 MeV, with EB ¼ mD� þmK −
mDs1ð2460Þ ≈ 40 MeV one finds the critical value of the
coupling of the order unity. In other words, the dimension-
less coupling constant of the natural size g ≃ 1 would
already provide a dynamics of the system compatible with
the strong coupling regime. As explained above, in this
case the counterpart of the bound state pole appears far

away from the near-threshold region, and the compact
component of the resonance wave function is suppressed
compared with its molecular component. Meanwhile, the
simple model employed in this paper does not allow for
more quantitative conclusions and is only aimed at provid-
ing a qualitative picture of the phenomenon.
But how can one distinguish between the two scenarios

experimentally? Here the most striking signature is pre-
dicted to come from the hadronic decay width of the
Ds1ð2460Þ: since its mass is below the D�K threshold, its
only allowed strong decay is to D�

sπ
0. This decay violates

the conservation of isospin and is thus expected to be rare.
Indeed, in a scenario where the positive-parity charm-
strange states are treated to be cs̄ mesons, the hadronic
width that emerges is of the order of 10 keV [33]3 However,
if the Ds1ð2460Þ is a hadronic molecule, its hadronic width
is significantly enhanced by D�K loops. Indeed, the
coupling to this channel is large for the molecule and
the isospin violation is enhanced since the mass splitting of
the thresholds for the two channels contributing to the
isoscalar Ds1ð2460Þ state, the D�þK0 and D�0Kþ, are of
the same order of magnitude as the binding energy of the
state [34–39]—in fact, this is the same kind of mechanism
that enhances the mixing of the light scalars a0ð980Þ and
f0ð980Þ if those states are treated as hadronic molecules

FIG. 4. Two scenarios for the Ds1ð2460Þ. The weak coupling regime (left plot) and strong coupling regime (right plot). The open
(filled) circles show the positions of the bare (dressed) resonances. The Ds1ð2460Þ is a compact quark state (two nearly symmetric
orange circles in the left plot) in the weak coupling scenario and a molecule (single red filled circle in the right plot) in the strong
coupling regime—see the text for the details. The black arrows show the poles motion.

3The calculation presented in that paper is performed for the
J ¼ 0 partner state of the Ds1ð2460Þ, namely the Ds0ð2317Þ;
however, heavy quark spin symmetry makes one expect the width
of the axial vector state to be very similar.
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[40,41]. For example, Ref. [39] quotes theDs1ð2460Þwidth
as large as ð111� 15Þ keV—admittedly a challenge for the
experiment, but an order of magnitude larger than the
prediction for the quark-antiquark structure.

IX. SUMMARY

In this work we presented a general description of the
motion of the poles in a system of N compact hadronic
resonances interacting through their coupling to a two-
meson state. In particular, we start from a set of 2N
symmetric poles in the complex momentum plane which
represent the bare resonances Rn (heavy quarkonia) and
then couple them to a scalar field φ (a scalar meson
containing a heavy quark and a light antiquark). Some bare
poles appear below and some above the φφ̄ threshold.
In the regime of small coupling, the poles lying above the
threshold get shifted to the complex plane and then,
as the coupling increases, their trajectories bend and
reapproach the real axis. Such a behavior of the poles
was previously discussed in the literature—see, for exam-
ple, Refs. [21,42,43]. Although, naively, it may look
unnatural, there are good physical reasons for it to be true.
Indeed, a strong coupling to the continuum channels tends
to increase the width of the resonances, however the strong
unitarization effects which play an important role in this
regime do not allow the poles to move to the complex plane
far away from the real axis. Eventually the unitarization
effects win and the poles move back towards the real axis.
As a result, despite multiple open decay channels and a
large phase space available for the decays of the resonances
into these channels in the strong coupling regime, excited
hadrons do not turn into extremely broad and strongly
overlapping humps, but should survive as relatively narrow
structures in the spectrum—at least in the heavy quark
sector. In some cases, above-threshold poles can move
below the threshold as a result of the strong interaction with
the field φ. The poles lying below the threshold always
move along the imaginary axis.
In the strong coupling regime, we arrive at 2ðN − 1Þ

symmetric poles in the complex momentum plane repre-
senting N − 1 compact dressed quarkonia which may lie
both below or above the threshold. In the meantime, the
remaining pair of poles behaves differently—although, in
the weak coupling regime, they also correspond to compact
resonances, in the strong coupling regime, one of them
leaves the near-threshold region and tends to −i∞ in the
momentum plane, while the other one approaches a fixed
point iϰ provided by the zero of the loop operator for the
field φ. Depending on the sign of ϰ, this is either a bound
or virtual state; however in either case it qualifies as a
molecule. Interestingly, the fate of the molecular pole in
the strong coupling regime is defined by the properties of

the loop operator evaluated for the free field φ, that is, a
kind of duality between the strong and weak coupling
regimes takes place. We exemplify our finding by simple
model calculations.
In the picture drawn in this work near-threshold mole-

cular states appear naturally and, furthermore, cannot be
avoided provided the coupling of the quark resonances to
the continuum channel is strong enough (the strong
coupling limit is reachable) and the coherence of the effect
of the different resonances does not get spoiled by other
effects like t-channel exchanges that also contribute as soon
as the coupling gets large. We find that the critical value of
the coupling needed to reach the strong coupling regime is
inversely proportional to the mass of the quark, so that
approaching the strong coupling regime, which is unlikely
for light quarks, appears to be plausible in practice for
heavy quarks. In particular, our picture favours a rather rich
family of near-threshold exotic states in the spectrum of
bottomonium.
We demonstrate explicitly how the molecular state,

which appears as a result of the strong coupling of the
compact quark resonances with a continuum channel, can
coexist with compact (dressed) quark resonances located
both below and above the threshold. Moreover, if the
dressed above-threshold resonances exist, specific predic-
tions for them can be made: since the trajectories of the
poles for the above-threshold poles do not continue deep to
the complex plane, when the coupling increases, but bend
such that the poles return back to the real axis, the strong
coupling regime entails “unnaturally” small widths of the
dressed quarkonia, which may appear at odds with the
predictions of the quark model. In other words, we find that
the coexistence in the spectrum of heavy quarks of a near-
threshold molecular state and an unnaturally narrow above-
threshold quark state(s) with the same quantum numbers
may signal our proposed mechanism at work. We con-
fronted the properties of the lowest charm-strange Jp ¼ 1þ
states with this picture and found consistency, although also
other explanations are possible. A straightforward confir-
mation of our scenario would be if the hadronic width of the
Ds1ð2460Þ were found to be about 100 keV or above.
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