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We derive new functional renormalization group flows for quantum gravity, in any dimension. The key
new achievement is that the equations apply for any theory of gravity whose underlying Lagrangian ∼
fðRμνρσÞ is a function of the Riemann tensor and the inverse metric. The results centrally exploit the benefits
of maximally symmetric spaces for the evaluation of operator traces. The framework is highly versatile and
offers a wide range of new applications to study quantum gravitational effects in extensions of Einstein
gravity, many of which have hitherto been out of reach. The phase diagram and sample flows for Einstein-
Hilbert gravity, Gauss-Bonnet, and selected higher-order theories of gravity are given. We also provide an
algorithm to find the flow for general polynomial Riemann curvature interactions. The setup vastly enhances
the reach of fixed point searches, enabling novel types of search strategies including across the operator
space spanned by polynomial curvature invariants, and in extensions of general relativity relevant for
cosmology. Further implications and links with unimodular versions of gravity are indicated.
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I. INTRODUCTION

An appealing scenario for the quantum nature of gravity
is that general relativity emerges as a relevant perturbation
from an interacting UV conformal fixed point [1]. If so, a
finite number of independent parameters would ensure
predictivity and characterize the renormalization group
trajectories which connect the fixed point of quantum
gravity in the UV with classical gravity in the IR.
However, what complicates matters at this point is that
the fundamental gravitational Lagrangian is not known. In
principle, it should consist of an infinite tower of inter-
actions formed out of the Riemann tensor and covariant
derivatives thereof, where, unlike in model building beyond
the Standard Model, higher-dimensional interactions cannot
be omitted. Hence, identifying fixed points and relevant
perturbations in quantum gravity would seem like an
impossible task.
Progress has been made in studying subsets of curvature

invariants. In Einstein-Hilbert gravity, asymptotically safe
fixed points and relevant perturbations have by now been
identified [2–32]. Next natural steps have been the inclu-
sion of higher-order interactions such as fourth-order
interactions, nonlocal interactions, powers of the Ricci
scalar R, or functions of curvature invariants such as fðRÞ
and similar [33–71]. An important tool in the search for

fixed points is the bootstrap search strategy [47], where the
canonical mass dimension of invariants is used as an
ordering principle. High-order bootstrap studies have
shown that quantum gravity becomes “as Gaussian as it
gets” and largely dominated by a few dominant interactions
[47,51,64,65,69].
More concretely, fixed point searches have addressed

fourth-order interactions [39,41–43,68] and a selection of
sixth-order interactions including R3 [35–37,47,51], the
Goroff-Sagnotti term Cμν

ρσCρσ
τλCτλ

μν [60], R · RμνRμν

[64], and R · ðRμνρσRμνρσÞ [69]. Dedicated high-order stud-
ies have retained selected types of curvature interactions
such as R2þn [47,51,65], ðRμνRμνÞn [64], R · ðRμνRμνÞn
[64], ðRμνρσRμνρσÞn [69], and R · ðRμνρσRμνρσÞn [69], often
up to including very high orders n. By and large, fixed
points and relevant perturbations with viable scaling
dimensions are found. Results converge well with an
increasing number of interaction monomials. Higher cur-
vature interactions are important quantitatively even if they
relate, ultimately, to irrelevant perturbations. More recently,
it was noted that more complex Ricci and Riemann tensor
interactions may shift fixed points more strongly away
from their Einstein-Hilbert counterpart [64,69] and that
Riemann tensor interactions may lead to new relevant
perturbations in the UV [69].
These findings encourage broader, systematic investiga-

tions. In this work, we provide new functional flow
equations for fðRμνρσÞ quantum gravity. Crucially, to enable
the study of general curvature invariants we take full
advantage of maximally symmetric backgrounds which
are used for the evaluation of operator traces. The setup

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 106022 (2022)

2470-0010=2022=106(10)=106022(31) 106022-1 Published by the American Physical Society

https://orcid.org/0000-0002-8126-7668
https://orcid.org/0000-0001-9963-5345
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.106022&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevD.106.106022
https://doi.org/10.1103/PhysRevD.106.106022
https://doi.org/10.1103/PhysRevD.106.106022
https://doi.org/10.1103/PhysRevD.106.106022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


encompasses essentially all gravitational flows investigated
thus far within the asymptotic safety program, with the
exception of flows which adopt, e.g., less symmetric
background geometries. We discuss the pros and cons of
our approach and explain in detail why it leads to important
simplifications. Most notably, we find that a general flow for
fðRμνρσÞ quantum gravity can be determined without
specifying the underlying Lagrangian, other than being of
the fðRμνρσÞ type. This underlying structure allows for new
types of systematic fixed point searches in the space of
polynomial curvature invariants and opens the door for
much farther-reaching fixed points searches beyond.
The remainder of this work is organized as follows. In

Sec. II, we recall the formalism of functional renormaliza-
tion for gravity within the single-field or background field
formalism, discuss salient technical aspects, and detail the
choices adopted in this work. In Sec. III, we derive the
renormalization group flows for fðRμνρσÞ theories of
gravity, providing all steps of the derivation. We explain
why the flows on maximally symmetric backgrounds can
be parametrized by a small set of scalar functions. Further
aspects of the methodology, the Hessians, the flows, and
their key new features are also discussed. In Sec. IV, we
illustrate the methodology with several applications,
including a general algorithm to find flows for polynomial
curvature invariants, new flows and analytical phase
diagrams for Einstein-Hilbert gravity, and sample flows
for Gauss-Bonnet and various higher-curvature gravities.
In Sec. V, we conclude with a brief outlook. Three
appendixes summarize technicalities such as metric deriv-
atives of the Lagrangian (Appendix A), Hessians obtained
without the York decomposition (Appendix B), and
explicit expressions for the gravitational renormalization
group equations (Appendix C).

II. RENORMALIZATION GROUP FOR GRAVITY

In this work, we employ renormalization group methods
to find flow equations of quantum gravitational systems. In
general, we are interested in nonperturbative effects of
quantum gravity for which the functional renormalization
group serves as a useful semianalytical tool. In this section,
we give a brief introduction to the functional renormaliza-
tion group and explain the technical setup and key choices
made in this work.

A. Functional renormalization

Our starting point is the partition function of a quantum
field theory containing quantum fields ϕi, where the index i
labels different fields as well as Lorentz indices. For the
particular case of pure quantum gravity, ϕi might contain the
metric field gμν as well as ghost fields arising from the
gauge-fixing procedure or the measure of the path integral.
We denote the classical action of this theory by S½ϕi�. To give

the partition function a renormalization scale dependence, an
infrared regulator ΔSk can be included:

Zk½ji� ¼
Z

Dϕi exp

�
ΔSk½ϕi� − S½ϕi� −

Z
ddx

ffiffiffī
g

p
ϕiji

�
;

ð1Þ

with

ΔSk½ϕi� ¼
Z

ddx
ffiffiffi
g

p
ϕiR

ϕiϕj

k ðΔÞϕj; ð2Þ

and ji the source terms for the fields ϕi. The infrared

regulator R
ϕiϕj

k ðΔÞ is chosen such that it suppresses modes
withΔϕj < k2ϕj, whereΔ is a Laplacian for the fieldϕi and
k denotes the renormalization group (RG) scale. Starting
from these definitions, the effective average action Γk is
related to the Legendre transformation of the partition
function, defined by

Γk½ϕi�≡ Γ̃k½ϕi� − ΔSk½ϕi�; ð3Þ

with

Γ̃k½ϕi� ¼− logðZk½jiϕj
�Þþ

Z
ddx

ffiffiffi
g

p
jiϕϕi;

δΓ̃k

δϕi
¼ jiϕj

: ð4Þ

In the infrared limit where the cutoff is removed, ΔSk → 0
for k → 0, the effective action Γk reduces to the quantum
effective action Γ. The scale dependence of Γk can be shown
to be given by an exact functional identity, the flow equation,
which derives from the path integral representation of the
theory [72]:

∂tΓk ¼
1

2
Tr

�
∂tRk

Γð2Þ
k þRk

�
; ð5Þ

where the only objects entering the right-hand side are the
infrared regulator Rk and the Hessians of the effective

average action Γð2Þ
k . The trace on the right-hand side of

Eq. (5) is a functional trace including a sum over all field
indices as well as an integration over spacetime.
At weak coupling, iterative solutions of the flow generate

the conventional perturbative loop expansion [73,74]. In the
limit where the momentum cutoff becomes a momentum-
independent mass term, the flow reduces to a Callan-
Symanzik equation [75], which may require an additional
renormalization of the flow itself [76]. The usefulness of
Eq. (5) stems from the fact that it is an exact equation and
that it can be applied in situations where perturbative
treatments are no longer applicable. Furthermore, it can
be solved exactly in special limits such as large N, e.g.,
Refs. [77–81]. Elsewise practical solutions often involve
systematic approximations such as the derivative expansion,
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vertex expansion, or combinations thereof, giving access to
nonperturbative effects. Furthermore, optimized choices for
the regulator [82,83] allow for analytic flows and enhanced
convergence [84,85]. The stability of approximations can be
probed through the variation of technical parameters such as
the cutoff function Rk [8,84,86–88] or the projection
method [89].
In gravity, the functional renormalization group has

been introduced originally in Ref. [90], with many
subsequent studies testing the asymptotic safety scenario.
Analytical flows for gravity have first been provided in
Ref. [6] and used in many studies of gravity. Furthermore,
maximally symmetric backgrounds have been used promi-
nently to evaluate operator traces for gravitational flows
[37,51,64,65]. In the following, we explain some of the
technical choices used there and generalize gravitational
flows for general actions.

B. Splitting the metric

In quantum gravity, the introduction of an IR regulator
requires the usage of the background field method due to
the necessity of a scale separating IR from UV modes [91].
Hence, in this case the full metric needs to be split into a
background metric ḡμν and a fluctuation part δgμν½hμν�,
yielding

gμν ¼ ḡμν þ δgμν½hρσ�: ð6Þ

The path integral then integrates only over the fluctuation
field hμν. Note that the fluctuation part can, in general,
depend nonlinearly on the fluctuation field. Two natural
choices arise, the linear split

gμν ¼ ḡμν þ hμν ð7Þ

and the exponential split, originally introduced for the
study of quantum gravity in 2þ ε dimensions [92–95] (see
also [96]),

gμν ¼ ḡμρðehÞρν ¼ ḡμν þ hμν þ
1

2
hμρhρν þOðh3Þ: ð8Þ

Using the linear split (7) corresponds to an integration over
all possible metric fields in the path integral, including
degenerate metrics and metrics with different signature than
the background metric ḡμν. In contrast to that, the expo-
nential split formally restricts the integration to be carried
out over those metrics gμν which have the same signature as
ḡμν.

1 To be able to study both of these choices simulta-
neously, we introduce a parameter τ interpolating between
them [25]:

gμν ¼ ð1 − τÞ½ḡμν þ hμν� þ τḡμρðehÞρν
¼ ḡμν þ hμν þ

τ

2
hμρhρν þOðh3Þ: ð9Þ

Clearly, for τ ¼ 0 we get Eq. (7) and for τ ¼ 1 we have
Eq. (8). We will, however, not limit ourselves to such
choices and implement τ as a free parameter in our setup.
As a last remark, we note that details of the metric split

(6) beyond quadratic order (9) will not be needed in the
present work. This implies that Eq. (9) with a free
parameter τ captures already the most general case. In this
light, it should also be kept in mind that the value τ ¼ 1 (to
which we will refer as the exponential split) can be
achieved by many other nonlinear splits (6) different from
Eq. (8), some of which may formally correspond to metrics
gμν which have a different signature from ḡμν.

C. Background field approximation

Using the background field method with a metric split as
in Eq. (6), the classical action S½ϕi� depends on only the full
metric gμν, and, therefore, its dependence on ḡμν and hμν is
related by Eq. (6). This is, however, not true for the
regulator term ΔSk½ϕi�, since

R
ϕiϕj

k ¼ R
ϕiϕj

k ½ḡμν� ð10Þ

is allowed to depend only on the background metric ḡμν but
not on the quantum fields, or else the flow equation is no
longer exact in its present form. Hence, the regulator
required to obtain Eq. (5) generally breaks the split
symmetry induced by the metric split (6) in the path
integral. Therefore, even though the dependence of the
classical action S½gμν� on ḡμν and hμν is directly given by
Eq. (6), the resulting effective average action is a functional
whose dependence on ḡμν and hμν breaks Eq. (6) and is not
known a priori. Thus, we might think of Γk as a functional
with an unrelated dependence on the quantum field ϕi and
the background metric ḡμν:

Γk ¼ Γk½ḡμν;ϕi�: ð11Þ

Here, ϕi includes the fluctuation metric hμν as well as ghost
fields such as arising from gauge fixing or the measure of
the path integral. In principle, the relation between the
dependence on ḡμν and hμν can be obtained using modified
split symmetries. For alternative strategies, see [97].
In our approach, we will follow the single-field or

background field approximation. The basic intuition for
this approximation lies in the idea that the flow remains to
be driven by objects not modifying the metric split which is
induced in Eq. (6). Doing so, we write the action as

Γk½ḡμν;ϕi� ¼ Γ̄k½ḡμν þ δgμν� þ Γ̂k½ḡμν;ϕi�; ð12Þ1For other variants of an exponential split, see [22,23].
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with

Γ̂k½ḡμν; 0� ¼ 0: ð13Þ

In this notation, Γ̄k depends on only the full metric gμν and
contains only operators not modifying the split of the
metric. The background field approximation then amounts
to taking Γ̂k to be given by the terms in the bare action
arising from the functional measure. Moreover, their k
dependence is neglected. Using Eq. (5), we then determine
the flow of Γ̄k by evaluating the right-hand side at vanishing
quantum fields, i.e.,

∂tΓ̄k½ḡμν�¼
1

2
Tr

�
∂tRk

Γð2Þ
k þRk

�����
ϕi¼0

: ð14Þ

An advantage of the background field approximation is that
it allows the study of rather general types of gravitational
theories.

D. Maximally symmetric backgrounds

An important ingredient of the flow equation is the
operator trace in Eq. (14). In principle, curved or flat
background geometries can be used for its evaluation. The
use of general backgrounds, albeit desirable, is out of reach
presently for the types of theories considered here. Progress
can be made by using maximally symmetric background
geometries, whose simplifications make the evaluation of
operator traces tractable. Equally important, for maximally
symmetric backgrounds, all heat kernel coefficients for
scalar, vectors, and tensors are available in closed form
[98]. This ensures from the outset that polynomial expan-
sions of Lagrangians can always be performed.
On a maximally symmetric background, all curvature

invariants can be expressed in terms of the scalar Ricci
curvature which itself is related to the single dimensionful
parameter available on such backgrounds. For positive
curvature, the resulting geometry is a sphere and the
dimensionful parameter its radius. Irrespective of the sign
of the curvature, we have the following identities:

R̄ρσμν ¼
R̄

dðd − 1Þ ðḡρμḡσν − ḡρνḡσμÞ;

R̄μν ¼
ḡμν
d

R̄; ∇̄μR̄ ¼ 0; ð15Þ

where we have indicated objects constructed from the
background metric by a bar. Because of Eq. (15), the only
remaining objects which can carry indices are the back-
ground metric, quantum fields in the path integral, and
covariant derivatives acting on them. In the next subsection,
we see that this combined with a useful field decomposition
leads to the absence of nonminimal differential operators in
functional traces, i.e., on the right-hand side of Eq. (14).

E. Field decomposition

Following Eq. (14), we require the Hessians of Γk
evaluated on the background geometry to compute the
flow. The usage of a maximally symmetric background
gives the most general form of such Hessians as

δΓk

δϕiδϕj

����
ϕl¼0

¼
X
n

unðR̄Þvnðḡμν; ∇̄Þ; ð16Þ

with unðR̄Þ a scalar depending on only the background
scalar curvature and vnðḡμν; ∇̄Þ a tensor carrying the
Lorentz indices of the fields ϕi and ϕj. At this point, vn
might include differential operators with indices of tensor
fields and is not a function of the Laplacian only. To ensure
that vn can be written as a function of the Laplacian, we
need to decompose all fields carrying indices into trans-
verse and traceless pieces. For a vector field Tμ, this
decomposition is well known and given by

Tμ ¼ ξμ þ ∇̄μη; with ∇̄μξμ ¼ 0: ð17Þ

Note that the scalar field η is fully determined up to a
constant shift which drops out due to the covariant deriva-
tive. Hessians between the fields ξμ and η can include the
Laplacian only after commuting covariant derivatives. The
reason for this is that a covariant derivative in vn carrying an
open index would spoil the transverseness required after the
field decomposition (17). From this consideration, it also
follows that the Hessian between fields containing a differ-
ent number of indices must vanish.
There is an analogous decomposition for a general

symmetric tensor fields hμν given by the York decom-
position [99]:

hμν ¼ hTμν þ ∇̄μξν þ ∇̄νξμ þ
�
∇̄μ∇̄ν −

ḡμν
d

∇̄2

�
σ þ ḡμν

d
h;

ð18Þ
with

hTμν ¼ hTνμ; ∇̄μhTμν ¼ 0; ḡμνhTμν ¼ 0; ∇̄μξμ ¼ 0: ð19Þ

Note that the different York modes are given unambiguously
up to Killing vectors ξμ, constant scalars σ, and conformal
Killing vectors ∇μσ whose contributions drop out from
Eq. (18). By the same arguments as before, it follows that
Hessians between these York modes can include only
minimal differential operators. It also follows that
Hessians between fields containing a different number of
indices vanish.
Using the York decomposition, the Hessian of Γk with

respect to hμν becomes matrix valued; the components of
this matrix refer to the different York modes. Using the
simplifications just discussed, its most general form is
given by
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Γð2Þ
k ¼

0
BBBBB@

ΓhThT
k 0 0 0

0 Γξξ
k 0 0

0 0 Γσσ
k Γσh

k

0 0 Γhσ
k Γhh

k

1
CCCCCA
; ð20Þ

on a maximally symmetric background.2 This matrix is
diagonal apart from the 2 × 2 submatrix between σ and h.
The York decomposition (18) as well as the decom-

position for vector fields (17) are background-metric-
dependent redefinitions of fields integrated over in the
path integral. As such, they introduce nontrivial Jacobians
into the measure of the path integral. We take care of these
using the Faddeev-Popov trick and write them as contri-
butions to Γ̂k arising from ghost fields. For details of this
procedure, the reader is referred to Ref. [64].

F. Gauge fixing

Next, we need to gauge fix the gravitational action to
make the propagator invertible. We use a standard gauge-
fixing action given by

G ¼ 1

2α

Z
ddx

ffiffiffi
g

p
F μF μ; ð21Þ

with

F μ ¼
ffiffiffi
2

p
κ

�
∇̄νhμν −

1þ δ

4
∇̄μh̄

�
: ð22Þ

The parameters α and δ are arbitrary gauge parameters and
are often chosen to help with computational simplicity.
A useful gauge choice is given by the Landau gauge

α → 0, as it was argued in Ref. [100] that it is a
renormalization group fixed point for the gauge parameters.
This also serves as a justification for neglecting the
renormalization group running of the gauge parameter.
While this restricts the parameter α, δ is not fixed by a
similar argument. Technically, however, there are two
useful choices, namely, δ ¼ 0 and δ → ∞, the latter one
also known as the unimodular gauge. In the first case
(δ ¼ 0) and on maximally symmetric backgrounds, the
Hessian of the gauge-fixing action becomes

Gð2Þ ¼ κ2

16α

Z
d4x

ffiffiffī
g

p ½ξμðR̄þ 4∇̄2Þ2ξμ

− σ∇̄2ðR̄þ ðd − 1Þ∇̄2Þ2σ�: ð23Þ

In the Landau gauge together with δ ¼ 0, contributions
from Γ̄k to the Hessians involving ξμ or σ can be neglected,

simply because the contributions from Gð2Þ are dominant
due to α → 0. This even remains true for the off-diagonal
elements contained in Eq. (20) when using Eq. (14). For
generic δ, however, such a simplification does not occur,
and it is necessary to consider Hessians coming from Γ̄k
together with Hessians from the gauge-fixing action. The
only other choice for δ leading to simplifications is given by
the unimodular gauge. In this case, the Hessian of G
remains unchanged for Gξξ; however, its dominant con-
tributions to the 2 × 2 submatrix in Eq. (20) are located in
the Hessian of Ghh. It follows that contributions from Γ̄k to
Hessians of ξμ or h can be neglected in the unimodu-
lar gauge.
Even though either of these gauge choices lead to

welcome simplifications of the flow equation, we focus
below on the Landau gauge with δ ¼ 0. From a practical
point of view, this can, at least partly, be motivated by
invoking a principle of least variation, observed in the
Einstein-Hilbert theory [25], which also favors the expo-
nential split together with δ ¼ 0. Also, this choice together
with a linear split of the metric (τ ¼ 0) has been adopted by
many previous works in the literature, offering points of
contact for consistency checks of results.
Finally, just as the York decomposition, this gauge-fixing

procedure introduces a nontrivial determinant into the path
integral. This is taken care of using the Faddeev-Popov
trick in the same way as the Jacobian arising from the York
decomposition [64].

G. Flows for quantum gravity

Having specified the gauge fixing in the previous
section, we are now able to explicitly invert the matrix
in field space in Eq. (14). For this, let us remember that
there are four York modes entering the flow (hTμν, ξμ, σ, and
h) as well as various ghost fields arising from the Faddeev-
Popov procedure and the Jacobians induced by the York
decomposition. Without going into details, we note that
these ghost fields include five transverse vectors and seven
scalars.3 Under the assumption that the regulator terms take
the same form as the Hessian and, in particular, making use
of Eq. (20), (14), the flow equation boils down to

∂tΓ̄k ¼
1

2
Tr2

�
∂tRhThT

k

ΓhThT
k þRhThT

k

�
−
1

2
Tr1ð

0Þ
�

∂tRV
k

−∇2− R
dþRV

k

�

−
1

2
Tr0ð

00Þ
�

∂tRS
k

−∇2− R
d−1þRS

k

�
þ 1

2
Tr0

�
∂tRhh

k

Γhh
k þRhh

k

�
;

ð24Þ

in Landau gauge with δ ¼ 0. In accordance with the
background field approximation, it is implicitly understood

2Note that here we consider only the part of the Hessian
describing contributions associated to the York modes.

3We count Graßmann variables and their complex conjugate as
separate fields.
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that fluctuation fields are set to zero after computing the
Hessians. These traces are functional traces over fields of
different spin as indicated by their subscripts. Hence, the
traces Tr0, Tr1, and Tr2 are understood as traces over
scalars, transverse vectors, and transverse traceless sym-
metric tensors, respectively. Moreover, primes denote the
exclusion of lowest modes which should be excluded if
they do not contribute to the field decomposition into
transverse and traceless pieces [5]. Note that these modes
should be excluded only on maximally symmetric back-
grounds with positive curvature. For this reason, we have
put the primes in brackets to indicate that an exclusion is
not necessary on a hyperbolic space [59].
The first and the last traces of Eq. (24) are directly related

to the fluctuations of the transverse mode hTμν and the trace
mode h. As such, they receive contributions only from the
physical part Γ̄k of the effective average action. The
fluctuations with respect to ξμ as well as the five different
transverse vector ghosts are contained in the second trace.
To arrive at this compact result, we have regulated all these
contributions with the same regulator RV

k . Because of the
gauge-fixing contributions being dominant over Γ̄ξξ

k in
Landau gauge, it follows that the second trace is completely
independent of Γ̄k. Similarly, all contributions from the σ
mode and the seven remaining different scalar ghost
contributions are contained in the third trace. Again, for
the chosen gauge, all contributions from Γ̄k to the Hessian of
σ can be neglected as well as the off-diagonal elements in
Eq. (20). Using the same regulator RS

k for these contribu-
tions, we arrive at Eq. (24); see [64,65] for more details.

H. Wilsonian cutoff

The next ingredient to the functional renormalization
group is the infrared regulator, which has to be introduced
for each field in the path integral. Thus far, we have not
made any assumptions about its explicit shape or whether it
depends on couplings in the effective action, simply
because the form of Eq. (24) does not depend on such
choices. In the following we aim at finding simple analytic
flows, also guided by stability considerations. Still, we
emphasize that our regulator choices are by no means
mandatory, and perfectly viable and tractable flows can be
found for other choices.
The first choice we make is defining the regulator (24) by

the replacement rule [37]

Γϕiϕj

k ð−∇̄2Þ þR
ϕiϕj

k ð−∇̄2 þ EiÞ
¼ Γϕiϕj

k ðRkð−∇̄2 þ EiÞ − ∇̄2Þ; ð25Þ

for physical contributions depending on Γ̄k. The shape
function Rkðq2Þ obeys the limits Rkðq2Þ > 0 for q2=k2 → 0

and Rkðq2Þ → 0 for k2=q2 → 0 [82]. We use the optimized
cutoff [83]

RkðzÞ ¼ ðk2 − zÞθðk2 − zÞ; ð26Þ

which leads to simple, analytical flows with enhanced
convergence properties [84,101,102], e.g., in the local
potential approximation (LPA) which is similar to the
approximations considered here for gravity. The parameters
Ei in Eq. (25) are endomorphisms which can be chosen
freely, subject to positive definiteness of the resulting
Laplacian:

−∇̄2 þ Ei > 0: ð27Þ

In general, we might introduce different endomorphisms
for different contributions in Eq. (24). Doing so, we denote
the endomorphism in the regulator for the transverse tensor
modes by E1 and the endomorphism for the trace mode by
E4. For the remaining regulators, we choose

RV
k ¼ Rkð−∇2 þ E2Þ; RS

k ¼ Rkð−∇2 þ E3Þ: ð28Þ

The resulting bounds on the endomorphism parameters
from Eq. (27) can be read off from the eigenvalues of −∇2

acting on fields of different spin and requiring that all
eigenvalues stay positive after adding the endomorphism.
Taking into account that some modes are excluded from the
functional traces, this yields

E1 > −
2ð2þ d− 1Þ− 2

dðd− 1Þ R; E2 > −
2ð2þ d− 1Þ− 1

dðd− 1Þ R;

E3 > −
2ð2þ d− 1Þ
dðd− 1Þ R; E4 > 0; ð29Þ

for positive curvature backgrounds.
Note that the optimized cutoff (26) vanishes identically

whenever −∇̄2 þ Ei > k2. It follows that the propagators in
Eq. (24) are nonzero only when −∇̄2 þ Ei ≤ k2. In this
regime, the Heaviside function in Eq. (26) is unity, and all
propagators are effectively rendered constant. All in all,
these simplifications lead to

∂tΓ̄k ¼
1

2
Tr2

�
∂tRhThT

k ð−∇2 þ E1Þ
ΓhThT
k ðk2 − E1Þ

�

−
1

2
Tr01

�
∂tRkð−∇2 þ E2Þ

k2 − E2 − R
d

�

−
1

2
Tr000

�
∂tRkð−∇2 þ E3Þ
k2 − E3 − R

d−1

�

þ 1

2
Tr0

�
∂tRhh

k ð−∇2 þ E4Þ
Γhh
k ðk2 − E4Þ

�
; ð30Þ

on spherical backgrounds. Hence, the only differential
operators we need to take care of in the functional traces
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are polynomials in −∇̄2 coming from ∂tR
ϕiϕj

k multiplied by
Heaviside functions from the optimized cutoff (26). In
particular, no inverse of a differential operator or linear
combinations thereof is required.

I. Trace technology

Lastly, we need to consider the computation of the
functional traces in Eq. (30). As noted already, the only
differential operators we have to deal with are Laplacians to
non-negative powers multiplied by Heaviside theta functions
arising from the optimized cutoff, i.e., functions of the form

Wnð−∇̄2Þ≡ ð−∇̄2Þnθðk2 þ ∇̄2 − EÞ: ð31Þ

We compute these traces using the early time expansion of
the heat kernel. This is done by first using the anti-Laplace
transformation to write

TrspinfWnð−∇̄2Þg ¼
Z

∞

0

dsW̃nðsÞTrspinfes∇̄2g: ð32Þ

The general form of the heat kernel expansion on spheres is
given by [98]

Trspinfes∇̄2g ¼ Vol

ð4πsÞd=2
X∞
n¼0

½bðspinÞ2n sn þ cðspinÞdþ2ns
d=2þn�: ð33Þ

Therefore,

TrspinfWnð−∇̄2Þg ¼ Vol

ð4πÞd=2
Z

∞

0

ds
X∞
m¼0

W̃nðsÞ½bðspinÞ2m sm−d=2 þ cðspinÞdþ2ms
m�

¼ Vol

ð4πÞd=2
Z

k2−E

0

dω
X∞
m¼0

�
bðspinÞ2m

Γðd=2 −mÞω
nþd=2−1−m þ cðspinÞdþ2m

Γð−mÞω
n−1−m

	

¼ Vol

ð4πÞd=2
X∞
m¼0

�
bðspinÞ2m ðk2 − EÞnþd=2−m

ðnþ d=2 −mÞΓðd=2 −mÞ þ
cðspinÞdþ2mðk2 − EÞn−m
ðn −mÞΓð−mÞ

	
; ð34Þ

where we have used

sn ¼ 1

Γð−nÞ
Z

∞

0

dωω−1−ne−ωs: ð35Þ

Note that in obtaining Eq. (34) we have used analytical

continuation in d. The coefficients cð2Þdþ2m are nonvanishing
only for fields fulfilling differential constraints, i.e., in the
cases spin ¼ 1 and spin ¼ 2, and originate from excluded
modes.
For large m and even dimension, the Γ functions in

Eq. (34) can become singular. Because of the presence of
these poles, we note that in even dimensions only a finite
number of heat kernel coefficients is required. This is due to
the fact that, for large enough m, the poles induced by the
Gamma functions in the denominators cannot be compen-
sated by anything else in these equations wherefore these
contributions vanish. The last nonvanishing contributions
are given by

nþ d
2
−m ¼ 0; n −m ¼ 0; ð36Þ

for the b and c coefficients, respectively. In these cases, the
poles are compensated by zeros in the denominators of
Eq. (34) and give a finite contribution. The fact that only a
finite number of terms contribute in Eq. (34) can be traced
back to the properties of the optimized cutoff and leads to
only a finite number of heat kernel coefficients contributing

to the flow equation. Even though this choice leads to a
somewhat simpler structure, it is not required to stick to it,
since all heat kernel coefficients on spheres are known [98].
For this reason, it is possible to obtain explicit flows for
generic cutoff functions other than Eq. (26).
This concludes our algorithm to compute flow equations

of the form (14). What is left is the form of the Hessians of
Γ̄k contributing to the flow. This is the subject of the next
section.

III. HIGHER-ORDER THEORIES OF GRAVITY

In this section, we derive functional renormalization
group flows for fðRμνρσÞ type of theories of gravity, whose
actions are general functions of the Riemann tensor and the
inverse metric. We also explain the role of maximally
symmetric backgrounds, which are used for the determi-
nation of operator traces.

A. Action

From now on, we assume that the Lagrangian L is a
general function of the Riemann tensor and the inverse
metric, without any covariant derivatives acting on
Riemann tensors. The gravitational actions can, therefore,
be written as

Γ̄k½gμν� ¼
Z

ddx
ffiffiffi
g

p
LðRρσμν; gαβÞ: ð37Þ
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This covers a rather wide range of models including the
Einstein-Hilbert theory, Stelle’s fourth-order theory for
gravity, fðRÞ models, and many more higher-order exten-
sions of gravity. We also note that the search for asymp-
totically safe fixed points of quantum gravity has almost
exclusively been focused on specific models of the
type (37).
Flow equations for actions (37) are particularly useful

when considering LPA-like approximations for gravity in the
spirit of Ref. [45]; see, e.g., [6,33,36–38,47,51,65,68,69,90].
Selecting one curvature invariant per mass dimension which
is nonvanishing on maximally symmetric backgrounds, we
may expand the action into a power series of curvature
invariants:

Γ̄k ¼
X∞
n¼0

Z
ddx

ffiffiffi
g

p
λ̄nXnðRρσμν; gαβÞ: ð38Þ

Here, n ≥ 0 sums over operators Xn with canonical mass
dimension ½Xn� ¼ 2n, constructed out of the Riemann tensor
and the inverse metric, and associated coupling constants λ̄n
with canonical mass dimension ½λ̄n� ¼ d − 2n.
In the remainder, we derive general flow equations for

actions (37) or polynomial couplings as in Eq. (38). From a
practical point, we take the view that fRρσμν; gαβg are the
fundamental variables of L. Alternative choices for the
fundamental variables such as fRρσ

μνg or fRρ
σμν; gαβg can be

taken as well and would, at best, change intermediate
algebraic expressions without affecting the final out-
come [103].

B. First and second variations

In order to study quantum effects for actions of the type
(37) with the help of functional renormalization (14) and
(30), we must provide the second variation of the action. In
general, it is given by

δ2Γ̄k ¼
Z

ddx½Lδ2 ffiffiffi
g

p þ 2δ
ffiffiffi
g

p
δLþ ffiffiffi

g
p

δ2L�: ð39Þ

Here and in the following, it is understood that the metric is
split into a background and a fluctuation field according to
Eq. (6), and the fluctuation field hμν is set to zero after
computing the variations. Next, we account for the fact that
L is taken to be a function of the Riemann tensor and the
inverse metric. Introducing

Wρσμν ≡ ∂L
∂Rρσμν

ð40Þ

to denote the Riemann tensor derivative of the Lagrangian,
we write its first variation as

δL ¼ WρσμνδRρσμν þ
∂L
∂gμν

δgμν: ð41Þ

Similarly, the second variation reads

δ2L¼Wρσμνδ2Rρσμνþ
∂Wρσμν

∂Rαβγδ
δRρσμνδRαβγδ

þ2
∂Wρσμν

∂gαβ
δRρσμνδgαβþ

∂L
∂gμν

δ2gμνþ ∂L
∂gρσgμν

δgρσδgμν:

ð42Þ

Evidently, both Eqs. (41) and (42) involve first and second
derivatives with respect to the Riemann tensor and the
inverse metric. However, it so turns out that all terms
involving first or second derivatives with respect to the
metric can be reexpressed in terms of Eq. (40) and its
Riemann tensor derivative. Specifically, the first metric
derivative is found to be proportional to W:

∂L
∂gλη

¼ 2gρðλRηÞσμνWρσμν; ð43Þ

whereas the second derivatives

∂
2L

∂Rρσμν∂gαβ
¼ gðβ ½ρWαÞσ�μν þ gðβ ½μWαÞν�ρσ

þ 2gζðαRβÞκηξ
∂Wζκηξ

∂Rρσμν
; ð44Þ

∂
2L

∂gρσ∂gμν
¼−2gαðμgνÞðρWαβγδRσÞβγδþ2

∂
2L

∂Rαβγδ∂gμν
gαðρRσÞβγδ

ð45Þ

are linear in W and its first Riemann derivative. The
detailed derivation of Eqs. (43)–(45) is relegated to
Appendix A. We therefore conclude that the first and
second variations require the knowledge of W and its
partial derivative ∂W=∂Rμνρσ for general background.

C. Maximally symmetric backgrounds

In this section, we explain why W and its partial
derivative ∂W=∂Rμνρσ are uniquely determined in terms
of a few scalar functions without specifying the underlying
Lagrangian, provided maximally symmetric backgrounds
are used [104].
The basic observation is that tensors on maximally

symmetric backgrounds, characterized by Eq. (15), can
be constructed only from the metric tensor and functions of
the background scalar curvature R. Furthermore, deriva-
tives with respect to Riemann tensors inherit the sym-
metries of the Riemann tensor. With these requirements in
mind, we observe that the action, evaluated on a maximally
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symmetric background, is characterized by a scalar func-
tion of the Ricci scalar curvature:

LðRρσμν; gαβÞjmsb ¼ L; ð46Þ

where it is understood that L ¼ LðRÞ. The specific form of
L is unknown presently, as it evidently depends on the
choice for the action L.
By the same token, the first Riemann derivative of the

Lagrangian on maximally symmetric backgrounds takes
the form

∂L
∂Rρσμν

����
msb

≡Wρσμνjmsb ¼ EPρσμν; ð47Þ

where E ¼ EðRÞ a scalar function of the Ricci scalar
curvature.4 Again, the specific form of the function E is
unknown presently but would be specified uniquely as soon
as the explicit form of the action L is provided. The tensor

Pρσμν ¼ gρ½μgν�σ ð48Þ

has the symmetries of the Riemann tensor and can also be
understood as ∂R=∂Rρσμν.
Finally, the second Riemann tensor derivative of the

Lagrangian must contain tensor structures constructed from
the metric fulfilling all symmetries inherited from the
Riemann tensor, up to unknown scalar functions of the
Ricci scalar curvature. This can be written as

∂
2L

∂Rρσμν∂Rαβγδ

����
msb

¼
X
n

Tρσμναβγδ
n fnðRÞ; ð49Þ

with tensors Tn constructed from the metric and n summing
over the independent tensors. Based on the properties of the
Riemann tensor, the tensors Tn are symmetric in

fρ; σ; μ; νg ↔ fα; β; γ; δg; fρ; σg ↔ fμ; νg;
fα; βg ↔ fγ; δg ð50aÞ

and antisymmetric in

ρ ↔ σ; μ ↔ ν; α ↔ β; γ ↔ δ ð50bÞ

and should fulfil the algebraic Bianchi identity. There are
exactly n ¼ 3 different nonvanishing tensor structures
fulfilling all of these symmetry properties. We write
them as

Aρσμναβγδ ¼ PρσμνPαβγδ; ð51Þ

Bρσμναβγδ ¼ 1

4

h
gβ�½ρgσ�½μgν�γgδ½α þ gσ�½αgβ�½γgδ�μgν½ρ

þ gβ�½μgν�½ρgσ�γgδ½α þ gν�½αgβ�½γgδ�ρgσ½μ
i
; ð52Þ

Cρσμναβγδ ¼ 1

6

h
2gα½ρgσ�βgγ½μgν�δ þ 2gα½μgν�βgγ½ρgσ�δ

− gα½ρgμ�βgγ½νgσ�δ − gα½νgσ�βgγ½ρgμ�δ

− gα½ρgν�βgγ½σgν�δ − gα½σgμ�βgγ½ρgν�δ
i
: ð53Þ

Notice that the tensor A can be viewed as the square
of ∂R=∂Rρσμν, while the tensor C is equivalent to
∂Rρσμν=∂Rαβγδ.
To check that no further independent tensor structures

exist besides A, B, and C, we observe that there are in total
60 different tensors containing eight indices which can be
constructed from the metric in such a way that they remain
nonvanishing under the antisymmetrization, as required by
Eq. (50). The tensors given in Eqs. (51)–(53) contain all
60 of these structures, thus indicating that the basis is
complete.5

We conclude that the most general form for the second
Riemann tensor derivative of L on a maximally symmetric
background is given by a linear combination of the three
tensors (51), (52), or (53), and we can write Eq. (49) as

∂
2L

∂Rρσμν∂Rαβγδ

����
msb

¼ AðRÞAρσμναβγδ þ BðRÞBρσμναβγδ

þ CðRÞCρσμναβγδ ð54Þ

with background-curvature-dependent coefficients A, B,
and C.6 On the whole, we are left with five undetermined
functions of the Ricci scalar curvature given by L
(46), E (47), and A, B, and C (54), which together
uniquely characterize any Lagrangian of the form L ¼
LðRρσμν; gαβÞ and its first and second Riemann derivatives
on maximally symmetric backgrounds. Interestingly, only
three of these five functions are independent of each other.
To see this, we use the chain rule to find

∂L
∂R

≡ ∂L
∂Rρσμν

∂Rρσμν

∂R

����
msb

¼ E; ð55Þ

where we used (47) together with PρσμνPρσμν ¼
dðd − 1Þ=2, also noting that the partial derivative

4Here and in the following, we omit the argument of E. Its
dependence on the Ricci scalar curvature is understood implicitly.

5The tensor C differs from the corresponding one used in
Refs. [104,105] by a further symmetrization. This ensures that the
algebraic Bianchi identity is satisfied.

6The parameters A, B, C, and E are related to the parameters a,
b, c, and e in Refs. [104,105] as ðA; B; C; EÞ ¼ ð4b; 4c; 2a; 2eÞ.
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∂Rρσμν=∂R is defined via the Ricci decomposition of the
Riemann tensor. We conclude that the functions L and E
are not independent in that we can always replace E by L0.
Since L already appears in the second variation, this
effectively removes one unknown parameter. Another
identity arises from the second derivative where the chain
rule implies

∂
2L
∂R2

≡ ∂
2L

∂Rρσμν∂Rαβγδ

∂Rρσμν

∂R

∂Rαβγδ

∂R

����
msb

¼ ðA ·Aρσμναβγδ þ B · Bρσμναβγδ þ C · CρσμναβγδÞ

×
4PρσμνPαβγδ

d2ðd − 1Þ2 : ð56Þ

Using Eqs. (48) and (51)–(53) and contracting all indices,

A · PP ¼ d2ðd − 1Þ2=4;
B · PP ¼ dðd − 1Þ2=4;
C · PP ¼ dðd − 1Þ=2; ð57Þ

we find

∂
2L

∂R2
¼ Aþ 2

dðd − 1ÞBþ 1

d
C: ð58Þ

Hence, the four functions L00, A, B, and C are linearly
dependent, and we can eliminate, say, A in favor of L, B,
and C. We conclude that out of the five functions L, E, A,
B, and C, only three are required to characterize the
Lagrangian and its first and second Riemann tensor
derivatives unambiguously on maximally symmetric
backgrounds. In particular, this provides us with general
closed expressions for the Hessians without specifying the
Lagrangian. Below, we pick the three functions

LðRÞ; BðRÞ; CðRÞ ð59Þ

as independent functions to characterize the action and its
second variations on maximally symmetric backgrounds.

D. Equations of motion

Using the results from the previous sections, we can now
provide the equations of motion, which take the form

Eμν ≡ δΓ̄k=δgμνjmsb ¼
1

2
Tμν; ð60Þ

where we have also written down the energy momentum
tensor due to matter fields:

Tμν ¼ −
2ffiffiffi
g

p δð ffiffiffi
g

p
LmatterÞ
δgμν

: ð61Þ

The left-hand side of the equation of motion is determined
by the function L:

Eμν ¼
1

2

ffiffiffi
g

p
gμνLþ ffiffiffi

g
p

Pαβγδ
δRαβγδ

δgμν
L0 − 2

ffiffiffi
g

p R
d
gμνL0

¼ 1

d
ffiffiffi
g

p
gμν

�
d
2
L − RL0

�
: ð62Þ

In particular, in the absence of matter, the equations of
motion take the form

2R
∂L
∂R

¼ dL: ð63Þ

It dictates nontrivial relations among the various couplings
characterizing any given higher-order theory of gravity.
Interestingly, the relation (63) has a simple interpretation in
terms of scaling dimensions. We recall that the canonical
mass dimension of the Ricci scalar is ½R� ¼ 2 in any
dimension. Then, Eq. (63) states that the scaling dimension
of L, determined by 2R∂R, exactly matches its canonical
mass dimension ½L� ¼ d if, and only if, the equation of
motion is satisfied. We rush to add that Eq. (63) should not
be viewed as a differential equation for L. Rather, for any
given Lagrangian, the isolated solutions R ¼ RdS of
Eq. (63) determine the availability of de Sitter or anti–de
Sitter solutions after analytical continuation to Minkowski
signature.
Despite the rather general form of the Lagrangian, the

equations of motion take a very simple form on maximally
symmetric spacetimes. Furthermore, taking into account
perturbations on a maximally symmetric background, it is
possible to determine the particle content for general
Lagrangians L [104–108]. Some of this can already be
read off from the Hessians, to which we turn next.

E. Hessians of higher-order gravity

We are now in a position to provide the Hessians (39) for
higher-order theories of gravity in explicit terms. We
exploit the findings for the first and second variations of
the Lagrangian on maximally symmetric backgrounds of
the previous sections and take L, B, and C as the
unspecified scalar functions (59). Moreover, we employ
the τ-dependent metric split (9) and the York decomposi-
tion (18) and (19) for the fluctuation field. The result reads
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δ2Γ̄k ¼
Z

ddx
ffiffiffī
g

p �
hTμν

�
R2

ðd − 1Þd2
�

B
d − 1

þ 2C

�
−

R
dðd − 1ÞL

0 þ ðτ − 1Þ
�
L
2
−
R
d
L0
�

þ
�ðdþ 1ÞR
dð1 − dÞ

�
B

dþ 1
þ C

�
þ L0

2

�
∇̄2 þ

�
B
4
þ C

�
∇̄4

	
hTμν − 2ξμðτ − 1Þ

�
L
2
−
R
d
L0
��

R
d
þ ∇̄2

	
ξμ

þ σ

�
ðτ − 1Þ

�
L
2
−
R
d
L0
��

R
d
−
ð1 − dÞ

d
∇̄2

�
þ Ξ∇̄2

	
∇̄2σ − 2hΞ∇̄2σ þ h

�
Ξþ ðτ − 1þ d

2
Þ

d

�
L
2
−
R
d
L0
�	

h

�
; ð64Þ

where the auxiliary function Ξ is given by

Ξ ¼ R2

d2

�
d− 3

ðd− 1Þd ðB−CÞ þL00
�
−
ðd− 2ÞR

2d2
L0 þ

�
R
d2

�
d2 þ 4d− 20

4d
B−

d− 4

d
Cþ 2ðd− 1ÞL00

�
−
ðd− 2Þðd− 1Þ

2d2
L0
	
∇̄2

þ d− 1

d2

�
d2 − 8

4d
Bþ 1

d
Cþ ðd− 1ÞL00

�
∇̄4: ð65Þ

We report the expressions for the Hessian without using the
York decomposition in Appendix B, for completeness.
Several comments are in order.

(i) Equations of motion.—A number of terms in the
Hessians are proportional to the equations of motion
(63). We have written Eq. (64) such that L appears
only in these terms. Essentially, all of them drop out
automatically for the exponential split (8), the sole
exception being the trace modes h.

(ii) Hessians in the scalar sector.—The contributions in
the σσ, σh, and hh sectors are very similar and differ
only by terms proportional to the equations of
motion, with the remaining universal piece Ξ as
given in Eq. (65). This is, however, not equivalent to
using the exponential split instead, due to a remain-
ing extra term in the hh sector.

(iii) Decoupling of auxiliary fields.—Furthermore, we
observe that the ξμξν sector is proportional to the
equations of motion and that it vanishes identically
for the exponential split. For an fðRÞ model of
gravity, this has previously been noted in Ref. [56].
Our result establishes that this is valid much more
generally and independently of the form of the
underlying action.

(iv) Massive spin-2 degrees of freedom.—We can also
infer information about the propagating degrees of
freedom directly from the Hessians (64). Besides the
usual massless spin-2 mode of Einsteinian gravity,
higher-order extensions of general relativity generi-
cally feature a ghostlike massive spin-2 degree of
freedom and an additional scalar [105]. In Eq. (64), a
ghostlike massive degree of freedom makes its
appearance due to the ∇̄4 contribution in the trans-
verse traceless modes. However, they will be absent
provided that

Bþ 4C ¼ 0; ð66Þ

as can be seen from Eq. (64). Trivial examples for
this are fðRÞ gravities where B ¼ 0 ¼ C; see
Sec. IV E. For nontrivial examples, see Sec. IV
H below.

(v) Massive spin-0 degrees of freedom.—The propagat-
ing scalar is related to the ∇̄4 term in the auxiliary
function Ξ; see Eq. (65). As can be seen from the
explicit expression, the scalar does not appear in the
spectrum provided that

ðd2 − 8ÞBþ 4Cþ 4dðd − 1ÞL00 ¼ 0: ð67Þ

Note that the conditions (66) and (67) are indepen-
dent of each other in any dimension. Hence, de-
manding the manifest absence of ghosts and the
absence of the additional scalar imposes additional
constraints, each reducing the number of indepen-
dent functions by one. Einstein-like gravities with
only a massless spin-2 degree of freedom are
obtained if both Eqs. (66) and (67) are satisfied.

(vi) Cosmological constant.—We now turn to the role of
the cosmological constant, which, by definition, is
encoded in the curvature-independent part of L.
Consequently, it can contribute to the Hessians only
via the function L, but not via B, nor C, nor via
derivatives of L. If the exponential split (8) is used, L
drops out from the Hessian (64), and only its
derivatives contribute, with the sole exception of
the trace-mode sector hh. It then follows that the
cosmological constant can make an appearance only
on the right-hand side of the flow equation (14)
through the trace-mode fluctuations h.

(vii) Decoupling and links with unimodular gravity.—For
particular gauge choices (such as the unimodular
gauge discussed in Sec. II F), the hh contributions
from Γ̄k are suppressed compared to those arising
from the gauge fixing. In this case, the use of Eq. (8)
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ensures that the cosmological constant drops out
entirely from the right-hand side of the flow. This
implies that the cosmological constant decouples
and no longer influences the running of any other
gravitational coupling, akin to unimodular versions
of gravity where the cosmological constant becomes
nondynamical and appears only as an integration
constant [109]. Moreover, its own running will be
informed entirely by other couplings. Also, provided
they achieve an interacting fixed point under the
renormalization group, it follows that the scaling
dimension associated to the cosmological constant
term is invariably set to

ϑ ¼ −d: ð68Þ

The scaling dimension agrees exactly with minus the
canonical mass dimension of the cosmological
constant term in d-dimensional spacetime. The
feature (68) has been observed already in some
fðRÞworks using these choices. Here, the result (68)
is established for general higher-order theories of
gravity of the form (37).

(viii) General backgrounds.—We close with a remark on
the decoupling of the cosmological constant for
general backgrounds beyond the maximally sym-
metric ones used here. Using once more the inter-
polating metric split (9) and taking the second
variation of the cosmological constant term ∼λ0,
we find

δ2
�Z

dd
ffiffiffi
g

p
λ0

�
¼

Z
ddx

ffiffiffi
g

p �
1

4
hh −

1

2
hμνhμν

þ τ

2
hμνhμν

	
λ0: ð69Þ

It states that for any τ ≠ 1 a nonvanishing cosmo-
logical constant triggers fluctuations in both the
trace and the tensor modes, thereby leaving a trace in
the beta functions for all gravitational couplings, and
irrespective of the chosen background geometry. For
τ ¼ 1, however, fluctuations are generated only in
the trace mode, again irrespective of the chosen
background geometry. This can be seen as a hint for
the irrelevancy of the cosmological constant and for
a potential equivalence between unimodular gravity
and the unimodular gauge of standard gravity in
nonlinear splits of the metric field (τ ¼ 1), as
conjectured in Ref. [110].

F. Mapping actions to characteristic functions

Thus far, it has been established that the Hessians of a
general higher-order theory of gravity with action (37) are
fully determined by three scalar functions, say, L, B, and C.

The latter depend on the form of the LagrangianL and need
to be determined separately for any given action. Here, we
present a highly efficient algorithm to determine the
functions L, A, B, C, or E.
Starting with a Lagrangian LðRρσμν; gαβÞ, the main idea

of the algorithm put forward by Bueno and Cano [104]
consists of introducing a modified Riemann tensor char-
acterized by a free parameter α. Concretely, it is given by

R̃ρσμν ¼ Rρσμν þ
2α

dðd − 1Þ χρ½μχν�σ; ð70Þ

with a tensor χμν fulfilling

χμμ ¼ χ; χμαχ
α
ν ¼ χμν; χμν ¼ χνμ: ð71Þ

Substituting Rρσμν → R̃ρσμν in the original Lagrangian L
leads to the modified Lagrangian

L̃≡ LðR̃ρσμν; gαβÞ; ð72Þ

which is exploited to find the characteristic functions for L.
Indeed, using the chain rule together with Eqs. (47) and
(54) and evaluating Eq. (72) and its first two α-derivatives
on a maximally symmetric background and then setting α
to zero, we find

L̃jα¼0 ¼ LðRÞ; ð73Þ

∂L̃
∂α

����
α¼0

¼ χðχ − 1Þ
dðd − 1ÞEðRÞ; ð74Þ

∂
2L̃
∂α2

����
α¼0

¼ χðχ−1Þ
d2ðd−1Þ2 ½AðRÞχðχ−1ÞþBðRÞðχ−1Þþ2CðRÞ�:

ð75Þ

We observe that for any given L the characteristic functions
are now unambiguously determined and can be read off
conveniently from Eqs. (73)–(75). In doing so, it can also
be checked that the derivative relations (55) and (58) are
indeed satisfied. As such, the algorithm is highly efficient
in that it circumnavigates the more tedious computation of
the derivatives (47) and (49) for any given L. We defer the
sample derivation of characteristic functions for specific
models of higher-order gravity to Sec. IV.
It is worth noting that different curvature invariants in L

do not necessarily result in different values for the
parameters L, B, and C beyond quadratic order in curva-
ture. This is due to the fact that starting from cubic order
onward there exist many more curvature invariants than
independent functions characterizing the Lagrangian and
its Hessian on a maximally symmetric background. Among
others, this implies the existence of curvature invariants
generating zeros for all three characteristic functions, i.e.,
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curvature invariants which vanish on maximally symmetric
backgrounds as well as their second variation. An example
for the latter is given by the seminal Goroff-Sagnotti term
∼Cρσ

μνCμν
λτCλτ

ρσ [111,112], where C denotes the Weyl
tensor.

G. Flows for higher-order gravity

After finding the Hessians in Eq. (64), we can now use
Eq. (30) to derive the flow of actions of the form (37).
Generally, and even without adapting the technical choices
discussed in Sec. II, the result takes the form

∂tL ¼ Ī½L;B; C�; ð76Þ

where the right-hand side Ī½L;B; C� ¼ Ī½L;B;C�ðRÞ arises
entirely due to quantum fluctuations, and we sometimes
refer to it as the fluctuation integrals. As such, Ī½L;B;C� is
the result of performing the functional traces of Eq. (30) and
a function of the background curvature. This form of the
flow as a functional of L, B, and C is independent of any
technical choices explained in Sec. II or the form of the
regulator. It solely arises from the form of the Hessian in
Eq. (64). For the technical choices made in Sec. II, in
particular, (25) and the shape function (26), Ī½L;B;C�
depends on curvature derivatives of L as well as the flow
of L, B, and C due to the term ∂tRk on the right-hand side
of Eq. (30).
For the purpose of analyzing the renormalization group

flow and finding fixed points, it is convenient to transition
from Eq. (76) to expressions in terms of dimensionless
quantities. We rescale the background curvature in units of
the RG scale r ¼ R=k2, and likewise the functions L, B,
and C, by writing

lðrÞ ¼ LðRÞ=kd; ð77Þ

bðrÞ ¼ BðRÞ=kd−4; ð78Þ

cðrÞ ¼ CðRÞ=kd−4: ð79Þ

Furthermore, the operator traces also depend on dimen-
sionful technical parameters, i.e., the endomorphism param-
eters Ei (27). Since these are linear in the Ricci curvature,
we introduce their dimensionless counterparts ei as

ei ¼
Ei

R
; ð80Þ

which therefore are numbers bounded by the constraints
(29). In these conventions, the flow equation takes the form

∂tlþ dl − 2rl0 ¼ I½l; b; c� ð81Þ

in general dimensions d, with the dependence on ei being
implicit. The new terms on the left-hand side of Eq. (81)
arise from the transition to dimensionless variables and
account for the canonical mass dimension of the Lagrangian
½L� ¼ d and the mass dimension of Ricci scalar ½R� ¼ 2.
The fluctuation integral I relates to Ī in Eq. (76) as

I½l; b; c�ðrÞ ¼ k−dĪ½kdl; kd−4b; kd−4c�ðk2rÞ: ð82Þ

The explicit expressions for I are rather lengthy and
delegated to Appendix C. The flow equation (81) is one
of the central new results of this work. We therefore briefly
discuss its general structure and some of its basic features.
(a) Structure of the flow.—The flow equation (81) takes

the form of a nonlinear partial differential equation
for the three functions l, b, and c. The left-hand
side shows the flow ∂tl and canonical terms. The
right-hand side, due to quantum fluctuations, can be
written as

I½l; b; c� ¼ I0½l; b; c� þ I1½l; b; c�∂tl0 þ I2½l; b; c�∂tl00

þ I3½l; b; c�∂tbþ I4½l; b; c�∂tc: ð83Þ

The terms ∝ ∂tl0, ∂tl00, ∂tb, and ∂tc are a consequence
of the regulator function Rk whose dependence on l,
b, and c induces their flow via ∂tRk in Eq. (30). The
component functions Ii in Eq. (83) still depend on l,
b, and c and their field derivatives (see Appendix C
for explicit expressions) but no longer on flow terms.
Depending on the choice for the action L, the flow
equation can be converted into a partial differential
equation for a single or two coupled functions of
background curvature (explicit examples will be
given in Sec. IV). Once the action contains several
curvature invariants of the same mass dimension,
additional flow equations using other background
geometries can be invoked to close the system.

(b) Expansions in powers of curvature.—A useful
approximation scheme consists in expanding the
action L in powers of curvature invariants Xn. Taking
these as in Eq. (38) with invariants of mass dimension
½Xn� ¼ 2n and dimensionless scale-dependent cou-
plings λn ¼ λnðtÞ, we find

l ¼
X∞
n¼0

λnlnrn;

b ¼
X∞
n¼2

λnbnrn−2;

c ¼
X∞
n¼2

λncnrn−2; ð84Þ

where the series expansions for b and c follow from
the results in Sec. III F. The numerical coefficients ln,
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bn, and cn are unknown a priori but determined for
any given ansatz (38). Hence, the flow (81) is closed
and can be resolved to give ∂tλn for all couplings.

(c) Fixed points and quantum scale invariance.—
Fixed points are the scale-independent solutions
∂tðl�; b�; c�Þ ¼ 0, implying quantum scale invari-
ance. Nontrivial UV fixed points are of particular
interest as candidates for an asymptotically safe
version of quantum gravity [1]. At a fixed point,
Eq. (81) turns into an ordinary differential equation:

dl − 2rl0 ¼ I0½l; b; c�: ð85Þ

Fixed points then correspond to the well-defined,
finite solutions for the functions l�ðrÞ, b�ðrÞ, and
c�ðrÞ or, alternatively, for the couplings λn;�.

(d) Limit of classical gravity.—In the absence of quantum
fluctuations, the fluctuation integrals I vanish. This
leaves us with the classical flow ð∂t þ d − 2r∂rÞl ¼ 0,
which integrates to lðr; tÞ ¼ rd=2 ·Hðre2tÞ with
HðxÞ determined by initial values of couplings and
no dependence on b and c. We observe a Gaussian
ðl� ¼ 0Þ and an infinite Gaussian ð1=l� ¼ 0Þ fixed
point and a line of classical fixed points l� ∼ rd=2 (for
H ¼ const) reflecting the classically marginal curvature
invariants in d dimensions. Classical general relativity
with action L ∝ R=GN and Newton’s coupling GN ¼
g=k2 then arises through the infinite Gaussian fixed
point in the infrared limit, where k → 0 and g → 0
while GN is held fixed at its observed value and
irrespective of the sign of the cosmological constant
[51]. In the presence of quantum fluctuations, we have
I ≠ 0. However, quantum effects become parametri-
cally suppressed for

I=l → 0 with 1=l → 0: ð86Þ

We conclude that the limit of classical general relativity
or classical higher-order gravity arises from the quan-
tum theory through the infinite Gaussian fixed point in
the deep infrared [51,64,69].

(e) Hyperbolic backgrounds.—In the above, we have
derived the flow for actions of the form (37) on
spherical backgrounds, i.e., maximally symmetric
backgrounds with positive curvature. The very same
procedure can be carried out on backgrounds with
negative curvature with the only difference that the
functional traces need to be evaluated accordingly. This
can be implemented straightforwardly, leading to mod-
ifications of the corresponding heat kernel coefficients
or, alternatively, spectral sums. In the context of fðRÞ
gravity, this has been carried out in Ref. [59].

(f) Including matter fields.—The flow equation can
straightforwardly be extended to include matter fields.

We now turn to a discussion of some more technical
aspects of the flow equation and to new features of the flow
(81) due to the wider range of admissible actions L. To that
end, we recall that the functions Ii are rational functions of
the form

Ii½l;b;c�∝
PT
i ½l;b;c�

DT ½l;b;c�þ
PS
i ½l;b;c�

DS½l;b;c�þ
�
PV
c

DV
c
þPS

c

DS
c

�
δ0i; ð87Þ

which originate from the fluctuations of the various fields
contributing to Eq. (30). The superscripts T and S denote
the contributions from the tensor modes hTμν and the scalar
trace mode h, respectively. Superscripts V and S with an
additional subscript c denote contributions from the aux-
iliary vector and scalar modes from ghosts and Jacobians.
These latter terms are independent of l, b, and c and
contribute only to I0. The numerators P and the denom-
inators D are polynomials in the curvature and linear in
their arguments l, b, and c or derivatives thereof. Also, the
denominators in Eq. (87) are universal and differ only
between the different York modes (explicit expressions for
any P, D, and Ii are summarized in Appendix C). For the
remainder, we focus on special points related to zeros of the
denominators D or zeros of certain numerators P.
(g) Movable poles.—We begin with the denominators due

to transverse traceless modes DT and trace modes DS.
These are linear functions in l, l0, b and c, with DS

additionally depending on l00, with coefficients poly-
nomial in curvature. As such, either of these may
vanish for some r0. We refer to these as movable poles
to reflect that their location depends on the form of L
and its couplings. Also, these zeros cannot be avoided
in general by suitable choices of technical parameters
and must be taken as part of the setup. Therefore,
unless otherwise stated, we set the endomorphism
parameters to their natural values

e1 ¼ 0; e4 ¼ 0: ð88Þ

Explicit studies have shown that if zeros of the
denominators arise, they are innocuous and always
accompanied by zeros of the corresponding numer-
ators, leading to finite and well-defined solutions lðrÞ
for all fields.

(h) Avoiding spurious poles.—The fluctuations of the
auxiliary fields contribute to I0 and have an impact
on the location of fixed point solutions (85). Their
denominators DV

c and DS
c are given by

DV
c ¼ 1−

�
e2þ

1

4

�
r; DS

c ¼ 1−
�
e3þ

1

3

�
r: ð89Þ

Once more, we observe that Eq. (89) can vanish for
finite curvature. Also, the corresponding numerators
PV
c and PV

c cannot be made to vanish simultaneously
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for any finite e3 or e4. This implies that finite and well-
defined fixed point solutions of Eq. (85) require that
these spurious poles are compensated by other terms in
Eq. (87), as has been confirmed in explicit studies
[51,64]. However, since the zeros of Eq. (89) depend
on only the technical parameters e2 and e3 and are
otherwise independent of l, b, or c, they can be
removed from the outset by a suitable choice of
parameters

e2 ¼ −
1

4
; e3 ¼ −

1

3
: ð90Þ

It has been noted that the technical simplifications
achieved by the choices (90) lead to improved re-
sults [45,65].

(i) Fixed singularities.—The zeros of certain numerators
P in Eq. (87) have a significance for fixed point
solutions (85). The reason for this is that I0 is linear in
l, b, and c and their derivatives l0, l00, l000, b0, and c0

with polynomial coefficients in curvature. To illustrate
our points, we first consider theories with b ¼ c ¼ 0,
relevant for fðRÞ-type models of quantum gravity. In
this case, the trace modes h generate a term ∼l000, with

PS
0½l; 0; 0� ¼ PSl3

0 l000 þ � � � ; ð91Þ

and dots indicating further terms with lower derivatives
of l; see Eq. (C6b). The coefficient PSl3

0 ðr; e4Þ, given
in Eq. (C7i), is a quintic polynomial in r without a
constant term which further depends on e4. The fixed
point condition (85) then becomes a third-order differ-
ential equation for the fixed point function l. Expressed
in normal form, it becomes an ordinary third-order
nonlinear differential equation:

l000 ¼ J ðl;l0;l00; rÞ=PSl3
0 ðrÞ ð92Þ

for some function J and provided that PSl3
0 ≠ 0.

Background curvatures r ¼ r0 where PSl3
0 vanishes

are referred to as singularities and take a special role in
that they change the order of the differential equation.
In general, one zero of PSl3

0 is always located at r0 ¼ 0.
In addition, we always find two real and a complex
conjugate pair of solutions r0 for any value of e4. For
example, for vanishing endomorphism parameter e4,
the fixed singularities are located at

r0 ≈ −9.9986;

r0 ¼ 0;

r0 ≈ 2.0065;

r0 ≈ −4.9763� 0.46851i: ð93Þ

Also, in contrast to the spurious poles from the
auxiliary sector it is not possible to remove these zeros
by an appropriate choice for e4. Hence, for solutions of
Eq. (85) to remain well defined even across r0, a
compensating zero of J is required for any zeros of
PSl3
0 along the real axis in field space. This transforms

the search for global fixed points into a boundary value
problem for Eq. (92): Each possible singularity re-
quires the fine-tuning of one open parameter of the
general solution to ensure that l remains well defined
for all real r. In particular, if the number of zeros of
PSl3
0 is equal to the order of the differential equation,

only a countable number of well-behaved solutions
may exist.7 For models of quantum gravity with
b ¼ c ¼ 0, we conclude that the trace-mode-induced
coefficient PSl3

0 has a direct impact on the possible
space of fixed point solutions.

(j) Avoiding fixed singularities.—New features arise if
actions (37) are permitted with either b or c or both
different from zero. We illustrate our point, exempla-
rily, for models where b is proportional to l00 and
c ¼ 0. Owing to Eqs. (66) and (67), these higher-order
models of gravity display additional propagating spin-
2 degrees of freedom and, possibly, additional massive
spin-0 degrees of freedom. Once more, interacting
fixed point solutions of (85) arise as a third-order
differential equation for l. Terms proportional to l000
continue to be generated by the fluctuations of the h
modes. In contrast to the previous example, however,
additional contributions arise through the transverse
traceless modes hTμν. This is so because

PT
0 ½l; b; 0� ¼ PTb1

0 b0 þ � � � ð94Þ

[see (C6a)] with b0 ∝ l000 and dots indicating terms
involving lower l derivatives. The coefficient PTb1

0 is
an e2-dependent quintic polynomial in curvature with-
out a constant term; see (C7i). Bringing Eq. (85) with
(91) and (94) into normal form, we find

l000 ¼ Kðl;l0;l00; rÞ
DT ½l; b; 0�PSl3

0 þDS½l; b; 0�PTb1
0

ð95Þ

for some function K and with PSb1
0 as in Eq. (92). The

fact that the transverse traceless modes also generate a
term ∝ l000 changes the nature of the fixed point
differential equation. Comparing Eq. (92) with (95),
we observe that the denominator of Eq. (95) now
additionally depends on DT and DS and, hence, on the
couplings of the theory through l and b ∝ l00. Ulti-
mately, this is due to the trace and transverse modes

7Examples where this has been carried out for fðRÞ gravity
include Refs. [46,53,57].
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carrying different denominators (87). Most notably,
unlike in Eq. (92) where the singularities are fixed, the
singularities of Eq. (95) have been rendered movable
owing to the higher-order nature of the underlying
models. Hence, in these more general setups, the
quantum dynamics of the theory itself determines
whether and where singularities due to vanishing
denominators in Eq. (95) arise, if at all. A more
detailed quantitative analysis of this aspect in higher-
order theories of quantum gravity is deferred to a
forthcoming publication [113].

This concludes the discussion of general features of the
flow equation (81) for higher-order theories of gravity with
fundamental actions (37) and the condition for interacting
fixed points (85).

IV. APPLICATIONS

In this section, we explain how our setup can be used
to study the effects of different higher-order curvature
invariants. We show how operator traces on maximally
symmetric backgrounds can be used to project the flow
onto specific curvature monomials. We also revisit flow
equations for template models of quantum gravity studied
in the literature and derive their characteristic functions
L, E, A, B, and C.

A. General projections

Flow equations on maximally symmetric backgrounds
are particularly useful when considering (derivative) expan-
sions of the quantum effective action Γ̄k which contain a
single operator for each mass dimension; see Eq. (38). Let
us now discuss how the functional renormalization group
generates the flow for actions of the form (38) using a
general background geometry before specializing to a
maximally symmetric background and discussing which
approximations are implied by that. In the present setup
(14), the flow equation for actions (38) generates a sum of
operators fXng on the left-hand side. On the right-hand side,
the operator trace generates all possible curvature mono-
mials, including some which are not part of the set fXng
retained in the initial action. To make this more explicit, we
introduce a complete basis of curvature invariants fYn;ig
with n labeling the mass dimension, as before, and i labeling
the different operators of equal mass dimension. Without
loss of generality, we can choose this new basis such that
Yn;1 ¼ Xn. After computing the functional traces, Eq. (14)
can be written into the form

X∞
n¼0

Z
ddx

ffiffiffi
g

p
β̄nXn ¼

X∞
n¼0

X
i

Z
ddx

ffiffiffi
g

p
ζn;iYn;i; ð96Þ

where β̄n are the dimensionful β functions of the couplings
λ̄n and ζn;i are functions depending on the couplings and
potentially their β functions.

Since we are interested in only the flow of λ̄n associated
to the operators Xn, we require a procedure to project the
right-hand side onto the operators Xn. It is important to note
that this projection is generally ambiguous due to the
absence of a natural scalar product between different
curvature invariants. Hence, the projection will depend
on the chosen basis for the curvature monomials. After
constructing a complete basis fYn;ig, the canonical pro-
jection is given by demanding that all Yn;i>1 in Eq. (96)
vanish. Following this projection procedure, the use of
maximally symmetric backgrounds is equivalent to con-
sidering a canonical operator basis fYn;ig in which all
operators except Yn;1 ¼ Xn vanish on the chosen back-
ground, Yn;i>1jmsb ¼ 0. Then, our projection procedure of
setting Yn;i>1 ¼ 0 is equivalent to evaluating all operators
on the background geometry.
More generally, starting from an arbitrary operator basis

fZn;ig, a canonical basis fYn;ig can always be constructed
provided the curvature monomials Xn are nonvanishing on
the background. That this is always possible can be
appreciated by expressing all curvature invariants using
the Ricci decomposition, whereby the Ricci scalar curva-
ture R, the traceless Ricci tensor Sμν, and the Weyl tensor
Cρσμν

fR; Sμν; Cρσμνg ð97Þ

are used as building blocks to construct any curvature
invariant of mass dimension 2n for any positive integer n.
Then, any operator in the basis fZn;ig takes the form

Zn;i ¼ zn;iRn þOðSμν; CρσμνÞ; ð98Þ

with zn;i a possibly dimension-dependent constant and
OðSμν; CρσμνÞ a sum of terms vanishing on a maximally
symmetric background, i.e., terms containing at least one
power of Sμν or Cρσμν. Assuming without loss of generality
that Xn ≡ Zn;1 ¼ Yn;1, the canonical basis fYn;ig is explic-
itly given by

Xn≡Yn;1 ¼ Zn;1; Yn;i ¼ Zn;i−
zn;i
zn;1

Zn;1 ∀ i≠ 1: ð99Þ

By construction, all Yn;i>1 vanish on the background
geometry as required. Note that the only requirement on
Xn is that it is nonvanishing on a maximally symmetric
background:

Xn ≡ Zn;1 ¼ zn;1Rn þOðSμν; CρσμνÞ; ð100Þ

with zn;1 ≠ 0. An example where the Xn do not receive any
contributions from Sμν and Cρσμν is given by powers of the
Ricci scalar Xn ∼ Rn and corresponds to a projection onto
the curvature monomials contained in fðRÞ models of
gravity. However, we are not limited to this case and may
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also project onto curvature invariants containing Sμν and
Cρσμν as long as zn;1 does not vanish. Examples for the latter
have been studied in Refs. [64,69].
Finally, our discussion also highlights well-known

limitations of maximally symmetric backgrounds. As
soon as the decomposition of a curvature monomial
Xn as in Eq. (100) has no term ∼Rn, its flow on maxi-
mally symmetric backgrounds cannot be determined.
Furthermore, as indicated above, maximally symmetric
backgrounds constrain the types of curvature bases that can
be used for the projection. In particular, noncanonical
curvature bases fYn;ig where some Yn;i>1jmsb ≠ 0 neces-
sitate additional input, e.g., less symmetric background
geometries, to disentangle the flow of couplings. The latter
equally applies if several field monomials of the same
canonical mass dimension are retained. In the remainder of
this section, we discuss various examples of increasing
complexity and explain how the flow for general curvature
invariants of the form (100) can be analyzed within our
framework.

B. Einstein-Hilbert

As a first example, we discuss the renormalization group
flow for the Einstein-Hilbert action which has been studied
in many incarnations of the functional RG, e.g., Refs. [2–
6,90]. Here, we have

L ¼ λ̄0 þ λ̄1R; ð101Þ

with λ̄n the dimensionful couplings. Since this Lagrangian
does not include any operators quadratic in curvature, it
follows straightforwardly that

L ¼ λ̄0 þ λ̄1R;

E ¼ λ̄1;

A ¼ B ¼ C ¼ 0: ð102Þ

We introduce dimensionless couplings

λ0 ¼ 16πλ̄0=k4;

λ1 ¼ 16πλ̄1=k2; ð103Þ

where the factor of 16π is purely conventional and chosen
such that Newton coupling in units of the RG scale g ¼
Gk=k2 is given by minus the inverse of λ1. Also using the
dimensionless Ricci curvature r ¼ R=k2, we obtain the beta
functions βi from Eq. (81) with Eq. (102). Neglecting all
terms quadratic or higher in r, we find

β0 þ 4λ0 þ rðβ1 þ 2λ1Þ

¼ 1

24π

�
30ðβ1ð6e1rþ r − 2Þ þ 2λ1ð18e1rþ 3r − 8ÞÞ

λ1ð6e1rþ ð3τ − 4Þr − 6Þ þ 6ðτ − 1Þλ0
−
3β1ð6e4r − r − 2Þ þ 6λ1ð18e4r − 3r − 8Þ

2ð1þ τÞλ0 þ ð3þ rτ − 3e4rÞλ1
þ 36e2rþ 12e3r − 23r − 48

	
; ð104Þ

which can be resolved for βi. To make a link with the
notation of Ref. [90], we express the action in terms of the
cosmological constant λ and Newton’s coupling g, which
are related to λ0 and λ1 by

λ ¼ −λ0=ð2λ1Þ;
g ¼ −1=λ1: ð105Þ

Then, expanding the denominators in small curvature,
exemplarily for vanishing endomorphisms and τ ¼ 0, we
find

∂tλ ¼ λðη − 2Þ þ λð42 − 96λþ 13ηÞ − 9ðη − 2Þ
12πð2λ − 1Þð4λ − 3Þ g;

∂tg ¼ ð2þ ηÞg;

η ¼ 3g
237 − 680λþ 756λ2 − 368λ3

72πð1 − 2λÞ2ð4λ − 3Þ þ 2gð48 − 97λþ 42λ2Þ ;

ð106Þ

where η is the anomalous dimension of the graviton. The
flow (106) features the well-known Reuter fixed point [90]
located at

λ ¼ 0.12926;

g ¼ 0.98416; ð107Þ

with critical exponents

θ0=1 ¼ −2.3824� 2.1682i; ð108Þ

in agreement with the results in Refs. [51,64]. For a
nontrivial choice of the endomorphism parameters e2
and e3, we also recover [65,69] with small changes in
the numerical values for the couplings and the eigenvalues
compared to Eqs. (107) and (108).
In Fig. 1, we show the dependence of the Reuter fixed

point on e1 over the whole range of parameters in
accordance with Eq. (29) while the remaining endomor-
phisms and τ are fixed to 0. Both eigenvalues are relevant
throughout. We find complex conjugate pairs for small
(e1 ≲ 10) and real eigenvalues for large endomorphism. In
the latter, couplings λ and g scale as 1=e1.

FUNCTIONAL RENORMALIZATION FOR … PHYS. REV. D 106, 106022 (2022)

106022-17



In Fig. 2, we show the eigenvalues of the fixed point and
λg in an interpolation between the linear and the exponen-
tial split while keeping all endomorphism parameters
vanishing. While the eigenvalues never become real, we
observe that they stay relevant in the whole range, giving
qualitatively the same result in the linear and the expo-
nential split. Note that this correspondence between the
linear and the exponential split seems to hold in the
Einstein-Hilbert approximation, while it has been observed
that higher curvature invariants such as in an fðRÞ
expansion modify this result [66].

C. Phase diagram

The phase diagram of Einstein-Hilbert gravity has been
studied in many works, e.g., Refs. [2,6,8,16,17,25]. Here,
we exploit the flow equation (104) to find the phase
diagram of Einstein-Hilbert gravity and general analytical
solutions for the running of couplings. This benefits from
the limit of large endomorphism 1=e1 → 0, also using
suitably rescaled couplings λ → λ

e1
and g → g

e1
. In this limit,

the τ dependence drops out. Another feature is that the flow
for the cosmological constant decouples naturally (Fig. 1).
The resulting β functions take simple analytical expressions
given by

∂tλ ¼
�
λ −

λ�
g�

g

�
θ0 − θ1ð1 − g�=gÞ
1þ 1

2
θ1ð1 − g�=gÞ

;

∂tg ¼ θ1
g − g�

1þ 1
2
ð1 − g�=gÞθ1

: ð109Þ

Notice that Eq. (109) depends on only the fixed point
coordinates and eigenvalues, which in our setup are
given by

λ� ¼
3

25
; g� ¼

12π

25
; θ0 ¼−4; θ1 ¼−

10

3
; ð110Þ

in accord with Fig. 1. We observe that λ no longer couples
into the flow of g, giving rise to the eigenvalue (68). The
flow for g can also be written in terms of the graviton
anomalous dimension η:

∂tg¼ ð2þ ηÞg; where η¼−
2

1þ 1
2
θ1ð1− g�=gÞ

: ð111Þ

The explicit expressions make it evident that the anoma-
lous dimension η approaches −2 at the UV fixed point.
Also, the couplings approach the UV with scaling expo-
nents θ0 and θ1, respectively. Notice that the anomalous
dimension diverges for g → gbound ¼ θ1

2þθ1
g�, with gbound >

g� for θ1 < −2.
The flow ∂tg in Eq. (109) can be integrated in closed

form, since it is independent of the cosmological constant
[6,114,115]. Then, for g away from its fixed point and
gbound, we find that the running is monotonic:

�
g
g0

�1
2

�
g� − g
g� − g0

� 1
θ1 ¼ k

k0
; ð112Þ

with g� and θ1 as defined in Eq. (110). The powers of the
first and second factors of Eq. (112) relate to the inverse
scaling exponent of g at the infrared fixed point (θIR ¼ 2)
and the ultraviolet fixed point (θUV ¼ θ1), respectively.
From these expressions, we can easily read off the Gaussian
and the Reuter fixed point.

FIG. 2. Shown are the scaling exponents and the product of
couplings λg at the Reuter fixed point and their dependence on the
metric split parameter τ [Eq. (9)], also using ei ¼ 0. Interpolating
between linear (τ ¼ 0) and exponential split (τ ¼ 1), the τ
dependence of eigenvalues is mild.

FIG. 1. Shown is the dependence of the eigenvalues of the
Reuter fixed point on the endomorphism parameter e1. In line
with the bounds given in Eq. (29), we present the whole range of
allowed values for e1 while all other parameters have been set to
zero, i.e., τ ¼ e2 ¼ e3 ¼ e4 ¼ 0. The red line indicates the real
part of the eigenvalues which are complex conjugated until
e1 ≈ 10. The absolute value of the imaginary part for both
eigenvalues is displayed by the blue line.
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For g ≠ g�, we also find the analytical solution of λ as a
function of the running Newton’s coupling (112):

λ ¼ λh

�
g
g�

�
þ
�
λ0 − λh

�
g0
g�

�	
g0
g

�
g� − g
g� − g0

�θ0
θ1 ; ð113Þ

where we have introduced the auxiliary function

λhðxÞ ¼
λ�

θ0 −2θ1

�
xðθ0− θ1Þ−

θ0θ1
θ0− θ1

þ 1

x
ðθ1Þ2
θ0− θ1

	
: ð114Þ

In the high-energy limit g → g� we observe λ → λ� ¼ λhð1Þ,
in agreement with Eq. (110). For g ¼ g�, the running of λ is
independent of g and reads λ ¼ λ� − ðλ� − λ0Þetθ0 . Simple
analytical expressions for the running of couplings such as
Eqs. (112)–(114) are useful for many farther-reaching
applications in particle physics, cosmology, or black holes
[114–119].
Figure 3 shows the phase diagram for Einstein-Hilbert

gravity in terms of λ and g. The resulting plot shows
trajectories connecting the Reuter fixed point in the ultra-
violet with the fixed point g → 0 in the infrared.8 As such,
we observe that low-energy regimes with a positive, neg-
ative, or vanishing cosmological constant can be achieved.
The phase diagram also displays a boundary in the strong
coupling domain at gbound ¼ 6π

5
≈ 3.77 > g� where the

anomalous dimension in Eq. (109) becomes singular, with
η < 0 (η > 0) below (above) the boundary. Trajectories
running into the boundary terminate. Along the boundary,
the resulting β functions are ill defined, and we find that g
becomes complex by using the full analytic solution in
Eq. (112). Also, above the boundary, RG flows are once
more well defined. In this regime, we find a strongly
interacting fixed point at 1=g� ¼ 0 and 1=ðgλÞ� ¼ 0 with
η� ¼ 3. This strong coupling fixed point is ultraviolet with
two relevant eigendirections. However, all emanating tra-
jectories terminate at gbound and cannot reach the low-energy
regime where classical general relativity becomes valid.

D. Gauss-Bonnet

Next, we consider Gauss-Bonnet gravity which we take
to be Einstein-Hilbert gravity amended by the Gauss-
Bonnet term

L ¼ λ̄0 þ λ̄1Rþ λ̄GBGB;

GB ¼ R2 − 4RμνRμν þ RρσμνRρσμν: ð115Þ

The Gauss-Bonnet term fulfills

Z
d4x

ffiffiffi
g

p
GB ¼ 32π2χðMÞ ð116Þ

in four-dimensional spacetime with χðMÞ the Euler char-
acteristic. On a spherical background, we find GB ¼ R2=6,
leading to the familiar result

χðMÞ ¼ 2: ð117Þ

Since the Gauss-Bonnet term is a topological invariant in
four-dimensional spacetime, its first variation is a total
derivative, and, therefore, it cannot contribute to Hessians
of the action. Still, the parameters L, E, A, B, and C are
nonvanishing:

L ¼ λ̄0 þ λ̄1Rþ 1

6
λ̄GBR2;

E ¼ 1

3
λ̄GBR;

A ¼ 2λ̄GB;

B ¼ −8λ̄GB;

C ¼ 2λ̄GB: ð118Þ

Despite this, all terms in the Hessians originating
from the Gauss-Bonnet term vanish due to cancellations.

FIG. 3. The phase diagram of Einstein-Hilbert gravity in terms
of λ and g with arrows on trajectories pointing toward the
infrared. The gray dashed line indicates a singularity of the
anomalous dimension and separates regimes of weak and strong
coupling. The lower panel shows the Reuter fixed point (central
red dot) and trajectories connecting it with classical general
relativity in the infrared (red horizontal axis, g ¼ 0). The upper
panel shows a strongly coupled UV fixed point 1=g ¼ 0 ¼
1=ðgλÞ (red dot). Trajectories emanating from the latter terminate
at the singularity of the anomalous dimension and cannot reach
classical general relativity.

8The fixed point g ¼ 0 corresponds to the infinite Gaussian
fixed point 1=l → 0 discussed in Sec. III G.
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This identifies the Gauss-Bonnet coupling as an inessential one and guarantees that the flow of λ̄0 and λ̄1 is identical to their
flow in the Einstein-Hilbert theory without a Gauss-Bonnet term. The flow of the Gauss-Bonnet coupling (using
λGB ¼ 16πλ̄GB) is given by

∂tλGB ¼ gð482160λ4 − 1155004λ3 þ 529036λ2 þ 358587λ − 231912Þ
720πð4λ − 3Þð2λ − 1Þ½gðλð42λ − 97Þ þ 48Þ þ 36πð4λ − 3Þð1 − 2λÞ2�

þ 13504λ4 − 30692λ3 þ 30572λ2 − 20305λþ 6702

5ð2λ − 1Þ½gðλð42λ − 97Þ þ 48Þ þ 36πð4λ − 3Þð1 − 2λÞ2� ð119Þ

with λ and g defined as in Eq. (105). Because of the absence
of λGB in all β functions, a fixed point for λGB can be found
only if the fixed point of the other β functions induces a
vanishing ∂tλGB by chance. Otherwise, this coupling grows
to plus or minus infinity. Redefining the coupling according
to ρ ¼ 1=λGB, the only fixed point for ρ is the asymptoti-
cally free one at ρ ¼ 0. Finally, it is worth pointing out that
the independence of all other β functions on λGB is not a
result of our approximation or the choice of background
geometry. Rather, this is entirely due to the topological
nature of the Gauss-Bonnet term, which, in turn, makes the
coupling an inessential one. A similar observation has been
made based on studies up to quadratic order in curvature
[67,68].

E. f ðRÞ gravity
A well-known example for a gravitational action con-

taining arbitrary high curvature invariants is given by fðRÞ
gravity with actions of the form

L ¼ fðRÞ: ð120Þ

These types of theories have extensively been analyzed in
the asymptotic safety literature (see, e.g., [36,37,46,47,49–
51,55,57–59,64,65]). These types of theories are also
contained in the general setup (81). To obtain the corre-
sponding parameters, we use the results of Sec. III F and
start by noting that the form of the modified Ricci scalar
curvature (70) is given by

R̃ ¼ gρμgσνR̃ρσμν ¼ Rþ α
χ

d
χ − 1

d − 1
: ð121Þ

Hence, substituting the Lagrangian (120) by L̃ ¼ fðR̃Þ,
we find

∂αL̃jα¼0 ¼ f0ðRÞ χðχ − 1Þ
dðd − 1Þ ;

∂
2
αL̃jα¼0 ¼ f00ðRÞ χ

2ðχ − 1Þ2
d2ðd − 1Þ2 ; ð122Þ

and comparison of Eq. (122) with Eqs. (74) and (75) gives

L ¼ fðRÞ;
E ¼ f0ðRÞ;
A ¼ f00ðRÞ;
B ¼ 0;

C ¼ 0; ð123Þ

confirming that fðRÞ gravities have vanishing B and C.
As discussed in Sec. III E, this has the effect that the ∇4

term in the Hessian for the transverse traceless tensor
modes is absent. Combining Eq. (123) into Eq. (81), we
find a general flow equation for fðRÞ gravity with open
endomorphisms and unspecified τ. The choice for
these parameters can have crucial effects on the type
of fixed point solutions. In particular, it has been noted
that solutions to the equations of motion are absent for
the linear split with trivial endomorphisms parameters
ei ¼ 0 [46,50,58]. In Ref. [50], it was argued that
eigenperturbations of such fixed points not admitting
solutions to the equations of motion are redundant by
nontrivial field redefinitions. However, it turns out that
solutions to the equations of motion do exist for the
linear split with endomorphism parameters (88) and (90)
[65]. The latter choice also removes technical poles in
the flow equation obtained from the denominators DV

c

and DS
c in Eq. (C10).

While the flow equation (81) agrees using Eq. (123)
with some results in the literature [37,46,51,65], flow
equations using other technical choices as explained in
Sec. II cannot or can only partly be obtained from our
result. In particular, note that Eq. (81) is subject to the
Landau gauge with δ ¼ 0, which makes it different from
flows using the unimodular gauge [55,56,120]. As
explained above, in this gauge the physical fluctuations
Γ̄σσ
k enter the flow (14) rather than Γ̄hh

k . Because of
this, only the transverse tensor sector of our flow
equation, i.e., PT and DT given in Appendix C, agree
with those works. Moreover, literature results can differ
due to different techniques in evaluating functional
traces, in particular, by using smoothed spectral sums
[45,56,57,120] or by evaluating the flow on maximally
symmetric backgrounds with negative curvature, i.e.,
hyperbolic spaces [59].
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F. f ðR;Ric2Þ gravity
We now turn to models which additionally allow for

Ricci tensor interactions [64] and consider gravitational
Lagrangians of the form L ¼ fðR;Ric2Þ, where

fðR;Ric2Þ ¼ FðRic2Þ þ R · ZðRic2Þ: ð124Þ

The functions F and Z are unspecified a priori and
characterize the even ∼FðRÞ and odd ∼R · ZðRÞ parts of
the action under reflection in field space R ↔ −R. In a
polynomial expansion in the fields, the action contains the
Einstein-Hilbert action to the lowest orders. The character-
istic functions derived from this action are

L ¼ FðxÞ þ RZðxÞ;

E ¼ 1

2
½F0ðxÞ þ RZ0ðxÞ�Rþ ZðxÞ;

A ¼ 1

4
½F00ðxÞ þ RZ00ðxÞ�R2 þ RZ0ðxÞ;

B ¼ 2F0ðxÞ þ 2RZ0ðxÞ;
C ¼ 0; ð125Þ

where x ¼ 1
4
R2. Clearly, Ricci tensor interactions now

contribute to the coefficients L and B, while the coefficient
C remains trivial. Within the asymptotic safety scenario, the
functions F and Z have been determined self-consistently
by the requirement that an interacting fixed point is reached
in the ultraviolet [64].

G. f ðR;Riem2Þ gravity
In the same spirit, we consider gravitational actions

which depend on Ricci scalar and Riemann tensor inter-
actions [69], but not on Ricci tensor ones, with a gravi-
tational Lagrangian of the form L ¼ fðR;Riem2Þ, where

fðR;Riem2Þ ¼ FðRiem2Þ þ R · ZðRiem2Þ: ð126Þ

Once more, the functions F and Z are unspecified a priori,
and the action (126) contains the Einstein-Hilbert action to
the lowest orders in a polynomial expansion. The functions
F and Z have been determined self-consistently by the
requirement that an interacting UV fixed point arises in the
UV [69]. The characteristic functions are found to be

L ¼ FðxÞ þ RZðxÞ;

E ¼ 1

3
½F0ðxÞ þ RZ0ðxÞ�Rþ ZðxÞ;

A ¼ 1

9

�
F00ðxÞ þ 2

3
RZ00ðxÞ

	
R2 þ RZ0ðxÞ;

B ¼ 0;

C ¼ 2F0ðxÞ þ 2RZ0ðxÞ; ð127Þ

where x ¼ 1
6
R2. Notice that the absence of Ricci tensor

interactions entails B ¼ 0. Using Eq. (127) together with
the linear split (τ ¼ 0) and specific endomorphism param-
eters (88) and (90), the flow equation (81) reduces to
expressions given earlier in Ref. [69].

H. f ðR;Ric2;Riem2Þ gravity
The models of the two preceding sections can be

combined by considering general Lagrangian of the form
L ¼ fðR;Ric2;Riem2Þ [64,69], where

fðR;Ric2;Riem2Þ¼FðαR2þβRic2þ γRiem2Þ
þR ·ZðαR2þβRic2þ γRiem2Þ: ð128Þ

Besides the two free functions F and Z, we have also
introduced three free parameters α, β, and γ which
characterize their argument. In practice, only two of the
three parameters are independent, but for the derivation of
expressions it is convenient to keep all three of them. The
characteristic functions are then found to be

L ¼ FðxÞ þ RZðxÞ;

E ¼
�
2αþ 1

2
β þ 1

3
γ

�
½F0ðxÞ þ RZ0ðxÞ�Rþ ZðxÞ;

A ¼ 2α½F0ðxÞ þ RZ0ðxÞ� þ
�
2αþ β

2
þ γ

3

�
2
�
F00ðxÞ þ

�
4αþ β þ 2γ

3

�
RZ00ðxÞ

	
R2 þ RZ0ðxÞ;

B ¼ 2β½F0ðxÞ þ RZ0ðxÞ�;
C ¼ 2γ½F0ðxÞ þ RZ0ðxÞ�; ð129Þ

where x ¼ ðαþ 1
4
β þ 1

6
γÞR2. For this class of models,

we note that the coefficients B and C are proportional to
each other, B=C ¼ β=γ, and nonzero in general, which
permits settings where spin-2 ghosts are absent from the

outset ðB=C ¼ − 1
4
Þ; see Eq. (66). Using a linear split

(τ ¼ 0) and endomorphism parameters (88) and (90),
we reproduce the flow equation derived previously in
Ref. [69].
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I. Higher-order invariants

Finally, we point out how our setup based on the action-
independent form for the Hessians can be exploited for
investigations of quantum gravity, particularly clarifying
the role of higher-order curvature invariants without nec-
essarily starting from an explicit action.
First, the flows of gravitational actions which include

different curvature invariants can be analyzed by substituting

appropriate values for the characteristic functions B, C, and
L. Therefore, for each curvature invariant which does not
contain covariant derivatives, it is possible to identify the
corresponding values for the parameters A, B, C, E, and L
[105]. For convenience, we tabulate in Table I the parameters
for the first 38 curvature monomials not containing covariant
derivatives, up to order four in curvature. For notational
convenience, we express their values in terms of

TABLE I. Shown are the parameters L, E, A, B, and C corresponding to curvature invariants up to quartic order, not containing
covariant derivatives. In the main text we mostly take L, B, and C as the three independent parameters, with E and A determined through
Eqs. (55) and (58).

Curvature invariants L E A B C

R ðd − 1ÞdΛ 1 0 0 0

R2 ðd − 1Þ2d2Λ2 2ðd − 1ÞdΛ 2 0 0
RμνRμν ðd − 1Þ2dΛ2 2ðd − 1ÞΛ 0 2 0
RμνρσRμνρσ 2ðd − 1ÞdΛ2 4Λ 0 0 2

R3 ðd − 1Þ3d3Λ3 3ðd − 1Þ2d2Λ2 6ðd − 1ÞdΛ 0 0
RRμνRμν ðd − 1Þ3d2Λ3 3ðd − 1Þ2dΛ2 4ðd − 1ÞΛ 2ðd − 1ÞdΛ 0
RνρRμνRμ

ρ ðd − 1Þ3dΛ3 3ðd − 1Þ2Λ2 0 6ðd − 1ÞΛ 0
RRμνρσRμνρσ 2ðd − 1Þ2d2Λ3 6ðd − 1ÞdΛ2 8Λ 0 2ðd − 1ÞdΛ
RρσRμνRμρνσ ðd − 1Þ3dΛ3 3ðd − 1Þ2Λ2 2Λ 2ð2d − 3ÞΛ 0
RνασβRμνρσRμ

α
ρ
β ðd − 2Þðd − 1ÞdΛ3 3ðd − 2ÞΛ2 0 6Λ −3Λ

RρσαβRμνρσRμν
αβ 4ðd − 1ÞdΛ3 12Λ2 0 0 12Λ

RνρσαRμνRμ
ρσα 2ðd − 1Þ2dΛ3 6ðd − 1ÞΛ2 0 8Λ 2ðd − 1ÞΛ

R4 ðd − 1Þ4d4Λ4 4ðd − 1Þ3d3Λ3 12ðd − 1Þ2d2Λ2 0 0
R2RμνRμν ðd − 1Þ4d3Λ4 4ðd − 1Þ3d2Λ3 10ðd − 1Þ2dΛ2 2ðd − 1Þ2d2Λ2 0
RρσRρσRμνRμν ðd − 1Þ4d2Λ4 4ðd − 1Þ3dΛ3 8ðd − 1Þ2Λ2 4ðd − 1Þ2dΛ2 0
RRνρRμνRμ

ρ ðd − 1Þ4d2Λ4 4ðd − 1Þ3dΛ3 6ðd − 1Þ2Λ2 6ðd − 1Þ2dΛ2 0
Rν

σRρσRμνRμ
ρ ðd − 1Þ4dΛ4 4ðd − 1Þ3Λ3 0 12ðd − 1Þ2Λ2 0

R2RμνρσRμνρσ 2ðd − 1Þ3d3Λ4 8ðd − 1Þ2d2Λ3 20ðd − 1ÞdΛ2 0 2ðd − 1Þ2d2Λ2

RρσαβRρσαβRμνRμν 2ðd − 1Þ3d2Λ4 8ðd − 1Þ2dΛ3 16ðd − 1ÞΛ2 4ðd − 1ÞdΛ2 2ðd − 1Þ2dΛ2

RαβγδRαβγδRμνρσRμνρσ 4ðd − 1Þ2d2Λ4 16ðd − 1ÞdΛ3 32Λ2 0 8ðd − 1ÞdΛ2

RRρσRμνRμρνσ ðd − 1Þ4d2Λ4 4ðd − 1Þ3dΛ3 2ðd − 1Þð4d − 3ÞΛ2 2ðd − 1Þdð2d − 3ÞΛ2 0
RρσRσ

αRμνRμρνα ðd − 1Þ4dΛ4 4ðd − 1Þ3Λ3 4ðd − 1ÞΛ2 4ðd − 1Þð2d − 3ÞΛ2 0
RRνασβRμνρσRμ

α
ρ
β ðd − 2Þðd − 1Þ2d2Λ4 4ðd − 2Þðd − 1ÞdΛ3 6ðd − 2ÞΛ2 6ðd − 1ÞdΛ2 −3ðd − 1ÞdΛ2

RRρσαβRμνρσRμν
αβ 4ðd − 1Þ2d2Λ4 16ðd − 1ÞdΛ3 24Λ2 0 12ðd − 1ÞdΛ2

RRνρσαRμνRμρσ
α 2ðd − 1Þ3d2Λ4 8ðd − 1Þ2dΛ3 12ðd − 1ÞΛ2 8ðd − 1ÞdΛ2 2ðd − 1Þ2dΛ2

RνασβRρσRμνRμ
α
ρ
β 2ðd − 1Þ3dΛ4 8ðd − 1Þ2Λ3 2Λ2 2ð9d − 10ÞΛ2 2ðd − 1Þ2Λ2

RνσαβRρσRμνRμρ
αβ 2ðd − 1Þ3dΛ4 8ðd − 1Þ2Λ3 4Λ2 4ð4d − 5ÞΛ2 2ðd − 1Þ2Λ2

Rρα
γδRσβγδRμνρσRμν

αβ 4ðd − 1ÞdΛ4 16Λ3 0 0 24Λ2

RρσRρασβRμνRμ
α
ν
β ðd − 1Þ4dΛ4 4ðd − 1Þ3Λ3 2ð3d − 4ÞΛ2 2ðdð3d − 8Þ þ 6ÞΛ2 0

Rν
γ
α
δR

σγβδRμνρσRμ
α
ρ
β ðd − 1Þdð3d − 5ÞΛ4 4ð3d − 5ÞΛ3 0 28Λ2 ð4d − 15ÞΛ2

Rρ
γ
α
δR

σγβδRμνρσRμν
αβ 2ðd − 2Þðd − 1ÞdΛ4 8ðd − 2ÞΛ3 0 20Λ2 2ðd − 7ÞΛ2

Rν
β
σ
γR

ρβαγRμνRμ
ρσα ðd − 2Þðd − 1Þ2dΛ4 4ðd − 2Þðd − 1ÞΛ3 2Λ2 2ð5d − 9ÞΛ2 −3ðd − 1ÞΛ2

Rρσ
γδRαβγδRμνρσRμν

αβ 8ðd − 1ÞdΛ4 32Λ3 0 0 48Λ2

Rνρ
βγRσαβγRμνRμ

ρσα 4ðd − 1Þ2dΛ4 16ðd − 1ÞΛ3 0 24Λ2 12ðd − 1ÞΛ2

Rν
σαβRρσαβRμνRμ

ρ 2ðd − 1Þ3dΛ4 8ðd − 1Þ2Λ3 0 20ðd − 1ÞΛ2 2ðd − 1Þ2Λ2

Rσ
βγδRαβγδRμνρσRμνρ

α 4ðd − 1Þ2dΛ4 16ðd − 1ÞΛ3 0 32Λ2 8ðd − 1ÞΛ2

Rρ
αβγRσαβγRμνRμ

ρ
ν
σ 2ðd − 1Þ3dΛ4 8ðd − 1Þ2Λ3 8Λ2 4ð3d − 5ÞΛ2 2ðd − 1Þ2Λ2

Rν
γ
σ
δR

αγβδRμνρσRμ
α
ρ
β ðd − 1Þdððd − 3Þdþ 4ÞΛ4 4ððd − 3Þdþ 4ÞΛ3 4Λ2 8ðd − 3ÞΛ2 10Λ2
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Λ ¼ R
dðd − 1Þ ð130Þ

and recall that parameters are functions of R. With these
values at hand, a practical recipe consists in studying the
effects of the corresponding curvature invariants (or linear
combinations thereof) by inserting the corresponding values
(or linear combinations thereof) into the flow (81).
Second, one may also start directly from the character-

istic functions L, B, and C without referring to any
particular action LðRiemÞ polynomial in curvature. To that
end, consider a general Lagrangian of the form

LðRiemÞ ¼
X∞
n¼0

λ̄nXn; ð131Þ

containing arbitrary operators Xn of the order of n in
curvature constructed from the Riemann tensor and the
inverse metric. On a maximally symmetric background,
any operator Xn acquires the form

Xnjmsb ¼ LnRn; ð132Þ

with some spacetime dimension-dependent constant Ln.
Therefore, evaluating the Lagrangian on a maximally
symmetric background, the corresponding scalar functions
L, B, and C have the following expansions in terms of the
Ricci scalar curvature:

L ¼
X∞
n¼0

λ̄nLnRn;

B ¼
X∞
n¼2

λ̄nBnRn−2;

C ¼
X∞
n¼2

λ̄nCnRn−2: ð133Þ

Note that the sums for B and C start at n ¼ 2, which can be
understood following Eq. (75), in particular, noticing that
the Einstein-Hilbert terms cannot contribute to B or C.
So far, we have three functions L, B, andC depending on

four sets of parameters fλ̄n; Ln; Bn; Cng, one of which is
redundant. In fact, the numbers Ln are redundant in that
they correspond to the normalization of operators and can
always be absorbed into a rescaling of coupling constants.9

Therefore, we may introduce

λ̃n ¼ λ̄nLn;

B̃n ¼ Bn=Ln;

C̃n ¼ Cn=Ln; ð134Þ

such that

L ¼
X
n

λ̃nRn;

B ¼
X
n¼2

λ̃nB̃nRn−2;

C ¼
X
n¼2

λ̃nC̃nRn−2: ð135Þ

Thus, on a maximally symmetric background we can map
any action LðRiemÞ to characteristic functions of the form
(135). Consequently, we can study the effects of all
possible higher curvature invariants (those which do not
vanish on maximally symmetric backgrounds) by keeping
the form of LðRÞ fixed according to Eq. (135), while
varying the parameters fB̃n; C̃ng. In general, these param-
eters can take arbitrary values along the real axis, and, in
particular, they are not bounded.
As an example for this idea, consider the class of actions

introduced in Sec. IV H at quadratic level in curvature. In
this case, the Lagrangian takes the form

LðRiemÞ ¼ λ̄0 þ λ̄1Rþ λ̄2ðαR2 þ βRμνRμν þ γRρσμνRρσμνÞ:
ð136Þ

On a maximally symmetric background, we find

L ¼ λ̄0 þ λ̄1Rþ λ̄2R2

�
αþ 1

4
β þ 1

6
γ

�
;

B ¼ 2βλ̄2;

C ¼ 2γλ̄2: ð137Þ

Apart from coupling constants, this model depends on three
parameters α, β, and γ. Following Eqs. (133)–(135), an
overall normalization factor can be rescaled into λ̄2 without
changing the physical content of the model. Taking

λ̃2 ¼
�
αþ 1

4
β þ 1

6
γ

�
λ2;

b2 ¼ β=

�
αþ 1

4
β þ 1

6
γ

�
;

c2 ¼ γ=

�
αþ 1

4
β þ 1

6
γ

�
ð138Þ

leads to
9This is possible for Ln ≠ 0, which we require anyway

following the arguments given in Sec. IVA.
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L ¼ λ0 þ λ1Rþ λ̃2R2;

B ¼ 2b2λ̃2;

C ¼ 2c2λ̃2: ð139Þ

The rescaling (138) has eliminated one parameter from the
three-parameter family of actions we started with, and we
have ended up with a two-parameter family of RG flows
with ðb2; c2Þ characterizing general fourth-order flows with
quantum fluctuations evaluated on spheres.
This idea can naturally be carried over for actions

containing arbitrary higher curvature invariants (135),
leaving us with at most two free parameters fB̃n; C̃ng for
every order n ≥ 2 in curvature monomials. It will be
interesting to apply these setups for systematic fixed point
searches in higher-order theories of gravity, which is left for
future work.

V. DISCUSSION AND OUTLOOK

We have put forward new functional renormalization
group flows for fðRμνρσÞ quantum gravity, in any dimen-
sion. The most important novelty is that the underlying
Lagrangian for these types of theories can be taken to be
any function of the Riemann tensor and the inverse metric.
As such, our setup offers a change of perspective in that
functional flows can now be determined without the need to
specify the underlying Lagrangian beyond the particular
form ∼fðRμνρσÞ.
To achieve the result, crucially, full advantage has been

taken of maximally symmetric backgrounds, conveniently
employed for the evaluation of operator traces. In conse-
quence, the functional flows (76) and (81) are characterized
by three independent scalar functions [Eq. (54)], which we
have taken to be the Lagrangian evaluated on the back-
ground, L, and two quantities B and C, which, respectively,
account for effects due to Ricci and Riemann tensor
fluctuations. On the technical side, we mostly followed
standard choices in the literature to achieve the explicit flow
(76) and (81), We also implemented an interpolation
between the popular linear and exponential metric splits
(9). Our setup is highly flexible and allows the full range of
choices for, e.g., cutoff types and shape functions, gauge
fixings, endomorphism parameters, and more, and all of
this in combination with heat kernel expansions [98] or
spectral sum techniques.
Overall, the new flow equation encompasses all models

on maximally symmetric backgrounds investigated previ-
ously within the asymptotic safety program, to which it
reduces for the corresponding parameter choices. What is
more, the generality and structure of the setup opens up a
wide range of new applicabilities. First and foremost, it
allows the study of quantum gravitational effects in a
plethora of new extensions beyond Einstein gravity, poly-
nomial or otherwise, many of which have hitherto been out
of reach. Furthermore, it enables qualitatively new types of

fixed point search strategies within the operator space
spanned by polynomial curvature invariants (Table I),
including horizontal (or vertical) searches across curvature
invariants with the same (or different) canonical mass
dimensions. Finally, we emphasize that the setup permits
the study of quantum effects in extensions of general
relativity relevant for cosmology and the physics of black
holes. We thus look forward to detailed explorations of the
landscape for asymptotically safe fðRμνρσÞ theories.
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APPENDIX A: METRIC DERIVATIVES

In this appendix, we take care of the metric derivatives
required for the evaluation of Eq. (42). Following a line of
reasoning put forward in Refs. [103,105], we start by
considering an infinitesimal coordinate transformation
xμ → xμ þ ξμðxÞ. Since the Lagrangian is a scalar, the
variation under this coordinate transformation can be
written as a Lie derivative:

δL ¼ ξη∇ηLðRiemÞ

¼ ξη
�
Wρσμν∇ηRρσμν þ

∂LðRiemÞ
∂gμν

∇ηgμν
�

¼ ξηWρσμν∇ηRρσμν; ðA1Þ

where we recall that

Wρσμν ≡ ∂LðRiemÞ
∂Rρσμν

: ðA2Þ

On the other hand, the change in L can also be expressed in
terms of the changes in the Riemann tensor and the metric:

δL ¼ WρσμνδRρσμν þ
∂LðRiemÞ

∂gμν
δgμν: ðA3Þ

With the change of the inverse metric and the Riemann
tensor given by

δgμν ¼ −∇μξν −∇νξμ; ðA4Þ

δRρσμν ¼ ξη∇ηRρσμν þ ð∇ρξ
ηÞRησμν þ ð∇σξ

ηÞRρημν

þ ð∇μξ
ηÞRρσην þ ð∇νξ

ηÞRρσμη; ðA5Þ

and also using the symmetries of Wρσμν, we can recast
Eq. (A3) into the form
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δL ¼ Wρσμνðξη∇ηRρσμν þ 4ð∇ρξ
ηÞRησμνÞ

− 2
∂LðRiemÞ

∂gμν
∇μξν: ðA6Þ

Equating Eq. (A3) with Eq. (A6), we arrive at

0 ¼
�
2Wρ

σμνRησμν −
∂LðRiemÞ

∂gρη

	
∇ρξη: ðA7Þ

As this must hold true for any ξ, we conclude that the first
derivative of the Lagrangian with respect to the metric, and
written in terms of Wρσμν, is given by

∂LðRiemÞ
∂gλη

¼ 2gρðλRηÞσμνWρσμν: ðA8Þ

While the derivation of Eq. (43) has made use of the
LagrangianL being solely a function of the Riemann tensor
and the metric field, we have not made any choice for the
background metric. Therefore, the result (43) is valid for
general geometries.
To obtain higher derivatives, we first take a derivative of

Eq. (43) with respect to the Riemann tensor:

∂
2LðRiemÞ
∂Rρσμν∂gαβ

¼ 2WðακηξCβÞκηξρσμν þ 2gζðαRβÞκηξ
∂Wζκηξ

∂Rρσμν

¼ gðβ ½ρWαÞσ�μν þ gðβ ½μWαÞν�ρσ

þ 2gζðαRβÞκηξ
∂Wζκηξ

∂Rρσμν
: ðA9Þ

Here, we used

∂Rρσμν

∂Rαβγδ
¼ Cρσμναβγδ; ðA10Þ

with Cρσμναβγδ defined in Eq. (53). Taking a further metric
derivative of Eq. (43) gives

∂
2LðRiemÞ
∂gρσ∂gμν

¼ −2gαðμgνÞðρWαβγδRσÞβγδ

þ 2
∂Wαβγδ

∂gμν
gαðρRσÞβγδ: ðA11Þ

This concludes the derivation of Eqs. (43)–(45) given in the
main text. It allows us to eliminate all derivatives with
respect to the metric in Eq. (42) in favor of Riemann
derivatives. The latter can be parametrized in terms of four
scalar functions on maximally symmetric backgrounds as
seen in Sec. III C.

APPENDIX B: HESSIANS WITHOUT YORK
DECOMPOSITION

Here, we present the Hessian of the form (37) without
making use of the York decomposition. Using the metric
split (9), we arrive at

δ2ðΓ̄kÞjmsb ¼
Z

ddx
ffiffiffi
g

p �
h

�
R2

d2

�
d2 − 4dþ 2

dðd− 1Þ2 B−
1

d
CþL00

�
−
d− 2

d− 1

R
d
L0 þ 1

4
L

þ
�
R
d

�
d2 þ 3d− 16

4dðd− 1Þ Bþ 2

dðd− 1ÞCþ 2L00
�
−
1

2
L0
�
∇2 þ

�
d2 − d− 8

4dðd− 1Þ B−
1

d
CþL00

�
∇4

	
h

þ hμν

�
R2

ðd− 1Þd2
�

1

d− 1
Bþ 2C

�
−

R
dðd− 1ÞL

0 þ ðτ − 1Þ
�
L
2
−
R
d
L0
�

þ
�
−

R
dðd− 1Þ ðBþ ðdþ 1ÞCÞ þ 1

2
L0
�
∇2 þ

�
B
4
þC

�
∇4

	
hμν þ

�
R
d

�
1

2
Bþ 4

d− 1
C

�
þ L0

	
ð∇μhμρÞð∇νhνρÞ

þ
�
R
d

�
4

ðd− 1ÞdBþ 2ð3d− 1Þ
ðd− 1Þd C− 2L00

�
þ L0

	
hð∇μ∇νhμνÞ

þ
�ðd2 − d− 4Þ

2ðd− 1Þd Bþ ðd− 1Þ
d

Cþ L00
	
ð∇μ∇νhμνÞð∇ρ∇σhρσÞ

þ
�
B
2
þ 2C

	
ð∇μhμρÞð∇2∇νhνρÞ þ

�
−
ðd2 − d− 8Þ
2ðd− 1Þd Bþ 2

d
C− 2L00

	
h∇2∇μ∇νhμν

�
: ðB1Þ
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APPENDIX C: FLUCTUATION INTEGRALS

Here, we give the coefficient functions P and D for the flow equation derived in Sec. III G. In dimensionless quantities,
the flow equation is given by

∂tlþ dl − 2rl0 ¼ I½l; b; c�; ðC1Þ

with

I½l; b; c� ¼ I0½l; b; c� þ I1½l; b; c�∂tl0 þ I2½l; b; c�∂tl00 þ I3½l; b; c�∂tbþ I4½l; b; c�∂tc: ðC2Þ

Since we are using the York decomposition throughout the whole computation, we keep track of terms originating from the
different York modes. This allows us to write the Ii½l; b; c� as

I0½l; b; c� ¼
1

κd

�
PT
0 ½l; b; c�

DT ½l; b; c� þ
PS
0½l; b; c�

DS½l; b; c� −
PV
c

DV
c
−
PS
c

DS
c

	
; ðC3aÞ

I1½l; b; c� ¼
1

κd

�
PT
1

DT ½l; b; c� þ
PS
1

DS½l; b; c�
	
; ðC3bÞ

I2½l; b; c� ¼
1

κd

PS
2

DS½l; b; c� ; ðC3cÞ

I3½l; b; c� ¼
1

κd

�
PT
3

DT ½l; b; c� þ
PS
3

DS½l; b; c�
	
; ðC3dÞ

I4½l; b; c� ¼
1

κd

�
PT
4

DT ½l; b; c� þ
PS
4

DS½l; b; c�
	
; ðC3eÞ

where T, V, and S denote contributions from tensorial, vectorial, and scalar origin, respectively. The subscript c refers to
contributions from ghosts and Jacobians, and

κd ¼ Rd=2Vold⟶
d¼4

384π2 ðC4Þ

originates from the volume integral on the left-hand side of Eq. (14). The denominators D are directly related to the
denominators in Eq. (30), while the numerators P originate from numerators in Eq. (30) which have been split up to collect
renormalization scale derivatives according to Eq. (83). The explicit coefficients P and D are rather lengthy, and we give
them only for four-dimensional spacetime, d ¼ 4.
The denominators in Eq. (C3a) are defined as

DT ½l; b; c� ¼ ðτ − 1Þl −
�
−e1rþ

τ

2
r −

r
3
þ 1

�
l0 þ

�
−
e1r2

6
þ e21r

2

2
− e1rþ

r2

72
þ r
6
þ 1

2

�
b

þ
�
−
5e1r2

6
þ 2e21r

2 − 4e1rþ
r2

12
þ 5r

6
þ 2

�
c; ðC5aÞ

DS½l; b; c� ¼ ðτ þ 1Þl −
�
3e4r
2

þ τ

2
rþ r −

3

2

�
l0 þ

�
3e4r2 þ

9e24r
2

2
− 9e4rþ

r2

2
− 3rþ 9

2

�
l00

þ
�
e4r2

4
þ 3e24r

2

4
−
3e4r
2

−
r
4
þ 3

4

��
b
2
þ c

�
: ðC5bÞ

The numerators P0 appearing in Eq. (C3a) can be written as

PT
0 ½l; b; c� ¼ PTl1

0 l0 þ PTl2
0 l00 þ PTb0

0 bþ PTb1
0 b0 þ PTc0

0 cþ PTc1
0 c0; ðC6aÞ
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PS
0½l; b; c� ¼ PSl1

0 l0 þ PSl2
0 l00 þ PSl3

0 l000 þ PS0
0

�
b
2
þ c

�
þ PS1

0

�
b0

2
þ c0

�
; ðC6bÞ

with coefficient functions

PTl1
0 ¼ −

e1r3

18
þ 10e21r

3 − 40e1r2 þ 20e31r
3 − 120e21r

2 þ 180e1r −
311r3

2268
þ r2

9
þ 30r − 80; ðC7aÞ

PTl2
0 ¼ e1r4

18
− 10e21r

4 þ 20e1r3 − 20e31r
4 þ 60e21r

3 − 60e1r2 þ
311r4

2268
−
r3

18
− 10r2 þ 20r; ðC7bÞ

PTb0
0 ¼ 61e1r3

18
− 10e21r

3 þ 20e1r2 − 60e31r
3 þ 180e21r

2 − 180e1r −
r3

108
−
61r2

18
− 10rþ 60; ðC7cÞ

PTb1
0 ¼ −

e1r5

108
þ 61

36
e21r

5 −
61e1r4

18
−
10

3
e31r

5 þ 10e21r
4 − 10e1r3 − 15e41r

5 þ 60e31r
4 − 90e21r

3 þ 60e1r2 −
1135r5

54432

þ r4

108
þ 61r3

36
þ 10r2

3
− 15r; ðC7dÞ

PTc0
0 ¼ 152e1r3

9
− 30e21r

3 þ 60e1r2 − 240e31r
3 þ 720e21r

2 − 720e1r −
5r3

108
−
152r2

9
− 30rþ 240; ðC7eÞ

PTc1
0 ¼ −

5e1r5

108
þ 76

9
e21r

5 −
152e1r4

9
− 10e31r

5 þ 30e21r
4 − 30e1r3 − 60e41r

5 þ 240e31r
4 − 360e21r

3 þ 240e1r2

−
241r5

2268
þ 5r4

108
þ 76r3

9
þ 10r2 − 60r; ðC7fÞ

PSl1
0 ¼ −

29e4r3

60
þ 3e24r

3 − 12e4r2 − 6e34r
3 þ 36e24r

2 − 54e4rþ
37r3

1512
þ 29r2

30
þ 9rþ 24; ðC7gÞ

PSl2
0 ¼ 29e4r4

60
− 3e24r

4 þ 151e4r3

10
þ 6e34r

4 − 18e24r
3 þ 18e4r2 − 108e34r

3 þ 324e24r
2 − 324e4r −

37r4

1512
−
29r3

20

−
121r2

10
− 6rþ 108; ðC7hÞ

PSl3
0 ¼ −

29e4r5

30
þ 91

20
e24r

5 −
91e4r4

10
− 27e44r

5 þ 108e34r
4 − 162e24r

3 þ 108e4r2 þ
181r5

3360
þ 29r4

30
þ 91r3

20
− 27r; ðC7iÞ

PS0
0 ¼ 31e4r3

60
þ 3e24r

3 − 6e4r2 − 18e34r
3 þ 54e24r

2 − 54e4r −
29r3

360
−
31r2

60
þ 3rþ 18; ðC7jÞ

PS1
0 ¼ −

29e4r5

360
þ 31

120
e24r

5 −
31e4r4

60
þ e34r

5 − 3e24r
4 þ 3e4r3 −

9e44r
5

2
þ 18e34r

4 − 27e24r
3 þ 18e4r2 þ

127r5

25920

þ 29r4

360
þ 31r3

120
− r2 −

9r
2
: ðC7kÞ

The numerators P1;2;3;4 appearing in Eq. (C3a) take the form
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PT
1 ¼ −

e1r3

36
þ 5e21r

3 − 10e1r2 þ 10e31r
3 − 30e21r

2 þ 30e1r −
311r3

4536
þ r2

36
þ 5r − 10; ðC8aÞ

PS
1 ¼ −

29e4r3

120
þ 3e24r

3

2
− 3e4r2 − 3e34r

3 þ 9e24r
2 − 9e4rþ

37r3

3024
þ 29r2

120
þ 3r

2
þ 3; ðC8bÞ

PS
2 ¼

29e4r4

60
−
91

40
e24r

4 þ 91e4r3

20
þ 27e44r

4

2
− 54e34r

3 þ 81e24r
2 − 54e4r −

181r4

6720
−
29r3

60
−
91r2

40
þ 27

2
; ðC9aÞ

PT
3 ¼ e1r4

216
−
61

72
e21r

4 þ 61e1r3

36
þ 5e31r

4

3
− 5e21r

3 þ 5e1r2 þ
15e41r

4

2
− 30e31r

3 þ 45e21r
2 − 30e1rþ

1135r4

108864
−

r3

216

−
61r2

72
−
5r
3
þ 15

2
; ðC9bÞ

PS
3 ¼

29e4r4

1440
−

31

480
e24r

4 þ 31e4r3

240
−
e34r

4

4
þ 3e24r

3

4
−
3e4r2

4
þ 9e44r

4

8
−
9e34r

3

2
þ 27e24r

2

4
−
9e4r
2

−
127r4

103680
−
29r3

1440

−
31r2

480
þ r
4
þ 9

8
; ðC9cÞ

PT
4 ¼ 5e1r4

216
−
38

9
e21r

4 þ 76e1r3

9
þ 5e31r

4 − 15e21r
3 þ 15e1r2 þ 30e41r

4 − 120e31r
3 þ 180e21r

2 − 120e1rþ
241r4

4536

−
5r3

216
−
38r2

9
− 5rþ 30; ðC9dÞ

PS
4 ¼

29e4r4

720
−

31

240
e24r

4 þ 31e4r3

120
−
e34r

4

2
þ 3e24r

3

2
−
3e4r2

2
þ 9e44r

4

4
− 9e34r

3 þ 27e24r
2

2
− 9e4r −

127r4

51840
−
29r3

720

−
31r2

240
þ r
2
þ 9

4
: ðC9eÞ

Finally, we give the universal contributions coming from the auxiliary part. The denominators are given by

DV
c ¼ 1 − e2r −

r
4
; ðC10aÞ

DS
c ¼ 1 − e3r −

r
3

ðC10bÞ

and the numerators by

PV
c ¼ 6e2r2 − 36e22r

2 þ 72e2rþ
607r2

60
− 6r − 36; ðC11aÞ

PS
c ¼ 4e3r2 − 12e23r

2 þ 24e3rþ
511r2

90
− 4r − 12: ðC11bÞ
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