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The Higgs branch of 4D N ¼ 2 superconformal field theories can be analyzed via the Hilbert series of
the Higgs branch or, in special cases, by computing the Hall-Littlewood index. For any class S theory
corresponding to a genus-zero Riemann surface, they are conjectured to be identical. We present several
families of counterexamples. We find that for any class S theory with four or more Z2-twisted punctures,
they do not match. We construct 3D mirrors for such theories and analyze their Coulomb branch Hilbert
series to compute the Higgs branch Hilbert series of the 4D theory. We further construct a ¼ c theories in
class S using the twisted punctures, and these theories, which includes the D̂4ðSUð2nþ 1ÞÞ theories, have
Hall-Littlewood index different from the Hilbert series of the Higgs branch. We conjecture that this is the
case for all a ¼ c theories with nonempty Higgs branch, including N ≥ 3 superconformal field theories.
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I. INTRODUCTION

Given a quantum field theory, it is important to deter-
mine its vacua and spectrum of local operators. This is often
challenging due to the complicated nature of the Hilbert
space of interacting quantum field theories. Luckily, how-
ever, for supersymmetric field theories, we can use an index
[1] to count subsectors of operators that appear in the theory
even when it is strongly interacting. Utilizing the index, we
can understand the refined structure of operators and vacua
of supersymmetric theories.
In particular, superconformal field theories (SCFTs) with

at least eight supercharges admit both Higgs and Coulomb
vacuum moduli. To understand the moduli space of vacua
of 4D N ¼ 2 SCFTs, we have to understand both the
Coulomb branch C, parametrized by vacuum expectation
values for the scalar primaries inside of vector multiplets,
and the Higgs branch H, parametrized by vacuum expect-
ation values (VEVs) of scalar primaries inside of

hypermultiplets. A particularly simple moduli space occurs
when these two branches meet at a single point, the origin.
In this case, moving onto a generic point of the Higgs
branch by giving vacuum expectation values to the scalars
in the hypermultiplet breaks the gauge group. If the gauge
group is entirely broken, then there are no remaining vector
multiplets; thus, one cannot move onto the Coulomb
branch from such a generic point of the Higgs branch.
However, it is possible in some cases, where the gauge
group is not entirely broken at a generic point of the Higgs
branch, to give VEVs to scalars inside the residual vector
multiplets instead. The subspace of the moduli space where
both vector multiplet and hypermultiplet scalars are given
VEVs is called the “mixed branch.”We depict in Fig. 1 the
Coulomb, Higgs, and mixed branches of a 4D N ¼ 2
SCFT. Each component of the moduli space can be para-
metrized by a collection of local operators of the SCFT, and
the spectrum of the local operators of theories are not only
interesting in their own right, but also can further refine our
understanding of the branch structure.
In fact, the superconformal index [2,3] captures infor-

mation about the operator spectrum of a given super-
conformal field theory. It is defined in such a way to count
the short multiplets (under the superconformal symmetry)
up to recombination, and is invariant under marginal
deformations of the theory.1 Most importantly, operators
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1For a recent pedagogical review of the superconformal index,
see [4].
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in a superconformal theory such as the stress tensor and
conserved currents belong to particular short multiplets, so
the index serves as an extremely useful tool to uncover the
spectrum of a superconformal theory. For a 4D N ¼ 2
SCFT, the most general superconformal index counts 1=8-
Bogomol'nyi-Prasad-Sommerfield (BPS) short multiplets,
where the contributions only come from the operators that
satisfy

δ ¼ Δ − 2j2 − 2Rþ r ¼ 0; ð1:1Þ

where Δ; j1; j2; R; r are the Cartans of the bosonic sub-
group SOð4; 2Þ × SUð2ÞR ×Uð1Þr of the superconformal
group SUð2; 2j2Þ. One can consider various special limits
of the index to count short multiplets that preserve more
supersymmetries [5]. In this paper, we focus on the Hall-
Littlewood (HL) index, which is defined as

HLðτÞ ¼ TrHLð−1ÞFτ2ðΔ−RÞ; ð1:2Þ

where the trace is taken over the states on S3 satisfying

δ0� ¼ Δ� 2j1 − 2R − r ¼ 0; δ ¼ 0: ð1:3Þ

Therefore, the trace is only over the states with

Δ ¼ 2Rþ r; j1 ¼ 0; j2 ¼ r: ð1:4Þ

Utilizing the state-operator correspondence, this is tanta-
mount to counting all local operators belonging to the B̂R
and DRð0;j2Þ short superconformal multiplets,2 which form
the so-called Hall-Littlewood chiral ring [7].
The Hall-Littlewood chiral ring is closely related to the

Higgs branch chiral ring of the theory, which is generated
by the B̂R-type multiplets only. The Hilbert series (HS) of
the Higgs branch (HB) is defined as

HSðτÞ ¼ TrHBτ2R; ð1:5Þ

where the trace is now taken over the Higgs branch chiral
ring, which exclusively contains operators corresponding to
B̂R superconformal multiplets; such multiplets satisfy
further the shortening condition Δ ¼ 2R. In particular,
taking the r → 0 limit of the Hall-Littlewood sector
produces the Higgs sector. A comparison between the
Hall-Littlewood and the Higgs branch chiral rings is
described in Table I, which demonstrates that the Higgs
branch chiral ring is a subring of the Hall-Littlewood
chiral ring.
The Hall-Littlewood sector contains more than the B̂R

multiplets (contributing τ2R to the HL index), namely, the
D-type multiplets (contributing ð−1Þ2j2þ1τ2þ2Rþ2j2 to the
HL index). Unlike the B̂ multiplets, the superconformal
primary of a DRð0;j2Þ multiplet carries a nonzero Uð1Þr
charge. For example, the D0ð0;0Þ multiplet (and its complex
conjugate) form the N ¼ 2 vector multiplet whose super-
conformal primary is given by the scalar field in the vector
multiplet. The D1

2
ð0;0Þ corresponds to the extra supersym-

metry current. The D0ð0;j2Þ multiplets for j2 ≥ 1
2
contain

higher-spin free fields [8] that are absent in the theories we
consider [9]. We find that all the examples we consider do
not have the negative coefficient at τ2 order, which is
consistent with the absence of a free vector multiplet. The
DRð0;0Þ multiplets for R > 0, which contribute −τ2Rþ2 to the
HL index, do exist for many interesting classes of theories,
as we will see in this paper, but there are also many
examples where they are absent.
In this paper, we are mainly concerned with the subsector

of the 4D N ¼ 2 landscape which can be realized via the
class S perspective [10,11].3 The construction of such
SCFTs is as follows. Consider the 6D (2,0) SCFTof type J,
where J is an ADE Lie algebra, and take a twisted
compactification of this theory on a punctured Riemann
surface such that eight supercharges are preserved. Class S
theories are typically strongly coupled non-Lagrangian
field theories, and thus there are the usual challenges in
determining some of their properties; the advantage of the
construction from six dimensions is that many of the

TABLE I. The 4D N ¼ 2 superconformal multiplets that
contribute to the Higgs branch and Hall-Littlewood chiral rings.

Higgs branch sector Hall-Littlewood sector

Condition
Δ ¼ 2R, j1 ¼ j2 ¼

r ¼ 0
Δ ¼ 2Rþ j2, j1 ¼ 0,

j2 ¼ r
Multiplet
contents B̂R B̂R, DRð0;j2Þ

FIG. 1. Moduli space of 4D N ≥ 2 SCFTs. The Coulomb
branch C is depicted as a red plane while the Higgs branch H is
depicted as a blue cone. There might be a mixed branch, depicted
as a magenta surface, where the subspace of the Higgs branch is
fibered over a subspace of the Coulomb branch depicted as
a red curve.

2Throughout this paper, we use the notation of Dolan-Osborn
[6] for N ¼ 2 superconformal multiplets.

3For a recent survey of the variety of constructions of SCFTs in
dimensions three to six, see [12].

KANG, LAWRIE, LEE, SACCHI, and SONG PHYS. REV. D 106, 106021 (2022)

106021-2



physical features and properties in 4D are captured by the
choice of Riemann surface. Each n-punctured genus g
Riemann surface, with 2g − 2þ n > 0, has a pair-of-pants
decomposition in terms of three-punctured spheres, glued
together along the punctures. Different pair-of-pants
decompositions correspond to different duality frames of
the 4D N ¼ 2 SCFT, and thus nonperturbative S-duality
transformations are simply encoded in the geometry of the
compactification space. To understand the space of SCFTs
that arise in this way it is necessary to understand the data
that specifies each possible puncture, which three-punc-
tured spheres exist, and how they can be gauged together.
Punctures describe codimension-two defects in the 6D

theory; in particular, each nilpotent orbit ρ∶SUð2Þ → J
constitutes such a defect [13]. Nilpotent orbits of simple Lie
algebras are well understood [14,15], and the properties of
the associated punctures have been exhaustively worked
out in [16–20]. We can also consider twisted defects, which
involves a twist by an outer automorphism of J when
encircling the defect. This class of codimension-two
defects, which is central to the current work, is known
as the twisted punctures, and they are captured by nilpotent
orbits ρ∶SUð2Þ → G, where G is defined such that G∨ is
the subalgebra of J invariant under the action of the outer
automorphism. Twisted punctures are required to come in
sets, and inside of each set, they are connected via a twist
line. The regular twisted punctures have been enumerated
for G ¼ A2nþ1; Dn; E6 in [21–26]. Studying the A2n theory
with twisted punctures is particularly subtle, and several
preliminary steps have appeared in [27–30].
In [5], it was conjectured that the Higgs branch chiral

ring and the Hall-Littlewood chiral ring are identical for all
class S theories obtained from genus-zero Riemann surfa-
ces. Alternatively, this is equivalent to the statement that the
Hall-Littlewood chiral ring of such 4DN ¼ 2 SCFTs does
not contain any DRð0;j2Þ-type multiplets. In principle, this
conjecture is particularly powerful, as it enables us to
calculate the Hilbert series of the Higgs branch via the
determination of the Hall-Littlewood index even for non-
Lagrangian theories, for which there exists a topological
quantum field theory (TQFT) approach [5,27,31,32].
However, as we explain in this paper, this conjecture only
holds in a more restrictive setting. In particular, we
conjecture the following.
Conjecture 1.1. Any class S theory associated to a

genus-zero Riemann surface with at least four Z2-twisted
punctures has a Hall-Littlewood index that is different from
the Hilbert series of the Higgs branch.
Conjecture 1.1, in the context of class S construction

with a genus zero surface, provides that the expectation of
the Hall-Littlewood index being identical to the Hilbert
series of the Higgs branch fails. A priori, to verify this
conjecture in any given example, it is necessary to
determine both the Hall-Littlewood index and the Higgs
branch Hilbert series of a 4D N ¼ 2 SCFT. In practice, it

often suffices to determine the Hall-Littlewood index as we
find that, ubiquitously for the A series and often for the DE
series, the fully flavor-fugacity refined index contains
negative coefficients.4 Since the Hilbert series of the
Higgs branch is a Hilbert series, it cannot have any negative
coefficients, and thus it suffices to show that the Hilbert
series of the Higgs branch and the Hall-Littlewood index
are two distinct quantities.
In fact, consistent with what we find in this paper, it has

recently been proposed using the vertex operator algebra
(VOA) perspective in [33] that, for class S theories with
two or more twist lines, there is usually a residual unbroken
gauge symmetry on the most generic point of the Higgs
branch. The gauginos contained in the associated massless
vector multiplets can then lead to gauge invariant operators
that correspond to D-type multiplets that might make the
Hall-Littlewood index differ from the Hilbert series of the
Higgs branch, as stated in Conjecture 1.1.
While the observation of the negative coefficients

suffices to verify Conjecture 1.1 (and thus that the Hall-
Littlewood index cannot be used as a shortcut to the Higgs
branch Hilbert series in the presence of multiple twist
lines), we want to determine the contents of the Higgs
branch. An alternative method for determining the proper-
ties of the Higgs branch of a 4DN ¼ 2 SCFT is to consider
its 3D mirror theory. That is, we consider the compacti-
fication first on an S1; this leads to a theory known as the
“3D reduction,” where the Higgs branch is the same as the
Higgs branch of the 4D theory, and the 3D Coulomb branch
is a torus fibration over the 4D Coulomb branch [34]. One
can often find another 3D N ¼ 4 gauge theory, the 3D
mirror, where the Higgs and Coulomb branches are
interchanged [35]. The Hilbert series of the Higgs branch
of the 4D SCFT is then equivalent to the Coulomb branch
Hilbert series of the 3D mirror. The distinction between the
structure of the branches of moduli of the 4D N ¼ 2

SCFTs and the S1-reduced 3D N ¼ 4 SCFTs can be seen
by comparing Fig. 1 with Fig. 2.
The 3D mirrors of class S theories generically take the

form of star-shaped quivers [36] where each leg of the star
is one of the TρðGÞ theories of [37]. Many of our examples
lie in the realm of class S theories of type Aeven with twisted
punctures, for which the 3D mirrors in the case of spheres
with one twist lines have recently been explored in [28].
Once the 3D mirror is known, its Coulomb branch Hilbert
series can then be efficiently computed using the tech-
niques of [28,38–41]. We extend the results of [28] via a
conjecture for the Lagrangian description of the 3D mirrors
of a class S theory of type Aeven with arbitrary numbers of

4Specifically, we note that in the unrefined index, where the
characters of the flavor algebras are equal to the dimension of the
relevant representations, we may not observe these negative
coefficients; it is thus important that we are considering the fully
flavor-refined index.
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twisted and untwisted punctures. We conjecture the
following.
Conjecture 1.2. The 3D mirror for a class S theory of

type A2n obtained from a sphere with m untwisted
punctures and 2k twisted punctures is given by the
following Lagrangian quiver. For each untwisted puncture
consider the theory TρiðSUð2nþ 1ÞÞ, where ρi is the
partition describing the ith untwisted puncture; similarly,
for each twisted puncture consider TσjðUSp0ð2nÞÞ, where
σj is the C partition describing the jth twisted puncture.
Gauge the diagonal USpð2nÞ (sub)group of the flavor
symmetry of each of these theories; add 2ðk − 1Þ funda-
mental hypermultiplets and k − 1 antisymmetric hyper-
multiplets to the introduced USpð2nÞ gauge node. Finally,
include an additional k − 1 free hypermultiplets.5

We give a graphical description of the 3D mirror
described in Conjecture 1.2 in Fig. 3. We explain and
discuss the content of this conjecture and its derivation in
detail in Sec. II D. Given this description for the 3D mirror,
we can now compute the Hilbert series of the Higgs branch
for the 4D N ¼ 2 SCFTs in which we are interested. In
fact, we notice that to leading orders the Higgs branch
Hilbert series agrees with the Hall-Littlewood index, except
for the terms with negative coefficients in the latter. At
higher order the two series diverge further. In this way,
while we cannot use the tool of the Hall-Littlewood index
to directly extract the Higgs branch, we can instead utilize
the 3D mirror description from Conjecture 1.2.
The 3D theories arising from dimensional reduction of

class S theories with multiple twist lines have also another

interesting feature. In some cases, especially when dealing
with theories of A2n type, the 3D reduction is itself
Lagrangian. Nevertheless, in all the examples we consider
this turns out to be a bad three-dimensional theory in the
Gaiotto-Witten sense [37]. This is expected because of
Conjecture 1.1 and the fact that all the 4D theories with
Hall-Littlewood index different from the Higgs branch
Hilbert series lead to bad theories upon 3D reduction, as
was discussed in [42] for the particular case of class S
theories with g > 0 and untwisted punctures. A simple
example for genus zero with twisted punctures is in the Dn-
type case, where for two maximal and two minimal twisted
punctures we have the SOð2nÞ superconformal super
quantum chromodynamics (SQCD), which is Lagrangian
already in 4D and thus leads to the bad SOð2nÞ SQCD with
2n − 2 flavors upon 3D reduction. The moduli space of
vacua of bad theories has a complicated structure, as
investigated for example in [43–45]. In particular, the
Coulomb branch of the theory may have several distinct
singular loci, from each of which a Higgs branch emanates.
Because of this, there is no notion of a globally defined 3D
mirror. Instead, we can find different mirror dual descrip-
tions that are valid around each of the singular loci. The 3D
mirror, which for the A2n type we propose in Conjecture 1.2,
should be understood as the one valid around the singular
locus on the Coulomb branch of the 3D reduction of lowest
codimension and its Coulomb branch is expected to capture
the Higgs branch of the original class S theory. Similar
observations have been made in [46,47] for different 4D
N ¼ 2 SCFTs than those considered in this paper.
We notice that one class of recently explored theories

[48] with identical central charges, a ¼ c, also has a
realization in terms of a genus-zero class S theory with
four Z2-twisted punctures, and thus this class of a ¼ c
theories also has HL ≠ HS. In fact, it is algorithmic to
explore the space of class S theories and attempt to find
genera and collections of punctures such that a ¼ c. It turns
out, at least based on the limited scan that we performed for
the purposes of this paper, that all such class S theories
either involve a genus g > 0 Riemann surface, or else they
involve more than four twisted punctures. For class S
compactifications on higher genus Riemann surfaces, it is
known that the resulting Hall-Littlewood chiral ring con-
tains D-type multiplets [5]. Combining this with
Conjecture 1.1 motivates us to tentatively conjecture the
following.
Conjecture 1.3. Any 4DN ≥ 2 SCFTwith a ¼ c, such

that the Higgs branch is nontrivial, has a Hall-Littlewood
index different from the Hilbert series of the Higgs branch.
An immediate consequence of this conjecture is that all

N ¼ 3, 4 SCFTs have HL ≠ HS. This fact is indeed true
for N ¼ 4 super-Yang-Mills theories, and we expect it to
be true for N ¼ 3 theories due to the additional super-
currents transforming in D-type multiplets. We check this
conjecture explicitly for a number of N ¼ 3 SCFTs where

FIG. 2. Typical moduli space of 3D N ¼ 4 SCFTs have two
branches, each of which is a hyperkahler cone: the Higgs branch
(H) and the Coulomb branch (C). Three-dimensional mirror
refers to a dual gauge theory that flows to the same fixed point in
the IR, with the Higgs and Coulomb branch swapped. H̃ and C̃
denote the Higgs and the Coulomb branch, respectively, of the
mirror dual theory, and the colors encode the mirror map H ¼ C̃
and C ¼ H̃.

5The second antisymmetric power of the fundamental repre-
sentation of USpð2nÞ is not an irreducible representation; it is the
sum of a ð2nþ 1Þðn − 1Þ-dimensional representation and a
singlet. Throughout this paper, we refer to the ð2nþ 1Þ
ðn − 1Þ-dimensional irreducible representation as the antisym-
metric representation. With this convention the antisymmetric
representation of SUð2Þ does not exist.
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the Macdonald index is known [49]. It would be interesting
to understand how, and whether, the vanishing of c − a in
the presence of nontrivial Higgs branch requires the
presence of D-type multiplets inside of the Hall-
Littlewood chiral ring, however, we leave this question
for future work.
The structure of the remainder of this paper is as follows.

In Sec. II, we determine the Hall-Littlewood index and the
Hilbert series of the Higgs branch for a variety of class S
theories of type Aeven. We proceed in order of increasing
complexity: in Sec. II A we study class S of type A2 on
spheres with four punctures; in Sec. II B we increase the
number of punctures beyond four; and finally we increase
the rank to A2n in Sec. II C. In all cases, we verify
Conjecture 1.1. In Sec. II D, we provide an a priori
motivation for Conjecture 1.2. Next, in Sec. III, we show
that class S theories of type J ≠ Aeven that permit Z2-
twisted punctures also satisfy Conjecture 1.1; we look at
examples for G ¼ A3, D4, and E6 in Secs. III A–III C,
respectively. In Sec. IV, we study Conjecture 1.3. In
Sec. IVA we find many new families of 4D N ¼ 2
SCFTs with a ¼ c inside class S, and they all involve at
least fourZ2-twisted punctures, or have g > 0; we also take
the Hall-Littlewood index of a collection of N ¼ 3 SCFTs
in Sec. IV B, and observe that there are again negative
coefficients. In Sec. V, we conclude and discuss a variety of
future directions. To finish, we provide a set of appendices.
In Appendix A, we summarize the procedure to determine
the Hall-Littlewood index of a class S theory, and similarly
in Appendix B, we describe how to determine the Hilbert
series of the Coulomb or Higgs branch of a 3D N ¼ 4
SCFT. We review the algorithm for constructing the 3D
mirrors of general class S theories in Appendix C. We
include a short summary table of the Hall-Littlewood
indices and Higgs branch Hilbert series that we determine
for class S theories of type A2 throughout this paper in
Appendix D. Finally, in Appendix E, we explain an
explicit, brute-force, calculation of the Higgs branch
Hilbert series for the D̂4ðSUð3ÞÞ theory.

II. CLASS S OF TYPE Aeven

In this section, we focus on the study of class S theories
of type A2n on spheres with Z2-twisted punctures. The aim
is to provide evidence for Conjecture 1.1, which we do by

explicitly computing the Hall-Littlewood index for a
significant number of examples. We find that the theories
with more than two twisted punctures have a Hall-
Littlewood index which is distinct from the Hilbert series
of the Higgs branch due to the presence of negative
coefficients in the flavor-refined Hall-Littlewood index.
While this is already an interesting observation in its own
right, we would like to determine the Hilbert series of the
Higgs branch itself. To this end, we propose and provide
evidence for the construction of the 3D mirror duals of the
circle reduction of such class S theories; this proposal
provides the content of Conjecture 1.2.
In certain circumstances, which we delineate, the 3D

reduction is itself a Lagrangian quiver; though these quivers
are often “bad,” in the sense of [37]. Bad theories typically
have a Coulomb branch with multiple singular loci and
from each of these a nontrivial Higgs branch might
emanate. This was discussed in [43] (see also [45]) for
the case of the bad UðNÞ SQCD, where it turns out that the
Higgs branch at the most singular locus of the Coulomb
branch, that is the locus with the highest codimension,
contains those at the less singular loci as subvarieties. We
see that in our case the 4D Higgs branch is captured by the
Higgs branch of the 3D reduction at the most singular locus
of its Coulomb branch, similar to what was found in [46,47]
for different examples. We will compute the Higgs branch
Hilbert series either by an explicit (though computationally
intensive) computation using software such as
MACAULAY2, or else one can use sequences of known
dualities, valid only around the most singular locus of the
Coulomb branch, to relate the bad quiver to a good quiver,
for which the Hilbert series can be extracted using the
standard techniques. When such calculations are possible,
the resulting Higgs branch Hilbert series agrees with the
Coulomb branch Hilbert series of the proposed 3D mirror.
Another powerful motivation for the 3D mirrors that we

propose comes from the comparison with the Hall-
Littlewood indices, which we determine. The Coulomb
branch Hilbert series of the proposed mirror and the Hall-
Littlewood index of the class S theory agree, modulo the
negative terms in the Hall-Littlewood index, up to and
including the first order at which the negative coefficients
appear. Furthermore, the dimensions of the Higgs/Coulomb
branches of the 3D reduction of the class S theory and the
Coulomb/Higgs branches of the proposed 3D mirror agree.

FIG. 3. The 3D mirror for the class S theory of type A2n with m untwisted punctures, labeled by ρ1;…; ρm, and 2k twisted punctures,
labeled by σ1;…; σ2k, as described in Conjecture 1.2.
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A. A2 on four-punctured spheres

We begin by studying class S theories of type A2 on
spheres with four punctures. There are in total four different
possible types of punctures in the A2 theory: two untwisted
punctures associated to integer partitions of three,6 and two
Z2-twisted punctures associated to integer partitions of
two. These four punctures, together with some of their
physical properties, are written in Table II. Recalling that
Z2-twisted punctures are required to come in pairs con-
nected by twist lines, we see that there are 19 possible four-
punctured spheres.
Four-punctured spheres for the A2 theory without twist

lines have been enumerated in [10,16]; in this section, we
focus on the contrast between theories with one twist line
and theories with two twist lines. We begin with the theory
involving two untwisted maximal punctures and two
twisted null punctures, denoted by 2 × ½13� þ 2 × ½2�t.
This class S configuration is drawn in Fig. 4(a), and it
has one twist line connecting the two twisted null punc-
tures. The resulting 4D N ¼ 2 SCFT has SUð3Þ2 flavor
symmetry,7 one factor coming from each ½13� puncture. The
Hall-Littlewood index can be computed using the TQFT
description [5,27,31,32], which is given as

HLðτ; a; bÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ adjþ 1Þ
þ τ6ðadj3 þ adj2 þ 2χ8ðaÞχ8ðbÞ
þ adjþ χ10ðaÞ þ χ1̄0ðaÞ þ χ10ðbÞ
þ χ1̄0ðbÞÞ þOðτ8Þ; ð2:1Þ

where a, b are the fugacities for the SUð3Þ flavor
symmetries. In addition, we have defined the following
shorthand notation for future convenience:

adjn ¼
X

n1þn2þ���ni¼n

χn1adjða1Þ � � � χniadjðaiÞ; ð2:2Þ

where χniadjðaiÞ is the character of the ith flavor symmetry
in the representation having as its highest weight ni times
that of the adjoint representation. If the theory has no flavor
symmetry then adjn vanishes for all n.
The coefficients of the Hall-Littlewood index in Eq. (2.1)

are characters of the SUð3Þ2 flavor algebra. In particular, at
order τ2 we can see the moment map operators for the
SUð3Þ2 flavor symmetry appearing in the adjoint repre-
sentation. All characters appear with positive coefficients,
consistent with Eq. (2.1) also being the Hilbert series of the
Higgs branch.
To verify that the expression in Eq. (2.1) indeed

coincides with the Hilbert series of the Higgs branch,
we explicitly determine the Coulomb branch Hilbert series
of the 3D mirror. The latter can be derived following the
prescription of [28], which we review in Appendix C.
Specifically, to each ½13� puncture we associate one copy of
the TðSUð3ÞÞ theory, while to each ½2�t puncture we
associate one copy of the T ½2�ðUSp0ð2ÞÞ theory.8 Each of
these theories is glued together via a USpð2Þ ¼ SUð2Þ
gauging, where for the TðSUð3ÞÞ theories we first have to
decompose SUð3Þ ⊃ SUð2Þ × Uð1Þ resulting in one addi-
tional fundamental hypermultiplet attached to each unitary
node that is adjacent to the central SUð2Þ gauge node of the
full quiver. The result is drawn in Fig. 4(b). The Coulomb
branch Hilbert series of this quiver can be computed using
the techniques of [38–41] (see Appendix B for a review of
the relevant formulae) and we find perfect agreement
with Eq. (2.1).
In fact, it is similarly straightforward to show that all nine

four-punctured spheres with two untwisted punctures and
two twisted punctures have their Hall-Littlewood index
equal to the Hilbert series of their Higgs branch. We
consider one more example explicitly: the four-punctured
sphere with punctures 2 × ½13� þ 2 × ½12�t. This configura-
tion is depicted in Fig. 5(a), and the Hall-Littlewood index
of this theory is

HLðτ; a;b;c;dÞ
¼ 1þ τ2ðadjÞþ τ4ðadj2þ χ8ðaÞþ χ8ðbÞþ 1Þ
þ τ6ðadj3 þ χ27ðaÞþ χ10ðaÞþ χ10ðaÞþ χ8ðaÞþ χ10ðbÞ
þ χ8ðbÞþ χ27ðbÞþ χ10ðbÞþ χ3ðcÞþ χ3ðdÞ
þ 2χ8ðaÞχ8ðbÞþ χ8ðaÞχ3ðcÞþ χ8ðaÞχ3ðdÞ
þ χ8ðbÞχ3ðcÞþ χ8ðbÞχ3ðdÞÞþOðτ8Þ; ð2:3Þ

TABLE II. The maximal and minimal untwisted and twisted
punctures in class S theories of type A2n and their contribution to
the central charges and flavor symmetries [13]. The minimal
twisted puncture, ½2n�t, is also known as the twisted null
puncture. When n ¼ 1 these are all the possible punctures.
The subscript t emphasizes that the puncture is Z2 twisted.

Partition δa δc F

½12nþ1� 1
24
nð32n2þ38nþ11Þ 1

6
nð8n2þ10nþ3Þ SUð2nþ 1Þ

½2n; 1� n2 þ nþ 1
24

n2 þ nþ 1
12

Uð1Þ
½12n�t 1

48
nð64n2þ86nþ37Þ 1

12
nð16n2þ22nþ9Þ USpð2nÞ

½2n�t n3 þ 3
2
n2 þ 29

48
n n3 þ 3

2
n2 þ 7

12
n ∅

6There are, of course, three integer partitions of three, but the
partition [50] is associated to the trivial puncture, which is
equivalent to no puncture.

7In this paper we only focus on the flavor symmetry algebra
and we ignore the global structure of the flavor symmetry group.
The latter was studied for class S theories in [51].

8We follow the standard nomenclature used in the literature on
Tσ
ρðGÞ theories, where we omit writing maximal partitions. For

example, here TðSUð3ÞÞ stands for T ½13�
½13�ðSUð3ÞÞ.
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where a, b are the fugacities associated to the two SUð3Þ
flavor symmetries, one for each untwisted maximal punc-
ture, and c, d are the fugacities for the two SUð2Þ flavor
factors from the twisted punctures.
Again the Hall-Littlewood index has all positive coef-

ficients and thus does not exhibit any evidence that it is not
also the Hilbert series of the Higgs branch. Utilizing the 3D
mirror we can determine the Higgs branch Hilbert series to
confirm that the two indeed coincide. To derive the latter,
we consider now two copies of the TðSUð3ÞÞ theory and
two copies of the TðUSp0ð2ÞÞ theory, where the latter is an
SOð3Þ gauge theory with two fundamental half-hyper-
multiplets, and glue them via an SUð2Þ gauging as in
the previous example. The resulting quiver is depicted in
Fig. 5(b); we determine the Hilbert series of the Coulomb
branch and observe that it is in perfect agreement with the
Hall-Littlewood index in Eq. (2.3).
More examples of explicit computations of the Coulomb

branch Hilbert series of the 3D mirror to A2n class S
theories on spheres with only one twist line [28] evince that
their Hall-Littlewood index and Higgs branch Hilbert series
are identical. Instead, we now turn to the study of class S

theories of type A2 with four twisted punctures, to wit, two
twist lines. There are five such four-punctured spheres and
in each case we verify that the Hall-Littlewood index and
the Hilbert series of the Higgs branch are different.
We begin by considering the theory with four twisted

null punctures 4 × ½2�t. This theory can be described as an
SUð3Þ gauging of two copies of a particular three-punc-
tured sphere which has one ½13� puncture and two ½2�t
punctures, as depicted in Fig. 6(a). The three-punctured
sphere in question in fact corresponds to a product theory: it
is two copies of the ðA1; D4Þ Argyres-Douglas theory [27].
It is easy to see that the four-punctured sphere thus
corresponds to the diagonal SUð3Þ gauging of four copies
of the ðA1; D4Þ theory, which is precisely the construction
of the D̂4ðSUð3ÞÞ SCFT from [52]. In fact, this theory has
identical central charges, a topic to which we return
in Sec. IV.
It is straightforward to now use the class S description to

determine the Hall-Littlewood index of the D̂4ðSUð3ÞÞ
theory. For this theory, we can also use the fact that the
ðA1; D4Þ theory is the one-instanton theory of SUð3Þ, called
H2, where the Higgs branch Hilbert series takes a

FIG. 4. In (a), we depict the A2 type class S theory on a four punctured sphere with punctures 2 × ½13� þ 2 × ½2�t. In (b), we show the
Lagrangian quiver describing the mirror dual of the 3D reduction.

FIG. 5. The A2 type class S theory on a four punctured sphere with 2 × ½13� þ 2 × ½12�t is shown in (a), while in (b) we depict the 3D
mirror.
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particularly simple closed form [53–55]. We can also use
the N ¼ 1 Lagrangian description of the ðA1; D4Þ theory
[56–58] to compute the index. Either way, we find

HLðτÞ ¼ 1þ τ4− τ6

1− τ4
¼ 1þ2τ4− τ6þ2τ8− τ10þOðτ12Þ:

ð2:4Þ

We immediately notice that there are terms with negative
coefficients. Hence, this expression cannot coincide with
the Hilbert series of the Higgs branch, as anticipated. We
can gain some intuition on the origin of the associated D-
type multiplets, i.e., the multiplets which exist inside of the
Hall-Littlewood chiral ring but not the Higgs branch chiral
ring, by looking at the direct 3D reduction of this theory,
which remarkably turns out to be Lagrangian.
The circle compactification of the ðA1; D4Þ theory

corresponds to the 3D N ¼ 4 Uð1Þ gauge theory with
three hypermultiplets of unit charge [59,60]. Hence, the 3D
reduction of D̂4ðSUð3ÞÞ is given by the Lagrangian quiver
represented in Fig. 6(b). It turns out that the matter content
is not enough to Higgs the full gauge group of the entire
quiver. We can explicitly see this by trying to naively
compute the Higgs branch Hilbert series with the standard
Molien integral, which assumes that the gauge group is
completely Higgsed [61]. This would give us precisely
Eq. (2.4), which is not a sensible result for a Higgs branch
Hilbert series due to the negative terms; thus, our
assumption that the gauge group is completely Higgsed
at the generic point of the Higgs branch must be violated.
Thanks to the simplicity of the quiver, the Hilbert series can
still be correctly computed, in a brute-force manner, using
MACAULAY2 [62] and the result is (see Appendix E for
more details)

HSðτÞ ¼ 1 − τ2 þ τ4

ð1 − τ2Þð1 − τ4Þ
¼ 1þ 2τ4 þ τ6 þ 3τ8 þ 2τ10 þOðτ12Þ; ð2:5Þ

which does not have negative terms and thus differs from
the Hall-Littlewood index in Eq. (2.4).
Interestingly, the Higgs branch Hilbert series in Eq. (2.5)

coincides with the Higgs branch Hilbert series for a similar
3D quiver gauge theory, where the SUð3Þ gauge group at
the central node is replaced with SUð2Þ, to wit, the affine
D4 quiver.9 This suggests that the Uð1Þ which is not
completely Higgsed on the Higgs branch corresponds to
the Uð1Þ in the decomposition SUð3Þ ⊃ SUð2Þ × Uð1Þ.
Furthermore, among the Higgs branch of the ðA1; D4Þ
theory, given by the closure of the SUð3Þminimal nilpotent
orbit, only the SUð2Þ minimal nilpotent orbit that is neutral
to this Uð1Þ contributes to the Higgs branch of the
D̂4ðSUð3ÞÞ theory. Hence, we suspect that the extra D-
type multiplets in the Hall-Littlewood index of the 4D
theory are due to a Uð1Þ vector multiplet inside the SUð3Þ
gauge group in Fig. 4(a) that remains massless on the Higgs
branch of the D̂4ðSUð3ÞÞ theory, in accordance with the
proposal of [33].
This observation is not accidental, since we can dualize

the theory in Fig. 6(b) so as to obtain the affine D4 quiver
theory. Notice that the theory in Fig. 6(b) is “bad” in the
Gaiotto-Witten sense [37], that is, there are monopole
operators whose ultraviolet dimensions violate the unitarity
bound. The badness of the quiver is localized at the central
SUð3Þ node, which allows us to manipulate it as follows.
First, by a field redefinition we can turn the middle SUð3Þ
gauge node into Uð3Þ while simultaneously making one of
the four Uð1Þ gauge nodes a flavor one. The middle Uð3Þ
node is bad since it only sees four flavors. As it was

FIG. 6. In (a), we show the A2 class S theory on a sphere with four twisted null punctures. In (b), we depict the Lagrangian quiver
describing the 3D reduction. In (c), we portray the magnetic quiver which, together with a free hypermultiplet, is a mirror for the theory
in (b) around the most singular locus on its Coulomb branch.

9The 3D rank n affine J quivers are Lagrangian quivers in the
shape of the affine Dynkin diagram of J, and where each gauge
node is UðndiÞ with di being the Dynkin label for that particular
node of the affine Dynkin diagram. It is clear that there exists a
Uð1Þ inside of the gauge group under which no hypermultiplets
are charged—this Uð1Þ thus decouples from the interacting part
of the SCFT. In fact, one has the freedom to “ungauge” the Uð1Þ
on any choice of gauge node; in the case under discussion here,
we have decoupled it from the central node to go from Uð2Þ to
SUð2Þ.

KANG, LAWRIE, LEE, SACCHI, and SONG PHYS. REV. D 106, 106021 (2022)

106021-8



discussed in [43], on the most singular locus of the
Coulomb branch of Uð3Þ with four flavors, where the
Fayet-Iliopoulos (FI) parameter is turned off, the theory is
equivalent to Uð2Þ with four flavors, which is now good,
and one free twisted hypermultiplet.10 With the same
previous operation of selecting the decoupled gauge
Uð1Þ we can turn the Uð2Þ node into SUð2Þ and gauge
back the Uð1Þ that we made flavor at the first step. In the
end we obtain the affine D4 quiver plus a free twisted
hypermultiplet. This operation is depicted in Fig. 7.11

On the other hand, the Coulomb branch of Uð3Þ with
four flavors has another singular locus at a nonvanishing
value of the FI parameter, where the theory was argued in
[43,64] to be dual to Uð1Þ with four flavors and two free
twisted hypermultiplets (see also [65]). Using this and
further dualizing all the Uð1Þ nodes with one flavor into
twisted hypermultiplets, we get that our theory in Fig. 6(b)
becomes, around this other less singular point of its
Coulomb branch, a collection of six free twisted hyper-
multiplets, whose Higgs branch is trivial. This is expected,
since the Higgs branch of theUð3Þ SQCD with four flavors
at the less singular locus of its Coulomb branch is contained
in the one at the most singular locus and the badness of the
quiver theory we are considering resides only in the central
gauge node. Hence, the Higgs branch of D̂4ðSUð3ÞÞ, whose
Hilbert series we compute in Eq. (2.5), is captured by the
quiver theory of Fig. 6(b) at the most singular locus of its
Coulomb branch, where it is equivalent to the affine D4

quiver plus a free twisted hypermultiplet. The former
encodes the Higgs branch of D̂4ðSUð3ÞÞ, while the latter
the massless vector on a generic point of it.
Similar considerations were made also in [46,47]. In

particular in [47] several examples were discussed where it
similarly happens that the 3D reduction of 4D N ¼ 2
SCFTs with massless vectors on the Higgs branch typically
gives rise to bad quiver theories. Also in those cases it was
argued that the relevant Higgs branch geometry is captured
by an equivalent good description valid around the most

singular point of the Coulomb branch and which also
contains free twisted hypermultiplets encoding the mass-
less vector multiplet in 4D. The examples of [47] arise from
4DN ¼ 2 SCFTs that are obtained via conformal gaugings
of Db

pðJÞ theories.12
The same result in Eq. (2.5) for the Hilbert series can be

obtained from the 3D mirror of this class S theory. The
naive prescription, summarized in Appendix C, would be to
glue four copies of the T ½2�ðUSp0ð2ÞÞ theory via a diagonal
SUð2Þ gauging, which results in SUð2Þ SQCD with four
fundamental half-hypermultiplets. This cannot be the
mirror since the resulting theory is bad and the Coulomb
branch Hilbert series does not reproduce Eq. (2.5) (see [44]
for more details). We find that Eq. (2.5) coincides with the
Coulomb branch Hilbert series of SUð2Þ SQCD with eight
fundamental half-hypermultiplets [40], i.e., adding an
additional four half-hypermultiplets with respect to the
naive prescription. In line with Conjecture 1.2, we propose
that to this theory we should also add one free hyper-
multiplet, whose presence can be deduced by the fact that
on the Higgs branch of D̂4ðSUð3ÞÞ there is a masslessUð1Þ
vector multiplet which in 3D reduces to a twisted hyper-
multiplet that in the mirror is regarded as an ordinary
hypermultiplet.13 The result is the rank one SOð8Þ instanton
theory, with the center of mass mode included, which is
known to be mirror dual precisely to the rank one affine D4

quiver gauge theory plus a free twisted hypermultiplet.
Notice that adding the free hypermultiplet in the mirror dual
is crucial, since it allows us to match the dimension of the
Coulomb branch of the 3D reduction of D̂4ðSUð3ÞÞ, which
is 1þ 1þ 1þ 1þ 2 ¼ 6, with the dimension of the Higgs
branch of the proposed 3D mirror, which is 1

2
× 2×

8 − 3þ 1 ¼ 6, where the final contribution comes from
the free hypermultiplet.
Now that we have a proposal for the 3D mirror, i.e., the

Lagrangian quiver given in Fig. 6(c), we can determine the
Coulomb branch Hilbert series. It is equivalent to use either

FIG. 7. Around the most singular locus of the Coulomb branch of the bad quiver on the left, one can dualize the theory to the good
quiver on the right plus a free twisted hypermultiplet. The Higgs branch Hilbert series, around the most singular locus of the Coulomb
branch, can then be computed utilizing the resulting good quiver with the standard Molien integral methods.

10More precisely, by this we mean that the Higgs and Coulomb
branch ofUð3Þ with four flavors andUð2Þ with four flavors and a
twisted hypermultiplet are identical locally in this region of the
moduli space.

11Similar manipulations to turn a bad theory into a good one in
the vicinity of one of the singular loci of its Coulomb branch have
been performed also in [46,47,63].

12The DpðJÞ theories, and their Db
pðJÞ generalizations, are 4D

N ¼ 2 SCFTs obtained from the class S construction with so-
called irregular punctures [60,66–68].

13More generally, as recently discussed in [46,47,69–71],
every time a 4D SCFT has an unHiggsable sector of rank r,
that is on the most generic point of its Higgs branch there still
lives a rank r SCFT with empty Higgs branch, we obtain r free
twisted hypermultiplets upon reduction to 3D.
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the monopole formula or the Hall-Littlewood formula, both
of which are reviewed in Appendix B. The monopole
formula simply states

HS½Fig: 2.3ðcÞ�ðτÞ ¼
X∞
m¼0

τ4mPSUð2Þðτ;mÞ

¼ 1 − τ2 þ τ4

ð1 − τ2Þð1 − τ4Þ : ð2:6Þ

For the Hall-Littlewood formula, we first determine the
Hilbert series for T ½2�ðUSp0ð2ÞÞ:

HS½T ½2�ðUSp0ð2ÞÞ�ðτ;mÞ ¼ τm: ð2:7Þ

After the SUð2Þ gauging and the addition of the four half-
hypermultiplets, we find

HS½Fig:2.3ðcÞ�ðτÞ

¼
X∞
m¼0

τ4m−4mPSUð2Þðτ;mÞHS½T ½2�ðUSp0ð2ÞÞ�ðτ;mÞ4;

¼
X∞
m¼0

τ4mPSUð2Þðτ;mÞ ¼ 1 − τ2 þ τ4

ð1 − τ2Þð1 − τ4Þ : ð2:8Þ

We highlight in blue the contribution of the four extra
fundamental half-hypermultiplets and notice that this can-
cels the contribution of the vector multiplet. As we can see,
these two methods for determining the Coulomb branch
Hilbert series reproduce the Higgs branch Hilbert series of
the 3D reduction, which was given in Eq. (2.5). This is
expected, as the 3D mirror that we have proposed is exactly
the known 3D mirror to the affine D4 quiver gauge theory,
which, as we have discussed, describes the 3D reduction of
the class S theory around the most singular locus of the
Coulomb branch.
As we already mentioned, the structure of the Coulomb

branch of bad theories in 3D can be very complicated, see
for example [43–45]. In particular there may be more than
one singular locus and the theory might not have a well-
defined unique mirror dual, rather different magnetic
quivers may be needed and which are valid around each
singularity (see [43,64] for the unitary case14). The theory
in Fig. 6(b) is bad and the one in Fig. 6(c) together with the
free hypermultiplet is a mirror dual description that is valid
only in a neighborhood of the most singular locus of the
Coulomb branch. In this region, the theory in Fig. 6(b) is

also equivalent to the affine D4 quiver plus a free twisted
hypermultiplet. There is then another less singular locus
where the mirror is just a collection of six free hyper-
multiplets. For many of the following twisted A2 class S
examples we see 3D mirrors to bad theories that hold only
around the most singular locus of the Coulomb branch,
where the theory has a good equivalent frame that we can
find with suitable manipulations and dualizations. This
Coulomb branch captures the full Higgs branch of the
4D SCFT.
We can perform a similar analysis for all the class S

theories of type A2 on a sphere with four twisted punctures.
As the next example, we consider the case of punctures
½12�t þ 3 × ½2�t. The Hall-Littlewood index of this theory is
written in terms of the characters of its SUð2Þ flavor algebra
as

HLðτ; aÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ þ τ5χ2ðaÞ
þ τ6ðadj3 þ adj − 1Þ þOðτ7Þ: ð2:9Þ

The existence of the −τ6 term immediately shows that the
expression for the Hall-Littlewood index in Eq. (2.9)
cannot be the Hilbert series of any Higgs branch.
In this case, as in the D̂4ðSUð3ÞÞ theory, the negative terms

in the Hall-Littlewood index can be explained by a Uð1Þ
gauge factor which is not completely Higgsed on the generic
point of the Higgs branch of the 3D reduction of the 4D
SCFT.We first construct the 3D reduction, which again turns
out to be Lagrangian. As depicted in Fig. 8(a), the four-
punctured sphere degenerates into two three-punctured
spheres, with punctures ½13� þ ½12�t þ ½2�t and ½13�þ
2 × ½2�t. As we have seen, the latter corresponds to two
copies of the ðA1; D4Þ theory. The former was shown in [27]
to correspond to the rank two SUð3Þ instanton SCFT
[76–78]. Thus, the four-punctured sphere that we are con-
sidering is nothing other than the common SUð3Þ gauging of
these three theories. The 3D reduction of the rank two SUð3Þ
instanton SCFT is described by the 3D N ¼ 4 Atiyah-
Drinfeld-Hitchin-Manin (ADHM) Uð2Þ gauge theory with
one adjoint and three fundamental hypermultiplets, where
the center of mass mode corresponds to the singlet in the
Uð2Þ adjoint which decouples as a free hypermultiplet in the
infrared. Hence, we see that the 3D reduction of the four-
punctured sphere theory in question is given by the quiver in
Fig. 8(b). As in the previous example thematter content is not
enough to Higgs the entire gauge group of the quiver; in
particular a vector multiplet for a Uð1Þ inside the SUð3Þ
gauge group, which is also the gauge group in 4D, remains
massless on the Higgs branch, again in accordancewith [33].
Trying to naively compute the Higgs branch Hilbert series
assuming that the gauge group is fullyHiggsedwould give an
expansion with negative coefficients.
An accurate way of computing the Higgs branch Hilbert

series would be again to use MACAULAY2, but the compu-
tation seems to be too intensive in this case. Instead, with

14The reader can find in the ancillary files to [72] a Mathe-
matica code implementing an algorithm to obtain the magnetic
quivers of bad linear quiver theories with unitary and special
unitary gauge nodes based on the Hanany-Witten brane setups
[73]. An alternative completely field theoretic derivation of these
based on the dualization algorithm to derive mirror dualities for
linear unitary quivers of [74,75] will be given in [45].
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the exact same operations we did in Fig. 7 we can show that
the theory in Fig. 8(b) is equivalent, around the most
singular locus of its Coulomb branch, to a similar quiver
theory, but with the middle gauge node being SUð2Þ rather
than SUð3Þ and an additional free twisted hypermultiplet,
as shown in Fig. 9. In the latter theory the gauge group is
fully Higgsed, so we can compute the Higgs branch Hilbert
series with standard methods, finding

HSðτ; aÞ ¼ PE½τ2ðadjÞ þ τ5χ2ðaÞ − τ12�

¼ 1 − τ12

ð1 − τ2Þð1 − a�2τ2Þð1 − a�1τ5Þ ;

¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ þ τ5χ2ðaÞ
þ τ6ðadj3 þ adjÞ þOðτ7Þ; ð2:10Þ

which coincides with Eq. (2.9) up to order τ6, after
removing the negative term −τ6 corresponding to the D-
type multiplet.
On the second singular locus of the Coulomb branch of

the quiver in Fig. 8(b), the theory is not just equivalent to a
collection of free fields, unlike in the previous example of
A2 with 4 × ½2�t. This is because the Uð2Þ gauge theory
with one traceless adjoint hypermultiplet and one funda-
mental hypermultiplet flows in the infrared to the product
of a decoupled free twisted hypermultiplet and an interact-
ing SCFT which turns out to have enhanced N ¼ 8
supersymmetry [79].15 We still expect that the Higgs
branch at this less singular point is a subvariety of the
one at the most singular point, since this is the case for the
Uð3Þ SQCD with four flavors and the badness of the quiver
we are studying again resides only in the central
gauge node.
We can also obtain the same result for the Higgs branch

Hilbert series in Eq. (2.10) using the 3D mirror description.
In this case, we propose, following Conjecture 1.2, that the

3D mirror is given by the quiver in Fig. 8(c). This is
obtained by gauging one copy of TðUSp0ð2ÞÞ and three
copies of T ½2�ðUSp0ð2ÞÞ via the common SUð2Þ flavor,
which would be the usual naive prescription, and in
addition including four fundamental half-hypermultiplets
on the middle SUð2Þ node. We also must include one free
hypermultiplet, whose presence can be understood as due
to the massless Uð1Þ vector multiplet on the Higgs branch
of the 4D SCFT and which corresponds to the twisted
hypermultiplet in the dual shown in Fig. 9. This free
hypermultiplet is crucial to match the dimensions of both
branches of the mirror theories.
The dimension of the Higgs branch of the quiver in

Fig. 8(b) is 3þ 3þ 2 × 3þ 3 − 1 − 1 − 4 − 8þ 1 ¼ 2,
where the last term takes into account the gauge Uð1Þ
that exists on the Higgs branch, and this matches with the
dimension of the Coulomb branch of the quiver in Fig. 8(c),
which is 1þ 1 ¼ 2. Moreover, the dimension of the
Coulomb branch of the quiver in Fig. 8(b) is 1þ 1þ 2þ
2 ¼ 6 and it matches with the dimension of the Higgs
branch of the quiver in Fig. 8(c), which is 1þ 1

2
× 2×

7 − 3þ 1 ¼ 6, where the first term is the dimension of the
Higgs branch of the SOð3Þ gauge theory with two
fundamental half-hypermultiplets, shown to be isomorphic
to C2=Z2 in [39], and the last term is the free hyper-
multiplet. We stress once again that the 3D mirror we are
proposing is valid only around the most singular locus of
the Coulomb branch of the theory in Fig. 8(b), where it is
equivalent to a similar quiver butwith anSUð2Þ in themiddle
and one additional twisted hypermultiplet, see Fig. 9.
It turns out that the Hall-Littlewood index of any A2

theory on a four-punctured sphere with two twist lines,
other than D̂4ðSUð3ÞÞ, is written in a form similar to
Eq. (2.9):

HLðτ; aÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ þ fðτ; aÞ
þ τ6ðadj3 þ adj − 1Þ þOðτ7Þ; ð2:11Þ

with some extra terms

FIG. 8. In (a), we show the A2 class S theory on a sphere with ½12�t þ 3 × ½2�t punctures. In (b), we depict the Lagrangian quiver
describing the 3D reduction. In (c), we portray the magnetic quiver which, together with a free hypermultiplet, is a mirror for the theory
in (b) around the most singular point on its Coulomb branch. The dashed link in (b) denotes a Uð2Þ adjoint hypermultiplet with the
singlet decoupled.

15This supersymmetry enhancement can be checked using the
superconformal index, see, e.g., [80].
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fðτ; aÞ ¼

8>><
>>:

τ5χ2ðaÞ 1 × ½12�t þ 3 × ½2�t
τ6χ2ðaÞχ2ðbÞ 2 × ½12�t þ 2 × ½2�t
0 otherwise

: ð2:12Þ

They commonly contain a −τ6 term that indicates that they
cannot be the Hilbert series of any Higgs branch. Indeed,
for the Hilbert series we get the same result at low orders,
but without the negative term −τ6

HSðτ; aÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ þ fðτ; aÞ
þ τ6ðadj3 þ adjÞ þOðτ7Þ; ð2:13Þ

where fðτ; aÞ is again defined as in Eq. (2.12). This is again
computed as the Coulomb branch Hilbert series of the 3D
mirror that, as in the two explicit examples we just
analyzed, is obtained by gluing one copy of the
TρtðUSp0ð2ÞÞ theory for each twisted puncture of type ρt
via a common SUð2Þ gauging and adding four fundamental
half-hypermultiplets to this central node and one free
hypermultiplet. Moreover, we have checked that the
dimensions of the Higgs and Coulomb branches of the
3D reduction of each class S theory, which in some cases
turn out to be Lagrangian, coincide with the dimensions of
the Coulomb and Higgs branches, respectively, of the
proposed 3D mirror. In 4D, all these theories exhibit an
SUð3Þ gauge theory description where it appears that a
Uð1Þ factor is not Higgsed at the generic point of the Higgs
branch. Moreover, in all the cases in which the 3D
reduction of the class S theory is Lagrangian, it is bad,
and so the mirror should only be regarded as a good
description close to the most singular locus of the Coulomb
branch, where we can always find an equivalent description
which is good, and where the gauge group is fully Higgsed,
using manipulations similar to those depicted in Figs. 7 and
9. In these cases, the expression for the Higgs branch
Hilbert series in Eq. (2.13) can be equivalently obtained
from this dual frame.

B. A2 on spheres with 2k > 4 twisted punctures

The discrepancy between the Hall-Littlewood index and
the Higgs branch Hilbert series seems to be a general
feature of all class S theories on spheres with two or more
twist lines, thus motivating Conjecture 1.1. We have

surveyed the cases for A2 with at most two twist lines in
Sec. II A; now we turn our attention to those theories with
k > 2 twist lines.
We first consider the simplest case of type A2 on a sphere

with 2k twisted null punctures. The Hall-Littlewood index
takes the following simple form:

HLðτÞ ¼ τ6k−8ð1 − τ2Þk−2
1 − τ6k−8

þ ð1 − τ6Þk−1
1 − τ4

¼ 1þ ð1þ δk;2Þτ4 − ðk − 1Þτ6 þOðτ8Þ; ð2:14Þ

which reduces to Eq. (2.4) when k ¼ 2. Once again, from
order τ6 we start to see negative terms, whose multiplicity
depends on the number of twist lines. Again, these negative
coefficients signal that this expression cannot coincide with
the Hilbert series of the Higgs branch.
In order to compute theHiggs branchHilbert series,wego

once again to three dimensions. We start by considering the
3D reduction, which can be obtained from the class S
description of the 4D theory as a linear chain of three-
punctured spheres. This configuration is depicted in Fig. 10
(a). There are two distinct kinds of three-punctured sphere
that appear in this degeneration: one with ½13� þ 2 × ½2�t,
which corresponds to two copies of the ðA1; D4Þ theory, and
one with ½13� þ ½12�t þ ½2�t, which is nothing other than the
rank two SUð3Þ instanton [27,76–78]. The 3D reduction of
the former was discussed in Sec. II A, and the 3D reduction
of the latter isUð2Þwith one hypermultiplet in the3 and three
in the 2, as described around Fig. 8. As these building blocks
are both Lagrangian, the 3D reduction of the A2 theory with
2k × ½2�t is the Lagrangian quiver given in Fig. 10(b).
Figure 10(b) depicts a somewhat exotic quiver. In

particular, the SUð2Þ gaugings between the twistedmaximal
punctures in 4D descend to the gaugings of the SUð2Þ
symmetry that rotates the adjoint hypermultiplet of each
rank two SUð3Þ instanton gauge theory. The SUð3Þ gaug-
ings are standard, however the corresponding gauge groups
seem once again not to be fully Higgsed on the Higgs
branch, in particular for each SUð3Þ we have one massless
Uð1Þ vector multiplet remaining, which is again compatible
with the findings of [33]. Moreover, each of these SUð3Þ
nodes is bad, however, if we consider the theory around the
most singular locus of the Coulomb branch, we can dualize
to convert all of them into SUð2Þ nodes, while also
producing k − 1 free twisted hypermultiplets.

FIG. 9. Similarly to Fig. 7, the bad quiver on the left can be dualized, around the most singular locus of the Coulomb branch, to the
good quiver on the right plus a free twisted hypermultiplet. Around the most singular locus of the Coulomb branch, the Higgs branch
Hilbert series is computed from the alternative good description.

KANG, LAWRIE, LEE, SACCHI, and SONG PHYS. REV. D 106, 106021 (2022)

106021-12



Despite of the complexity of the theory in Fig. 10(b), the
3D mirror is remarkably simple. Again, the mirror we are
going to propose is valid only around themost singular locus
of the Coulomb branch. Moreover, this case represents a
good starting point to investigate the 3Dmirror in the case of
multiple twist lines. Recall that, in the case of two twist lines,
we modified the standard prescription of gluing one copy of
the T ½2�ðUSp0ð2ÞÞ theory for each twisted null puncture by
adding four fundamental half-hypermultiplets to the
common SUð2Þ gauge node. We propose that in the case
of k twist lines, the number of extra fundamental half-
hypermultiplets should be 4ðk − 1Þ. Hence, the 3Dmirror of
the type A2 theory with 2k twisted null punctures is SUð2Þ
SQCD with 2kþ 4ðk − 1Þ ¼ 6k − 4 fundamental half-
hypermultiplets, which we depict in Fig. 10(c). This is
the rank one SOð6k − 4Þ instanton. The Coulomb branch
Hilbert series was computed in [40] and it is given by

HSðτÞ ¼ 1þ τ6k−6

ð1 − τ4Þð1 − τ6k−8Þ
¼ 1þ ð1þ δk;2Þτ4 þOðτ8Þ; ð2:15Þ

which to the lowest orders coincides with the Hall-
Littlewood index in Eq. (2.14), except for the negative term

at order τ6 due to theD-type multiplets. At higher orders we
start having products of generators as well as relations
among them that spoil this naive comparison.
Similarly to the cases with two twist lines, we propose

that the full 3D mirror theory is obtained by including an
additional k − 1 free hypermultiplets, one for each massless
Uð1Þ vector multiplet on the Higgs branch of the 4D SCFT.
These free hypermultiplets correspond to the twisted
hypermultiplets in the 3D reduction that we found, after
dualizations, for the theory in Fig. 10(b). In this way, we
can match the dimensions of both of the branches between
the theory in Fig. 10(b) and the 3D mirror in Fig. 10(c).
Specifically, the Higgs branch of the theory in Fig. 10(b),
which is also the Higgs branch of the 4D class S theory, has
the dimension

dimHMHB ¼ 4 × 2|{z}
ðA1;D4Þ

þ ð2k − 4Þ × 5|{z}
rank 2 SUð3Þinst

− ðk − 1Þ

× 8|{z}
SUð3Þ vect

− ðk − 2Þ × 3|{z}
SUð2Þvect

þ k − 1|ffl{zffl}
masslessUð1Þk−1vect

¼ 1; ð2:16Þ

[2]t [2]t· · ·
2k

=

[2]t

[2]t

[13]

[2]t

[13] [12]t · · ·
[2]t

[12]t [13]

[2]t

[13]

[2]t

2k − 4

(a) The class S theory of type A2 on a sphere with 2k twisted null punctures degenerates into this
linear chain of three punctured spheres. The gauge groups alternate between SU(3) and SU(2)
depending on whether the glued punctures are untwisted or twisted maximal punctures.

1

1

3 2 2 2 3 · · · 3 2 2 2 3

1

1

(b) The 3d reduction of the class S theory of type A2 on a sphere with 2k twisted null punctures. The
dashed trivalent link represents a half-hypermultiplet in the (3,2) representation of the attached
U(2) × SU(2) gauge nodes. The total number of SU(3) gauge nodes in the quiver is k − 1.

2 6k − 4

(c) The magnetic quiver for the A2 class S theory on a sphere with 2k twisted null punctures, which
we propose to be also the mirror around the most singular point of the Coulomb branch of the
theory in Figure 2.7b after the inclusion of k − 1 free hypermultiplets.

FIG. 10. The linear degeneration limit, 3D reduction, and 3D mirror for the class S theory of type A2 on a sphere with 2k ≥ 4 twisted
null punctures.
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which coincides with the dimension of the Coulomb branch
of the mirror SUð2Þ SQCD theory. Furthermore, the
quaternionic dimension of the Coulomb branch of the
3D reduction in Fig. 10(b) is

dimHMCB ¼ 4 × 1|{z}
ðA1;D4Þ

þ ð2k − 4Þ × 2|{z}
rank 2SUð3Þ inst

þ ðk − 1Þ × 2|{z}
SUð3Þ gauge

þ ðk − 2Þ × 1|{z}
SUð2Þ gauge

¼ 7k − 8; ð2:17Þ

which coincides with the dimension of the Higgs branch of
the 3D mirror once we take into account the k − 1 free
hypermultiplets

dimHMmirror
HB ¼ 6k − 4 − 3þ ðk − 1Þ ¼ 7k − 8: ð2:18Þ

Similar observations hold for A2 theories with 2k
arbitrary twisted punctures, that is, not just considering
twisted null punctures. We have scanned through all 21
examples up to and including k ¼ 4, and we have found
that in all cases the Hall-Littlewood indices display terms
with negative coefficients. To low orders, they take the
following general form16:

HLðτ; aÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ
þ τ6ðadj3 þ adj − ðk − 1ÞÞ þOðτ8Þ; ð2:19Þ

where the adjn is the same shorthand notation that we
defined in Eq. (2.2). Moreover, the Higgs branch Hilbert
series computed via the Coulomb branch Hilbert series of
the proposed 3D mirror takes a similar form, but without
the negative terms at order τ6:

HSðτ; aÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ
þ τ6ðadj3 þ adjÞ þOðτ8Þ: ð2:20Þ

We stress again that these results are obtained by modifying
the ordinary prescription for the 3D mirrors by adding
4ðk − 1Þ fundamental half-hypermultiplets for the central
SUð2Þ gauge node of the star-shaped quiver. Moreover,
adding a further k − 1 free hypermultiplets allows us to
match the dimension of the Higgs branch of the 3D mirror
with the dimension of the Coulomb branch of the 3D
reduction of the class S theory. This proposal for the 3D
mirror of class S of type A2n is summarized in
Conjecture 1.2.

We summarize our findings for the Hall-Littlewood
indices and the Higgs branch Hilbert series of the class
S theories of type A2 on spheres with twisted punctures in
Table V of Appendix D.

C. Higher rank A2n on spheres with twisted punctures

We next consider some higher rank examples of class S
theories of type A2n with n > 1 on spheres with multiple
twist lines. This serves two purposes. One is to exemplify
that the feature of having the Hall-Littlewood index differ-
ent from the Higgs branch Hilbert series holds for any
sphere with multiple twist lines, independently from the
rank. The second motivation is to provide evidence for
Conjecture 1.2, which gives the prescription for the 3D
mirror, in the higher rank case.
The first family of theories that we consider involves class

S of type A2n on a sphere with four twisted null punctures,
4 × ½2n�t, which we depict in Fig. 11(a). The three-
punctured sphere with punctures ½12nþ1� þ 2 × ½2n�t is a
product SCFT, given by two copies of theD2ðSUð2nþ 1ÞÞ
theory [27,28]. Thus, the theory with four twisted null
punctures can be described as the diagonal SUð2nþ 1Þ
gauging of four copies of the D2ðSUð2nþ 1ÞÞ theory; the
resulting theory is nothing other than the D̂4ðSUð2nþ 1ÞÞ
studied in [52]. This theory is interesting for a variety of
reasons. First, as pointed out in [52], it has identical central
charges, a point which we discuss further in Sec. IV.
Moreover, such SCFTs seem to be the only higher rank
examples of twisted A2n class S theory for which the 3D
reduction is Lagrangian.
While it is computationally infeasible to determine the

Hall-Littlewood index for the D̂4ðSUð2nþ 1ÞÞ theory with
arbitrarily large n, we can study the expansion for low
values of n to observe that the index contains terms with
negative coefficients and thus satisfies Conjecture 1.1. For
example, for D̂4ðSUð5ÞÞ, we find that the Hall-Littlewood
index is given by

HLðτÞ ¼ 1þ τ4 − τ6 þ 2τ8 − 2τ10 − τ14 þ τ16

ð1 − τ4Þð1 − τ8Þ
¼ 1þ 2τ4 − τ6 þ 5τ8 − 3τ10 þOðτ12Þ: ð2:21Þ

Once again the negative terms that start appearing at order
τ6 prevent this from being also the Hilbert series of the
Higgs branch. Similarly, for D̂4ðSUð7ÞÞ, the first terms in
the expansion of the Hall-Littlewood index are

HLðτÞ ¼ 1þ 2τ4 − τ6 þ 5τ8 þOðτ10Þ; ð2:22Þ

where we again see the ubiquitous negative coefficient at
order τ6.
In order to compute the Higgs branch Hilbert series, we

reduce the theory to three dimensions where, as we
mentioned above, it becomes Lagrangian. The 3D reduction

16In Eqs. (2.19) and (2.20), we assume that there are at least
three twist lines. The cases where k ¼ 2 were written in general
form in Eqs. (2.11) and (2.13); it is noteworthy that the occasional
extra contributions at order τ5 for k ¼ 2, captured by Eq. (2.12),
do not appear below order τ6 for k > 2.
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of D2ðSUð2nþ 1ÞÞ coincides with UðnÞ SQCD with 2nþ
1 fundamental hypermultiplets [81]17; thus we see that the
reduction of D̂4ðSUð2nþ 1ÞÞ is given by the quiver in
Fig. 11(b). Nevertheless, this description is not particularly
useful for computing the Hilbert series since again the gauge
group is not fully Higgsed on the generic point of the Higgs
branch, as signaled by the negative terms that we find in the
Hall-Littlewood index. Instead, it is more convenient to use
the 3D mirror, which we propose, in line with
Conjecture 1.2, to be USpð2nÞ SQCD with one antisym-
metric hypermultiplet and eight fundamental half-hyper-
multiplets, together with a free hypermultiplet, as depicted
in Fig. 11(c). Notice that for n ¼ 1 this reduces to the 3D
mirror of D̂4ðSUð3ÞÞ that we discuss in Sec. II A, since there
is no antisymmetric representation of SUð2Þ. The Coulomb
branch Hilbert series of this 3D mirror when n ¼ 2 is

HSðτÞ ¼ 1þ 2τ4 þ τ6 þ 6τ8 þ 4τ10 þOðτ12Þ: ð2:23Þ

We also match the dimensions of Higgs and Coulomb
branch between the 3D reduction and the 3D mirror in
Figs. 11(b) and 11(c), respectively. The dimension of the
Coulomb branch of the 3D mirror is n. As such, the
dimension of the Higgs branch of the 3D reduction in
Fig. 11(b), and thus of D̂4ðSUð2nþ 1ÞÞ, is n. On the other
hand, the dimension of the Coulomb branch of the 3(d)
reduction is 6n, which matches with the dimension of the
Higgs branch of the 3D mirror in Fig. 11(c), where we see
that the inclusion of the additional free hypermultiplet is
essential.
The 3D mirror is, in fact, the rank n SOð8Þ instanton

SCFT with the center of mass mode included. Again we
stress that this mirror description is valid only around the

most singular locus of the Coulomb branch of the theory in
Fig. 11(b). It would be interesting to understand how to
relate the quiver in Fig. 11(b) to the known mirror dual to
the instanton theory, which is the rank n affine D4 theory
with one additional fundamental flavor attached to one of
the UðnÞ nodes [100]. Unfortunately, the situation is less
clear in the higher rank case than when n ¼ 1, which we
discuss in Sec. II A. Close to the most singular locus of the
Coulomb branch we can, similarly to what we did in Fig. 7,
show that the theory in Fig. 11(b) is equivalent to a similar
quiver, but with the SUð2nþ 1Þ gauge node replaced by
SUð2nÞ and one additional free twisted hypermultiplet.
This is done using the result of [43] that on the most
singular point of the Coulomb branch ofUðNÞwith 2N − 2
flavors the theory is equivalent to UðN − 1Þ with 2N − 2
flavors and a free twisted hypermultiplet. However, the
resulting theory remains bad for n > 1. This is due to the
fact that the badness of the quiver in Fig. 11(b) does not
come from the central gauge node only, as happened for
n ¼ 1. This also suggests that the presence of D-type
multiplets contributing to the Hall-Littlewood index of the
4D theory is not due only to the fact that the SUðnÞ gauge
group that we also have in 4D is not fully Higgsed on a
generic point of the Higgs branch. Whether there exist
further dualizations which lead to the known, good, affine
quiver remains an open question, which we leave for
future work.
In the remainder of this section we focus on examples

where n ¼ 2. As another example of an A4 theory on a
sphere with four twisted punctures, we consider the case of
½14�t þ 3 × ½4�t. For the Hall-Littlewood index we find

HLðτ; aÞ ¼ 1þ χ10ðaÞτ2 þ ðχ350 ðaÞ þ χ14ðaÞ
þ χ5ðaÞ þ 1Þτ4 þ ðχ84ðaÞ þ χ81ðaÞ þ χ35ðaÞ
þ 2χ10ðaÞ − 1Þτ6 þ χ4ðaÞτ7 þOðτ8Þ; ð2:24Þ

where χmðaÞ denotes the character of the m-dimensional
representation of the USpð4Þ flavor symmetry. For the

SU(2n + 1)

(a) A2n with 4 × [2n]t.

n n

n n

2n + 1

(b) 3d reduction.

2n 8

(c) 3d magnetic quiver.

FIG. 11. In (a), we show the A2n class S theory with four twisted null punctures, the four gray-filled stars denote the twisted null
punctures, while the uncolored circles denote the untwisted maximal punctures that are glued together. In (b), we depict the Lagrangian
quiver describing the 3D reduction. In (c), we portray the magnetic quiver which, together with a free hypermultiplet corresponding to
the singlet part of the antisymmetric, is a mirror for the theory in (b) around the most singular point on its Coulomb branch. In (c), the
blue circular node denotes the USpð2nÞ gauge group, while the arc denotes the antisymmetric hypermultiplet.

17See also [47,71,82] for the 3D reduction of more general
Db

pðSUðnÞÞ theories, [28,60,69–71,77,78,81,83–93] for the 3D
mirrors, and [94–96] for the magnetic quivers [97–99] of various
Argyres-Douglas theories, which can be used to compute their
Higgs branch Hilbert series.
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Higgs branch Hilbert series we find the same expression
without the negative term at order τ6

HSðτ; aÞ ¼ 1þ χ10ðaÞτ2 þ ðχ350 ðaÞ þ χ14ðaÞ
þ χ5ðaÞ þ 1Þτ4 þ ðχ84ðaÞ þ χ81ðaÞ þ χ35ðaÞ
þ 2χ10ðaÞÞτ6 þ χ4ðaÞτ7 þOðτ8Þ: ð2:25Þ

The latter was computed via the Coulomb branch Hilbert
series of the 3D mirror, which we derived as usual
following the prescription in Conjecture 1.2 of adding
one antisymmetric, one singlet, and 2ðk − 1Þ fundamental
hypermultiplets to the central USpð4Þ node of the star-
shaped quiver. We depict this Lagrangian quiver in
Fig. 12(a).
Similarly the Hall-Littlewood index of the A4 theory on a

sphere with 2 × ½14�t þ 2 × ½4�t punctures is given by

HLðτ;a;bÞ ¼ 1þðχ10ðaÞþ χ10ðbÞÞτ2þðχ350 ðaÞ
þ χ14ðaÞþ χ5ðaÞþ χ10ðaÞχ10ðbÞ
þ χ350 ðbÞþ χ14ðbÞþ χ5ðbÞþ1Þτ4
þðχ84ðaÞþ χ81ðaÞþ χ35ðaÞþ2χ10ðaÞ
−1þ2χ10ðbÞþ χ35ðbÞþ χ81ðbÞþ χ84ðbÞ
þ χ350 ðaÞχ10ðbÞþ χ10ðaÞχ350 ðbÞ
þ χ14ðaÞχ10ðbÞþ χ10ðaÞχ14ðbÞþ χ10ðaÞχ5ðbÞ
þ χ5ðaÞχ10ðbÞÞτ6þOðτ8Þ; ð2:26Þ

where each term involves the characters of the two flavor
USpð4Þ symmetries, which we call χmðaÞ and χnðbÞ,
respectively. Again, the Higgs branch Hilbert series gives
rise to the same result but without the −τ6 term

HSðτ; a; bÞ ¼ 1þ ðχ10ðaÞ þ χ10ðbÞÞτ2 þ ðχ350 ðaÞ þ χ14ðaÞ þ χ5ðaÞ þ χ10ðaÞχ10ðbÞ
þ χ350 ðbÞ þ χ14ðbÞ þ χ5ðbÞ þ 1Þτ4 þ ðχ84ðaÞ þ χ81ðaÞ þ χ35ðaÞ þ 2χ10ðaÞ
þ 2χ10ðbÞ þ χ35ðbÞ þ χ81ðbÞ þ χ84ðbÞ þ χ350 ðaÞχ10ðbÞ þ χ10ðaÞχ350 ðbÞ
þ χ14ðaÞχ10ðbÞ þ χ10ðaÞχ14ðbÞ þ χ10ðaÞχ5ðbÞ þ χ5ðaÞχ10ðbÞÞτ6 þOðτ8Þ: ð2:27Þ

This expression is determined via the computation of the
Coulomb branch Hilbert series of the 3D mirror that is
depicted in Fig. 12(c).
Finally, it is interesting to consider an example of an A2n

theory with n > 2 on a sphere with k > 2 twist lines.
Specifically, we consider the A4 theory on a sphere with
½14�t þ 5 × ½4�t punctures. The Hall-Littlewood index is

HLðτ;aÞ ¼ 1þ χ10ðaÞτ2þðχ350 ðaÞþ χ14ðaÞþ χ5ðaÞþ1Þτ4
þðχ84ðaÞþ χ81ðaÞþ χ35ðaÞþ2χ10ðaÞ−2Þτ6
þOðτ8Þ: ð2:28Þ

For the Higgs branch Hilbert series, again computed as the
Coulomb branch Hilbert series of the 3D mirror, shown in

3 2 5 4 7

(a) A4 with [14]t + 3 × [4]t.

3 2 5 4 13

(b) A4 with [14]t + 5 × [4]t.

3 2 5 4

7

325

(c) A4 with 2 × [14]t + 2 × [4]t.

FIG. 12. The magnetic quivers for some class S theories of type A4 with ≥4 twisted punctures. We propose that these describe the
mirror duals after the addition of one, two, and one free hypermultiplets, respectively. These mirrors are valid only around the most
singular point of the Coulomb branch of the 3D reduction of the class S theory. Straight lines denote bifundamental half-
hypermultiplets, while the arcs represent antisymmetric hypermultiplets. We remind the reader that blue nodes denote USp groups, and
red nodes denote SO groups.
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Fig. 12(b), we find the same expression but without the
−2τ6 term:

HSðτ;aÞ ¼ 1þ χ10ðaÞτ2þðχ350 ðaÞþ χ14ðaÞþ χ5ðaÞþ1Þτ4
þðχ84ðaÞþ χ81ðaÞþ χ35ðaÞþ2χ10ðaÞÞτ6
þOðτ8Þ: ð2:29Þ

In this case, the 3D mirror contains an additional k − 1 ¼ 2
copies of antisymmetric and singlet hypermultiplets and
4ðk − 1Þ ¼ 8 fundamental half-hypermultiplets for the
central USpð4Þ node of the star-shaped quiver; it is the
magnetic quiver, i.e., the interacting sector of the theory
without the additional free hypermultiplets, that is shown in
Fig. 12(b).
In all of the examples which we have studied, which we

consider a representative sample of class S theories of type
A2n with Z2-twisted punctures, we can see that
Conjecture 1.1 is satisfied. In particular, each theory with
more than one twist line contains a negative coefficient in
the Hall-Littlewood index; intriguingly, we note that this
negative coefficient always appears at order six, and is a
singlet under the flavor symmetry. While these negative
terms immediately imply that the Hall-Littlewood index
and the Hilbert series of the Higgs branch do not coincide,
we also compute the latter explicitly using the proposal for
the 3D mirrors of such class S theories, as given in
Conjecture 1.2.

D. The 3D mirrors for twisted Aeven

In this section, we spell out a proposal for Lagrangian
quivers describing the 3D mirrors of the class S theories of
type A2n on a sphere, with 2k twisted punctures and m
untwisted punctures. We have summarized this proposal in
Conjecture 1.2, which is as follows.
Conjecture 1.2. The 3D mirror for a class S theory of

type A2n obtained from a sphere with m untwisted
punctures and 2k twisted punctures is given by the
following Lagrangian quiver. For each untwisted puncture
consider the theory TσiðSUð2nþ 1ÞÞ, where σi is the
partition describing the ith untwisted puncture; similarly,
for each twisted puncture consider TρjðUSp0ð2nÞÞ, where
ρj is the C partition describing the jth twisted puncture.
Gauge the diagonal USpð2nÞ (sub)group of the flavor
symmetry of each of these theories; add 2ðk − 1Þ funda-
mental hypermultiplets and k − 1 antisymmetric hyper-
multiplets to the introduced USpð2nÞ gauge node. Finally,
include an additional k − 1 free hypermultiplets.
A review of the general procedure for the construction of

3D mirrors of class S theories is the subject of Appendix C,
while here we only consider the case of type A2n on a
sphere with untwisted and twisted punctures. Let us first
briefly consider the situation of k ¼ 1, that is a sphere with
only two twisted punctures, connected by a single twist
line. The 3D mirrors of such theories have been studied in

detail in [28] by adapting the construction of [36]. To every
untwisted puncture we associate one copy of the
TρðSUð2nþ 1ÞÞ theory [37], while to each twisted punc-
ture we associate one copy of the TρðUSp0ð2nÞÞ theory
[39]. These are glued together by gauging a diagonal
combination of a common USpð2nÞ subgroup of their
flavor symmetry, so to form a star-shaped quiver with a
middleUSpð2nÞ gauge node and one leg for each puncture.
For the TρðSUð2nþ 1ÞÞ theory, we should gauge the
USpð2nÞ subgroup of its SUð2nþ 1Þ flavor symmetry
according to the embedding

SUð2nþ 1Þ → USpð2nÞ ×Uð1Þ; ð2:30Þ

under which the fundamental representation decomposes as

2nþ 1 → 2n0 ⊕ 11: ð2:31Þ

Thismeans that the last gauge node of eachTρðSUð2nþ 1ÞÞ
tail is connected both to the middle USpð2nÞ gauge node
and to a flavor node, representing theUð1Þ symmetry in the
decomposition in Eq. (2.30), which remains as a flavor
symmetry.
For the case of k > 1 twist lines, we propose that this

construction should be modified by adding 2ðk − 1Þ funda-
mental, k − 1 antisymmetric, and k − 1 singlet hypermul-
tiplets, where the latter constitute a free sector of the theory.
This is motivated by the many examples that we previously
discussed, but we also give the following heuristic argu-
ment. Let us consider the case of k ¼ 2, with the higher k
generalization being straightforward. Such a sphere can be
constructed, choosing a suitable S-duality frame, by gluing
two spheres with one twist line and one maximal untwisted
puncture each along the untwisted puncture. In the 3D
mirrors, this amounts to gauging a common diagonal
combination of the SUð2nþ 1Þ Coulomb branch sym-
metries of the TðSUð2nþ 1ÞÞ tails associated to the
maximal untwisted punctures that we are gluing.
Such a gauging is known to lead to a theory with a

quantum deformed moduli space of vacua where the
SUð2nþ 1Þ × SUð2nþ 1Þ symmetry of the two
TðSUð2nþ 1ÞÞ tails is spontaneously broken to the diago-
nal subgroup and with the addition of Nambu-Goldstone
modes in the adjoint representation of such a diagonal
SUð2nþ 1Þ. This result was derived at the level of the
three-sphere partition function in [74,101,102] where it was
shown that the one for the gluing of two TðSUð2nþ 1ÞÞ
theories is proportional, up to a prefactor representing the
Nambu-Goldstone modes, to a delta function identifying
the mass parameters of the two SUð2nþ 1Þ symmetries,
and the physical interpretation was given in [74]. In the case
of no twisted punctures, since in the two star-shaped
quivers that we are gluing the SUð2nþ 1Þ × SUð2nþ 1Þ
symmetry is gauged, this means that it is Higgsed to its
diagonal subgroup and one combination of the two vectors
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multiplets in the adjoint representation of SUð2nþ 1Þ
becomes massive by eating the aforementioned Nambu-
Goldstone modes.
When the glued building blocks have twisted punctures,

then the gauge symmetry of the central node of the star
shaped-quivers is only the USpð2nÞ subgroup of
SUð2nþ 1Þ, but since we are still gluing two TðSUð2nþ
1ÞÞ tails in the 3D mirror we will have Nambu-Goldstone
modes that are in the adjoint representation of SUð2nþ 1Þ.
Hence, these should be decomposed according to the
embedding (2.30):

4nðnþ1Þ→nð2nþ1Þ0⊕ ðnð2n−1Þ−1Þ0⊕2n�1⊕10:

ð2:32Þ

The first term is the adjoint representation of USpð2nÞ, so
these modes will again be eaten by the massive vector fields
of the HiggsedUSpð2nÞ gauge symmetry. The other terms,
on the other hand, remain as massless fields transforming
under the surviving USpð2nÞ gauge symmetry that con-
stitutes the central node of the final star-shaped quiver.
These correspond exactly to the additional fields in our
Conjecture 1.2. As an example, we depict this Coulomb
gauging in a case where n ¼ 1 in Fig. 13; we observe that
there are an additional two full fundamental hypermultip-
lets, as described in Eq. (2.32).
For the simple case of Coulomb gauging shown in

Fig. 13, the gluing process can be understood via a brane
configuration in Type IIB string theory. For example, let us
consider the A2 type theory on a sphere with 4 × ½2�t. It is
decomposes into two copies of the A2 theory on a sphere
with 2 × ½2�t þ ½13�. The 3D mirror theory of each building
block is a quiver gauge theory as depicted in the left side of
Fig. 13, where the USpð2Þ ¼ SUð2Þ subgroup of the
SUð3Þ flavor symmetry in the TðSUð3ÞÞ theory is gauged
and coupled with two half-hypermultiplets that arise from
2 × ½2�t. This quiver gauge theory can be engineered via
parallel D3-branes suspended between NS5-branes. Each
UðmÞ gauge theory arises from a stack of m D3-branes
suspended between two NS5-branes, and a full-
hypermultiplet arises from a D3-brane suspended between
one NS5-brane and one D5-brane. The specific brane

configuration for the 3D mirror of 2 × ½2�t þ ½13� is
depicted in the first line of Fig. 14.
To understand the gauging procedure of the diagonal

SUð3Þ Coulomb branch symmetry of two TðSUð3ÞÞ tails,
we first consider the mirror dual of this brane configuration
that is obtained byS duality. It is depicted in the second line of
Fig. 14. Here, the SUð3Þ Coulomb branch symmetry of the
TðSUð3ÞÞ tail is now manifestly described by the flavor
symmetry rotating the three D5-branes on the right side.
Then, gauging the diagonal part of the flavor SUð3Þ sym-
metry corresponds to attaching the D3-branes that were
previously ending at the D5-branes. This procedure is
depicted in the third and the fourth line of Fig. 14. After
taking the S duality again, we end up with the brane
configuration in the fifth line of Fig. 14. It describes the
SUð2Þ gauge theory that arises from two D3-branes sus-
pended between two NS5-branes. There are eight fundamen-
tal half-hypermultiplets, each pair comes from a D3-brane
ending at each D5-brane. To exhibit the half-hypermultiplets,
we move two D5-branes in the interior of the NS5-branes to
the exterior, where the Hanany-Witten transition [73] creates
two additional D3-branes between the NS5-branes and the
crossingD5-branes.We end upwith the last figure of Fig. 14,
where we distinguish the red and blue D3-branes in the sixth
figure of Fig. 14 by their boundary conditions; Fig. 15
provides a 3Dperspective on this sixth figure. The blue branes
are stuck at two NS5-branes and carry the vector multiplets.
On the other hand, the redD3-brane is suspended between the
D5-branes and can freely escape from the NS5-branes and
blueD3-branes in the transverse direction to the page. Thus it
is associated to a decoupled singlet hypermultiplet. In total,
we obtain the 3D mirror of A2 type theory on a sphere with
4 × ½2�t that we already discussed in Sec. II C.
There is a subtlety in the discussion of the brane system

that we now clarify. The brane system engineers a quiver
gauge theory where all of the nodes are UðmÞ, and thus the
Coulomb gauging studied via the brane system, in fact
describes an analog of Fig. 13 where all of the gauge nodes
are unitary groups. To obtain the result in Fig. 13 directly,
we consider the gauging of the topological Uð1Þ symmetry
on both sides of the brane construction, and this converts
the appropriate Uð2Þ gauge nodes into SUð2Þ gauge nodes.
We also mention that a similar modification was already

discussed for the case of Dn type class S theories with

FIG. 13. A depiction of the Coulomb gauging of the SUð3Þ flavor symmetries of two copies of the 3D mirror associated to the class S
theory of type A2 with ½13� þ 2 × ½2�t. The result on the right is the 3D mirror for the sphere with 4 × ½2�t.
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Z2-twisted punctures in [36] and checked with Hilbert
series computations in Appendix A.1.3 of [41]. In that case,
the prescription is to add k − 1 fundamental hypermultip-
lets to the middle SOð2n − 1Þ gauge node of the star-
shaped quiver. This again can be understood from the
decomposition of the adjoint representation of SOð2nÞ
under the embedding of SOð2nÞ → SOð2n − 1Þ

nð2n − 1Þ → ðn − 1Þð2n − 1Þ⊕ 2n − 1: ð2:33Þ

The first term corresponds to the Nambu-Goldstone modes
in the adjoint representation of SOð2n − 1Þ that are eaten in
the Higgs mechanism, while the second term represents the
additional fundamental hypermultiplet.

FIG. 14. We depict the D5-NS5-D3-brane description of the diagonal Coulomb gauging of the SUð3Þ flavor symmetry of two copies
of the 3D mirrors of class S of type A2 on a sphere with 2 × ½2�t þ ½13�. In the final step, we use Hanany-Witten moves to translate the
D5-branes outside of the region bounded by the NS5-branes, and the red D3-brane then becomes free to move transverse to the page; it
thus corresponds to a free singlet. The blue D3-branes are bound to the D5s, and thus contribute an SUð2Þ gauge algebra. The last node 8
comes from counting the numbers as half-hypermultiplets.
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Here we are proposing a similar prescription but in the
case of twisted A2n. Let us stress again that the previous
argument is just heuristic, but we confirmed the final result
summarized in Conjecture 1.2 with a multitude of compu-
tations based on thematching of Higgs andCoulomb branch
dimensions and on the comparison of the Coulomb branch
Hilbert series of the 3Dmirror with the Higgs branchHilbert
series of the class S theory, when this is computable, or with
the Hall-Littlewood index otherwise. As we pointed out,
when k > 1 the Hall-Littlewood index and the Hilbert series
never match, but they still display the same structure of the
positive terms to low orders where the negative terms come
from theD-type multiplet generators that are counted by the
Hall-Littlewood index but not by the Hilbert series.
We further comment again that generally the 3D reduc-

tion of class S theories with multiple twist lines has a
Coulomb branch with a complicated structure since there
are multiple singular loci and the mirror that we are
constructing is only valid around the most singular locus.
In general, we expect this to capture the full Higgs branch
of the 4D SCFT, while the Higgs branches emanating at the
less singular loci of the Coulomb branch of the 3D reduced
theory only capture subsectors of the 4D Higgs branch. We
have seen this in explicit examples in the previous sections.
In this paper, we do not consider Riemann surfaces that

are not spheres, since for higher genus it is already well
known that the Hall-Littlewood index and the Higgs branch
Hilbert series are different. In absence of twisted punctures,
the 3D mirror for genus g > 0 is modified by adding g
adjoint hypermultiplets to the central gauge node of the
star-shaped quiver. It would be interesting to investigate

what is the 3D mirror for higher genus g > 0 and higher
number of twisted punctures 2k > 0. Our expectation is
that there should be g adjoint hypermultiplets and kþ g − 1
copies of antisymmetric plus singlet plus two fundamental
hypermultiplets for the central USpð2nÞ gauge node of the
star-shaped quiver, however we do not test this hypothesis
in this paper.

III. CLASS S OF OTHER TYPES

We have demonstrated throughout Sec. II, via a large
number of examples, that class S theories of type Aeven on
spheres with at least four twisted punctures, have a Hall-
Littlewood index that is distinct from the Hilbert series of
the Higgs branch of the theory. While class S theories of
type Aeven are special and unique in many ways, it is
inessential for the distinction between the Hall-Littlewood
index and the Higgs branch Hilbert series.
In this section, we demonstrate that Conjecture 1.1 holds

for a variety of examples where J ¼ Aodd, D2n, and E6. We
find that for Aodd, there appears to be a ubiquitous −τ6 term
in the Hall-Littlewood index, however, for the D series, we
find examples where there are no negative coefficients at
low orders in the Hall-Littlewood index. In the latter cases,
an explicit computation of the Higgs branch Hilbert series,
via the known Lagrangian description of the 3D mirror,
verifies Conjecture 1.1.

A. A3 on a four-punctured sphere

We first consider the A3-type class S theories on a four-
punctured sphere as representatives of the Aodd theories. At

FIG. 15. A refined description of the last figure in Fig. 14. The blue D3-branes can move freely along x789 direction whose position
describes the moduli space of Coulomb branch. The red D3-brane decouples from the gauge theory by moving freely in x456 direction.
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the same time, they can also be considered as D3-type
theories. A simple example is SOð6Þ SQCD with eight
fundamental half-hypermultiplets which form an octet
under a USpð8Þ flavor symmetry. This SQCD corresponds
to the A3-type class S theory on a sphere with two twisted
maximal punctures and two twisted minimal punctures.
Since there are two twist lines, we expect, in line with
Conjecture 1.1, that the Hall-Littlewood index and the
Hilbert series of the Higgs branch are different. This should
be the case since we cannot completely Higgs the gauge
symmetry and there will be a residual Uð1Þ symmetry
unbroken. Indeed, we find that the Hall-Littlewood index is

HLðτ; aÞ ¼ 1þ χ36ðaÞτ2 þ ðχ330ðaÞ þ χ308ðaÞÞτ4
þ ðχ1716ðaÞ þ χ4914ðaÞ þ χ825ðaÞ
− χ42ðaÞÞτ6 þOðτ8Þ: ð3:1Þ

We can see the −τ6χ42ðaÞ as clear evidence that the Hall-
Littlewood index differs from the Hilbert series of the
Higgs branch. This negative term comes from the D2ð0;0Þ
multiplet, whose superconformal primary is

ϵabcdefqIaqJbq
K
c qLdϕef; ð3:2Þ

where qIa is the scalar component of the half-hypermultip-
lets in the vector representation of SOð6Þ and ϕef is the
scalar component of the SOð6Þ vector multiplet. The
subscripts in the lowercase letters denote the SOð6Þ gauge
indices that run from 1 to 6, while the superscripts in the
uppercase letters denote the USpð8Þ flavor indices that run
from 1 to 8. Each q has ðΔ; j1; j2; R; rÞ ¼ ð1; 0; 0; 1=2; 0Þ
and ϕ has ðΔ; j1; j2; R; rÞ ¼ ð1; 0; 0; 0; 1Þ. Thus, the above
operator has ðΔ; j1; j2; R; rÞ ¼ ð5; 0; 0; 2; 1Þ, satisfying the
shortening condition of the DRð0;j2Þ:

Δ ¼ 1þ 2Rþ j2; r ¼ j2 þ 1; j1 ¼ 0: ð3:3Þ

The four USpð8Þ indices of this operator are completely
antisymmetric, while the traceless condition is imposed by
the F-term condition from the superpotential

W ¼ qIaϕabΩIJqJb ⇒
∂W
∂ϕab

¼ ΩIJqIaqJb ¼ 0; ð3:4Þ

where ΩIJ is the skew-symmetric invariant tensor of
USpð8Þ flavor symmetry group. Hence, D2ð0;0Þ is in the
completely antisymmetric traceless rank-4 tensor represen-
tation 42 of the USpð8Þ flavor symmetry group, which
agrees with our result. Similarly we find that the SOð2NÞ
conformal SQCD (having 4N − 4 half-hypermultiplets in
the vector representation) has a DN−1ð0;0Þ multiplet (whose
HL index is −τ2N) in the completely antisymmetric trace-
less representation (½0; 0;…; 1� in terms of the standard

Dynkin labels) of USpð4N − 4Þ, whose primary is given in
the form of ϵq2N−2ϕ, schematically [103].
Also, one can directly compare the Hall-Littlewood

index and the Hilbert series of the Higgs branch by
studying the Coulomb branch of the 3D mirror. The 3D
mirror can be constructed from the class S description
using the procedure reviewed in Appendix C; the result is
depicted in Fig. 16(a).18 The Hilbert series of the Higgs
branch is then found, using the Hall-Littlewood formula for
the Coulomb branch Hilbert series of the 3D mirror as
reviewed in Appendix B, to be

HSðτ; aÞ ¼ 1þ χ36ðaÞτ2 þ ðχ330ðaÞ þ χ308ðaÞÞτ4
þ ðχ1716ðaÞ þ χ4914ðaÞ þ χ825ðaÞÞτ6 þOðτ8Þ;

ð3:5Þ

which at low orders differs from the Hall-Littlewood index
exactly by the negative term −χ42ðaÞτ6.
Similarly we find a negative term in the Hall-Littlewood

index of the A3 theory on a sphere with four twisted
maximal punctures, which is a non-Lagrangian theory:

HLðτ;a;b;c;dÞ ¼ 1þ τ2ðadjÞþ τ4ðadj2þðχ14ðaÞ
þ χ5ðaÞþpermutationsÞÞþ τ6ðadj6
þðχ14ðaÞχ10ðbÞþ χ10ðaÞχ5ðbÞþ χ81ðaÞ
þ χ35ðaÞþ2χ10ðaÞþpermutationsÞ−1Þ
þOðτ8Þ: ð3:6Þ

FIG. 16. The magnetic quivers for some class S theories of type
A3 with ≥4 twisted punctures. See Appendix C for the procedure
for constructing such quivers given the class S description.

18We emphasize that, in this section, we are considering theD3

perspective on these theories, that is, the punctures are associated
to TρðSOð5ÞÞ, as opposed to TρðUSpð4ÞÞ. The relation between
these theories is described in [39].
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Here the adjn is defined as in Eq. (2.2) with respect to the
USpð4Þ4 flavor symmetry. The terms given by permutations
of ða; b; c; dÞ, which correspond to the fugacities of each
flavor USpð4Þ group, respectively, are abbreviated. On the
other hand, the Hilbert series of the Higgs branch obtained
from the 3D mirror theory depicted in Fig. 16(b) is exactly

HSðτ; a; b; c; dÞ ¼ HLðτ; a; b; c; dÞ þ τ6 þOðτ8Þ: ð3:7Þ

At loworders, theHall-Littlewood indexmismatcheswith the
Hilbert series of theHiggs branch byprecisely the−τ6 term. It
is algorithmic, though somewhat tedious, to iterate over all
other four-punctured spheres of typeA3 with fourZ2-twisted
punctures and verify that the Hall-Littlewood index always
contains terms with negative coefficients at sixth order in τ.
Similarly, we see that the Hilbert series of the Higgs branch

begins to diverge from theHall-Littlewood index at τ6, where
the distinction is that the negative term is absent.

B. D4 on a four-punctured sphere

In this section, we consider the D-type class S theories
on four-punctured spheres. We start with an example ofD4-
type theory that admits a Lagrangian description.19 This is
SOð8Þ SQCD with 12 fundamental half-hypermultiplets
that are in the fundamental representation of a USpð12Þ
flavor symmetry. This theory is realized by the D4-type
class S theory on a sphere with two twisted maximal
punctures and two twisted minimal punctures. In the class
S description only the USpð6Þ ×USpð6Þ subgroup of the
USpð12Þ flavor symmetry is manifest. The Hall-
Littlewood index of this theory is given by

HLðτ; aÞ ¼ 1þ χ78ðaÞτ2 þ ðχ1365ðaÞ þ χ1650ðaÞÞτ4 þ ðχ12376ðaÞ þ χ51051ðaÞ þ χ13650ðaÞÞτ6
þ ðχ75582ðaÞ þ χ543400ðaÞ þ χ5516160 ðaÞ þ χ247247ðaÞ þ χ49686ðaÞ − χ4290 ðaÞÞτ8 þOðτ10Þ: ð3:8Þ

It differs from the Higgs branch Hilbert series as it has a
negative term: −χ4290 ðaÞτ8. This is expected since we
cannot completely Higgs the gauge symmetry and there
is residual Uð1Þ gauge symmetry on the Higgs branch. We
note that, in contrast to the A-type theories, the negative
term first appears at order eight, rather than order six.
Similarly to what we have seen in Sec. III A, this comes
from theD3ð0;0Þ multiplet whose superconformal primary is
given as ϵqI1qI2qI3qI4qI5qI6ϕ (omitting the gauge indices),
which is in the completely antisymmetric traceless rank-6
tensor representation of USpð12Þ.
The unrefined Hilbert series of the Higgs branch of this

theory, which can be determined directly from the
Lagrangian description in 4D, is

HSðτÞ ¼ 1þ 78τ2 þ 3015τ4 þ 77077τ6

þ 1467533τ8 þOðτ10Þ: ð3:9Þ

In terms of the contributing representations in the
refined index, the coefficient of the τ8 term can be
decomposed as

75582þ 543400þ 5516160 þ 247247þ 49686þ 1þ 1;

ð3:10Þ

which differs from that of the Hall-Littlewood index
by 1þ 1þ 4290.
Another example we consider is the D4 theory on

a sphere with four ½23�t punctures. The Hall-Littlewood
index of this theory is expressed in the characters of
SUð2Þ4 as

HLðτ; a; b; c; dÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ ðχ5ðaÞ þ permutationsÞ þ 5Þ þ τ6ðadj3 þ ðχ7ðaÞ þ χ5ðaÞχ3ðbÞ
þ χ5ðaÞ þ 6χ3ðaÞ þ permutationsÞÞ þ τ8ð2adj4 þ ðχ9ðaÞ þ 2χ5ðaÞχ5ðbÞ þ χ7ðaÞ
þ χ5ðaÞχ3ðbÞ þ 12χ5ðaÞ þ 7χ3ðaÞχ3ðbÞ þ χ3ðaÞ þ permutationsÞ þ 19ÞÞ þOðτ10Þ; ð3:11Þ

where the ða; b; c; dÞ are the fugacities of SUð2Þ4 flavor
symmetry and we omit the terms that are obtained by
permuting ða; b; c; dÞ. Note that the Hall-Littlewood index
does not exhibit any negative term and thus it is not
immediately apparent that this expression is distinct from

19When considering the D4 theory we not only have Z2-
twisted punctures but also S3-twisted punctures [24,25]. While
we do not comment further on this exceptional case in this paper,
it is natural to expect that there will be distinctions between the
Hall-Littlewood index and the Higgs branch Hilbert series once
one includes sufficiently many S3-twisted punctures.
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that of the Hilbert series of the Higgs branch. In order to
compare the two, we directly compute the Hilbert series of
the Higgs branch from the 3D mirror theory that is depicted
in Fig. 17(b). Thus, we find that the Hilbert series of the
Higgs branch is

HSðτ; a; b; c; dÞ ¼ HLðτ; a; b; c; dÞ þ τ8 þOðτ10Þ: ð3:12Þ

A similar comparison between the Hall-Littlewood index
and the Hilbert series of the Higgs branch can be done for
the D4 theory on a sphere with four ½32�t punctures. It also
has a SUð2Þ4 flavor symmetry and its Hall-Littlewood
index is expressed in terms of the characters of this flavor
SUð2Þ4 as

HLðτ; a; b; c; dÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ 6Þ þ τ6ðadj3 þ ðχ4ðaÞχ2ðbÞχ2ðcÞχ2ðdÞ
þ 5χ2ðaÞχ2ðbÞχ2ðcÞχ2ðdÞ þ 8χ3ðaÞ þ permutationsÞ þ 1Þ
þ τ8ðadj4 þ 8adj2 þ 4adjþ 22þ ðχ6ðaÞχ2ðbÞχ2ðcÞχ2ðdÞ
þ χ4ðaÞχ4ðbÞχ2ðcÞχ2ðdÞ þ χ3ðaÞχ3ðbÞχ3ðcÞχ3ðdÞ
þ 5χ4ðaÞχ2ðbÞχ2ðcÞχ2ðdÞÞ þ 3χ3ðaÞχ3ðbÞ
þ 10χ2ðaÞχ2ðbÞχ2ðcÞχ2ðdÞ þ permutationsÞÞ þOðτ10Þ: ð3:13Þ

Again each of ða; b; c; dÞ is the fugacity of one of the
SUð2Þ flavor symmetries and the permutation terms are
omitted. We also find the Hilbert series of the Higgs branch,
again from the Coulomb branch of the 3D mirror which is
shown in Fig. 17(c), for this case is

HSðτ;a;b;c;dÞ ¼HLðτ;a;b;c;dÞþ2τ8þOðτ10Þ: ð3:14Þ

While we observe no negative coefficient in the Hall-
Littlewood index, we see that the Higgs branch Hilbert

FIG. 17. The magnetic quivers for some class S theories of type D4 with four Z2-twisted punctures.
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series differs from the Hall-Littlewood index at order τ8,
consistent with Conjecture 1.1.
Lastly, we consider the D4 theory on a sphere with four

twisted maximal punctures. Due to the computational
complexity, here we only consider the unrefined versions
of the Hall-Littlewood index and the Hilbert series of the
Higgs branch, however this is enough to see the difference
between them. The Hall-Littlewood index is

HLðτÞ ¼ 1þ 84τ2 þ 3567τ4 þ 102088τ6

þ 2215184τ8 þOðτ10Þ: ð3:15Þ

On the other hand, the Hilbert series of the Higgs branch,
obtained from the 3D mirror theory described in Fig. 17(d),
is exactly

HSðτÞ ¼ HLðτÞ þ τ8 þOðτ10Þ: ð3:16Þ

To summarize this section, we find that every twisted D4

theory with two twist lines has Hall-Littlewood index and
Higgs branch Hilbert series distinguished by the coefficient
at Oðτ8Þ. We have focused on four examples herein,
however, it is straightforward to extend this to all four-
punctured Z2-twisted spheres of typeD4. It is also possible
to check that the Hall-Littlewood index and the Higgs

branch Hilbert series are different even if we add more
punctures or for higher rank Dn theories.

C. E6 on a four-punctured sphere

We now consider a short example for a class S theory of
exceptional type. This provides some evidence that
Conjecture 1.1 holds beyond just the classical algebras.
We consider the class S theory of type E6 on a sphere with
punctures F4 þ F4ða1Þ þ F4ða3Þ þ B3. Recall that Z2-
twisted punctures of type E6 are labeled via the Bala-
Carter notation [14,15] for the nilpotent orbits of F4 [23].
The theory corresponds to four copies of the rank one E6

Minahan-Nemeschansky theory [104], gauged together
along the diagonal SUð6Þ subgroup of the four E6 flavor
groups. After gauging, there exists a residual SUð2Þ46 flavor
symmetry, arising from the commutant of the gauged
SUð6Þ inside of each of the E6 factors; however, the class
S description makes manifest only the diagonal SUð2Þ24
subgroup.
Instead of computing the Hall-Littlewood index from the

class S description, where the full superconformal flavor
symmetry is obscured, we can use the fact that the Higgs
branch of each Minahan-Nemeschansky theory is given by
the minimal nilpotent orbit of E6. Considering the diagonal
SUð6Þ gauging of four such Higgs branches we find that
the fully flavor-fugacity refined Hall-Littlewood index is

HLðτ; a; b; c; dÞ ¼ 1þ τ2ðχ3ðaÞÞ þ τ4ð6þ χ5ðaÞ þ χ2ðaÞχ2ðbÞ þ χ3ðaÞχ3ðbÞÞ
þ τ6ð−1þ 6χ3ðaÞ þ χ7ðaÞ þ 3χ2ðaÞχ2ðbÞ þ χ2ðaÞχ4ðbÞ þ χ3ðaÞχ5ðbÞ
þ χ2ðaÞχ2ðbÞχ3ðcÞ þ χ3ðaÞχ3ðbÞχ3ðcÞÞ þ ðpermutationsÞ þOðτ8Þ; ð3:17Þ

where a, b, c, and d are the fugacities of the four SUð2Þ
factors. We observe that the Hall-Littlewood index contains
a term −τ6, which demonstrates that this expression cannot
coincide with the Hilbert series of any Higgs branch, let
alone the Higgs branch of this theory in particular.
Interestingly, the −τ6 term is hidden when considering
the Hall-Littlewood index as computed directly from the
class S description, as there are additional flavor singlets
under the diagonal SUð2Þ flavor that is manifest from that
perspective.

IV. a= c THEORIES

Four-dimensional conformal field theories have two
independent central charges (or conformal anomalies) a
and c. For N ≥ 3 SCFTs, extended superconformal sym-
metry forces them to be equal [50]. It was not clear whether
it is possible to have 4D genuinely N ¼ 1, 2 SCFTs with
equal central charges a ¼ c. Such theories would appear to
be particularly special from the perspective of a putative
holographic dual description in terms of supergravity in

AdS5. There, the difference between central charges c − a
appears in the four-derivative correction to the effective
action [105,106]. There is no obvious reason for such a
term to vanish in view of the effective theory for finite c or
the rank of gauge group in the case of gauge theory.
Surprisingly, it has been recently found that there exist
families of genuinely N ¼ 1, 2 SCFTs with a ¼ c [48,52]
for every value of N, where N scales with the rank of the
gauge group.20

In Sec. IVA, we find new examples of genuinelyN ¼ 2
theories that have equal central charges a ¼ c in class S.
Class S realizations of a ¼ c theories means that we also
have holographic duals for such theories in AdS5
[108,109], which we leave for future work. Such theories
include the D̂4ðSUð2N þ 1ÞÞ theory, which we discuss in
Sec. II. We find that all the a ¼ c theories realized in class

20In the context of isolated hypersurface singularities, for
example to describe the non-Higgsable ðG;G0Þ Argyres-Douglas
SCFTs with eight supercharges, a ¼ c theories have also recently
been discussed in [69,107].
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S theories have either g ¼ 0 with more than one twist line
or have higher genus. This motivates us to conjecture that
any a ¼ c theory with nontrivial Higgs branch must have
the Hall-Littlewood index different from the Higgs branch
Hilbert series (HL ≠ HS). We also test this conjecture
in this section. A corollary of this conjecture is that
any N ¼ 3 SCFT has HL ≠ HS, which we discuss in
Sec. IV B. The N ¼ 3 superconformal algebra has
enhanced supersymmetry from N ¼ 2, and, from theN ¼
2 perspective, the additional supersymmetry currents trans-
form in D1=2ð0;0Þ-type multiplets. As such multiplets con-
tribute to the Hall-Littlewood chiral ring but not to the
Higgs branch chiral ring; this provides a convincing
motivation for the belief that HL ≠ HS in the N ¼ 3
setting.21

A. New classes of a= c theories in class S

Let us describe new N ¼ 2 SCFTs in class S with
a ¼ c. We do not claim we have the full list of all such
theories. The central charges for any theory in class S is
determined by (1) a choice of J ∈ ADE that labels the
6D N ¼ ð2; 0Þ theory, (2) a choice of Riemann surface
(equivalently, the genus g) that the 6D theory is being
compactified upon, and (3) a set of punctures put on the
Riemann surface. Each untwisted puncture is labeled by
an embedding of SUð2Þ into J ∈ ADE. A twisted
puncture is labeled by an embedding of SUð2Þ into
G ∈ BCFG, where G labels the Langlands dual of the
outer automorphism invariant subgroup of J; see
Table III.
The central charges for the class S theory can be

simply computed by combining the contribution from the
“background geometry” and the local contributions from
the punctures. Equivalently, we can rewrite the central
charges in terms of the effective number of vector
multiplets and hypermultiplets using

a ¼ 1

24
ð5nv þ 2nhÞ c ¼ 1

12
ð2nv þ nhÞ; ð4:1Þ

or equivalently

nv ¼ 4ð2a − cÞ; nh ¼ 4ð5c − 4aÞ: ð4:2Þ

If there exists a duality frame such that the class S theory
obtained in this way has a weakly coupled Lagrangian
description, then these are the numbers of each kind of
multiplet in that description. The numbers of effective
multiplets are given in terms of J and the punctured
Riemann surface as [13]

nv ¼
X
i

nvðρiÞ þ ðg − 1Þ
�
4

3
h∨ðJÞ dim J þ rankJ

�
;

nh ¼
X
i

nhðρiÞ þ ðg − 1Þ
�
4

3
h∨ðJÞ dim J

�
; ð4:3Þ

where h∨ðJÞ denotes the dual Coxeter number of J.
Furthermore, nvðρiÞ and nhðρiÞ denote the effective
numbers of vector multiplets and hypermultiplets for
punctures labeled by ρi, respectively. They are given by

nvðρÞ ¼ 8

�
ρJ · ρJ − ρG ·

h
2

�
þ 1

2
dimG1=2; ð4:4Þ

nhðρÞ ¼ 8

�
ρJ · ρJ − ρG ·

h
2

�
þ 1

2
ðrankJ − dimG0Þ; ð4:5Þ

where ρJ and ρG denote the Weyl vectors of J and G (for
the twisted punctures), respectively, and h ¼ ρðσ3Þ. We
also decomposed the Lie algebra of G into

G ¼ ⨁
j∈1

2
Z

Gj; ð4:6Þ

where j is the eigenvalue of the action h=2. From these
formulas, one can search for a ¼ c, or equivalently
nh ¼ nv, theories.
We categorize the a ¼ c theories that we find accord-

ing to the behavior of the large N limits, where we
consider the 6D (2,0) SCFT generating the class S
theories to be of type J ¼ SUðNÞ or J ¼ SOð2NÞ.
Namely, (1) we can take the large N limit without
changing geometry or the numbers punctures, (2) we
can take the large N limit while increasing the genus,
(3) we can take the large N limit while increasing the
number of punctures, or (4) we can have sporadic cases
that work only for finite N. We do not claim that our list
is exhaustive, but it is interesting to see that there exist
many examples of theories with a ¼ c without any
known symmetry constraints.

1. Large N limit without changing geometry

We find one class of class S theories for which we can
take N to be large while keeping fixed the geometry:

TABLE III. Upon outer automorphism twist o, simply laced J
changes to G. It is given by the Langlands dual of the group G∨,
which is the invariant subgroup of J under the twist.

J A2n−1 A2n Dnþ1 D4 E6

o Z2 Z2 Z2 Z3 Z2

G Bn Cn Cn G2 F4

G∨ Cn Bn Bn G2 F4

21This is enough to show that the Hall-Littlewood chiral ring is
different from the Higgs branch chiral ring, but we cannot rule out
(albeit extremely unlikely) accidental agreement of the HL index
and the Higgs branch Hilbert series.
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J g punctures a ¼ c

A2N 0 4 × ½2N�t 2Nð2N þ 1Þ
DN 1 k × ð½2N − 2�t þ ½2N − 4; 2�tÞ 2kðN2 − N − 1Þ

: ð4:7Þ

Here k in the second entry can be an arbitrary positive
integer, since the contributions from the pair of twisted
punctures in the parenthesis add up such that a ¼ c. The
first entry is identical to the D̂4ðSUð2N þ 1ÞÞ theory [52].
The second theory has a Uð1Þk (manifest) flavor symmetry.
Notice that the central charge for both theories scales as
OðN2Þ. We have already verified that the D̂4ðSUð2N þ 1ÞÞ
theory has HL ≠ HS and the second example has g ¼ 1.
The class S realizations of these theories in the largeN limit

also implies the existence of a holographic dual description
in M theory [108,109], where our field theory analysis
forbids certain four-derivative corrections. It would be
interesting to study this further.

2. Large N limit upon modifying geometry

There are a ¼ c theories for which one can take the large
N limit while simultaneously scaling the genus with
order g ¼ OðNÞ:

J g punctures a ¼ c

A2N 2N þ 2 2 × ½12Nþ1� 8
3
NðN þ 1Þ2ð2N þ 1Þ

A2N 2N þ 1 2 × ½12Nþ1� þ 4 × ½2N�t 2
3
NðN þ 1Þð8N2 þ 12N þ 7Þ

A2N 2N 2 × ½12Nþ1� þ 8 × ½2N�t 4
3
NðN þ 1Þð4N2 þ 6N þ 5Þ

AN−1 N þ 1 2 × ½1N � 1
3
NðN þ 1Þ2ðN − 1Þ

: ð4:8Þ

For these theories, we can take the large N limit (in the
sense of increasing the rank of J), but we have to scale
genus as well. This results in the scaling of central charge as
a ¼ c ¼ OðN4Þ. Notice that these examples have maximal
punctures carrying SUð2N þ 1Þ or SUðNÞ so that in the
large N limit, the flavor symmetry also grows. Each of
these four families of class S theories involves a compac-
tification on a Riemann surface of genus g > 0, and as such

it is clear that they all have HL ≠ HS, regardless of the
presence of twisted punctures.

3. Large N limit with fixed genus while scaling the
number of punctures

We can also have another class of a ¼ c theories with a
large N limit where the genus g is fixed, but where the
number of punctures scales with N:

J g punctures a ¼ c

A2N k 2 × ½12Nþ1� þ 4ð2N þ 2 − kÞ × ½2N�t 2
3
NðN þ 1Þð8N2 þ 18N − 3kþ 10Þ

DN 0 2N½2N − 2�t þ kð½2N − 2�t þ ½2N − 4; 2�tÞ 1
3
N2ð6k − NÞ þ NðN − 2kÞ − 2

3
ð3kþ NÞ

DN 2 2N × ½2N − 4; 2�t 1
2
Nð13N2 − 15N − NÞ

: ð4:9Þ

The first entry reduces to the first three cases of Eq. (4.8)when
we choose g ¼ 2N, 2N þ 1, and 2N þ 2, respectively. The
(manifest) flavor symmetry of the first theory isSUð2N þ 1Þ.
For the second theory, we have to scale k asOðNÞ for it to be
well-defined otherwise the central charges become negative
for large enough N. Since this class of theories involves
scaling the number of punctures (simultaneously modifying

the flavor symmetry), there is no guarantee that there exists a
good holographic description in terms of supergravity.

4. Sporadic examples with fixed J

Lastly, we list some sporadic theories where a ¼ cwith a
fixed, low-rank, choice of J:

KANG, LAWRIE, LEE, SACCHI, and SONG PHYS. REV. D 106, 106021 (2022)

106021-26



J g punctures a ¼ c

A2 0 4 × ½2�t þ k × ð½12�t þ ½2�tÞ 7kþ 4

A4 0 4 × ½4�t þ k × ð½2; 12�t þ ½t�tÞ 125
4
kþ 12

A2 1 k × ð½12� þ ½2�tÞ 7k

A4 1 k × ð½2; 12� þ ½4�tÞ 125
4
k

A2 kþ 1 4k × ½12�t 24k

A4 kþ 1 4k × ½2; 12�t 113k

: ð4:10Þ

It is noteworthy that they all belong to the A2N type with
twisted punctures.
In this section, we have considered new a ¼ c theories

that can be realized in class S. They either have at least two
twist lines (four twisted punctures) on a g ¼ 0 surface or
higher genus. This means that each of these theories has
nontrivial Higgs branch but that the Hall-Littlewood index
is distinct from the Higgs branch Hilbert series. We have
directly verified these statements for g ¼ 0with at least two
twist lines in Secs. II and III. To summarize, we have found
many examples satisfying, and no counterexamples to,
Conjecture 1.3.

B. N = 3 SCFTs

Genuinely N ¼ 3 SCFTs have been first constructed in
[110]. These theories cannot have a manifestly N ¼ 3 (or
even N ¼ 2) supersymmetric Lagrangian description.22

The “Higgs branch operator” of an N ¼ 3 SCFT actually
combines with the Coulomb branch operator (in theN ¼ 2
sense) to form a single N ¼ 3 multiplet, parametrizing the
“Coulomb branch” of the N ¼ 3 SCFT. Therefore, we
always have an Abelian gauge multiplet in the low-energy
effective theory on the “Higgs branch.” Even though N ¼
3 theories are not conventional gauge theories, it is natural
to expect that the situation is similar to the case where we
cannot completely Higgs the gauge group so that the Hall-
Littlewood chiral ring differs from the Higgs branch chiral
ring. To wit, there areDRð0;j2Þ-type multiplets in anyN ¼ 3

theory. We then test Conjecture 1.3 via an explicit compu-
tation of the Hall-Littlewood index for a number of
example theories with N ¼ 3 supersymmetry.
Since N ¼ 3 SCFTs are non-Lagrangian (except for a

particular example studied in [111]), we do not have a direct
way of computing the superconformal index. Instead, we
use the SCFT/VOA correspondence [112], where a par-
ticular sector (referred to as the Schur sector) of any 4D
N ¼ 2 SCFT is encoded in a VOA. In this correspondence,
the vacuum character of the VOA associated to an N ¼ 2

SCFT is identical to the Schur index of the 4D theory.
Moreover, one can reconstruct the Higgs branch out of the
associated variety [113] of the VOA [7,92]. Since the Schur
sector contains all the operators that are counted by the Hall-
Littlewood index, it indeed captures the Hall-Littlewood
index, and even more, the Macdonald index [114,115]. The
associatedVOAs for theN ¼ 3 SCFTs have been identified
in [116–118]. Using these results, theMacdonald indices for
N ¼ 3 SCFTs have been computed in [49].
Using those results, one can simply take the Hall-

Littlewood limit of the Macdonald index to obtain the
following:

HLZ3
¼ 1þ τ2 þ τ3

�
z3 þ 1

z3
−
1

z

�
þ τ4ð1 − z2Þ

þ τ5
�
z3 þ 1

z3
−
1

z

�
þ τ6

�
z6 þ 1

z6
−

1

z4
− z2 þ 1

�

þOðτ7Þ; ð4:11Þ

HLZ4
¼ 1þ τ2 −

τ3

z
þ τ4

�
z4 þ 1

z4
þ 1

�
þ τ5

�
−z3 −

1

z

�

þ τ6
�
z4 þ 1

z4
þ 1

�
þOðτ7Þ; ð4:12Þ

HLGð3;1;2Þ ¼ 1þ τ2 þ τ3
�
z3 þ 1

z3
−
1

z

�

þ τ4ð2 − z2Þ þ τ5
�
2z3 þ 2

z3
−
2

z

�

þ τ6
�
2z6 þ 2

z6
−

2

z4
− 3z2 þ 3

�
þOðτ7Þ:

ð4:13Þ

The first two examples in Eqs. (4.11) and (4.12), labeledZ3

and Z4, are the rank-one theories obtained via Z3 and Z4 S
folding, respectively. The third example in Eq. (4.13),
labeled Gð3; 1; 2Þ, is a rank-two S fold theory. Here z is the
fugacity for theUð1Þ symmetry that commutes withN ¼ 2
supersymmetry. We see that the Hall-Littlewood indices for
the N ¼ 3 SCFTs cannot be identical to the Higgs branch

22Some of the N ¼ 3 theories can be realized as a renorm-
alization group fixed point of certain N ¼ 1 Lagrangian gauge
theories [111].
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Hilbert series since they have negative coefficients. This
verifies Conjecture 1.3 for a small sample of N ¼ 3
SCFTs; this is in agreement with expectations as such
theories possess operators transforming in DRð0;j2Þ-type
multiplets. In particular, the term −z−1τ3 comes from the
D1

2
ð0;0Þ multiplets which contains the extra supersymmetry

current from the N ¼ 2 perspective.

V. DISCUSSION

Throughout this paper, we have provided ample evi-
dence that any class S theory obtained from a genus-zero
Riemann surface compactification with at least four Z2-
twisted punctures has a Hall-Littlewood index that is
distinct from the Hilbert series of the Higgs branch chiral
ring. This may seem to be concerning as it means that the
Hall-Littlewood chiral ring cannot be straightforwardly
used to understand the Higgs branch of the SCFT. To
alleviate this difficulty, we resort to the 3D mirror descrip-
tion which allows us to study the 4D Higgs branch by using
a Lagrangian quiver theory. To this end, we provide a
proposal for a Lagrangian description of the 3D mirrors of
class S theories of type Aeven with four or more twisted
punctures that has not been discussed previously.
Our three-dimensional analysis suggests that the 3D

reduction of class S theories with multiple twist lines is
usually “bad” in the sense of [37]. For bad theories, the
moduli space is typically characterized by a Coulomb
branch with several distinct singular loci, from each of
which a different Higgs branch cone may emanate. Such a
structure was investigated in [43,45] for theories with
unitary gauge groups, similar to those encountered in this
paper. In particular, in [45], it is shown that each singular
locus is associated to a different value of the FI parameter
that in turn corresponds to a different monopole operator
taking a vacuum expectation value, so that the ultraviolet
gauge theory is led to flow to the SCFT located at the
specific singular locus. In many cases, the Higgs branch at
the most singular locus, that is the one of highest codi-
mension, contains those at the less singular loci as sub-
varieties. Because of this complicated structure to their
moduli spaces, bad theories usually do not admit a globally
defined 3D mirror, that is, a theory that captures the full
moduli space upon swapping Higgs and Coulomb
branches. Instead, we find several distinct mirrors that
are only valid locally around each of the singular loci.
In this paper, we did not attempt to give a complete

characterization of the moduli space of the bad theories
arising from the 3D reduction. Rather, the 3D mirrors of
class S theories with multiple twist lines, which we
proposed here for type Aeven, but which were already
discussed for type D, have to be intended as valid only
around the most singular locus. Nevertheless, their
Coulomb branch still seems to capture the 4D Higgs
branch completely, which was our main focus in this paper.

It would be interesting to determine the 3D mirrors also at
the less singular loci, for example following the technique
of [45] to study the effect of the Coulomb gauging of two
TðGÞ theories in the star-shaped quivers associated to the
three-punctured spheres that we glue to form the Riemann
surface with multiple twist lines.
By combining the techniques of the Hall-Littlewood

index and 3D mirrors, we were able to verify that having
four (or more) Z2-twisted punctures or two twist (or more)
lines on a genus zero Riemann surface give rise to D-type
multiplets so that HL ≠ HS. One may wonder why this is
the case. One observation is that for the case of aD2 class S
theory with twisted punctures, it is always possible to map
such theory to an A1 class S theory [31,119,120]. This can
be done via taking the Riemann surface to its covering
space as in the Fig. 18. Namely, when we have g − 1 twist
lines for the D2 type theory, it gets mapped to the genus-g
A1 type theory. Even though this is not a generic picture,
this may be a hint towards the origin of the D-type
multiplets, as also suggested in [33]. Alternatively, con-
sider codimension two defects in the 6D N ¼ ð2; 0Þ
theory corresponding to the twisted punctures. By con-
sidering an “operator product expansion (OPE)” of four
codimension two defects, we may obtain an extra operator
that descends to theD-type multiplet in 4D. This may also
explain why having a single twist line does not give rise
to HL ≠ HS.
In this paper, we observe that some of the a ¼ c theories

studied in [48], specifically the D̂4ðSUð2nþ 1ÞÞ SCFTs,
have realizations inside of class S of type A2n with four
twisted null punctures. From this perspective it is straight-
forward to use the class S machinery to compute the Hall-
Littlewood index, however this is not necessary as the Hall-
Littlewood index for the Γ̂ðGÞ theories can be determined
from the constituent DpðGÞ building blocks. A priori, the
same methods can be used to work out the full super-
conformal index for both the N ¼ 2 Γ̂ðGÞ SCFTs with
a ¼ c and for the broad class of N ¼ 1 SCFTs with a ¼ c

←→ SO(4)Sp(1) Sp(1)

⏐
�

⏐
�

←→
SU(2)

SU(2)

SU(2) SU(2)

FIG. 18. Class S realization of the SOð4Þ SQCD with four half-
hypermultiplets (top left) and its quiver diagram (top right).
Alternatively, they can be realized as the type A1 class S theory
(bottom left and right).

KANG, LAWRIE, LEE, SACCHI, and SONG PHYS. REV. D 106, 106021 (2022)

106021-28



that were constructed and studied in a similar manner in
[52]. In [121], the superconformal indices of these a ¼ c
theories, together with what we can learn about the
spectrum of local operators from the index, are studied.
This provides a broad generalization of the observation
from the Hall-Littlewood index that there exists D-type
multiplets in the spectrum, as we observed in this paper.
We have also constructed several new examples of a ¼ c

theories in class S. We have verified that all of these
theories have nontrivial Higgs branch and distinct Hall-
Littlewood index and Higgs branch Hilbert series. In
addition, since holographic duals for class S theories have
been established [108], one can try to construct the gravity
duals of such theories including the D̂4ðSUð2N þ 1ÞÞ
theory. It is especially interesting to search for the mecha-
nism behind the a ¼ c property (or the absence of certain
four-derivative terms in 5D supergravity) in the holo-
graphic setup.
In another vein, it has been well established that there

exists a small but significant subset of 4D N ¼ 2 SCFTs
that can be obtained both from the class S construction,
and from the perspective of a T2 compactification of a 6D
(1,0) SCFT [122–125]. This raises the natural question of
whether any of the theories with Hall-Littlewood index
different from the Higgs branch Hilbert series studied in
this paper lie within this subset of theories. This is
particularly interesting, as the available tools to directly
study the Higgs branch of the 6D (1,0) SCFTs are limited.
The ability to use the Hall-Littlewood index of a dual
class S description, which has the same Higgs branch as
the 6D SCFT because it arises from a torus-compactifi-
cation, is thus useful. For example, see [126] where the
Hall-Littlewood index of the dual class S description
provides a verification of the spectrum of high dimension
Higgs branch operators read off from the tensor branch
description of rank N ðSOð4kÞ; SOð4kÞÞ conformal matter
theories.
When considering a torus compactification of a 6D (1,0)

SCFT, any dual class S description is typically of the
following form.23 Consider the family of 6D (1,0) SCFTs
known as rank N ðG;GÞ conformal matter, which are
engineered in M theory as the world volume theory on a

stack of N M5-branes probing a C2=ΓG orbifold [128].24

The dual description of the T2 compactification of these
conformal matter theories is in terms of class S of typeG on
a sphere with two maximal and N simple punctures. When
the G ×G flavor group of the 6D SCFT is not simply
connected, we can consider the compactification on a torus
with a nontrivial Stiefel-Whitney twist [143–146]; in this
case, the resulting 4D N ¼ 2 SCFT has a dual class S
description of type G̃ on a sphere with two twisted maximal
punctures and N simple punctures. Here G̃ is defined such
that ðC2=ΓG̃Þ=Zt ¼ C2=ΓG, where t is the order of the
Stiefel-Whitney twist, and the order of the outer auto-
morphism of the twisted punctures is similarly fixed, see
[146] for more details. Partial closure of the untwisted
maximal punctures in the class S description yields new 4D
N ¼ 2 SCFTs, and these can equivalently be obtained by
first performing a Higgs branch renormalization group flow
in 6D, and then taking the torus compactification; see [122]
for a wealth of examples.
As we can see, the class S description of these torus

compactifications of 6D (1,0) SCFTs always involves at
most two Z2-twisted punctures. Therefore, by
Conjecture 1.1, their Hall-Littlewood index is equal to
the Hilbert series of their Higgs branch. Furthermore, the
Higgs branch is unchanged under the dimensional reduc-
tion on the torus, and thus one can directly access the Higgs
branch chiral ring of the 6D theory from a study of the Hall-
Littlewood index of the dual class S description. This is
particularly relevant as the study of the Higgs branches of
the 6D (1,0) SCFTs is an ongoing and active area of
research [97,126,147–153].
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4DN ¼ 2Minahan-Nemeschansky theory of type E8 [127]; this
particular theory has a wide variety of constructions inside of
class S, not all of these are related to the rank two E8 Minahan-
Nemeschansky theory by partial puncture closure.

24We note that these 6D (1,0) SCFTs here are constructed via
atomic construction of elliptic curves [128–130], with an ex-
tension of anomaly matching using the Dynkin index [131],
where this extension arose from the wide zoo of data from
geometric perspectives in [132–142].
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APPENDIX A: THE FORMULAS FOR THE
HALL-LITTLEWOOD INDEX

In this appendix, we review the general formulae used to
compute the Hall-Littlewood index of any 4D N ¼ 2
SCFT arising in class S. This method was introduced in
[5,18,23,31], and we largely follow the exposition in those
references throughout this appendix.
Consider a class S theory of type J associated to an n-

punctured genus g Riemann surface. Each puncture is
labeled via a nilpotent orbit of G, where G is the Langlands
dual of the invariant subalgebra of J under the outer
automorphism associated to the twisting of the puncture.
If the puncture is untwisted then, since J is simply laced,
G ¼ J. A nilpotent orbit ρi corresponds to an SUð2Þ
embedding SUð2Þ × Fi ⊂ G. The punctures, and thus the
nilpotent orbits, of simple classical Lie groups are captured
by integer partitions [10,31]. More generally, nilpotent
orbits are understood through the Bala-Carter classification
[14,15], which are explicitly listed for the exceptional
algebras in the class S context in the appendix of [13].
The Hall-Littlewood index of a class S theory is

computed by the general formula

HL ¼
X
m

Q
n
i¼1K

G
ρiðxiÞψGðτ; aiðτ;xiÞ;mÞ

ðKJ
nullðτÞψJðτ; atrivðτÞ;mÞÞ2g−2þn ; ðA1Þ

where the sum is taken over every representation, with
highest weight vector m, of J that is invariant under the
outer-automorphism twist. The variables ai are the fugac-
ities of G that are mapped to fugacities ðτ;xiÞ of SUð2Þ ×
Fi with the explicit mapping a → aiðτ;xiÞ on the ith
puncture. The atriv corresponds to the fugacity mapping
of the untwisted null puncture. KρiðxiÞ is given as

KG
ρiðxiÞ ¼ PE

�Xk
α¼1

τ2ðnαþ1ÞχRα
ðxiÞ

�
; ðA2Þ

when the adjoint representation of G is decomposed under
the SUð2Þ embedding by

adj → ⊕k
α¼1ðnα;RαÞ: ðA3Þ

Here ðn;RÞ is the tensor product of the representation with
dimension n in SUð2Þ and the representationR in Fi on the
ith puncture. The PE refers to the plethystic exponential

PE½fðxÞ� ¼ exp

�X∞
k¼1

fðxkÞ
k

�
: ðA4Þ

ψG denotes the Hall-Littlewood polynomial of G, which is
written as

ψGðτ; a;mÞ ¼ CGðτ;mÞΨGðτ; a;mÞ;

CGðτ;mÞ ¼
�X

ω∈W;ωðmÞ¼m

τ2lðωÞ

ð1 − τ2Þrk
�−1=2

;

ΨGðτ; a;mÞ ¼
X
ω∈W

aωðmÞ Y
α∈Rþ

1 − τ2a−ωðαÞ

1 − a−ωðαÞ
; ðA5Þ

where the Rþ,W, lðωÞ, and rk refer to the positive roots, the
Weyl group, the length of the Weyl group element ω, and
the rank of G, respectively. The denominator of Eq. (A1) is
a normalization factor that corresponds to the structure
constant of the two-dimensional TQFT that is determined
in [31,154]. Note that we put the additional ð1 − τ2Þrk=2 in
the normalization factor CðτÞ compared with [18–
20,22,23] in order to absorb the overall factor AðτÞ there.

APPENDIX B: THE FORMULAS FOR THE
HILBERT SERIES

In this appendix, we review the relevant formulas used in
the main text to compute the Coulomb branch Hilbert series
of the 3D mirrors of class S theories. All the equations are
taken from the original references [38–41] (see also
Appendix A of [28]).
Given a 3DN ¼ 4 quiver gauge theory, we can compute

its Coulomb branch Hilbert series using the monopole
formula [40]. For simplicity, we only discuss the case of a
simple gauge group G, with the generalization to a quiver
theory being straightforward. The formula is

HSðτÞ ¼
X
m

τ2ΔðmÞz
P

imiPGðτ;mÞ: ðB1Þ

The ingredients in this formula are as follows. The sum is
over magnetic fluxes m living in the coweight lattice of G,
which labels the different monopole sectors. ΔðmÞ is the
dimension of the monopole operator with magnetic flux m
and it is given by

ΔðmÞ ¼ 1

2

X
i

X
wi∈Ri

jwiðmÞj −
X

α∈ΔþðGÞ
jαðmÞj; ðB2Þ

where i runs over all the hypermultiplets in the theory
which transform in representations Ri with weights wi of
the gauge group G, and where α are the positive roots of G.
Finally, PGðτ;mÞ is a dressing factor that counts monopole
operators, dressed with the scalar in the N ¼ 2 adjoint
chiral contained in the N ¼ 4 vector multiplet, that are
invariant under the residual gauge group in the monopole
background

PGðτ;mÞ ¼
Y
a

1

1 − τ2da
: ðB3Þ

Here da are the degrees of the independent Casimir
invariants of the residual gauge group. The formula in

KANG, LAWRIE, LEE, SACCHI, and SONG PHYS. REV. D 106, 106021 (2022)

106021-30



Eq. (B1) can be further refined with a fugacity z for the
topological symmetry when the gauge group admits one.

This is done by inserting a factor of the form z
P

i
mi in the

summation. The topological symmetry for a gauge groupG
is the center ZðG∨Þ of the dual group G∨. For example,
UðNÞ gauge groups have a Uð1Þ topological symmetry,
SOðNÞ gauge groups have a Z2 topological symmetry so
z2 ¼ 1, while USpð2NÞ gauge groups do not have any
topological symmetry, thus z ¼ 1.
The monopole formula can be effectively used to

compute the Coulomb branch Hilbert series only when
the theory is not bad, that is when all monopole operators
have non-negative scaling dimensions: ΔðmÞ > 0. For
many of the 3D mirror theories considered in the main
text this condition is not satisfied. Instead, we can extract
the Coulomb branch Hilbert series of the TρðGÞ theories,
refined by background magnetic fluxes for their global
symmetries, even when they are bad using the Hall-
Littlewood formula of [38,39,41].25,26 In favorable cases
in which the central gauge node of the star-shaped quiver
is not bad, one can then glue these building blocks
together using the monopole formula for this node.
Moreover, the Hall-Littlewood formula allows us to
refine the Hilbert series of the TρðGÞ theories with
fugacities for the enhanced topological symmetry, when
such exists.
The general formula for the Coulomb branch Hilbert

series of a TρðG∨Þ theory is

HS½TρðG∨Þ�ðτ;x;mÞ
¼ τδG∨ ðmÞð1 − τ2ÞrkðGÞKG

ρ ðτ;xÞΨGðτ; aðτ;xÞ;mÞ: ðB4Þ

Many of the ingredients are the same we saw in Appendix A
for the definition of the Hall-Littlewood index of a class S
theory, so here wewill only focus on the new features.m are

the background magnetic fluxes for the flavor symmetryG∨
of the TρðG∨Þ theory. This will constitute, after gauging, the
central node of the star-shaped quiver, so we will sum over
them as in the monopole formula in Eq. (B1) when doing
such a gauging. The exponent δG∨ðmÞ is defined as

δG∨ðmÞ ¼
X

α∈ΔþðG∨Þ
αðnÞ: ðB5Þ

For the groups that are relevant to us, it takes the following
values

δUðNÞðmÞ ¼
XN
j¼1

ðN þ 1 − 2jÞmj; ðB6aÞ

δSOð2NÞðmÞ ¼
XN
j¼1

ð2N − 2jÞmj; ðB6bÞ

δSOð2Nþ1ÞðmÞ ¼
XN
j¼1

ð2N þ 1 − 2jÞmj; ðB6cÞ

δUSpð2NÞðmÞ ¼
XN
j¼1

ð2N þ 2 − 2jÞmj: ðB6dÞ

Finally, KG
ρ ðτ;xÞ is the same factor that we defined in

Eq. (A2) and ΨGðτ; aðτ;xÞ;mÞ is the unnormalized Hall-
Littlewood polynomial associated with the group G that we
define in Eq. (A5).
To illustrate the application of this Hall-Littlewood

formula, we consider an explicit example from Sec. II.
For the case of the class S theory of type A2 on a sphere
with punctures 2 × ½13� þ 2 × ½12�t and whose 3D mirror is
depicted in Fig. 5(b), we first consider the Coulomb branch
Hilbert series of the TðSUð3ÞÞ and the TðUSp0ð2ÞÞ theories

HS½TðSUð3ÞÞ�ðτ;x;mÞ ¼ τ2m1−2m3ð1 − τ2Þ2PE½χSUð3Þ
8 ðxÞτ2�ΨSUð3Þðτ;x;mÞ;

HS½T ½12�ðUSp0ð2ÞÞ�ðτ; v; nÞ ¼ τ2nð1 − τ2ÞPE½χSUð2Þ
3 ðvÞτ2�ΨSUð2Þðτ; v; nÞ: ðB7Þ

The former depends on the fugacities x for its SUð3Þ
topological symmetry and on the background magnetic
fluxes m for its flavor symmetry. The latter depends on
the fugacity y for its SUð2Þ topological symmetry and
on the background magnetic flux n for its flavor

symmetry, and for n ¼ 0 it coincides with the Hilbert
series for C2=Z2:

HS½T ½12�ðUSp0ð2ÞÞ�ðτ; v; n ¼ 0Þ ¼ 1 − τ4

ð1 − τ2Þð1 − v�1τ2Þ :

ðB8Þ
In order to get the Coulomb branch Hilbert series of the

quiver in Fig. 5(b) we then have to multiply two copies of
the Hilbert series of TðSUð3ÞÞ and two copies of the Hilbert
series of T ½12�ðUSp0ð2ÞÞ and sum over the magnetic fluxes
of the SUð2Þ central gauge node as in the monopole
formula in Eq. (B1). We find

26We note that, despite the similar nomenclature, the Hall-
Littlewood formula used to compute the Hilbert series reviewed in
this appendix is distinct from the formula used to compute the
Hall-Littlewood index reviewed in Appendix A.

25The Hall-Littlewood formula actually applies to both the
Higgs and the Coulomb branch Hilbert series of the more
general Tσ

ρðGÞ.
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HS½Fig: 2.2ðbÞ�ðτ;x; y; v;wÞ ¼
X∞
m¼0

τ−4mPSUð2Þðτ;mÞHS½TðSUð3ÞÞ�ðτ;x;m; 0;−mÞHS½TðSUð3ÞÞ�ðτ; y;m; 0;−mÞ

× HS½T ½12�ðUSp0ð2ÞÞ�ðτ; v;mÞHS½T ½12�ðUSp0ð2ÞÞ�ðτ;w;mÞ; ðB9Þ
where we recall that we are gauging an SUð2Þ subgroup of the SUð3Þ flavor symmetries and the dressing factor for SUð2Þ is
given by

PSUð2Þðτ;mÞ ¼
� ð1 − τ2Þ−1 m ≠ 0

ð1 − τ4Þ−1 m ¼ 0
: ðB10Þ

Putting everything together, the Coulomb branch Hilbert series is

HSðτ; a; b; c; dÞ ¼ 1þ τ2ðadjÞ þ τ4ðadj2 þ χ8ðaÞ þ χ8ðbÞ þ 1Þ þ τ6ðadj3 þ χ27ðaÞ
þ χ10ðaÞ þ χ10ðaÞ þ χ8ðaÞ þ χ10ðbÞ þ χ8ðbÞ þ χ27ðbÞ þ χ10ðbÞ þ χ3ðcÞ þ χ3ðdÞ
þ 2χ8ðaÞχ8ðbÞ þ χ8ðaÞχ3ðcÞ þ χ8ðaÞχ3ðdÞ þ χ8ðbÞχ3ðcÞ þ χ8ðbÞχ3ðdÞÞ þOðτ8Þ: ðB11Þ

As explained in the main text, this result coincides with
the Hall-Littlewood index of the same class S theory
given in Eq. (2.3), as expected since this theory has only
one twist line. We recall that adjn was defined in
Eq. (2.2), so from the term of order τ2 we can see that
the global symmetry is SUð3Þ2 × SUð2Þ2, as expected
from the class S picture.
It is instructive to see how this SUð3Þ2 × SUð2Þ2

symmetry arises from the 3D mirror in Fig. 5. Each
of the legs of the star-shaped quiver in Fig. 5(b), each of
which is associated with one of the punctures of the class
S theory, carries a global symmetry that is determined by
the corresponding partition with the usual rule. For
example, the puncture ½13� is associated with the
TðSUð3ÞÞ theory, which possesses an SUð3Þ global
symmetry on its Coulomb branch. This arises at low
energies from an enhancement of the manifest Uð1Þ2
topological symmetry due to the fact that each unitary
gauge node is balanced, that is, it sees a number of
flavors which is twice the number of colors [37].
Similarly, each T ½12�ðUSp0ð2ÞÞ theory carries a SUð2Þ
global symmetry on its Coulomb branch. Again this is
enhanced at low energies, since the manifest topological
symmetry for an SOð3Þ gauge group is only Z2. This
enhancement is more difficult to see than in the previous
case since the theory is bad, and as such it is harder to
identify the monopole operators that provide the required
extra moment maps. Nevertheless, as discussed in [39],
the T ½12�ðUSp0ð2ÞÞ is self-mirror and both its Higgs and
Coulomb branches are isomorphic to C2=Z2, and thus
they both carry an SUð2Þ symmetry. This can be seen
from the Hilbert series in Eq. (B11), which remarkably

can be computed incorporating the fugacity for the SUð2Þ
using the techniques of [38,39,41].

APPENDIX C: THE 3D MIRRORS OF CLASS S:
A REVIEW

To understand the Higgs branch of a class S theory, it
is often useful to understand the 3D N ¼ 4 mirror of the
4D N ¼ 2 SCFT. This is obtained first by performing the
circle-reduction of the 4D theory, and then taking the
mirror that swaps the Coulomb and Higgs branches
between the 3D reduction and the 3D mirror. When
the 3D mirror is a Lagrangian theory, it is straightforward
to determine the Coulomb branch Hilbert series, which is
identical to the Higgs branch Hilbert series of the original
class S theory. The process by which the 3D mirror is
determined from the data of the class S theory, to wit, the
punctured Riemann surface, was put forth in [36], and
has been further extended to the case of twisted Aeven
theories in [28]. The exposition in this appendix largely
follows these references.
As we have discussed, any n-punctured genus-g

Riemann surface admits a pair-of-pants decomposition into
three-punctured spheres, glued together along the punctu-
res. In a similar manner, the construction of the 3D mirror is
a two-step process. First, it is necessary to determine how to
construct the 3D mirror for each three-punctured sphere,
and then it is necessary to understand how each individual
3D mirror is connected together via the pair-of-pants
decomposition to form the 3D mirror of any arbitrary class
S theory.
Consider a class S theory of type J. In Appendix A,

we reviewed that, for an outer automorphism o of J, each
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o-twisted puncture is associated to a nilpotent orbit of G,
where G is the Langlands dual of the invariant subalgebra
of J under the action of o.27,28 When J, and thus G, is a
classical Lie algebra then each nilpotent orbit can be
captured by a particular integer partition, subject to certain
constraints.29 We summarize the tuples of J, o, G, and the
data describing the puncture for the class S theories
relevant to this paper in Table IV.
There exists a partial ordering on the set of nilpotent

orbits of G, and there is a unique maximal element under
this partial ordering; this corresponds to the trivial
embedding SUð2Þ → G. The puncture associated to this
maximal nilpotent orbit is known as the “maximal
puncture,” and it carries flavor symmetry G. To the
maximal puncture is associated the 3D N ¼ 4 SCFT
known as TðG∨Þ [28,36]. The TðG∨Þ theories, explored
in [37] (see also [156]) and many subsequent works, have
mirrors TðGÞ, and thus when G is simply laced they are
self-mirror.30 In particular, they have global symmetry
G∨ ×G, where the first factor is the global symmetry on
the Higgs branch and the latter is the global symmetry on
the Coulomb branch.
Partial closure of the maximal puncture corresponds to

giving a nilpotent vacuum expectation value, inside the
nilpotent orbit associated to the partially closed puncture, to
the moment map operator associated to the G flavor
symmetry. Similarly, the 3D N ¼ 4 SCFT that is relevant
for the Higgsing of the flavor symmetry of the maximal
puncture via a nilpotent orbit ρ involves Higgsing the
Coulomb branch flavor symmetry by the same choice of
nilpotent orbit. The resulting theories are known as
TρðG∨Þ; these are the principle building blocks of the
3D mirrors of the class S theories obtained from three-
punctured spheres.
As Z2-twisted punctures come in pairs, there are two

distinct kinds of three-punctured spheres that we must
consider: those with three untwisted punctures, and those
with two twisted punctures and one untwisted puncture. In
the former case, the 3D mirror is constructed by gauging

together the Higgs branch flavor symmetry J of the three
TρiðJÞ theories associated to each puncture. The situation is
slightly more complicated when there are twisted punctu-
res. In that case, we gauge the diagonal G∨ subgroup of the
G∨ ×G∨ × J Higgs branch flavor symmetry of the product
theory

Tρ1ðG∨Þ × Tρ2ðG∨Þ × Tρ3ðJÞ: ðC1Þ

Then, we must consider the branching

J → G∨ × G̃; ðC2Þ

where the commutant G̃ is a Higgs branch flavor symmetry
that persists in the 3D mirror.
When J is a classical Lie algebra, the theories TρðG∨Þ

are, in fact, Lagrangian quivers. For each of the theories
TðG∨Þ appearing in Table IV, the linear quiver describing
TρðG∨Þ is given in [39]; while we do not repeat the general
case here, we give one example of the TρðSUðnÞÞ theory.
The quiver is

ðC3Þ

where the ranks of the UðNjÞ gauge factors, and the length
l, are fixed in terms of the partition ρ. Specifically, if we
consider the partition ρ ¼ ½ρ1;…; ρl�, where we see that the
length l is defined as the number of elements in the
partition, then

TABLE IV. In this table, we write J, o, G, the data describing
the punctures, and the TðG∨Þ 3D N ¼ 4 theory associated to the
maximal o-twisted puncture. A B/D partition is a partition such
that every even element of the partition appears with even
multiplicity; a C partition is a partition such that every odd
element of the partition appears with even multiplicity.

J o G Puncture data
Mirror of maximal

puncture

A2n � � � A2n Partition of 2nþ 1 TðSUð2nþ 1ÞÞ
Z2 C0

n C partition of 2n TðUSp0ð2nÞÞ
A2n−1 � � � A2n−1 Partition of 2n TðSUð2nÞÞ

Z2 Bn B partition of 2nþ 1 TðUSpð2nÞÞ
Dn � � � Dn D partition of 2n TðSOð2nÞÞ

Z2 Cn−1 C partition of 2n − 2 TðSOð2n − 1ÞÞ

27In this appendix, we consider only untwisted and Z2-twisted
punctures.

28We abuse notation slightly and use o to refer to both the
outer-automorphism group, and the action of the outer-
automorphism group on J.

29We note that there is not quite a one-to-one correspondence
between nilpotent orbits and partitions; some partitions corre-
spond to more than one nilpotent orbit, and some further labeling
of such partitions is thus necessary, see [155] for details. For the
ease of this appendix, we suppress this point.

30We emphasize that the special case of G ¼ USp0ð2nÞ is self-
dual: USp0ð2nÞ∨ ¼ USp0ð2nÞ. All other choices of G obey the
normal rules of group theory.
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Nj ¼
Xl

k¼l−jþ1

ρk: ðC4Þ

When G∨ is of type BCD, then TρðG∨Þ has a similar
description as a linear quiver of alternating orthogonal and
symplectic algebras.31 Each of these 3D N ¼ 4 theories
can also be realized via a D3-D5-NS5-brane configuration
in type IIB, which is schematically depicted for TρðSUðnÞÞ
in Fig. 19 and TρðUSp0ð2nÞÞ in Fig. 20. We emphasize that

the flavor symmetry of TρðSUð2nþ 1ÞÞ is SUð2nþ 1Þ, not
the naive Uð2nþ 1Þ that one might expect from Fig. 19, as
the center of the putative Uð2nþ 1Þ acts trivially [37].
To illustrate the procedure, we now determine the 3D

mirror for a particular three-punctured spherewhich appears
in the main text of this paper. Consider the class S theory of
typeA2nwith punctures 2 × ½2n�t þ ½12nþ1�. The Lagrangian
TρðG∨Þ quivers associated to each of the two different types
of punctures appearing in this tinkertoy are

ðC5Þ

Note that the SOð1Þ gauge node appearing in
T ½2n�ðUSp0ð2nÞÞ simply specifies that there exists a half-
hypermultiplet in the fundamental representation of the
USpð2nÞ flavor algebra. The 3Dmirror of the class S theory
is then obtained by gauging the common USpð2nÞ flavor
symmetry of each of the T ½2n�ðUSp0ð2nÞÞ theories associated
to the twisted punctures and the T ½12nþ1�ðSUð2nþ 1ÞÞ theory
associated to the untwisted puncture. In the latter case, as the
TρðSUð2nþ 1ÞÞ theory has an SUð2nþ 1Þ flavor sym-
metry, we gauge theUSpð2nÞ subgroup under the branching

SUð2nþ 1Þ → USpð2nÞ × Uð1Þ: ðC6Þ

As such, after gauging there is a leftover fundamental
hypermultiplet, rotated by the commutant Uð1Þ ¼ SOð2Þ,
attached to the Uð2nÞ gauge node that was adjacent to the

SUð2nþ 1Þ flavor node of the TρðSUð2nþ 1ÞÞ theory.
Specifically, the 3D mirror of type A2n with punctures 2 ×
½2n�t þ ½12nþ1� is

ðC7Þ

It is similarly straightforward to determine the explicit quivers
describing the 3D mirrors of any three-punctured sphere.
To determine the 3D mirror for a class S theory arising

from an arbitrary n-punctured sphere, we proceed as
follows.32 For an n-punctured sphere we can always
consider an S-duality frame where the pair-of-pants decom-
position is in terms of three-punctured spheres glued along
maximal punctures. These maximal punctures can be either
untwisted or twisted maximal punctures. To determine the

FIG. 19. The D3-D5-NS5-brane system in type IIB description the 3DN ¼ 4 SCFT known as TρðSUðnÞÞ. The number of D3-branes
in each interval is fixed by ρ following Eq. (C4).

31In [28], it was argued that in the TρðUSp0ð2nÞÞ theories the
global structure of the orthogonal groups should be that of
SOð2NiÞ in order to reproduce various properties expected for the
dimensional reduction of the twisted A2n theories. In all the
drawings of this paper we make the same assumption, though our
analysis is insensitive to this issue. Indeed, for the 3D mirrors we
mainly compute dimensions of branches of the moduli space,
which do not depend on discrete gaugings, and the Coulomb
branch Hilbert series of the 3D mirrors using the Hall-Littlewood
formula of [38,39,41], which is blind to the precise global
structure of the gauge groups of the Tσ

ρðGÞ theories.

32We do not include the extension to higher genus Riemann
surfaces in this appendix. Typically this involves adding extra
adjoint-valued hypermultiplets, cf. [36] for more details.
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general 3D mirror we proceed inductively: consider gaug-
ing together an (n − 1)-punctured sphere with a maximal
puncture, and a three-punctured sphere with a maximal
puncture, along the maximal punctures. Similarly to the
three-punctured case just discussed, we assume that the
3D mirror of the (n − 1)-punctured sphere also contains a
copy of the TðG∨Þ theory where part of the G∨ Higgs
branch symmetry is gauged. On each sphere the TðG∨Þ
has an unbroken Coulomb branch symmetry, which is G.
The 3D mirror of the n-punctured sphere is then obtained
by gauging the diagonal Coulomb symmetry G from the
two maximal punctures which we are gluing. This
involves introducing a twisted vector multiplet, rather
than the more standard vector multiplet that was used
to gauge the Higgs symmetries when constructing three-
punctured spheres.33

It remains to determine whether a Lagrangian quiver
description of this 3D N ¼ 4 theory exists after Coulomb
gauging, and what it consists of. The simplest case, which
was discussed in detail in [36], is when all of the n
punctures are untwisted. In this case, the Coulomb gauging
simply collapses the quiver tails associated to the TðJÞ
theories, and one ends up with a star-shaped quiver where
the central node is a gauge group J, obtained by gauging
the common Higgs symmetry J of the TρiðJÞ theories
associated to each of the n punctures. This is due to the fact
that the gauging of two TðJÞ theories gives a theory with a
quantum deformed moduli space of vacua where the J × J
symmetry is spontaneously broken to its diagonal subgroup
[74,101,102].34 This theory has also additional Nambu-

Goldstone modes in the adjoint representation of J. Since in
the situation that we are considering of gluing two star-
shaped quivers the J × J symmetry is gauged, this means
that it is Higgsed to its diagonal subgroup and one
combination of the two vectors multiplets in the adjoint
representation of J becomes massive by eating the afore-
mentioned Nambu-Goldstone modes.
When twisted punctures are involved, the central node of

the star-shaped quiver is G∨ instead of J, and there can be
additional matter fields attached to the G∨ node from the
Coulomb gauging. These arise because the gauging of two
TðJÞ theories still gives Nambu-Goldstone modes in the
adjoint representation of J, but of these only those that are
in the adjoint representation of the Higgsed gauge group
G∨ get eaten, while the others remain as massless fields.
For class S of type D with Z2-twisted punctures, these
additional multiplets have been observed to be vector-
valued hypermultiplets of G∨ ¼ SOð2n − 1Þ in [36].
In Sec. II D, we conjecture, when J ¼ A2n, how the

Coulomb gauging works when we gauge Coulomb branch
symmetries of TρðSUð2nþ 1ÞÞ associated to gluing a pair
of untwisted punctures belonging to two distinct three-
punctured spheres, both with two Z2-twisted punctures and
one untwisted puncture. This then leads directly to
Conjecture 1.2, for the 3D mirror of a class S theory of
type Aeven with arbitrary twisted and untwisted punctures.

APPENDIX D: HL INDICES AND HB HILBERT
SERIES FOR TWISTED A2

In this appendix, we provide a short summary table of the
different Hall-Littlewood indices and Higgs branch Hilbert
series of the class S theories of type A2. These quantities
were computed throughout Sec. II, and they are repeated
here in Table V for convenience.

APPENDIX E: THE HIGGS BRANCH HILBERT
SERIES OF D̂4ðSUð3ÞÞ

In this appendix we briefly explain how to use the quiver
description in Fig. 6(b), for the 3D reduction of the
D̂4ðSUð3ÞÞ theory, to compute the Hilbert series of the
Higgs branch with the aid of MACAULAY2 [62].

FIG. 20. The D3-D5-NS5-brane system in type IIB description the 3D N ¼ 4 SCFT known as TρðUSp0ð2nÞÞ. The number of D3-
branes in each interval is fixed by ρ. Here all numbers of branes are counted in the covering space.

33Note: despite the similarities in naming, twisted vector
multiplets have no relation to twisted punctures.

34This result translates at the level of the three-sphere partition
function into an identity for the partition function of the gluing of
two TðJÞ theories, which is proportional to a delta function
identifying the mass parameters of the two J symmetries. This
can be shown for J ¼ SUðNÞ in the case of the S3 partition
function using the results of [101,102] and it was later extended
in [74] to the S3b partition function, as well as to the S

3 × S1 index
of the 4D N ¼ 1 parent of the TðSUðNÞÞ theory called
EðUSpð2NÞÞ [157,158]. This is similar to what happens for
the 4D N ¼ 1 SUð2Þ theory with four chiral multiplets, which
has a quantum deformed moduli space of vacua [159] and whose
index is proportional to a delta function as shown in [160].
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The first step is to consider the polynomial ringC24 whose
variables are all the N ¼ 2 chiral fields inside the N ¼ 4
hypermultiplets of our theory. We denote those in the
bifundamental representation of the central SUð3Þ gauge
node and the ithUð1Þ gauge node byQa

ðiÞ, Q̃ðiÞa for i ¼ 1, 2,
3, 4, where a ¼ 1, 2, 3 is the SUð3Þ color index. We then
quotient this ring by the ideal generated by all the F-term
equations obtained by varying the superpotential with respect
to the N ¼ 2 adjoint chiral multiplets inside of the N ¼ 4
vector multiplets. Denoting by AðiÞ those of the ith Uð1Þ
gauge group for i ¼ 1, 2, 3, 4, which are singlets, and byΦa

b

with Φ3
3 ¼ −Φ1

1 −Φ2
2 those of the SUð3Þ gauge group,

the full superpotential, dictated byN ¼ 4 supersymmetry, is

W ¼
X4
i¼1

AðiÞQa
ðiÞQ̃ðiÞa þΦa

b

X4
i¼1

Qb
ðiÞQ̃ðiÞa: ðE1Þ

The F-term relations given by the adjoint chiral fields are

Qa
ðiÞQ̃ðiÞa ¼ 0; i ¼ 1; 2; 3; 4; ðE2Þ

X4
i¼1

Qa
ðiÞQ̃ðiÞb ¼ 0; a ≠ b ¼ 1; 2; 3; ðE3Þ

X4
i¼1

Qa
ðiÞQ̃ðiÞa −Q3

ðiÞQ̃ðiÞ3 ¼ 0; a ¼ 1; 2; ðE4Þ

where the first line comes from the variations with respect to
the fieldsAðiÞ, while the second and third lines come from the
variations with respect to the fields Φa

b. Such a quotient
ring, sometimes also called F-flat spaceF ♭, can be computed
with MACAULAY2, which can also compute the associated
Hilbert series gF

♭ðτ; z;wÞ, where z ¼ ðz1; z2; z3Þ withQ
3
i¼1 zi ¼ 1 are the SUð3Þ fugacities while w ¼

ðw1; w2; w3; w4Þ are the four Uð1Þ fugacities. Remarkably,
MACAULAY2 is able to produce a closed form expression for
this Hilbert series, which nevertheless is too long to report
here. Finally, we integrate this against the Haar measure of
the gauge group so as to project onto the gauge invariant
operators. Even more remarkably, the result of this integra-
tion also has a closed form expression:

HS½Fig:2.3ðbÞ�ðτÞ ¼ 1

6

I Y4
i¼1

dwi

2πiwi

Y2
a¼1

dza
2πiza

�
z1 −

1

z2

��
1

z1
−
z1
z2

��
1

z1
− z2

��
z1
z2

− z2

��
z1 −

z2
z1

��
z2
z1

− z2

�
gF ♭ðτ; z;wÞ;

¼ 1 − τ2 þ τ4

ð1 − τ2Þð1 − τ4Þ ; ðE5Þ

TABLE V. For each class S theory of type A2 on a sphere with 2k punctures, we list the Hall-Littlewood index and the Hilbert series for
the Higgs branch. The 4 × ½2�t theory corresponds to the D̂4ðSUð3ÞÞ theory in [52]. As in the main text, adjn is defined as in Eq. (2.2).

k Punctures HL index HS of the HB

2 2 × ½13� þ 2 × ½12�t 1þ τ2ðadjÞ þ τ4ðadj2 þ χ8ðaÞ þ χ8ðbÞ þ 1Þ HL ¼ HS
þ τ6ðadj3 þ χ27ðaÞ þ χ10ðaÞ þ χ10ðaÞ þ χ8ðaÞ

þ χ27ðbÞ þ χ10ðbÞ þ χ10ðbÞ þ χ8ðbÞ þ χ3ðcÞ þ χ3ðdÞ
þ 2χ8ðaÞχ8ðbÞ þ χ8ðaÞχ3ðcÞ þ χ8ðaÞχ3ðdÞ

þ χ8ðbÞχ3ðcÞ þ χ8ðbÞχ3ðdÞÞ þOðτ8Þ
2 × ½13� þ 2 × ½2�t 1þ τ2ðadjÞ þ τ4ðadj2 þ adjþ 1Þ þ τ6ðadj3 HL ¼ HS

þ adj2 þ 2χ8ðaÞχ8ðbÞ þ adjþ χ10ðaÞ
þ χ10ðaÞ þ χ10ðbÞ þ χ10ðbÞÞ þOðτ8Þ

4 × ½2�t 1þτ4−τ6
1−τ4

1−τ2−τ4
1−τ12

1 × ½12�t þ 3 × ½2�t 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ þ τ5χ2ðaÞ 1−τ12
ð1−τ2Þð1−a�2τ2Þð1−a�1τ5Þþ τ6ðadj3 þ adj − 1Þ þOðτ7Þ

2 × ½12�t þ 3 × ½2�t 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ þ τ6ðadj3 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ þ τ6ðadj3
þ adjþ χ2ðaÞχ2ðbÞ − 1Þ þOðτ8Þ þ adjþ χ2ðaÞχ2ðbÞÞ þOðτ8Þ

3 × ½12�t þ 1 × ½2�t 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ
þ τ6ðadj3 þ adj − 1Þ þOðτ7Þ þ τ6ðadj3 þ adjÞ þOðτ7Þ

4 × ½12�t 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ
þ τ6ðadj3 þ adj − 1Þ þOðτ8Þ þ τ6ðadj3 þ adjÞ þOðτ8Þ

≥3 2k × ½2�t τ6k−8ð1−τ2Þk−2
1−τ6k−8 þ ð1−τ6Þk−1

1−τ4
1þτ6k−6

ð1−τ4Þð1−τ6k−8Þ
n × ½12�t þ ð2k − nÞ × ½2�t 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ 1þ τ2ðadjÞ þ τ4ðadj2 þ 1Þ

þ τ6ðadj3 þ adj − ðk − 1ÞÞ þOðτ8Þ þ τ6ðadj3 þ adjÞ þOðτ8Þ
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where we used a parametrization of the SUð3Þ fugacities
where the character of the fundamental representation is
given by

χSUð3Þ
3 ðzÞ ¼ z1 þ

1

z2
þ z2
z1
: ðE6Þ

As we can see, the Hilbert series in Eq. (E5), determined
explicitly from the 3D reduction, matches with the Cou-
lomb branch Hilbert series, in Eq. (2.6) [or equivalently
Eq. (2.8)], of the proposed 3D mirror, which is depicted in
Fig. 6(c).
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