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We describe the implications of permutation symmetry for the state space and dynamics of quantum
mechanical systems of matrices of general size N. We solve the general 11-parameter permutation invariant
quantum matrix harmonic oscillator Hamiltonian and calculate the canonical partition function. The
permutation invariant sector of the Hilbert space, for general Hamiltonians, can be described using partition
algebra diagrams forming the bases of a tower of partition algebras P;(N). The integer k is interpreted as
the degree of matrix oscillator polynomials in the quantum mechanics. Families of interacting Hamiltonians
are described which are diagonalized by a representation theoretic basis for the permutation invariant
subspace which we construct for N > 2k. These include Hamiltonians for which the low-energy states are
permutation invariant and can give rise to large ground state degeneracies related to the dimensions of
partition algebras. A symmetry-based mechanism for quantum many body scars discussed in the literature
can be realized in these matrix systems with permutation symmetry. A mapping of the matrix index values
to lattice sites allows a realization of the mechanism in the context of modified Bose-Hubbard models.
Extremal correlators analogous to those studied in AdS/CFT are shown to obey selection rules based on

Clebsch-Gordan multiplicites (Kronecker coefficients) of symmetric groups.
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I. INTRODUCTION

Systems with matrix degrees of freedom transforming in
the adjoint or bifundamental representation of a group G,
such as U(N), SU(N), SO(N), SP(N), are ubiquitous in
physics. The group G is often a gauge symmetry and
physical states or operators of interest are G invariant.
The large N limit has been known, since the work of
’t Hooft [1], to exhibit important simplifications related to
the combinatorics of string worldsheets. Notable examples
of gauge-string duality based on such large N properties
include: the duality between low-dimensional noncritical
strings and matrix models [2—4], between two-dimensional
Yang-Mills theories and Hurwitz spaces [5—13]; the
AdS/CFT correspondence [14-16]; the correspondence
between Gaussian matrix theories and Belyi maps [17-20].
Random matrix theories have also been used to model
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statistical properties of complex systems [21-26]. In zero-
dimensional matrix models, invariance is not forced upon
us by any gauge symmetry. However, it is still a fruitful
perspective to consider the invariant sectors as computa-
tionally tractable sectors which encode significant proper-
ties of complex systems. This was the perspective taken in
[27-30], which used zero-dimensional matrix models with
permutation symmetry to model the statistics of words in
computational linguistics [31-34].

Large discrete groups, e.g. the symmetric groups Sy of
all permutations of N objects, also play a central role in
holography. Two-dimensional conformal field theories
(CFTs) for orbifolds MY /Sy, for some CFT M, provide
the CFTs in AdS;/CFT, dualities [35]. These orbifold
CFTs have recently provided the setting for a derivation of
holographic duality [36]. It is natural to ask if matrix
systems with discrete symmetries such as Sy have holo-
graphic duals. Recent results on large N factorization in
permutation invariant matrix models [37] are encouraging
for this prospect. By regarding matrix models as zero-
dimensional quantum field theories (QFTs), in this paper
we take the natural next step of considering one-dimen-
sional QFTs, i.e. matrix quantum mechanical systems with
permutation symmetry. We pay particular attention to
methods which are applicable for general N and allow
large N expansions. We give a general description of the
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permutation invariant subspace in matrix quantum
mechanical systems, drawing on relevant results from
the mathematical literature on partition algebras. This is
followed by a discussion of interesting Hamiltonians for
many-body quantum physics. This is motivated by the
vibrant interplay between holography and many-body
quantum mechanical systems which manifests itself, for
example, in the connection between free fermions and large
N two-dimensional Yang Mills theory [38]; free fermions
and the half-Bogomol'nyi—Prasad—Sommerfield (BPS) sector
of N’ =4 Super Yang-Mills (SYM) [39,40]; free fermions
and supersymmetric indices [41], bosons in a 3D harmonic
oscillator and eighth BPS states in N' = 4 SYM [42-44];
quantum mechanical spin matrix theory which is used as a
simplified setup to study the emergence mechanisms of
AdS/CFT [45,46]. This interplay is also visible in the
prominent role of coherent states, a technique widely used
in many body quantum physics, in the study of large N
systems. This theme appears in early work on large N (e.g.
[47.48]) as well as more recent developments (e.g. [49-51]).

Many aspects of large N simplifications in matrix
systems are consequences of Schur-Weyl duality. The
standard instance of Schur-Weyl duality [52] concerns the
tensor product V®* of the fundamental representation V
of U(N). The symmetric group S, of all permutations of
k objects acts on V®* by permuting the factors of the
tensor product. Schur-Weyl duality states that the algebra
of operators commuting with the standard U(N) action

wEe=111]. @
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The same general philosophy can be applied to the case
where we are considering polynomial functions of a matrix
X invariant under the transformation X — M, XMZ, where
M, is a matrix representing the permutation ¢ € Sy in
the N-dimensional natural representation of Sy, satisfying
ML = M;'. This problem in the invariant theory of
matrices arises in the application of permutation invariant
matrix models to language data [27,28] and Schur-Weyl
duality was used to study these invariants in [37]. The
algebra dual to Sy acting on V%’k, where V is the natural
representation of the symmetric group Sy, is called the
partition algebra Pj(N). Partition algebras were first
introduced in [72-74] in application to the statistical
mechanics of Potts models (see [75] for a survey of
partition algebras). Partition algebras P(N) are diagram

on the tensor product V®* is the group algebra C[S,].
This has important implications for the classification of
U(N) gauge invariant polynomial functions of matrix
variables, where a matrix X transforms as X — UXU" for
U € U(N). Schur-Weyl duality relates this problem to the
rich combinatorics and representation theory of symmet-
ric groups (see e.g. [53]). For example, the gauge
invariant polynomial functions of degree k for one matrix
of size N, taking N > k for simplicity, are labeled by
conjugacy classes of S;. Finite N effects are captured
with the use of Young diagrams. Schur-Weyl duality has
been used as a powerful tool in the construction of gauge
invariant observables in one-matrix and multimatrix
systems in connection with the AdS/CFT correspon-
dence. This played an important role in identifying the
CFT duals [39,40,54] of giant gravitons [55-57] in the
AdS/CFT correspondence. The Schur-Weyl duality
framework has been further applied to the computation
of one-matrix and multimatrix correlators [39,58-70]. A
short review is [71]. These multimatrix applications
involve dual algebras beyond the symmetric group
algebras. For example Brauer algebras, which have a
basis of diagrams, are used in [58]. The symmetric group
algebra C[S;] can also be viewed as a diagram algebra
with multiplication given by the composition of dia-
grams. For example the following six diagrams give a
basis of C[S3], the corresponding permutations are given
in cycle notation

ST = Sk
1 12 23 3 1 21 32 3 (11)
L = N

algebras with a basis labeled by diagrams corresponding to
set partitions of 2k objects. These include the diagrams
corresponding to elements of C[S;] as well as more general
diagrams. For example, in addition to the diagrams in (1.1),
the following are elements of P3(N)

ZvIIIvTTIv><><ini(-

1.2)

We will discuss these diagrams in more detail in Sec. III.
Matrix systems with Sy symmetry together with partition
algebras allow us to study large N simplifications in the
case of discrete (finite) groups. Partition algebras and their

106020-2



PERMUTATION SYMMETRY IN LARGE-N MATRIX QUANTUM ...

PHYS. REV. D 106, 106020 (2022)

relation to the representation theory of symmetric groups is
an active area of mathematical research [76-79].

An algebraic description of permutation invariant matrix
polynomials of degree k was given in [37] using sym-
metrized partition algebras SP;(N). SP;(N) consists of
equivalence classes of elements in P (N). The equivalence
is defined using the C[S;| subalgebra of P;(N) and
accounts for the commuting nature of matrix variables.
The work in [37] showed that distinct permutation invariant
matrix polynomials in the diagram basis satisfy a factori-
zation property at large N. The diagram basis is the analog
of the trace basis for U(N) invariant matrix polynomials.
Partition algebras have also been used to study permutation
invariant random matrix distributions from the point of
view of mathematical statistics [80—82].

Polynomials in matrix variables M’] are closely related to
quantum mechanical states constructed from matrix oscil-
lators (a®)i. This allows us to translate the technology
developed for zero-dimensional matrix models [27,28,37,83]
to the setting of matrix quantum mechanics. We will give a
detailed description of the space of Sy invariant states
constructed from matrix oscillators. Polynomials in matrix
oscillators can be organized by the degree of the polyno-
mials. At degree k, the state space is isomorphic to an S,

symmetric subspace H*) of End(V&*):

H® - End(VE"). (1.3)

There is a one-to-one correspondence between tensors

(eh---e|Tlej, e ) = T;]]"::-i]{(k

(1.4)
and elements in End(V$*). The bosonic symmetry of the
oscillators imposes an invariance under simultaneous reor-
dering of the upper and lower indices. Commuting with the
Sy action is the Sy action on VE* which we denote £(o).
The Sy permutation invariance translates to an invariance of
T under an adjoint action

Ad(0)[T] = L(6)TL(c7"). (1.5)
Many of our results on the Sy invariant state space of matrix
oscillators, particularly in Secs. III and I'V are independent of
the Hamiltonian. They can be viewed as a detailed account of
the Sy invariant subspace in matrix quantum mechanics
using partition algebras and representation theory. The use of
the partition algebra P, (N) to study operators and quantum
states in H*) allows us to take advantage of simplifications
in the limit where k is kept fixed as N — 0.

The representation theoretic approach allows the con-
struction of solvable algebraic Hamiltonians where the Sy
invariant states are resolved according to representation
theoretic characteristics. Sections V and VI discuss differ-
ent classes of solvable Sy invariant Hamiltonians obeying

Ad(c)H = HAd(o). (1.6)
We build on this discussion in Sec. VII, using Hamitonians of
the form (H + H,): H obeys (1.6) while H is subject to a
restriction defined in terms of permutation invariant states.

The paperis organized as follows. For concreteness, Sec. 11
contains areview of the simplest quantum mechanical model
with matrix degrees of freedom. This is the free matrix
quantum harmonic oscillator. It is a model containing N?
decoupled harmonic oscillators X;;,i,j = 1,..., N with a
global U(N?) symmetry. The Hilbert space of this model is a
Fock space H of states constructed using matrix oscillators
(aT);-. This model also serves as a good place to introduce the
diagram notation that we will use in the rest of the paper.

In Sec. III we consider the Sy invariant subspace H;,, of
the total Hilbert space H of a general quantum mechanics
matrix system. This is the subspace of states invariant under
a’ — M,a"ML, where M, is a permutation matrix of
size N. We explain the correspondence between permutation
invariant matrix states of degree k and partition algebras
P(N). The partition algebras have three natural bases, and
each one gives rise to a different basis for H;,,. The diagram
basis is natural when discussing inner and outer products.
The factorization property in [37] translates to orthogonality
of the diagram basis at large N. The so-called orbit basis
gives rise to an orthogonal basis for all N. We call the third
basis the representation basis. In the mathematical literature,
the representation basis is called a complete set of matrix
units. The product in the matrix unit basis is a generalization
of the product for elementary matrices for matrix algebras.
The representation basis can be constructed using Fourier
transformation on P;(N) and is a direct analog of the Schur
basis for U(N) invariants. Appendix A gives the necessary
background for Fourier transforms on semisimple algebras,
closely following [84] but with some modifications that are
important for our application. Physically, the representation
basis can be understood as a basis that diagonalizes a set of
algebraic commuting charges.

Section IV is devoted to the construction and diagonal-
ization of these charges, which can be used to give the
explicit transformation from the diagram basis to the
representation basis at large N. We illustrate the method
for small k and large N. These are tabulated in Appendix C.
The representation basis forms an energy eigenbasis for the
Hamiltonian of the free matrix quantum harmonic oscillator
presented in Sec. II.

In Sec. V we introduce an 11 parameter family of exactly
solvable quantum matrix systems. The potential in these
systems is the most general permutation invariant quadratic
function of the matrix variables. These quantum systems
can therefore be viewed as general matrix harmonic
oscillator systems compatible with permutation symmetry.
We find the spectrum for general choices of the parameters
by adapting the representation theoretic techniques which
have been used to compute correlators in permutation
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invariant Gaussian matrix models [28]. Further, we write
the canonical partition function in a simple closed form.
The representation basis states from Sec. I1I do not form an
eigenbasis for the general Hamiltonians considered here.
The action of the Hamiltonians on the representation basis
states leads to a mixing which is constrained by Clebsch-
Gordan multiplicities for the symmetric groups. We briefly
discuss this mixing.

In Sec. VI we discuss interacting Hamiltonians, para-
metrized by a positive integer K, constructed using partition
algebra elements, with the property that the ground states
are all permutation invariant states and have degeneracies
controlled by a sequence of partition algebras P;(N) for
ke {0,1,...,K}. The energy gap between the ground
states and the lowest excited state is also determined by K.
By deforming these Hamiltonians with other partition
algebra elements, we design Hamiltonians where the
degeneracy of the ground states is broken by small
amounts—these two scenarios are illustrated in Fig. 1.
We also include a general description of permutation
invariant Hamiltonians, finding an interesting relation to
the counting of 2-matrix permutation invariants of the kind
considered in [83]. We conclude this section with an

interpretation of the oscillators (a')! as creation operators
on a square lattice with sites labeled (i, j).

Subspaces of invariant states play an important role in
the group-theoretic proposal [85,86] for a mechanism of
weak ergodicity breaking, experimentally discovered in
[87], now known as quantum many-body scars [88]. In
Sec. VII we discuss how the permutation invariant state
space in this paper can be turned into a scar subspace.
Adapting the ideas in [85,86] for the realization of group-
theoretic scar states, we describe Hamiltonians which
exhibit the revival properties characteristic of scars. The
lattice interpretation of the matrix oscillators from Sec. VI
allows us to interpret these Hamiltonians as deformations
of Bose Hubbard models.

We compute a set of two- and three-point correlators of
invariant operators in Sec. VIIL. The two-point correlators

have a large N factorization property described in the
context of matrix models in [37]. The three-point functions
are similar to extremal correlators, which are relevant to
quantum mechanical models considered in AdS/CFT. The
extremal correlators are shown to obey selection rules
based on Clebsch-Gordan multiplicities (Kronecker coef-
ficients) of symmetric groups.

II. REVIEW: MATRIX HARMONIC OSCILLATOR

This section is a review of the simplest matrix quantum
harmonic oscillator. The Lagrangian (2.1) describes N? free
harmonic oscillators. The corresponding Hamiltonian has a
global U(N?) symmetry. Thishasa U(N) x U(N) subgroup
of unitary matrices acting by left and right multiplication.
There is also a smaller Sy x Sy subgroup of the U(N) x
U(N) which plays an important role in subsequent sections.
The simplest, noninteracting U(N?) invariant model will
serveas avery good setup to introduce the notation used in the
rest of the paper. In particular, we describe how to construct
states and operators in H, the Hilbert space of the theory, by

considering the oscillators a;;, ajj as endomorphisms on V y
(an N-dimensional vector space). We will frequently have
this view in mind when manipulating states and operators and
itis often practical to employ diagrammatic notation in order
to do so. The basics of this diagrammatic notation we
introduce at the end of this section.

The simplest matrix harmonic oscillator is described by

the Lagrangian

1 N
Lo=5 (Z 0,X;j0,X;; — X,»,X,j). (2.1)
=1

It describes N2> decoupled oscillators. The conjugate
momenta are

oL 0
nl LA

=0 Ty 22
W O(O,X”) at & ( )

(@)

FIG. 1.

(b)

The figure illustrates the type of spectra that can be engineered using the algebraic Hamiltonians discussed in this section. Blue

lines correspond to states that are invariant under the adjoint action of Sy. Black lines are noninvariant states. (a) Illustrates the splitting
of the ground state degeneracy achieved by adding a term to the Hamiltonian involving central algebraic charges (b) a spectrum in which

the degeneracy associated with multiplicity labels has been lifted.
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The Hamiltonian corresponding to L is

(Z I,10;; + XX, ) (2.3)
The canonical commutation relations are
(X, M| = i85, (2.4)

The Hamiltonian given in (2.3) is diagonalized in the
usual way—introducing oscillators al j+a;j defined by

1
Xij= \/%(ajj + aij),

1

with commutation relations
[aij’ ail] = 5ik5jl° (26)
Normal ordering H, gives
N
+
= Z al-jaij, (27)
ij=1

which is just a number operator. We now show that H
is invariant under a U(N?) symmetry that acts on
oscillators as

(2.8)

N
ajj — 5 Uij;klaklv
kiI=1

N
T T T
a = Z Ukl;ijal'd’ (2.9)
kI=1
with U an N? x N? unitary matrix satisfying

N

T _
> UiisaUlmn = SimOin-
k=1

(2.10)

Under the U(N?) transformation H, is invariant,

E 1l T
HO - Uk[;[jUij;mnak[amn
i,j.k.lm.n

_ E ’ il
- 5km5lnak[amn

k,l.m,n

_ E ¥
= aklakl.
k.l

(2.11)

The oscillator states

(2.12)

Hﬁ

labeled by non-negative integers k;; with i, j = 1,..., N are
energy eigenstates of H,. The total Hilbert (Fock) space H

decomposes into subspaces H¥) with fixed number of
oscillators (degree) &,

(2.13)

The subset of states with k =, .k

for the subspace H¥) and have energy k. In general the
spectrum is highly degenerate. The number of states with
energy k is

;j form an eigenbasis

(N*+k-1)

2 _ 2 2
e <N +k 1) _N(N +1).I.€.'
k !

(2.14)

This is the number of ways to choose k elements from a set
of N? when repetition is allowed. It is also the dimension of
the symmetric part of a k-fold tensor product of a vector
space with dimension N2. Equivalently, it is the dimension
of the vector space of states composed of k bosonic
oscillators a . For fixed k and N > 2k the dimension

grows as NZI‘.

A. Diagram notation

Throughout this paper we will use diagrammatic nota-
tion to describe states and operators in H¥). For this
purpose, it is useful to introduce the following matrices of
oscillators (a ) = a ; and a; = a;; which satisfy

- (a")i] = 5,5,

[a]

(2.15)
Let Vy be an N-dimensional vector space with basis
{e1,...,ey}. The matrices of oscillators can be viewed
as (operator-valued) elements in End(V ), where End(Vy)
is the set of all linear maps V; — V. In this language, the
above oscillators are matrix elements,

N
a’( E (a')le; and a(e;) =
j=1 J

ae (2.16)

1

N
J*

Consequently, a general degree one state in H can be
written as

106020-5
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Try, (Ta")[0) = (2.17)

ZT’(a 710) = |T),

where T € End(Vy) (an N-by-N matrix) and the last
equality is a definition of |T).
The degree k subspace is given by

k) ~ i i
HW = Spang {(aT)j]l ...(a*)jkk|0>},
therefore general states are parametrized by tensors T’ " u
It is convenient to view these tensors as elements of
End(V®*), where VE* is the kth tensor product of V.
That is, in the usual basis for tensor product spaces

T(eil®€i2®...®el‘k)

N

- 3

JioJaeeji=1

(2.18)

T{:l]kkell ®€]2®®€“ (219)

Analogous to the degree one case, a general state |T) €
H®) can be written as a trace

IT) = Tryeu(T(@)®4[0) = 3 T4 (a)}-..(a")}i]0),

(2.20)

for T € End(VE¥) and (a')®*
elements

=ad'®...®Qa’ with matrix

(a")® (e, ®.. ®%)

_ZGT

ell® Re;, . (2.21)

It should be emphasized that, due to the bosonic symmetry

of the oscillators, T{l‘_'"jk

i is a symmetric tensor (under

simultaneous permutations of upper and lower indices), for
Ji2eJk _ 2t Jk
example T 30 =T -
It is useful to formulate this restriction in terms of S
invariance. An element 7 € S;, viewed as a bijective map

o:{l,....k} - {1 .k}, defines a linear operator L i
which acts on VX as
Loi(e,®..Q¢;) =¢;,,&..Qe; . (222)
The symmetry of T is equivalent to the statement
LTL =T, Y 1€, (2.23)
or in index notation
T =Tl Vees. (229)

Therefore, states in 7¥) are in one-to-one correspondence
with elements 7" € Endg, (V®*), the subspace of linear
maps that commute with the action of ;.

We introduce diagrammatic notation to simplify manip-
ulations involving tensor equations. A map 7' € End(V&¥)
is represented by a box

Jre-Jk

Ji.. Jk_
1—‘21 K7 T )

21 ...

(2.25)

where the edges correspond to states in V}%’k . Internal lines
in a diagram correspond to contracted indices. For example,
the state |T) € H® can be represented diagrammatically as

(ah)t

T) = 0) .-

(2.26)

The horizontal lines identify the top edge with the bottom
edge to give a trace, and the line between the (a")®* and T
boxes signifies that the corresponding indices are identified
and summed over. This diagram should be compared
to (2.20).

III. PERMUTATION INVARIANT SECTORS
FOR QUANTUM MATRIX SYSTEMS

In this section we consider the action of Sy on the
subspace H®), spanned by degree k polynomials in matrix
oscillators (aT) acting on the vacuum. The adjoint action

of permutations o € Sy on the quantum mechanical matrix
variables

61Xt = (MXM 1) = X0 (3.1)

translates into action on oscillators
o: (a")i— (aT)ZE’])) (3.2)
We turn our attention to the subspace Hmv c H® of Sy

invariant states constructed from polynomlals in these
oscillators. We will construct bases for H;,, ), for general
k, taking inspiration from [37]. There, a basis for the space
of Sy invariant polynomials in matrix indeterminates X ; of

106020-6
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degree k was given in terms of elements of the diagram-
matic partition algebra P (N) [75]. With the identification

Xt < (a")j

we can employ these techniques to construct Sy invariant
states in matrix quantum mechanics.

The algebra Endg, (V$*), of linear operators on V&* that
commute with Sy, is of central importance in understand-
ing the implications of permutation invariance in quantum
mechanical matrix systems. For N > 2k this algebra is
isomorphic to the partition algebra P,(N) [75]:

(3.3)

Endg, (V¥¥) = P(N). (3.4)
The Hilbert space Hmv spanned by degree k polynomials in
the oscillators is isomorphic to an §; invariant subalgebra
of Pi(N):

H) = Endg, .5, (VE) C Endg, (VEY).

mv

(3.5)

The partition algebras are finite-dimensional associative
algebras with dimension B(2k), the Bell numbers. The Bell
numbers B(k) count the number of possible set partitions of
a set of k elements. Notably, B(2k) does not depend on N.

Consequently, DlmHmV does not grow with N for N > 2k.

This is in contrast to DimH®*), which grows like N2f
for N > 2k.

We have chosen to construct states using the oscillators
(a®)}. This produces a basis for H;,, that is simultaneously

an energy eigenbasis of H. However, it is worth emphasiz-
ing that the resulting description of H;,, is applicable to
any quantum matrix system, not only the system with
Hamiltonian H,. For example, the description of H;,, in
terms of partition algebras holds equally well if the
Hamiltonian is a perturbation of H, by a polynomial in
the matrix creation and annihilation operators.

We begin this Section in III A by reviewing the con-
nection between partition algebras and states in H;,,. The
basic algebraic structure of partition algebras is reviewed in
Sec. III B. The partition algebras are introduced in the most
geometrical basis, the diagram basis, where multiplication
is given by diagram concatenation. In Sec. IIIC we
introduce the representation basis, so called because it is
labeled by a set of representation theoretic data. This basis
uses Fourier transforms [84] on P, (N) to construct an all-
orders orthogonal basis for N > 2k, which diagonalizes a
set of algebraic charges. These charges are discussed in
detail in Sec. IV and used in Sec. VI to construct algebraic
Hamiltonians with interesting spectra.

A. Partition algebras and invariant tensors

For any o € Sy we have a linear operator L(s) €
End(V®*) defined by

L(e7")(e;,Qe;,®...Qe;,)
€o(iy) Bs(ir) Q- eo(iy) (3:6)
Here o € Sy is a bijective map {1,....N} - {1,...,N}.
Group multiplication is given by composition of maps
6105(i) = 65(0,(i)) for 61,0, € Sy. This is used to deﬁne
the adjoint action Ad(c) of ¢ € Sy on states |T) € H*

Ad(0)|T) = Tryen [L(G)Tc(a-')(a+)®k]|o>,

_ Jied “1(iy) +y0 (i)
ZTf (@) oy @ g l0),

(3.7)

This adjoint action on the tensor coefficients of the
oscillators corresponds to the adjoint action on the oscil-

lators which follows from (3.2). States |T) € Hmv re
called Sy invariant because they satisfy

Ad(0)|T) = |T). (3.8)

mv can be constructed from tensors

That is, all states in 'H
satisfying

Toe) =Tl Y g ey,

(3.9)

or

IL(e)TL(6™") =T (3.10)

The vector space of Sy invariant linear maps on Vf\?k
denoted Endg, (V$¥). For N > 2k, Endg, (V¥¥) is isomor-
phic to the partition algebra Py(N):

Endg, (V¥Y) = Spanc{T € End(VE*): L(6)TL(c™")

=T,V o €Sy} =Pi(N). (3.11)

For tensors labeling states we have further S invariance.
The vector space of Sy x S, invariant linear maps is
denoted

Endy, .5, (VE*) = Spanc{T € End(V¥¥): L(o)TL(c7")

=LTL- =T, Y o€Sy,7€S8}
(3.12)
and we have the correspondence
HY) = Endg g (VEY). (3.13)

106020-7
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The partition algebra P, (N) contains a subalgebra SP;(N),
spanned by elements that commute with C[S;] C Pi(N),
called a symmetrized partition algebra. For N > 2k,
SPy(N) is isomorphic to Endg, g, (Vv®*), and by extension
7_(inv(k):

HY) =~ Endg, ., (VD) = SP(N).|  (3.14)

nv

This motivates the next subsection, where we study P(N)
and its symmetrized subalgebra SP;(N).

To summarize the above steps in words, we are
investigating the adjoint action of permutations in Sy
on N x N quantum mechanical matrix variables X; The
corresponding oscillators inherit the adjoint Sy action.
Oscillator states with k oscillators correspond to tensors T
with k upper and lower indices, subject to an S, symmetry
permuting the k upper-lower index pairs along the tensor.
This S, symmetry arises from the bosonic nature of the
oscillators. The Sy invariant k-oscillator states corre-
spond to tensors having k upper and k lower indices,
subject to an Sy x S invariance. This subspace of tensors
can be described as a symmetrized subalgebra SP;(N) of
the partition algebra P (N).

|

B. Diagram basis

We introduce the partition algebras in the diagram basis
following the treatment in [75]. This is a nice starting point
because it gives the most straightforward description of
multiplication in P;(N). As we will see in Sec. VIII, the
diagram basis also gives a simple description of an outer
product in P(N), which is relevant to the discussion of
extremal correlators.

The partition algebra P, (N) is an algebra of dimension
B(2k). The Bell number B(2k) is the number of possible
partitions of a set with 2k distinct elements. Bell numbers
can be computed from the generating function

(3.15)

from which one finds B(2k) = 2, 15, 203, 4140 for k = 1,
2,3, 4.

A set partition 7 of a set S is a set of disjoint subsets of S
such that their union is all of S. The diagram basis for
Pi(N) is labeled by set partitions of the set {1,...,k,
I',...,k'}. The set of all set partitions of {I,...,k,
', ..., k'} is denoted IT,;. For example, the set I1, contains
the following B(4) = 15 set partitions (subsets are sepa-
rated by a vertical bar)

12|12,

R, 2R, 1R, U2, U2, 221,

2R, 12U, 122U, U221, 1R, 1212, 1212,

12172, (3.16)

Each 7 € I1,; labels an element of the diagram basis of P (N). We write d,, for the diagram basis element corresponding
to 7 € Il,;. As the name suggests, d, should be thought of as a diagram. It is a diagram with 2k vertices divided into two
rows. The bottom vertices are labeled 1, ..., k from left to right and the vertices of the top row are labeled 1, ..., k' from left
to right. Two vertices are connected by an edge if they belong to the same subset of 7. The diagrams corresponding to the set

partitions in (3.16) are

.~
LIS

- e
N e

12 12
L] L]
bl \ bl I I
L] L]
102 102 3 17)
12 12 172 ( '
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There is a redundancy in the diagram picture. The redun-
dancy arises from the fact that we are free to choose any set
of edges, as long as every vertex in a subset of the set
partition can be reached from any other vertex in the same
subset, by a path along the edges. For example, the
following pairs of diagrams correspond to the same element
in P 3 (N )

N AN AN

(3.18)

The partition algebras are so-called diagram algebras
because multiplication can be defined through diagram
concatenation (in the diagram basis). The product in Py (N)
is independent of the choice of representative diagram. Let
d, and d, be two diagrams in P,(N). The composition
d, = d,d, is constructed by placing d, above d, and
identifying the bottom vertices of d,, with the top vertices of
dy. The diagram is simplified by following the edges
connecting the bottom vertices of d, to the top vertices
of d,. Any connected components within the middle rows
are removed and we multiply by N¢, where ¢ is the number
of these complete blocks removed. For example,

L I S
SRR AR

(3.19)

where the factor of N in the first equation comes from
removing the middle component at vertex 1 and 2. For
linear combinations of diagrams, multiplication is defined
by linear extension.

The subset of diagrams with k edges, each connecting a
vertex at the top to a vertex at the bottom, where every
vertex has exactly one incident edge, span a subalgebra.
This subalgebra is isomorphic to the symmetric group
algebra CIS;]. For example, there is a one-to-one corre-
spondence between permutations in S3 and the following
set of diagrams in P3(N)

[T XD T X250 XK

(3.20)

In the language of set partitions, these diagrams correspond
to set partitions with subsets of the form {ij'} for
i,jel,...,k. We denote the diagrams forming a basis
for C[S;] by .

The diagram d,, € P;(N) corresponds to an element of
End(V&*) through the following action

doe;,®...@e;) = Y ()il iV er, ®...®e;,.

(3.21)

Lyreaidy
Iyp...0g

The matrix elements (d,) " correspond to the diagram
representation by associating a Kronecker delta to every

edge connecting a pair of vertices. For example,

1 2 1 2

S o/ Cioriqs o 5 Qg1
I:j = 6ii,0;7 6" and L = 8iyin0;).

1 2 1 2

(3.22)

Every diagram corresponds to an Sy invariant tensor in the
sense of equation (3.10). As mentioned previously, this
gives a basis for EndSN(V%’k) for N > 2k [75].

Due to the bosonic symmetry of the oscillators, the
invariant states are not in one-to-one correspondence with
elements in P.(N). Instead, every state in H;,,¥) corre-
sponds to an element in the S; invariant subalgebra of
P, (N), which we call the symmetrized partition algebra
and denote SP;(N). Consider the action of S; on the
diagrams given, for any 7 € S;, d, € P;(N), by

r:d, — td,v7". (3.23)
A basis for SP,(N) is labeled by distinct orbits under this

action. We denote as [d,] € SP,(N) the invariant element
obtained by averaging over the S} orbit of d,:

1
a2

dyeld,)

(3.24)

o
|
==
7
§Q.
(Q'
)
I

where |[d,]| is the size of the orbit. The equality follows
because |[d,]| is equal to k! divided by the number of
permutations 7 leaving d,, fixed (orbit stabilizer theorem). It
follows that a basis for H;,, %) is labeled by [d,] € SP.(N)
through the correspondence

lda]) = Trys«([dx](a")®*)]0)

= > (i (@) (@) o). (3.25)

Note that
|de) = Trye(de(a)®9)|0) = [[dA]),  (3.26)

for the sake of notational efficiency we will often label
states with d, instead of [d,]. Examples are
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a');[0)

D=1 =%

(3.27)

and

D=0+ ) =I10) = Zeiaho.

: (3.28)

States obtained by acting with the annihilation operators
a; on the dual vacuum (0| can also be labeled by partition
algebra diagrams as follows:

(dy| = (0[Tryei(dFa®)
= (0[Trygi([dF]a®")
=01 > ()i ay) .af

=0 Y ()i aaf,  (3.29)

where dI is the transpose of d,. As a diagram, d! is the
reflection of d, across a horizontal line, for example

(3.30)

The use of the transpose in this definition is motivated by
the orthonormality property below (3.33). Using the
commutation relations in Eq. (2.15), the inner product
can be written as a trace of products of elements in SP;(N),

= Z(d,{rd,,/f 2 ZTrV®k (dlrdyt).

TES) TES)

<dﬂ| |dﬂ’>
(3.31)

The large N factorization result in [37] implies that the
normalized states

1

|EZJT> =T 0 |dﬂ>’

3.32
(dilldz) .

are orthonormal at large N (to leading order in 1/v/N)

if [dﬂ] = [dﬂ’] '

otherwise

(@il = { L+00/VR)

(3.33)
0+ O(1/v/N)

C. Representation basis

The connection between Sy invariant states and partition
algebras gives rise to a natural basis, labeled by represen-
tation theoretic data. The representation basis diagonalizes
a set of commuting algebraic charges that we introduce in
Sec. IV. This observation gives a concrete construction
algorithm for the change of basis matrix (from diagram
basis to representation basis). We now describe how the
representation theoretic basis for SP;(N) arises using
Schur-Weyl duality between Sy and P.(N), along with
the implementation of the invariance under the S action
of (3.23) in the representation theoretic basis. The transition
from a combinatorial basis of diagrams in an algebra
defined by physical constraints (in this case a bosonic
symmetry of matrix oscillators) to a representation theoretic
basis is an example of Fourier transformation which has
been useful in a multimatrix as well as tensor systems of
interest in AdS/CFT and holography (a short review of
these applications is in [71]). The proofs of some state-
ments quoted here are in Appendix A.

From the point of view of representation theory, the
correspondence between permutation invariant states and
partition algebras should be understood as a consequence
of Schur-Weyl duality. In particular, Schur-Weyl duality
says that the decomposition (see Sec. II. 5 in [79])

Rk ~
Vy @ D VN 1A*]®VN 1AY] (3.34)

=0 Ak

is multiplicity free in terms of irreducible representations
of Sy and Pi(N). The Young diagram A; = [N — [, Af],
which is an integer partition of N, is constructed by placing
the diagram A (having / boxes) below a first row of N — [
boxes. Requiring A; to be a valid Young diagram imposes a
condition on the first row length of r{(A¥) < N — L. This
condition is nontrivial for N < 2k, while it is trivially
satisfied for all A% having up to k boxes for N > 2k. The
latter is called the stable limit. In this limit we can write the
decomposition (3.34) in a simplified form

V%k - @ V ®V a
A €Ys(k)

(3.35)

in which the sum can be labeled by the set of all Young
diagrams A% having up to k boxes: these are inserted below
a first row to form Young diagrams with N boxes. This
stable set of Young diagrams having N boxes is denoted
YVs(k). With the exception of Appendix B this is the limit
within which we will work.
Equation (3.7) implies that we can identify
End(VE*)

=~ VERQVEK, (3.36)
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as a representation of Sy. We use Schur-Weyl duality (3.35)
to decompose each factor on the rhs as

v}?"@vfé’k:( D Vi’j@Vﬁf(N)>
1€Ys(k)

(@wv

, (3.37)
N €Ys(k)
where we are assuming the stable limit. Projecting to Sy
invariants on both sides gives
PN Py (N
Pi(N) =Endg, (V3 = @ viMevE®

A €Ys(k)

(3.38)

This follows because the decomposition of Vi’f@Vi’,V
1

contains an invariant if and only if A; = A.

The rhs of (3.38) reflects a decomposition of P (N) into
a direct sum of matrix algebras. Such a decomposition
always exists for a semisimple algebra by the Artin-
Wedderburn theorem. This implies that there exists a basis
of generalized elementary matrices (also called a complete
set of matrix units) for P;(N). A complete set of matrix
units is a basis

o, AeYsk). ape{l..DimVEM)}, (3.39)
with the property
Q Qajﬂ/ — 5/\ A](sﬂa! Qaﬁ’ (340)

In other words, P;(N) can be realized as block-diagonal
matrices, with each block labeled by an irreducible repre-
sentation A; of Py(N). The Artin-Wedderburn decompo-
sition implies

Dim(P(N)) = B2k) = Y (Dimvy ™2 (3.41)
A €Ys(k)
which is analogous to the expression
IGl= Y (DimV§)? (3.42)

ReRep(G)

for the order of a finite group G in terms of its irreducible
representations R.

As we prove in Appendix A 3, the following set of linear
combinations of elements in P,(N) form a complete set of
matrix units for P (N),

aﬂ = Z Dim(V SN Aalz((b?)T)bi-

(3.43)

The coefficients Dz\o‘l(d) are matrix elements of the repre-
sentation of P,(N), labeled by A;-N. The sum is over a
basis b;,i € {1,...,B(2k)} for P;(N) (for example the
diagram basis). The element b} is called the dual of b;. It
has an explicit construction in terms of the inverse of the
Gram matrix defined by

The dual of b; is

(3.45)

B(2k

and the inverse of the Gram matrix in the diagram basis can
be written as a series expansion in N [see Eq. (D6)].

To construct a representation basis for H;,, (0, we need to
construct matrix units for SP,(N). They can be constructed
from matrix units for P, (N) as follows. The partition
algebra P;(N) contains a subalgebra C[S;]. Consequently,
Pr(N)

we can restrict an irreducible representation V""" to a
representation of C[S;], which in general is reducible.
Letting V%Sk] be an irreducible representation of C[S;]

labeled by a Young diagram A, with k boxes, we have

= @ VIV (3.46)

ARk :
The dimension of V _’C[Sk] is the branching multiplicity
Dim (V7)) = Mule(viEY - v (3.47)

In the rest of the paper we will use A; to label irreducible
representations of Sy and P (N). Irreducible representa-
tions of S are denoted by A,. Inserting the decomposition
(3.46) into Eq. (3.38) and projecting to S; invariants gives

Hinv ()

)—>CIS, )=CIs,
~ Endg, 5, (V¥Y) = @(k)VA 5\2 vy Ay .
MEYs
Agth

(3.48)

This should be understood as an Artin-Wedderburn decomposition of SP;(N).
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Equation (3.46) points us towards a construction of
matrix units for SP;(N) from matrix units of P;(N). On the
lhs we have a basis

Ey, ae{l,.Dimvy™M)}  (3.49)

where the representation of d € P;(N) is irreducible,

=> Dy (d)Ey (3.50)
p
The rhs has a basis

Evh. pe{l.

u e {1,...,

pim (Vi) },

Dim (VRN @31

where u is a multiplicity label for Vgsk]

position. We demand that the representation of = € C[S;] is
irreducible in this basis,

Al ll Al M
/\2 P ZD‘”’ Az q’

in the decom-

(3.52)

where DJ3(z) is an irreducible representation of = € C[S,].
The change of basis coefficients are called branching
coefficients

)=C[Si]

EN = ZBAI N ER (3.53)
or in bracket notation
B nepn = (E&|[E). (3.54)
The elements
O ZﬂjQA‘BA, By | (359)
ap.p

form a complete set of matrix units for SP(N). The sum
over p implements the projection to S invariants. The
above elements satisfy [see Eq. (A62)]

Al ¢ A
QAz w@n i = MM GAN B Oy (3.56)
and orthogonality of states
|QA2 ;w> TrV®k (QAZ m/( )®k) (357)

follows from the form of the inner product (3.31). The
proof goes as follows

< Az/ll/|QAl // ZTrV®k QAz/ll/ (QA/ /l/) T_l),
TES)
= ZTI‘V@k QA /wTQA’ //T ),
TES;

= kTryex (0N, 0N )
= . rvi?k AZJ“’ /\/2,1/}4/ 3

= kIMN6p 8, Tryen (O ). (3.58)

. A, A .
In the second equality we used (Q,/ ,/,/)T = Qy , Which
2 27

follows from Eq. (A25). Note that

Ay
Tr\/ﬁk(QAz.;m ) TrV®k(Q1\2 ﬂlQAz 1y )
= TIV®L(QA Ay QA, /41)

= 5ﬂu’Trv,§"(QA2,11)’

- (sml/NAlAz, (359)
such that the normalization [see Eq. (A66)]
Naa, = DImV¥DimVy | (3.60)

only depends on irreducible representations A, A,, which
proves orthogonality.

To summarize, we have shown that there exists an
orthogonal basis for H,,,¥) labeled by representation
theoretic data, for arbitrary N > 2k, using Fourier trans-
forms on semisimple algebras. In Appendix A we provide
the detailed proofs of these results. In the next section we
will provide explicit formulas for the change of basis from
the diagram basis to the basis of matrix units. We leave
the elucidation of finite N effects (the case N < 2k which
lies beyond the stable limit) in the representation basis for
future work.

IV. REPRESENTATION BASIS AND
ALGEBRAIC CHARGES

In this section we discuss the construction of the

. . A . . .
representation basis elements Q) , as linear combinations

of diagrams in P, (N). These can, in principle, be computed
using Eq. (3.55) by first computing the branching coef-
ficients. The computation of these requires explicit choices

of basis in the representations VPk(N) and VC[S"] Such

choices can be bypassed. The basic idea is to find the Q Ayt

as eigenvectors of appropriate elements of P;(N) which
can be viewed as operators on P(N) acting by the algebra
multiplication. The subspaces labeled by A, A,, associated
with irreducible representations of Sy and Sy, respectively,
are identified using central elements (Casimirs) in the group
algebras C[Sy] and C[S;]. These Casimirs can be expressed
as elements of P,(N) using Schur-Weyl duality. This is
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particularly useful in the large N limit where & is kept fixed
and N > k, since the dimension of P,(N) does not grow
with N. The more refined determination of subspaces
labeled by px and v is achieved by picking noncentral
elements of P,(N) which nevertheless generate a max-
imally commuting subalgebra.

We explicitly construct the change of basis for the special
cases of degree k = 1, 2, 3. Tables of these basis elements
are found in Appendix C. The expansion coefficients
are given as functions of N and are therefore valid for
all N > 2k.

Analogous constructions in multimatrix systems with
continuous gauge symmetry, relevant to AdS/CFT, are
given in [62,89]. They also played a role, using develop-
ments in tensor models with U(N) symmetries, in [90]
in giving a combinatorial interpretation of Kronecker
coefficients.

A. Central elements in the partition algebra

For a fixed pair A, A,, the linear span of Qﬁlw for

u,v =1, ...,DimVi’:S\AZI)_)C[Sk]

forms a subspace of SP;(N).
We will now describe how this subspace can be identified
with simultaneous eigenspaces of Casimirs associated with
C[Sy] and C[S,].

First, we will define Casimirs of C[Sy], and explain their
relation to P;(N). The center Z(C[Sy]) of C[Sy] consists
of elements
Z(C[Sy])={z€C[Sy]: zo6=0z, Y c€C[Sy]}. (4.1)
Elements in the center are called central elements. For a
central element z, the homomorphism property of repre-
sentations implies

L(z)L(c) = L(6)L(z), Y o€ Sy, (4.2)
and it follows that £(z) is an element of the algebra of
operators acting on Vf\?k which commutes with Sy. This
algebra is denoted EndsN(V?\?k).

As we reviewed in the previous section, Pj(N) =

EndsN(V%’k) for N > 2k. This establishes a connection
between Z(C[Sy]) and P(N) as linear operators acting on

Il

® eik)

7]6 '/...‘/
S (T e

Gqtenlpy

®...®€ik/

V&% In particular, for every z € Z(C[Sy]), there exists an
element zZ € P;(N) defined by

‘Z(eil®...®e,»k) = [,(z)(el-]®...®eik).‘ (4.3)

Note that the definition of Z depends on k. Further, observe
that
E(z)d(eil®...®e,~k) =dL(z)(e; ®...Qe; ), (44)

for all d € Pi(N) because P;(N) and C[Sy| are mutual
commutants in End(V*). This implies that Z is automati-
cally in the center of P, (N), which we denote Z(P(N)). In
other words, Eq. (4.3) defines a homomorphism from
Z(C[Sy]) to Z(Py(N)). As a particular case of being
central in P(N), z commutes with C[S;] C P(N).

Central elements play a special role in representation
theory. Schur’s lemma implies that an irreducible matrix
representation of a central element is proportional to the
identity matrix. The proportionality constant is a normal-
ized character. In particular we have

Dy (2) = 7 ()b, (4.5)
where we have introduced the short-hand
A
A Al — ){ (Z) 46
d DimV," (4.6)

for normalized characters. In this sense central elements are
Casimirs, they act by constants on irreducible subspaces,
and the constants can be used to determine the particular
representation.

The element of C[Sy] formed by summing over all
elements in a distinct conjugacy class of Sy is central. For
example, we define the element 7, € Z(C[Sy]) as

Ty = Y (if),

1<i<j<N

(4.7)

where the sum is over all transpositions. By the argument in
(k)

the previous paragraph, there exists an element 7, €
Z(P(N)) such that
L(T)(ei, ®@ - ® ey,
I
(4.8)

o=(ij)
1<i<j<N

€o=1(i1) @+ @ €r=1(3;)-
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As we will explain, the eigenvalues of the central element

T(Zk) can be used to distinguish the label A; on matrix units.

Since T§k> is an element of SP;(N), it has an expansion in

terms of diagrams [see Eq. (3.32), Theorem 3.35 in [75] ]

(4.9)

The equality in (4.8) implies a radical simplification for
large N. The element T, contains order N? transpositions,

while T§k> contains at most B(2k) diagrams. The depend-

ence on N is incorporated in the coefficients (T( )) which
are polynomial functions of N. Explicit examples are in
(4.34), (4.39), and (4.47).

There exist similar elements tgk) € Z(C[Si]) C Z(Px(N))
defined by summing over transposition diagrams. For
example,

=00 =3 1] R

(4.10)

The eigenvalues of tgd

label A,.
Equation (4.8) together with Eq. (4.5) gives

will be used to distinguish the

Ay (k)
Aty X0 T50) oy
Daﬁ(TQ ) - DimVPk(N) 6(1[)’ _)(A (T2)5a/}9 (4-11)
A

where the distinction between the two characters is

Dimv/t")

1

AT = 37 DTy), and
a=1
DlmVSN

ZD

(4.12)

That is, the first character is a character of P;(N), the
second is a character of C[Sy]. Similarly,

5k N k
Dpi(t)) = 1 (1)8 . (4.13)

where

A2(t(k))
sho(fRy 4 "\ ) 4.14
72 DimV,S\k2 ( )

Normalized characters of 7', and ték) can be expressed in

terms of combinatorial quantities (known as the contents)
of boxes of Young diagrams (see example 7 in Sec. I. 7 of
[91]). Let Y, Y, be the Young diagrams corresponding to
integer partitions A; € Vs(k), A;-k. Then

ST (=i =30 (-,

(iJ)EX, (iJ)EYa,

FM(T,) =

(4.15)

where (i, j) corresponds to the cell in the ith row and jth
column of the Young diagram [the top left box has
coordinate (1,1)].

With the above facts at hand, we can understand how the
Ay, A, labels correspond to eigenvalues of Tgk), tgk). As we
prove in Appendix A3 the P,(N) matrix units have the

property

Qs = ZD )Q)s. ford € Py(N).  (4.16)
and therefore
Ak
onT =10l = ZDya 0 = 2M(T,) 0l
(4.17)

(k)

. .. . . Ay .
We derive a similar equation for 7, acting on Q' , using

the definition in (3.55). From the definition we have

’2 QA2 w
o ) A )—>C[S] (N)—=CIS,]
= OB B
a.p.p
_ Ay pPr(N)=C[S;] pP(N)—=C[S]
- Z D 577 Q BAI a—=Ny,p; ﬂBAl PNy pivt
apry.p

(4.18)

We rewrite the Kronecker delta using the completeness
relation

§ «(N)=C[Si] pPr(N)=C[S]
BA|7—>A/ /. /BA]}//—>AI / /—5 /

Ap

(4.19)

Inserting this into (4.18) gives
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A )=C[S] pPi(N)=CIS;]
> Du(ty))8, 0B A B e
apyr.p
(N)=C[S;] pPi(N)—C[S] Ay pPi(N)=CISi] pPi(N)—C[S;]
Z Z D A1 J=N, I’/Aﬂ BAL] 7 =N Pi‘ﬂ Qy’})’B/\liya—*Azp;t A]:,/3—>Az,ﬂ;,;‘ (4.20)
apry.p Ny.p
Now note that
=C[Si] pPL(N)=C[S/] & N s A, (k)
ZDya Al y_)A/ rk ’BA] a—=A,, ]7/;1 5A2A’ 5/“4Dpp( ) = 5A2A’25/4’/45p’p)( Z(tz ) (421)
We substitute this into (4.20) and find
N)—C[S;] C[Si] (N)=CI[Sy] (N)=C[S;]
Z Z DV“ t2 /\1 7—>/\’ Pkﬂ /\1 7—>/\’ Pkﬂ Q r'p Al a=A, pkﬂBAk PN, pi/
apry'.p Ny.p
_ sA, (k) C[S] N)—=C[S]
= Z Z 5A2A’25;/;46p/p)( Z(IZ )BAI y—>A’ pkﬂ Q //3 Al ﬁ-’l\z PIL
By'.p Ny’
o )\ AA; pPr(N)=CIS, >C[s N K)\ AA
= D OB S B e = 2 () O (4.22)
By'.p

which proves the analog of (4.17) in the case of tgk).

We define linear operators on SP,(N) using multipli-

cation by 7, {0

(4.23)

(Q/\2 ;u/) - QA2 MV =X ( 2)Q/\2 N

and

(QA, /u/) = QA2 o =X ( )QA2 R (4'24)

That is, the matrix units for SP(N) are eigenvectors of the
linear operators associated with T(Zk), tgk). The eigenvalues
are sufficient to determine the subspaces labeled by
irreducible representations A, A, for k=1, 2, 3 and
general N. As discussed in detail in [89], a larger set of
central elements is needed to distinguish different pairs A,

A, for general k and N.

B. Multiplicity labels and maximal
commuting subalgebras

In the previous subsection we described how the sub-

space spanned by Q’k; w for fixed Ay, A, is a simultaneous

eigenspace of central elements Tgk), tgk). The subspaces

labeled by fixed u, v are not eigenspaces of any central
elements of SP;(N). Nevertheless, they are eigenspaces of
elements that (multiplicatively) generate a maximal com-
mutative subalgebra of SP;(N).

We illustrate this in the simple case of a single matrix
algebra. This is directly relevant, because the matrix units

Q Ao i form (are isomorphic to) a matrix algebra M, with

n= D1mV ( )_’C[Sk] , for fixed A, A,. The matrix algebra
M, has a bas1s of matrix units E,, for r,s =1,...,n
These are just the elementary matrices with zeroes
everywhere except in row r, column s where there is a
one. In this explicitly realized algebra, it is straightforward
to verify that

ErsEr’s’ = 5sr’Ers" (425)
It follows from Eq. (4.25) that
EE, —5,E, {5 =1 (4.26)
SR A ' otherwise - '

This fact will be useful in what follows.

We will now define a pair of linear operators acting on
M, whose eigenvalues uniquely determine the indices r, s
on E,,. Let

T: 1E11 +2E22+"'+I’lEnn, (427)
and TL, TR be the linear operators on M, defined by left
and right action of T, respectively,

TL (EFS) = TETS’ TR(EI’\) = ETST' (4'28)
The n? x n? matrix (TL)™ associated with the linear
operator Tt has eigenvalues {1,2,...,n} (each one is
n-fold degenerate) with eigenvectors E .,
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Z(TL)?\[EIM = TL(ErS) = rEFS‘ (429)

1

Similarly for the matrix (7)™ associated with the linear
operator TR,

> (TR)UE,, = TR(E,) = SE,,. (4.30)

tu

The operators TL and T® commute, and their simultaneous
eigenvectors E,; have eigenvalues r and s, respectively.

The algebra spanned by {E, |, E,», ..., E,,, } is a maximal
commuting subalgebra of M,. It is multiplicatively gen-
erated by 7. In particular (see Lemma 3.3.1 of [89] or
Lemma 2.1 of [92])

(4.31)

T —
1T
SFET

. . A . .
These ideas generalize to Q ,\; v and in the next section

we will give the appropriate operators corresponding to 7%,
TR for SP,(N).

C. Construction of low degree representation bases

We now use the tools presented in this section to
explicitly construct the representation basis elements as
sums of diagrams, for k = 1, 2, 3 and large N. Tables of the
representation basis elements expanded in terms of dia-
grams are found in Appendix C. The associated Sage code
can be found together with the arXiv version of this paper.

1. Degree one basis

For k = 1 it is enough to use T, to distinguish the
irreducible representations. We expect to find matrix units

on.on . (4.32)

since S; only has the trivial representation and the
decomposition in (3.35) only contains irreducible repre-
sentations [N] and [N — 1, 1] of P{(N).

The map

T, > T4 (4.33)

is given by [see the section called Murphy elements for
CAy(N) in [75]]

(4.34)

It is straightforward to diagonalize Tél) acting on P (N)
from the left. We define

v _ Lo vty L
Qu=%. @ =|-x. ©
and they satisfy
[N=1.1] [N] 5[N] _ H[N]
oo™ =0, ol oll=al.
[N 1L1] A[N=1,1] _ A[N-1,1]
Oy Qn =9 (4.36)
and have eigenvalues
(1) oM _ NN =1)
oy ===y
- _ N(N -3 _
gl =YW= g (43)

which are exactly equal to the normalized characters. Note
that S, has no nontrivial representations, and tgl) =0,
which is consistent with the normalized character “4-1) = 0

2
of the trivial representation.
The orthogonal basis elements for H,,, ("), corresponding
to these matrix units, are
N 1 iy
0h) =5 > @)ilo)  and
N-1,1 i 1
oy = Y@ -5 2@ (438)

2. Degree two basis

The procedure was particularly easy at degree one
because S; is trivial, and there are no multiplicities
appearing. For k =2 we have the sign representation
[1, 1] and the trivial representation [2] of S,, and pairs
of irreducible representations A;, A, appear with multi-
plicity larger than one. To distinguish multiplicities we will
have to introduce noncentral elements, as discussed in
Sec. IV B.

At degree two, the partition algebra element we use to
distinguish A; is [75]
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(N —2)(N —
T = 2

_l’_

- 1-

SR8

As alinear map (acting on the left or right) on P,(N), it has
eigenvalues

(QA, ;n/) = N(N ) QA2 Jw’
10" = —W; Dol
(Q/I\\;/j,z) _ (N - I)Z(N—4) Q%ff]’
75 (ol o) = yQ,ﬁ o (4.40)
The element we use to distinguish A, is
15 = 5 (4.41)

The eigenvalues of the corresponding linear map are 1 for
[2] and —1 for [1, 1].

The noncentral element we will use to distinguish
multiplicities is

(4.42)
|

IN—211], 1 e 1o
@iy e=y] . -§

which corresponds to the (unnormalized) Sy invariant state

Q4" )

=5 (3 tanani-

i.j.k=1

SANEET MBI

e N« o

(")} (@)i + D l(ah)i(a")] - (a+)§(aT)§]> 0)-

T+ I+ + 5 +N]7]
1T

(4.39)

It is closely related to Tgl) € Z(P,) in Eq. (4.34) because

el+1eTV=] "+ [+NN-

3)] I

(4.43)

Roughly speaking, Tgl) comes from the embedding of Tél)

into SP,(N) by adding strands. Symmetrization has been
used to ensure that we have an element in SP,(N).
To determine the multiplicity labels we need to act from

the left as well as the right using Tézf We define ngl) " and
T<22’E’R acting on d € P,(N) by

Appendix C gives a representation theoretic argument
for why these operators fully distinguish all labels on
matrix units, together with a complete table of all k = 2
matrix units. As an example, we find a matrix unit
[see (C30)]

(4.45)

(4.46)
ij=1

3. Degree three basis

The multiplicity free matrix units for k = 3 have A =

linear combinations of diagrams it is sufficient to find eigenvectors of Tf)

L[] -
L]+ [
s

g I el | B g
[+ [+ [ +
-0 10+ 1 )+ 8=2=9 1]

[N=3,3],[N-3,2,1],[N =3, 1, 1, 1]. To find the corresponding

defined by

A

] (4.47)
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with eigenvalues

N-3)(N—4
(Q/Q ﬂ3v3 ) - ( >2< ) Q/]\\i ;3]’
N-1)(N -6
7 (g a2y = ZDIN=0) poasa
NN 7
(Q%ﬂsylll)_ ( )Q/Ci;ylu (4.48)

The square brackets in (4.47) denote S3 symmetrization as
in Eq. (3.24). Explicit expansions of these matrix units in
terms of diagrams are given in Appendix C.

V. EXACTLY SOLVABLE PERMUTATION
INVARIANT MATRIX HARMONIC OSCILLATOR

The simplest quantum mechanical matrix Hamiltonian
we considered in Sec. II is invariant under the symmetric
group action

G'XU—)XO-(I)O.(/), v GGSN.

(5.1)

It is also invariant under the much larger symmetry of
continuous transformations by U(N?). In this section we
generalize the quadratic potential to the most general
quadratic function V(X) invariant under the above permu-
tation symmetry. We will thus present a quantum mechani-
cal model of N? matrix variables X;; in a permutation
invariant quadratic potential V(X). The most general
permutation invariant quadratic action in a zero-
dimensional matrix model was constructed in [28] using
representation theory. Borrowing these techniques, we
explicitly construct an 11 parameter family of permutation
invariant quadratic  potentials. The corresponding
Hamiltonian is exactly diagonalizable. In general, the
diagonalization only involves diagonalizing a 3 X 3 sym-
metric matrix and a 2 x 2 symmetric matrix. We describe
the spectrum of the full Hamiltonian and discuss the
degeneracy when the quanta of energy are generic, and
when they satisfy integrality properties. In the former case
we are able to give a lower bound on the order of the
degeneracy, this is given in Eq. (5.35). In the latter case, the
degeneracy can be phrased in terms of an integer partition
problem. The integer partition problem has a solution in
terms of a canonical partition function (generating func-
tion) given by Eq. (5.38). We end this section in V D with a
brief discussion of the role that the representation basis
could play in simplifying the diagonalization of H, given in
Eq. (5.27), on H;,,-

A. Construction

A matrix harmonic oscillator in a potential is described
by the Lagrangian

- 1
:Ezatxijatxij _EV(X)- (5.2)
ij=1

We take the potential to be a general quadratic Sy
(permutation) invariant potential
V(Xij) = V(Xa(i)a(j))- (5.3)
The action of Sy on X;; defined in (5.3) corresponds to the
diagonal action on the tensor product Vy&V,. This is
given in (3.6) for general k, for the kK =2 case at hand
we have
L(67")(e:®e)) = eqn ey (5.4)

The vector space V&V is reducible with respect to the
diagonal action. There exists an isomorphism

Vy@Vy = ZV[N] ® 3V[N ) @ VN 20 ©® V[N 211
(5.5)

into irreducible subspaces. The representation V[S](,V] is the
one-dimensional trivial representation of Sy. The repre-
Vo Vil
N-1,1]" ¥ [N=2.2] ¥ [N-2,1,1
ible representations of Sy, labeled by integer partitions of
N. Detailed descriptions, including explicit constructions
of irreducible representations of Sy can be found in [53,93].
The dimensions of the nontrivial irreducible representations

in (5.5) are, respectively,

N-1, (N

sentations V>V | are nontrivial irreduc-

-1)(N-2)/2, N(N-3)/2. (5.6)
We take the rhs of the isomorphism (5.5) to be a vector

space with orthonormal basis X2 labeled by

A€ {[N],[N-1,1],[N =2,2],[N —2,1,1]},

ae€{l,...DimV'},

ae{l,.. . Mult(Vy®Vy — V3¥)}. (5.7)
By definition the Clebsch-Gordan coefficients CM are the

a,ij
matrix elements of the equivariant map between the two
sides of Eq. (5.5),

Xp® =) ChiX; (5.8)
ij

a,ij

As a consequence, they have the following property

ZCQ;;XG | ZD

(e)X2P,  (5.9)
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where D* () is an irreducible (unitary and real) matrix
representation of o € Sy.

In the representation basis the potential has a simple
form,

ZXAO[Q:} A, ’

Aa.f.a

(5.10)

where gf]l\/j are symmetric matrices. To define a system with
energy bounded from below they are required to have non-
negative eigenvalues. Translating back to the original basis
gives

V(X) = Z ZCZ\Z zlx\ﬂcale X (5.11)
Nap.aijkl
We define the tensors
0L = Zcﬁgcﬁfl (5.12)
and write the potential V(X) as
Z Z Q,sz G XijX k1- (5.13)

Aa.pijk,l

The tensors Qf;,zﬁ are known explicitly [28]. For example,

1

N].11

QE]kl - N2 ’ (514)
w1 1 1 1

Qi = N—1 <5ij5k1 _Néij _Nékl N2 (5.15)

Their construction using Clebsch-Gordan coefficients
means that they satisfy

A,ap o Aap
Qiiiotiyottoty = Lijit - (5.16)

This follows from the equivariance property (5.9)

Aap o Aa Ap
Qoli)o()ooll) = ZC o(0(j) Cao ko)

A,
= CprcMiDh, (0)Di (o),

a,b,c

=D CpiCrlidne = Ol (5.17)
b,c
Going to the second line uses D;\b(a) = Dﬁa(o’_l) which

follows from the fact that representation matrices for Sy
can be chosen to real and unitary, i.e. orthogonal matrices.

B. Spectrum

The full Hamiltonian with quadratic potential given
in (5.13) can be diagonalized using oscillators. We will
see that diagonalizing the Hamiltonian only requires the
diagonalization of a set of small parameter matrices (one
3 x 3 and another 2 x 2), despite having a potentially large
number of harmonic oscillators (N?).

The full Lagrangian in the representation basis is

L= 8,50X)0X0" - X}gh X',
Aa.f.a

(5.18)

It describes a set of coupled harmonic oscillators. We write
the Lagrangian in decoupled form in the usual way. Let

Qgﬁ = (o {x\)zéaﬁ be the diagonal matrix' such that

gaﬂ - ZUUC}’ ;/5U/)'5’ (519)

where U™ is orthogonal change of basis matrices. In the
decoupled basis

sha — ZX“UQG, (5.20)
we have
1
L= Z 0,53%0,80 — 5(w9)2sﬁ*"59’”. (5.21)
Aa, a
The canonical momenta are given by
M= 9,50 (5.22)
The new canonical coordinates satisfy
(=, SNP) = ishN 5B, (5.23)
since U” are orthogonal matrices.
The corresponding Hamiltonian,
ZZA CELC 4 (@h)2SaUSeY, (5.24)

A a,a
is diagonalized by introducing oscillators

'"We assume the eigenvalues are positive such that the spectrum
of the Hamiltonian is bounded from below. Therefore, we may
write the eigenvalues as squares without loss of generality.
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1

Sa“ = 2@3((AT>2"’ + A0,
T = i\/;);((AT);"‘” — AN, (5.25)
which satisfy
(AN (ADN D] = 60 5905, (5.26)

In the oscillator basis, the normal ordered Hamiltonian has
the form

H="> oh(A")}eape. (5.27)
Aa,a

Defining number operators N2 and N
Nya = (AT)haap, (5.28)
Nt = "Fpe, (5.29)

a
we may write

H=> Nyo=>3 R (5.30)

Aa.a Aa

The energy quanta w’ do not depend on the oscillator state
index a. This is a manifestation of the S invariance of the
Hamiltonian H.

\ DimV3Y 4+ NAe — |
. N Ja _ A
D1m</(?;’H[ ]) = H( N >

N[N],l N[N],Z

X

N[N—l,l],l

X <(N_ 1)(N —2)/2 4+ NIN-22] _

N[N—Z,Z]

NIN-11].1

5 <N(N —3)/2+ NIN=22] > (N(N —3)/2 =1+ NN-211]

N[N—2,2]

The vectors in @ HV*“! have energy
Ao

A
<1—|—N[N]’1—1)<1+N[N]~2—1

The Hilbert space H¥) has a basis of energy eigenstates

(AT

AE{[NHN—I,l]<[N—2,2].[N—§.1.1]} \ Nﬁ}’“!

ae{l..Mul(Vy ®Vy -V, V)

0), (531
ae{l,...] DimViN}

where k=3, ,,Na“ is the eigenvalue of the (total)
number operator

=Y i

Aa.a

(5.32)

and N2 is the eigenvalue of N,

Since the Hamiltonian (5.27) is a linear combination of
number operators N, it is natural to organize H® into
eigenspaces of N with eigenvalues NA¢ =3 N3
satisfying k = 3, , N**. Diagonalizing the number oper-
ators N organizes H®) into subspaces

HY = @ QHN, (5.33)
ZN/\,u:k A.a
where
HINYT = Sym™™ (V3X). (5.34)

Each summand in (5.33) is a vector space of dimension

N—1-+ N[N—l,l],l -1 N-—1 +N[N—1.1].2 -1 N—1+ N[N—l,l],3 -1
( G )

N[N—l,l],3

N(N =3)/2 + NIN-2L1 1
N[N—Z,Z]

N — 2+N[N—1,1],1 N=2 +N[N—1.1].2 N — 2+N[N—1,1},3
( ) )

NIN-1.1].3

>. (5.35)

N[N—Z.Z]
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E({N*}) = > N o, (5.36)

Aa

Equation (5.35) thus gives the degeneracy of energy
eigenstates for the specified integers {N"}, associated
with A, a as given in (5.7). This puts a lower bound on the
degeneracy of energy eigenstates. Further degeneracy may
occur for particular choices of the constants %, which can
lead to the same numerical value of E({N"}) for different
choices of {N"%}.

C. Canonical partition function

The canonical partition function is defined as

Z(B) = Trye P = > "N(E)e ™, (5.37)
&

where N(&) is the degeneracy of eigenstates at energy &
and S is the inverse temperature.

The binomial factors in (5.35) arise in the expansion of
simple rational functions. Defining x = ¢ for conven-
ience, we can therefore write

1
Z(p) =
(1—xol ) (1= x")
% 1
(1 _xw[lN_l’l])N—l (1 _xw[ZN_l’l])N—l (1 _xw_gN_l’l])N—l
1
x (1 — x@" Y WN=DN=2)/2(] _ yo"2HN(N-3)/27

(5.38)

When the quanta of energy (w2) in (5.27) are integers, the
possible state energies & are integers and N (&) is related to
what we refer to as an integer partition problem. The integer
partition problem is the following: Pick any integer &,

enumerate the set of solutions (choices of N2*%) to

£ = ZN?“@Q

Aa,a

(5.39)

The number of solutions is equal to N (£) and a single solution
is denoted N*(E). This problem depends on N because
the state label a ranges over { 1, ..., DimV,S\N }. Fortunately the
N dependence can be factorized, due to the Sy symmetry of
the problem, thus greatly simplifying the problem.

To see this, consider the N-independent integer partition
problem

€= N o, (5.40)
Aa

where a solution is given by a list of seven integers N**(&).
For every solution NA%(€) to (5.40) the number of

solutions to the integer partition problem in (5.39) is
given by

Dim(@H[NA’“(gﬂ). (5.41)
Aa

In this sense, the N dependence in the problem has
factorized: we only need to find solutions to the
N-independent equation (5.40) and multiply each solution
by a known N-dependent factor. The total number of
solutions to (5.39) is given by

Z Dim (@H[N"*‘%E)}) .
Aa

NA(E)

(5.42)

where the sum is over the set of solutions to (5.40).

D. Energy eigenbases

We have observed that the oscillator states constructed
using partition algebra diagram operators in tensor space
contracted with oscillators (a')! obeying (2.6) are eigen-
states of the simplest matrix Hamiltonian H, in (2.7). By
contracting the representation basis elements in the parti-
tion algebra with the oscillators we produce quantum states

Ay _ Ay T\Rk
|QA2,/41/> - TrV%k(QAZV/w(a ) )‘O>9 (543)
which are eigenstates of H, and also diagonalize algebraic
conserved charges.

The representation basis states are not eigenstates of
the general permutation invariant harmonic oscillator
Hamiltonians H in (5.24). There is mixing of the repre-
sentation basis labels (A, A,, i, v) caused by the different
weights for the representations A appearing in the expan-
sion of the Sy invariant harmonic oscillator Hamiltonian
defined in Eq. (5.27). We expect this mixing of the labels in
the (A, Ay, 1, v) basis to be constrained, for example by
the Sy Clebsch-Gordan decompositions of AQA;. Such
constrained mixing of representation theory bases for
matrix systems arises in Hamiltonians of interest in
AdS/CFT. A number of representation theory bases for
U(N) invariant multimatrix systems have been described
which capture information about finite N effects and are
eigenstates of the Hamiltonian (in radial quantization) in
the free Yang-Mills limit [58—63]. However, the one-loop
dilatation operator defines a nontrivial Hamiltonian which
is, in general, not diagonalized by these representation
theoretic bases (although there are some interesting excep-
tions to this statement, see [94]). Representation theoretic
constraints on the mixing caused by the one-loop dilatation
operator are described in [94-98], following earlier work
on one-loop mixings related to strings attached to giant
gravitons, e.g. [99,100].
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VI. ALGEBRAIC HAMILONIANS AND
PERMUTATION INVARIANT GROUND STATES

So far our discussion of Sy invariant subspaces in
quantum mechanical matrix systems has largely (with
the exception of the previous section) been independent
of any choice of Hamiltonian acting on the Hilbert space. It
can be viewed as a general description of the kinematics of
Sy invariance, independent of the dynamics determined by
the Hamiltonian. In this section we present Hamiltonians H
which realize the eigenspectrum scenarios depicted in
Fig. 1, this includes Hamiltonians for which the low energy
eigenstates are permutation invariant states.

The Hamiltonians we consider here preserve the Sy
invariant subspace H;,, defined as
Hiw={IT)EH s.t. Ad(c)|T)=1|T), Yo€Sy}. (6.1)
The adjoint action of permutations ¢ € Sy on the tensors T
labeling the states simultaneously transforms the upper
and lower indices of T according to (3.7). For any state
|T) € H;,, the Hamiltonians H obey the condition

H|T) € Hipy.- (6.2)
A sufficient condition for H to satisfy (6.2) is for H itself to
be Sy invariant or [Ad(c).H] = 0 for all 6 € Sy.

We will show how to construct Hamiltonians H g of this
type, depending on an integer parameter K, with a finite-
dimensional space of Sy invariant ground states. Both the
energy gap between the ground states and the lowest
nonzero energy level, and the ground state degeneracy
depend on K in a way that is determined by the algebraic
construction. As sketched in the left-hand side of Fig. 1(a),
Hy has an energy gap of order K. The construction of Hy
can be viewed as including, in the Hamiltonian, central
elements in C[Sy] acting on H*) using Ad(e) for k < K.
This can be related to the action of elements of P, (N)
acting on H™® for k < K. We will briefly mention some
analogies between the present construction and the phe-
nomenon of topological degeneracy which is widely
studied in condensed matter physics.

The ground state degeneracy of Hy can be resolved by
adding a term H ,, made from the central algebraic charges
discussed in Sec. IV. This breaks the degeneracy of the
invariant ground states as illustrated in the spectrum on the
right of Fig. 1(a). The representation basis \Qﬁ;m,) pre-
sented in Sec. III C diagonalizes these Hamiltonians in the
invariant subspace, and the state energies depend on labels
Al’ A2.

Multiplicity labels u, v are not distinguished by the
central algebraic charges. Distinguishing multiplicity labels
requires more general elements of P,(N), as discussed in
Sec. IV B. Generalizing the construction of H . naturally
leads to a large class of Sy invariant Hamiltonians related to

the left action of elements of P;(N), which can be used to
break the degeneracy associated with multiplicity labels.
Hamiltonians of this type can have nontrivial spectra, in
which invariant states are distributed across the energy
spectrum, with no discernible pattern of difference com-
pared to noninvariant states, as illustrated in Fig. 1(b).

The 11-parameter Hamiltonians in Sec. V typically have
such nontrivial spectra. Given the nontrivial index con-
tractions in (5.13),

Aaff ik Nap
ZQijkl XijXu = (“T)}al Qijit »
ijkl

(6.3)

these Hamiltonians are not of the kind involving only the
left action of P, (N). Similarly, H is not of this kind. This
implies that a more general construction of Sy invariant
Hamiltonians exists. We give a description of this more
general construction, which involves elements of P (N).
We end the section with a lattice interpretation of the matrix
oscillators. This sets us up for Sec. VII which concerns the
nontrivial interplay between the invariant sector and the
Hamiltonian and includes realizations based on the lattice
interpretation.

A. Partition algebra elements as quantum
mechanical operators

We now translate much of the discussion in Sec. IV into
the language of quantum mechanical operators on H.
Finding representation bases corresponds to the diagonal-
ization of commuting operators on H. Notably, elements of
SPy(N) naturally correspond to operators for fixed k, or
maps H*®) — HW® . However, it will be useful to have
expressions for these fixed k operators in terms of oscil-
lators, which act on the entire Hilbert space H. These two
kinds of operators are related by projectors P: H — H®)
to fixed k subspaces. We use this in the construction of
Hamiltonians in the remainder of Sec. VL.

For a general state |T) € H™®) [see (2.20)] and element
[d] € SPy(N) there is a corresponding operator defined as

[d]*|T) = [[d]T) = |dT), (6.4)

where the superscript L stands for left action, and

it e

Jueedi iyt

(dT>i1...ik

iy

(6.5)

JtseeoJk
The second equality in (6.4) follows since

[d]T) = Trye:([d]T(a")®¥)]0)

1 .
= > Trysi(L,dL,T(a")®4)(0),

TrESK

= Trye:(dT(a")®)[0) = |dT), (6.6)
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where L(o) is defined in Eq. (3.6). We have used
L,T =TL, together with £,(a")®* = (a")®*L, to go to
the second line. We may also define operators correspond-
ing to right action,

[d|*|T) = |Td). (6.7)

We extend [d]* to an operator on H, expressible in terms
of oscillators and projectors P;: H — H®*) as

1
[d]* = EPkTrvﬁk((aT)mda@k)Pk- (6.8)
Similarly, we can extend [d]® to an operator on H,
1
[d]* = EPkTrv;‘?"(d(aT)@ka@k)Pk- (6.9)

In what follows we will prove results explicitly for the left
action. For the sake of brevity we omit the analogous proofs
for the right action.

1
21 Tryee((ah)*da®") W) =

In the second equality we have moved all annihilation
operators past the creation operators, giving a sum over
contractions. The sum over y € S, encodes the contractions
and in the second line we have straightened the diagram.
The last identification follows since £,TWL, =T®.
Because [dTW) € HW we have Py|dT®) = |dT™),
which establishes the equality in (6.11).

The definition of P, in the oscillator basis is

Pu(a)?...(a")%|0) = s (ah)}...(a")¥]0).  (6.10)
We now prove
1
W’kavgk((a*)®kda®")7’le> = [aT®),  (6.11)

where |T) = 3" |T®W) and |[T®) € HK¥). The projector
immediately gives P|T) = |T™). It remains to prove

1
EPkTrV;?k((a*)®kda®k)|T(k)> = |dT®).  (6.12)

We prove this diagrammatically, using the state definition
in terms of diagrams (2.26)

(6.13)

As we now show, the Hermitian conjugate of the
operator [d,]F is [dL]L, where dI is the element obtained
by flipping the diagram d, horizontally. This follows from
the inner product

(T'|T) = 3 Tryan ()47,

YESk

(6.14)
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defined in (3.31) and

(T'|d,T) =) Trye((T) yd,Ty™)
YESK

= KITryeu((T')7d,T),

= ZTrve;k((d;T’)Ty_lTy)
=0 "

= (d'T'|T). (6.15)

As operators on H, T, € Z(C[Sy]), T, € Z(Py(N)) and

t, € Z(C[S;]) can be written as oscillators. From the
definition of the action of 7', in (4.8) we have

1
10" = P Tre(a) BT, )a® P,

1
=P > Trye(a’)®L(0)a® Py,

o= (lj

1 i]/ iy
~EP Y S @ P
lgi<jjsNi1]/...f:/
(6.16)

Similarly, the fixed k operators corresponding to T, are

1 i a2l il""l’
- Epk Z (aT>i:/ (aT)tk/ (TZ)J'I,,.]: z]] .. Pk’

(6.17)

where T, can be expanded in in the diagram basis as in
(4.9). Finally, the fixed k operators corresponding to ¢, are

1
X)L
té Mo EP,( Z(:) Trvgk[(aT)‘@kﬁ,-la@k]Pk,

I<i<j<k
— ifp E E ( K 11 lk 7)
_kl k r(] .. k) 1/... k-
: =(ij) iy---ig
l<1</<kll/ lk/
(6.18)

These operators are Hermitian, because (7,)" = T, and
(t,)T = t,, and consequently their eigenvectors with dis-
tinct eigenvalues are orthogonal. They are difficult to
diagonalize over the entirety of %), since the dimension
grows as N2k for N > k. But the diagonalization over H;,,*
is feasible since the dimension is bounded by B(2k), which
does not scale with N. Further simplification arises when
acting on states |d) € H ¥, since the action can be

formulated as multiplication in SP;(N), thus bypassing
the computation of large index contractions. That is, for
|d> € Hinvk

WL|d) = [T,d), (6.19)

where the product 7,¥d can be taken in P;(N). It follows
that,

(6.20)

L|QA2 /,w> ‘TZQAZ ;w> = (T2)|QA ;w>

and similarly for tgk)‘L.

The free Hamiltonian H, in Eq. (2.3) is just the number
operator. The above operators conserve the number of
particles. Consequently,

[Ho, T3] = [Ho, T4 = [Ho. 157" = 0. (621)

and the corresponding charges are conserved.

B. Decoupling invariant sectors
and invariant ground states

We now present a Hermitian operator with algebraic
origin that can be used to control the energies of states
invariant under the adjoint action of Sy on H*). We use the
operator to construct a Hamiltonian with a large number of
invariant ground states.

The adjoint action of 6 € Sy on HW
Eq. (3.7) as

is defined in
Ad(o)|T) = TrV%k(ﬁ(a)Tﬁ(a‘l)(a*)®k)|0>
= ST i (@) (622

We may write Ad(o) in terms of oscillators and projectors
Py H — H® defined in Eq. (6.10). For |T) € H®*

Ad(0)|T) = 33 PiTryge (L(o™) (@) B L(o)a® ) PyIT).

(6.23)

We note that the ordering of a' relative to a is understood
to be as shown in the above equation. To understand the
equality in (6.23), we evaluate

Tryeu(L(o™) (@) B L(0)a®)|T).  (6.24)

where we take |T) € H®) (there is no loss of generality
since P, projects to H*)). Diagrammatically we have
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= k! Try e (L()TL(o™ 1) (a")®F)|0).

(6.25)

The first equality follows by encoding the contraction of
annihilation/creation operators in a sum over y € S;, and
the last equality follows by £,7 = TL,. This establishes
the equality (6.23).

We are now in a position to define the Hermitian
operator of 1nterest Let C ) be the operator defined to
act on |T) € H®

k 1 1
Gl =5 Y Ade)T)=5 X
o=(ijk) o=(ijk)
1<i£j#k<N 1<izj#k<N

(6.26)

where the sum is over all 3-cycles. It commutes with the
adjoint action of Sy,

Ad(y)C¥ =cPad(y). vV yesy. (6.27)

k) . .
because Cg ) is a sum over an entire conjugacy class. We

now use a sequence of diagrammatic manipulations to

show that the action of Cgk) can equivalently be expressed

using an element Tng) € P (N). A useful way to rewrite

the diagram in (6.26) is

1
g Z 9 Z |0> )
o=(ijk) o=(ijk)
1<i£j#k<N 1<i#j2k<N
(6.28)

where we have gone from a trace in V®* to a trace in V&,
By arguments analogous to those in Sec. IV A, the action of

1
3 Z L(o),

o=(ijk)
1<istj#k<N

(6.29)

on V&% is related to an element in P, (N), which we call

T<32k). Diagrammatically, this is understood from the fol-
lowing sequence of identifications,

1 1
3 Z (6.30)
o=(ijk) o= (Uk’)
1<iAj#k<N 1<i#j#k<N
That is, we have (C)J], ’Jéﬁ = §hien  ghing; . .8 . (6.32)
k -
Cg >‘T> Trv®2k(c (T®1) ((aT)®k®1)>)|0> (6.31)  The explicit formula for ngk) could be derived using steps

where ¢ € P, (N) is the bottom box in the diagram on the
rhs of (6.30) and

similar to the derivation of the relation between Tgk) and

Ték) in Sec. IVA. Relating Cgk) to an element Tng) using
P, (N) allows for two kinds of large N simplification.
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First, in place of N!/(N — 3)!3! terms in Cgk) we have no

more than B(2k) terms in Tng)’ where B(2k) are the Bell

numbers. Additionally, index contractions ranging over N
can be replaced by multiplication in the partition algebra
P, (N) when |T) € H,,,, the complexity of this multipli-
cation scales with k.

We now move on to discuss the spectrum of Cgk). Since

H® is reducible with respect to the adjoint action of Sy, it
decomposes into irreducible representations of Sy, labeled
by Young diagrams Y with N boxes. By Schur’s lemma the
action of Cgk) on each irreducible subspace of this decom-
position is proportional to the identity. The constant of
proportionality is the normalized character of Cgk> in the
irreducible representation Y,

k
_ )(Y(Cg ))
DimV;"

() (6.33)

Normalized characters of C<3k)

of [101]) to equal

are known (Theorem 4

N(N-1)
Z (g—p) - 5 (6.34)
(p.q)eY

where the sum is over all cells in the Young diagram Y,
using coordinates (p,q) for rows and columns, respec-
tively. For example, the largest eigenvalue of Cgk) corre-
sponds to the trivial representation (Young diagram with all
N boxes in the first row) where

D (g=pP =0+ P42 4 (N=1)
(p.g)ey

N(N-1)(2N=1)

6 (6.35)

which gives the eigenvalue w in (6.34). In what
follows it will be useful to shift the eigenvalue of the trivial

representation to zero by considering the operator

N(N = 1)(N -2)
3

~cb. (6.36)

(k)

In terms of oscillators and projectors, 6‘3 is written as

o 1 [NIN=1)(N=2)
cg>—ﬁ7>k[ 3

- Trvgk(c(a-l)(a*)®kc(a)a®’<) Py
)

o=(ijk
I<i#j#k<N

(6.37)

We can use Cgk) to construct Hamiltonians with inter-

esting spectra. Consider the family of Hamiltonians
(depending on K)

K 0
~(k
Hy =Y CPHy+ > PuH,. (6.38)
k=0 k=K+1

where H, is the free Hamiltonian (number operator)
defined in (2.3). In this model, all invariant states of degree
k < K have zero energy, while noninvariant states have
energies that scale with N. For example, degree k < K
states in the representation [N — 1, 1] (a Young diagram
with N — 1 boxes in the first row and a single box in the
second row) of Sy have energies kN(N —2). More gen-
erally, degree k < K states in the representation [N — a, a]
for 1 <a < [N/2] have energy k(N —a+ 1)(N—2)a.
States of degree k > K have energy k. The spectrum of Hy
is illustrated on the left-hand side of Fig. 1(a). Taking
N > K, there is a K-dependent degeneracy of invariant
ground states and a gap of order K. In this scenario, the
subspace of ground states has dimension

K K
> DimH;,, 0 =1+ DimSP(N). (6.39)

k=0 k=1

where H;,,¥) is the degree k subspace of H;,, [see
Eq. (B.11) in [27] for explicit formulas computing
DimH,,,¥)]. By taking N > K > 1, we can have a large
degeneracy of ground states alongside the interesting
correlations between the degeneracy of ground states and
the energy gap. A large ground state degeneracy associated
with elements of a diagrammatic algebra, in this case the
partition algebras SP;(N) for k < K, is reminiscent of
topological degeneracy and its links to anyons [102,103].
We leave a more detailed investigation of the analogies
between the present algebraic constructions and topological
degeneracy for the future.

C. Resolving the invariant spectrum

In the previous section we discussed a Hamiltonian
(6.38) with degenerate ground state. We will now use

the commuting algebraic charges Té’d, tgk) € Py(N), con-
structed in Sec. IV, to resolve this degeneracy. Note that the
charges commute with Ad(c) and in particular they
commute with Cgk). We prove this in the next subsection,
where we consider more general operators coming from
elements of P;(N). Note that because Ték) and tgk) are
central elements of Py(N), and the representation basis

states \Qﬁ;m}) correspond to elements in Py (N), the

charge’s left and right actions are equivalent on these
basis states.
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The algebraic charges can be written in terms of
oscillators and projectors as in (6.17) and (6.18).

Importantly, the representation basis states |Qﬁ; /w> are

eigenstates of Tgk)’L, tgk)’L. The eigenvalues are normalized

characters of the representations A; of Sy and A, of §;,
respectively [see (6.20)]. That is

|QA2 yy> |T2 QA2 /41/>
|Q/\2 /u/> =X (T2)|Q/\ /u/> (640)
|QA2 /w> |t2 Q/\2 ;w>
|QA2 /41/> =X <t2)|QA m/> (641)

where the normalized characters 7 are defined in (4.15).

Note that the eigenvalues of the operator t(2k>’L

between =+ <k U and those of Tgk)’L between =+
including an 1nﬁnite number of such operators in a
Hamiltonian may result in a spectrum that is not bounded
from below. By adding these algebraic charges to the

Hamiltonian (6.38) the energy of the states |Q Ab ) labeled

by distinct pairs A;, A, will split. As discussed in
Sec. IV B, the multiplicity labels y, v are not distinguished
by these central algebraic charges. Hamiltonians that
resolve more detailed information such as multiplicity
labels are discussed in the next subsection.

For concreteness we consider the spectrum of the
Hamiltonian

range
N(N-1)
2 b

H/K =Hg + Hp

The ground state degeneracy is reduced compared to H K-
The lowest energy states are degree k < K states |Q A uv>

with energy —1. The highest energy state with degree k < K

[N-K,1¥ (N-2K-1)
is |Q -
The gap of order K remains, as illustrated on the right

), it has degree K and energy —

of Fig. 1(a). The label A, can be resolved by including t§k>'L
in the Hamiltonian.

To fully resolve the labels A;, A, for general k£ and N,
new charges are necessary. Detailed discussions of the
problem of using such charges in the center of the
symmetric group algebra C[S,], with motivations coming

from a model for information loss in AdS/CFT [104], are
given in [89,105]. It can be proved that {T,,T3,...,T,}
provide an adequate set of charges and these also provide a
multiplicative generating set for the center of the group
algebra. Typically, a smaller set {7, T3, ..., Ty, ()} suffi-
ces. For example &, (5) = 2, k,(14) = 3, k,(80) = 6. In the
present discussion these results can be applied by choosing
n =k and n = N, respectively.

D. Precision resolution of the invariant spectrum

In the previous section we presented Hamiltonians
involving commuting algebraic charges, constructed from
central elements in P,(N), that resolve the representation
labels A, A, of representation basis elements |Q2;W>. As
discussed in Sec. IV B, and illustrated in an explicit
example in Sec. IVC2, more general elements of
SP(N) are necessary to resolve the multiplicity labels
u, v. We will use this observation to construct Sy invariant
Hamiltonians, involving operators [d]* and [d]f con-
structed from noncentral elements [d] € SPi(N), with
nondegenerate eigenvalues.

Since we want to construct Hamiltonians H satisfying
[Ad(c),H] = 0, built from operators [d]*, [d]X, we will now
prove that [Ad(s),[d]t] = [Ad(s),[d]R] = 0. To show that
[d]*Ad(c) = Ad(o)[d]* we combine Eq. (6.4) with (6.22)

Ad(0)[d)*|T) = Trye:(L(0)dTL(c™")(a")®4)|0).

= Trys:(dL(e)TL(o™")(a")®4)[0),

= [d]FAd(0)|T), (6.43)
where the second line follows since L(o)d = dL(c) as
elements of End(VEY) (linear maps VEF — V¥¥). The
argument is identical for [d]fAd(c) = Ad(c)[d]R.

To construct Hamiltonians H, using the above operators,
we need to ensure that any operator we include in H is
Hermitian. The operators [d]", [d]R are not Hermitian in
general, unless [d’] = [d]. Taking this into account, we can
parametrize a large family of S, invariant Hamiltonians
using the diagram basis for P;(N). We write

1 (s
=3 Z Z(Lk,lr[dny‘ + Ly Lldz]*

+ Rialda] + Ry 1 [dZ]F), (6.44)

where the sum over [d,]| runs over a basis for SP;(N) and
Ly Ry, are complex parameters with the constraint
L;, =Ly and R}, = Ry if d}. = d,. The equivalent
expression for H in terms of oscillators and projectors is
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o Liads+ L ,db

100 /4 JUOT
Mg Pl et e )
k=1 [d,] :

1 Ry .d,+R; dL
EZZPkTrV®k <—k ! kz ( )®k ®k>7)k
(6.45)

Progressively turning on parameters in Eq. (6.44) will tend
to break degeneracy in the spectrum. Eventually, the
spectrum may take the form in Fig. 1(b) where invariant
and noninvariant states are mixed, and most of the
degeneracy is broken.

E. General invariant Hamiltonians
from partition algebras

The Hamiltonian H in (6.44) is not the most general
Hamiltonian satisfying [H, Ad(cs)] = 0. For example, it
does not include the Hamiltonian (5.27) constructed in
Sec. V nor Hy in (6.38). As we noticed in (6.30), C")
related to an element in P, (N). We now generalize this
observation to give a construction of general Sy invariant
operators from elements in P, (N).

General degree preserving operators that commute with
Ad(o) can be constructed from elements d € Py (N) as

.2@

YESk

|0> - I I \0>

(6.47)

Commutativity with Ad(c) follows from the following
diagrammatic manipulations

— _
(oﬁ?k Ly Ly (aD)**
(ﬂ)ik TL®k E(lo‘) (aT)®k >< L(o)
1 d — oy = L) - )
k! T S -
1t I d jl 5(0.—1)
L(o™h) [ :
T Lo d
| L 1 I T
(6.48)
@] | Lo | oo |
1
L(o) [ (aT[)@’k (ah)®F
1 1
_ 7; 0y= [ £l@) |joy= [L(o) 10),
e T 7
- 1 1
d d d
1 T I T 1 T

where the first equality uses Eq. (6.47). The second line introduces an identity operator of the form £(o~
the left-hand vector space V}%’k . The third equality follows from L (o

"L (o) acting on

~1)d = dL(c7") and the cyclicity of the trace. The last
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line removes the identity operator L(c)L(c7!) acting

on the right-hand vector space V,Q\?k . The last diagram is
equal to

1

Ad(a)ETrvﬁzk(d(aT)®k®a®k)|T>, (6.49)

which proves that they commute.

The construction readily generalizes to operators that do
not preserve the degree of states. Consider

1

W (6.50)

P Tryeu(d(a”) € @a® )Py,

this gives a map d: H®*) — H*) labeled by elements
d € Py 4, (N). Note that these operators have a Sy, x Sy,
symmetry, which permutes the creation operators and
annihilation operators separately. Therefore, the dimension
of the space of these operators is related to the counting
of 2-matrix permutation invariants, which was studied in
Sec. 2 of [83].

F. Bosons on a lattice

The Fock space of matrix oscillators can be interpreted
as the Fock space of bosons on a two-dimensional lattice
of size N°. The lattice is parametrized by ordered pairs
(i,j) for i, j =1, ..., N which label the site in the ith row,
jth column as in Fig. 2. The creation operator (a')! creates
a quantum of excitation at the site (i, j). In our conventions,
a§ annihilates a quantum at site (, j). Permutation invariant
states naturally contain excitations spread throughout the
entire lattice. For example, the state

FIG. 2. Matrix oscillators are naturally associated with a
N-by-N square lattice. The creation operator (a’)!

quanta of excitation at row i column j in the lattice.

creates a

(6.51)

contains an excitation of every site on the diagonal, and the
state

=11 =2uio,

i#]

(6.52)

contains an excitation on every off-diagonal site.

Most choices of Sy invariant Hamiltonians constructed
in Eq. (6.44) contain nonlocal interactions, connecting sites
at opposite sides of the lattice. Note that the left acting
terms in the Hamiltonian (6.44) leave the columns fixed
while the right acting terms fix the rows. An example of the
nonlocality is seen by considering

N
H=P TrVN(aT . a)P =P, Z (GT);(a)fpl'
i7j7k:1
(6.53)

This interaction moves a single excitation at site (i, j) to
every row in column j. In particular,

N

H(a")[0) =) (a")}|0),

i=1

(6.54)

contains the state (a')},.

We can enumerate a set of diagrams that give local Sy
invariant terms, through left and right action, as follows.
First note that the identity element in P,(N) gives a local
term. For example, in k =2

> (@)i@hz@i @)

11,12,71,J2=1

Try 02 ((ah)® ] Ia®2) =

(6.55)

It follows that any diagram that can be constructed from the
identity element by adding additional edges is local. For
example

N ) .
Tryex((a)® [ Ja®) = > ()} (a)}P(0)],(a)],,
i1,02,5=1

(6.56)

which is still local.
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VII. PERMUTATION INVARIANT
QUANTUM SCARS

Energy eigenstates in quantum ergodic many-body
systems are expected to thermalize, in accordance with
the eigenstate thermalization hypothesis [106,107], which
says that such systems are well described by statistical
mechanical ensembles. Integrable systems, and systems
which exhibit many-body localization [108] are known
exceptions to the eigenstate thermalization hypothesis. This
is a consequence of the existence of a large number of
conserved quantities, which leads to nonergodicity. A weak
form of nonergodicity was recently observed in experi-
ments involving Rydberg-atom quantum simulators [87].
For some initial states, the behavior was as expected from
an ergodic system, while other states would exhibit
periodic revival. This is unexpected, since the experiment
is described by a system without any conserved charges
or disorder [109]. The term “quantum many-body scars”
was coined in [88] to describe these nonergodic states
embedded in a large space of ergodic states. Many
mechanisms and construction schemes for systems and
states that exhibit quantum many-body scars have been
discussed in the theoretical literature [110-114].

In this section, we will follow the group theoretic scheme
invented in [85,86] for constructing Hamiltonians which
have many-body scars. Two basic ingredients are required
in this scheme: a group G acting on a Hilbert space H, and a
subspace H;,, C H of states that are invariant under the
action of G. To promote Hj,, to a space of many-body
scars, the prescription is as follows. First, find a
Hamiltonian H such that for all states |d) € Hjy,

H|d> € Hinw (71)
and the time-evolution of |d) using H is periodic. This
condition is discussed in Sec. VII A. Note that H commut-
ing with the action of g € G is sufficient to satisfy (7.1).
Now we break the symmetry of H, while retaining the
many-body scars, by constructing a total Hamiltonian

H.,=H+H,. (7.2)
The new term will completely break the symmetry of H but
is required to satisfy
Hi|d) =0 forall |d) € H,,. (7.3)
This ensures that the time evolution of |d) using H, is
equivalent to time evolution using H, which was periodic
by construction. Since H, has no remaining symmetry the
noninvariant states in H, which are not annihilated by H,
will be ergodic and therefore thermalize. The group
theoretic construction of H, is reviewed in Sec. VII B.

By combining the technology presented in this paper

with the above scheme, we can construct models with

many-body scars for G = S acting on the Fock space H of
matrix oscillators. In particular, Sec. III A contains a detailed
description of the Sy invariant subspace H;,, C H and the
Hamiltonians in Sec. VI can be used for H in (7.2). We gave
a lattice interpretation of the matrix oscillators in Sec. VIF,
which we will use to construct a lattice model with many-
body scars. The model will be a modified version of the
Bose-Hubbard model [115], which is relevant for physics of
cold atoms in an optical lattice [116].

A. Periodic time evolution and revival

The Hamiltonian in (7.2) contains two pieces, but the
dynamics (time evolution) of invariant states is governed by
H alone. In this subsection we will focus on H, and give a
sufficient condition for it to give rise to periodic time
evolution in the invariant subspace, turning the subspace
into a many-body scar space.

Let |d) be a (normalized) state in H;,,. Since H is Sy
invariant we have H|d) € H;,, and we can construct an
orthonormal energy eigenbasis |e;) for H;,, with eigen-
values E;,

Hle;) = Eile;). (7.4)

The state |d) exhibits revival with periodicity 7 if the

quantum fidelity (return probability) [117]

f() = [(dle™|d) %, (7.5)

satisfies f(mT) = 1form =0,1, ..
eigenbasis

.. Expanding |d) in the

(7.6)

|d) = Zdi‘ei>’
and computing f () gives

f(0) = (dle=™ )P = "|d;P|d,lPe B (7.7)
i

If all energy differences AE;; = E; — E; have a greatest
common divisor E, that is

and ¢; — ¢; is an integer for all 7, j, then f(mT) = 1 for
T =2z /E. Note that trading H for H, in (7.7) does not
change the argument above since Hg|d) = 0 by construc-
tion. That is, the time evolution of states in H;,, is
determined by H. As a special case, f(z) is periodic if
the energies E; of the states |e;) relevant to the expansion of

|d) are integers.
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B. Scar Hamiltonians

We now turn to the construction of the second part of
the Hamiltonian (7.2), using the group theoretic scheme
introduced in [85,86]. In order to implement this scheme in
the present setup we observe
(1 -=Ad(0))|d) =0, V o€Sy, |d) € Hiny. (7.9)
This follows from Ad(o)|d) =
construct H,.

As we show below, the Hermitian conjugate of Ad(o) is
Ad(c"). This will be important because, at the end of the
day, we want H, to be Hermitian. Starting from the
definition of the inner product we have

|d), and we will use it to

(T'||Ad(0) ZTrV@ T L,L(6)TL(c™ )L, ),
YESK

— ZTrVW T L(6)L,TL,).
YESK

— ZTrvgk((ﬁ(G NT'L(6))"L,TL,-),
YESK

= (Ad(c™")T'||T), (7.10)

where the second equality uses £,L(o)
third equality follows from

= L(0)L, and the

(L(e™NT'L(6))" = L7 T L(6). (7.11)
Consequently, an operator of the form
= (1= Ad(e7"))h,(1 — Ad(0)), (7.12)

where h,, is any Hermitian operator, is itself Hermitian and
satisfies H,|d) = 0, in accordance with the setup in (7.2).
In general, we can write H, in the form

Hy= Y c,H,,

€Sy

(7.13)

where ¢, € R is a parameter for every o € Sy.

The real dimension of the space of independent
Hermitian operators (candidate choices for h;) can be
counted as follows. We organize general (normal ordered)
k-oscillator operators in terms of the number of creation
and annihilation operators (k;, k,, respectively). They have
the form

0=0""(a )’;‘...(f){kla]:k‘“...ajk.

Ji---Jk I Ty kg +1 Ik

(7.14)

Their adjoints contain k, creation and k; annihilation
operators

syl B gl N/ ik
o’ =(0 )11 < Jhy iy ]k<a )Jk1+|"'(a >]ka]l ajkl'

(7.15)

For every k = k; + k, oscillator operator O with k; > k,
there is a Hermitian operator O + OY. The real dimension
of the independent Hermitian operators of this form can be
counted in terms of the dimensions of symmetric tensor
product spaces

2 Dim(Sym" (Vy®Vy)R@Sym*2 (VyQVy))
_2<N2+k, —1><N2+k2—1>

a')!" and a!' with
the vector space Vy&Vy. The factor of 2 comes from the

fact that Q'
JieJk

operators associated with k, < k; oscillator operators are
accounted for in (7.16) as their conjugates are the k| < k,
oscillator operators.

The remaining Hermitian operators to count are those
with equal numbers of creation and annihilation oscillators,
i.e., those with k; = k,. Some of these will be self-adjoint,
while the remaining operators can be paired with their
adjoints to construct Hermitian operators as before.
Inspecting Egs. (7.14) and (7.15) we see that for an operator
to be equal to its own adjoint it must be real, with k; = k,
and

(7.16)

which follows by identifying operators (

are complex numbers. The Hermitian

ey Ty 1o _( *)jk1+l~~~jkj1~~jk1
T Ty Jeg 1o de T PSRN % RO P

(7.17)

As they are real, the number of these operators is equal to
their real dimension

N>+ k-1

Dim(Sym* (Vy®Vy)) = ( L

). (7.18)

This counting can be understood as there being exactly
one choice of {{iy, 1 ... iax, }+ Lk, 41+ ---» Jox, } } for which
each choice of {{i....ix, }.{J1....jx, }} satisfies (7.17).
The remaining number of operators is

Dim(Sym® (Vy@Vy)) x [Dim(Sym® (Vy@Vy)) - 1]
()] o

The factor of 2 due to O} "/ being complex is canceled by

the factor of a half introduced when forming Hermitian
operators. The real dimension of Hermitian operators of
type ki = k, is then

N2 +k —1 N> +k —1
< +E )x( Tk ) (7.20)
k, k,
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C. Modified Bose-Hubbard on a square lattice

Having discussed the general setup, we will now imple-
ment the scheme in a specific example. In Sec. VIF we
gave a lattice interpretation of the matrix oscillators (aT){ ,
where they played the role of bosonic creation operators on
the lattice site labeled (i, j). For simplicity, we will consider
a square lattice of dimension N. A simple model of
interacting bosons on a lattice is the Bose-Hubbard model
[115], relevant for the physics of cold atoms in an optical
lattice [116]. The Bose-Hubbard Hamiltonian Hgy con-
tains hopping (kinetic) terms, on-site interactions and
chemical potentials. In the simplest case, the model con-
tains three parameters ¢, U, p, and in terms matrix of
oscillators it takes the form

U ... o N
+3 2 (@a (Dl = 1) —w 3 (@),
| (7.21)

where the sum in the first term is over neighboring sites.
For a square lattice this implies the restriction (i,j) =
(k+1,1) or (i,j) = (k,l£1). On-site interactions are
implemented using the operators N;; = (aT){aj, which
count the number of excitations on site (i, j).

Our aim is to construct a modified Bose-Hubbard
Hamiltonian Hpy, such that
|

Hly = H + H,, (7.22)
where [Ad(c),H] = 0 for all 6 € Sy, and H,|d) = 0 for all
|d) € H;ny, as per the construction in (7.2). To this end, we
observe that the second and third term in (7.21) are Sy
invariant. That is,

UL o i e N

H=> Zl<a*>;a¥ ((a")ia] = 1) = p le);a{ . (7.23)

ij= ij=

satisfies [Ad(c),H| = 0.
The hopping term
hy=—t > (a")la} (7.24)
((A.)-(k.D))

is not Sy invariant, but the combination

H, = (1= Ad(c7")h,(1 — Ad(0)) (7.25)

satisfies H|d) =0 for any choice of ¢ € Sy by the
construction in (7.12).

To keep H, as local as possible, ¢ should not permute
distant sites. With this restriction in mind, a simple choice is
o6 = (23) [for the choice ¢ = (12) we have to consider
additional complications from being near the boundary of
the square lattice]. This defines our modified Bose-
Hubbard Hamiltonian Hpy,

U o o N -
Hyy =5 Y (@)ial((@jal =1) = Y (a")ia]
hi=l =1

—t > (1-Ad((23)))(a")/af(1 - Ad((23))).

(7.26)

(i), (k1))

It can be written as

Hpyy = Hgy—t »_ Ad((23))(a")/afAd((23))
(i), (kD))
+1 > Ad((23))(a")/af
(i), (k.1))
+ (a')laFAd((23)).
(i), (k1))

(7.27)

We now investigate the conditions on U and y for which
Hyyy exhibits revival. It is useful to rewrite Eq. (7.23) as

H=5 Y (@)l @)jal -1 -] 029

ij=1

For integer values of %” the eigenvalues of H are integer
multiples of ¥, and similarly for differences of eigenvalues.
By the argument given in Sec. VII A we therefore expect
Hyyy to have many-body scars that revive with period
T =% Similarly, we may write (7.23) as

RN NN Y
H:EZ(a )ial ;(a Yial ———-2|, (7.29)
ij=1

u

from which we conclude that revival is possible when % is
an integer as well, with an expected revival time of ‘L—”. In the

special case U = 2u where both integrality conditions are

satisfied, the revival time is T = min(‘t—f =%
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In the subspace where there is a single excitation, the
operator Ad((23)) takes the form

Ad((23)) = (a")3a3 + (a")3a3

+Y ((a"ia} + (at)sai + (a")idh + (a*)2ad)
i#2.3

+ Z (aT){aj..

ij#2.3

(7.30)

The first term is a diagonal hopping term, between sites
(2,2) and (3,3). Consequently, the modified Bose-Hubbard
Hamiltonian (7.26) will contain some hopping terms
beyond nearest neighbors.

VIII. AdS/CFT INSPIRED EXTREMAL
CORRELATORS IN MATRIX QUANTUM
MECHANICS

Extremal correlators in N' =4 SYM form interesting
sectors having nonrenormalization properties [118]. They
are closely connected to representation theoretic quantities
such as Littlewood-Richardson coefficients, and form a
crucial set of examples for checking the AdS/CFT corre-
spondence. In the quantum mechanical model presented in
this paper, vacuum expectation values similar to extremal
correlators can be computed exactly. In this section we
make use of a recent factorization result concerning the
two-point function of permutation invariant matrix observ-
ables [37]—this is used to demonstrate that a similar
factorization property holds for quantum mechanical

(010, (1) 0 (12)[0) = =12 (O Tr s, ([d%,J a4 ) Tr o () (') 52 0).

permutation invariant states. We then compute an expres-
sion for extremal three-point correlators associated with Sy
invariant states, which are simple in the diagram basis and
obey representation theoretic selection rules.

A. Two-point correlators

The Eq. (3.25) can be interpreted as a quantum mechani-
cal operator-state correspondence for Sy invariant states
labeled by [d,] € SPy(N),

|de) <> O = Trys([dg](a") ). (8.1)
From Eq. (3.29) we have
O = Try e ([dr]a®"), (8.2)

where the transpose d? is the diagram obtained by reflect-
ing d,, across a horizontal line, as illustrated in (3.30). The
time-dependent operators are given by
O,(t) = e 1O et = e=kiO) (8.3)

where H,, is the free Hamiltonian, defined in Eq. (2.7).

In [37] the two-point function of permutation invariant
matrix observables was shown to factorize in the large N
limit. Here we use this result to show an equivalent
factorization property for the two-point function of
permutation invariant quantum mechanical states. Let
[d,,] € SP,(N),[d,,] € SP,(N), and define the two-point
correlator to be the vacuum expectation value

(8.4)

Ignoring the trivial time dependence and taking normalized operators [d,, s [ZZ,TZ], as defined in (3.32), in the large N limit

we have

<0|TI‘V§>1‘1 ([aﬁl}a®k1 )Ter?kz ([Ei,,z](aT)®k2)|O> = 5k|k2 Z Trv;‘f’kz (7/—121;1 )/21”2),

_ { 1+ 0(1/\/N) if [dm] = [dn:z] ‘ (8.5)

0+ O(1/V/N)

otherwise

In the first line we have absorbed the S, averaging into the sum overy € Sy, arising from the Wick contractions of a and a’.
In the second line we have used the factorization result of [37].

B. Three-point correlators
Let [d, ] € SPy, (N).[d,,] € SPy,(N).[d,] € SP((N), and define the extremal three-point correlator to be the vacuum

expectation value

(01O%, (11)Ox, (12) On(1)[0) = 11 #6820 Tr s, ([l Ja®* ) T, o, ([d7, Ja®" ) Ty ([d,) (a7)#5)[0).

(8.6)
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with the constraint that k = k, + k;. As we now show,
extremal correlators are simple in the diagram basis. We
compute (8.6) by Wick contractions, which are encoded in
a sum over y € S;. Ignoring the trivial time dependence
we have

(OITr o ([d7, Ja®“ ) Tr s ([d7,]a®) Trys: ([d,] (a") ) |0)

= ZTrV@,k Hdl ®dL)yd,),

7ESK

- ZNC

YESK

(dy ®dy )1 Vely)

(8.7)

The tensor product d, ®d,, is the diagram obtained by

horizontal concatenation of d,, and d,,, for example

BN e

This can be viewed as an outer product on partition algebra
diagrams which maps Py (N) X Py, (N) to Py 4 (N). Itis
a diagram with 2k; + 2k, vertices. The join d, Vd,, of two

(8.8)

associated with representation basis elements Q4! Aoy €

SPi(N). Consider the extremal correlator (time-
independent part)
A] T
< |(OA2;¢1./) ( }t/l/) OA//M// //| >
A//
- szrvgk((QA;,W®QA;D,”,)QA}, o) (81

for Q! ,, €SPy, (N), Q! 1, €SPy, (N), 0}l 1, ESPL(N).
The factor of k! follows since the matrix units for SP;(N)
are invariant under conjugation by ;. Note that the
multiplicity labels are exchanged under diagram trans-
position, which follows from (A25). The selection rule that
we will find says that the trace in (8.11) vanishes if
C(A,A},A])=0, where C(A;,A|,A]) is the Kronecker
coefficient for tensor products of irreducible representa-
tions of Sy.

We start with the simpler but analogous expression for
matrix units of Py(N),

diagrams, each with 2k vertices, is obtained by adding all Qi’ll:ﬁ"
the edges of d, to the edges of d,, (or vice versa), for AL A AY
example TrV]‘?’“((QBa ® Qﬁ’a’)Qa”ﬁ”) =
A A
«__ o . . Qaé Q /,3/
. . . (8.12)
The resulting diagram also has 2k vertices. For general
elements (linear combinations of diagram basis elements) )
the two operations are defined by linear extension. Using [see e.g. Eq. (4.16)]
We will now derive a set of representation theoretic A
selection rules for the extremal correlators. To state the (Q ®Qﬁ’ / ”ﬁ” ZD o ®Qﬁ’ ’)Q 7
result we are going to prove, we define the operators
(8.13)
A A
OAz v Trvaz”‘ (QAg,ﬂy(aT)®k)’ (8'1O)| we have
A Al A A//
Trvgk ((Qﬁé ® Qﬁ/ ///B// Z D al’ Q,Béc & Qﬁ/ /) Trngk (Q,Ylllﬁ//),
- Dﬂ" //(Q ® QB/ /) Dim VA” s
a//
AY (8.14)

— Dim VS A
= Dim V¥ QQ};‘@’QQ}@

"
Al

/8//

106020-34



PERMUTATION SYMMETRY IN LARGE-N MATRIX QUANTUM ...

PHYS. REV. D 106, 106020 (2022)

The second equality uses (A65).

To further simplify, we want to turn the rhs into a product
of matrix elements. This is achieved by inserting a
resolution of the identity using representations of
Py, (N)®Py,(N). This resolves to a set of branching
coefficients for P (N) — P, (N)®P;,(N). We denote
these by

A’l' —A, ®/~\'l 3
r"=rr ’

B (8.15)

where it is implicit that kK = k; + k,. The ranges of the
labels are

r€l...Dim(v ™),
el .,Dim(vgfzw))],
/" €[l,....Dim(V A,,W’)],
el Mul(vi — v ®VP‘z ), (8.16)

the final label, & gives the multiplicity of A in the
decomposition. Branching coefficients are represented by
the following diagrams

A”HA1®A1,§ ¢ 1

S _ _
/
A A

B} (8.17)

It is worth noting that by Schur-Weyl duality the branching
multiplicities for partition algebras are related to the
multiplicities C(A, A}, A7), known as Kronecker coeffi-
cients, of irreducible representations A/ in tensor products
of Sy representations /~\1®/~\’1 [see Eq. (3.1.3) of [119]]

Py, (N)

Mult( A//(N) - V]\ ®V~ ) = C(A]’ N/l’A/I/)'

(8.18)

For simiplicity we are assuming N > (2k; + 2k,). For
comparison, in Schur-Weyl duality between U(N) and
C[S,], Littlewood-Richardson coefficients are branching
multiplicities for S i, — S, X S, but correspond to
decomposition of tensor products of U(N) representations.

Branching coefficients are equivariant:

AI/
Dy//llsll (dﬂl ®dﬂ2)

A=A QA& A
= > BN®N DN, D)y (d,)B
AN y87.8 &

A=A QA &
8" =68 ’

(8.19)

for d, € Py (N).d,, € P, (N). Setting d, = QaA/;,

d,, = Q(/:,"ﬁ,, Eq. (8.19) corresponds to the diagram identity

@
o ,1,
A// — 5 —_
1 Ay A
A A _ A A’
Qe Qs | = 2. | Qub| |Qals)
A ALE ~ ~
¥ Y '1
g Y
/!
(8.20)
Inserting this into Eq. (8.14) gives
Trv®k((Qﬁa®Qﬂ )Q //ﬂ//)
s A=A @A LE SR AA
= DimV Z B, D (Qgp)
PR
N AN A=A @R &
X Dy/;/(Q(l/]/j/) 7///—)"7’1 (8-21)

Matrix elements of irreducible representations are orthogo-
nal [see Eq. (A42)]. This implies

7' //(Q //ﬁ//) — 6A]”A15 ”/j”(s ! (822)
or the equivalent diagrammatic expression
,y// ,y/l
Ay
T O[”
QA’{B = ¢hiA (8.23)
all "
— ﬁ//
Ay
n" "

Substituting this identity into (8.21) reduces it to
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1

«
4
g 1
Ay A}
« /
. S A=A QAL & SN AN € . S «
> DimV, NBoh aer Bl lge = > DimV, N P g (8.24)
3 3
Ay A}
f A//

This gives the final result for matrix units of P (N).
The full expression for (8.11)—extremal three-point correlators in the representation basis—is given by (8.24) together
with branching coefficients from the partition algebras to symmetric group algebras [see (3.53)],

A=A ®A,

Af=A QA -é’BPkl (N)=CI[St,] ,Pi, (N)=C[Sy, ]
o' =ad

&
Bﬁ”—>/3/3’ Apa=Ny.pip T A =Ny pw

A A A . S Z
TrV%k ((Ql\;.y}l ®QA11”DI”/)QA/I/7”//DN> - DlmVAIY/ B
- 2 la.,/i.a’.,/}’.a”.,/i”.
pp b€

Py (N)=C[Sk,] [, Piy (N)=C[Sk,] P (N)—>C[Sy] P(N)~C[S;]
B !/ J ! /. /B ! 4 ! /. !B " /! " /. //B "o " o s (8-25)
AN =N ph TN B SNt TN ) AL p T AN BT AT

Introducing the following diagram representation of these branching coefficients,

p
Ay
Pp(N)—=C[Sk] _
AI;,aHAQ,p;S = H ) (826)
Ay
«

we can write (8.25) as the following diagram

"

1%
A A A
Trvl?k ((QA;,VM & QA;U’/.L,)QA/;/,/J”V”> = A’2/ . (827)
l/”

From the above formula we see that the extremal correlator vanishes if the Kronecker coefficient C(A;, A}, A) = 0.
Analogous results for extremal correlators in general quiver gauge theories are described in [64].
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IX. SUMMARY AND OUTLOOK

In this paper we investigated the effects of permutation
symmetry on the state space and dynamics of quantum
mechanical systems of N x N matrix variables. After a
brief review of the matrix harmonic oscillator and intro-
duction of notation in Sec. II, we began in Sec. III by
investigating the Sy invariant Hilbert space H;,, of generic
matrix quantum mechanics systems at large N. We found
that there is a one-to-one correspondence between Sy
invariant states of degree k and elements in the sym-
metrized partition algebra SP;(N). Two bases of SP;(N)
were discussed: the diagram basis and the representation
basis. A construction of the latter was explained in Sec. IV
in terms of diagonalizing commuting algebraic charges.
Having discussed the Sy invariant state space, we moved
on to interesting invariant Hamiltonians. The general
permutation invariant harmonic matrix oscillator was
described and solved (diagonalized) in Sec. V. This was
achieved with the introduction of oscillators labeled by
representation theoretic quantities, as in (5.27). In Sec. VI
we described a set of algebraic Hamiltonians for matrix
quantum mechanics that preserve the S invariant subspace
of the Hilbert space. These Hamiltonians, given by
Egs. (6.38), (6.42), and (6.44) realize the three dynamical
scenarios illustrated on the left-hand side of Fig. 1(a), the
right-hand side of Figs. 1(a) and 1(b), respectively. The
representation basis introduced in Sec. III C diagonalizes
all of these algebraic Hamiltonians. We provided a lattice
interpretation of the matrix oscillators in Sec. VIF. In
Sec. VII we constructed Hamiltonians which turn the Sy
invariant state space into quantum many-body scars.
Following the ideas in [85,86], we gave Hamiltonians
(7.2) of the form H + H,; where H is Sy invariant and H
annihilates states in the Sy invariant subspace. We noted
that the Hamiltonians in Sec. VI are suitable candidates for
H if their energies satisfy an integrality condition. As an
example, we used the lattice interpretation to give a
modified Bose-Hubbard Hamiltonian which exhibits Sy
invariant quantum many-body scars. The diagram basis is
the most efficient basis for describing inner and outer
products. As a consequence extremal correlators, defined
in (8.6), which are analogs of three-point extremal corre-
lators in NV = 4 SYM are simple in the diagram basis. The
extremal correlators satisfy representation theoretic selec-
tion rules, based on Kronecker coefficients, which were
derived in the representation basis. The selection rules are
based on exact expressions for extremal correlators, involv-
ing Kronecker coefficients and Littlewood-Richardson
coefficients, given in Eq. (8.25).

The representation theoretic basis Q//t;/w for the Sy
invariant Hilbert space H;,, constructed as linear combi-
nations of symmetrized partition algebra elements in
SP;(N) in Sec. IIIC is an eigenstate basis for the free
Hamiltonian H, of Sec. II as well as the algebraic

Hamiltonians constructed in Sec. VI. The action of
the general permutation invariant harmonic oscillator
Hamiltonian given in (5.27) of Sec. V however causes a
nontrivial mixing of the representation labels. This mixing
was discussed briefly in Sec. V D. Diagonalizing the
general harmonic oscillator Hamiltonians in H;,, is an
interesting, unsolved problem of finding appropriate linear
combinations of the Qﬁ;w which are invariant, up to
scaling, under the mixing.

With the exception of the P, (N) orbit basis discussion in
Appendix B we have assumed N > 2k, known as the stable
limit. This simplified the construction of a basis for the Sy
invariant subspace H;,,, a simplification related to the

existence of a kernel free map from P, (N) to End(VE*).
However, it would be interesting to uncover any finite N
effects appearing in these permutation invariant quantum
mechanical matrix systems. At finite N the diagrams in
P (N) provide an over complete basis of operators. That is,
there are some linear relations between operators. The
precise form of these relations can be found using the orbit
basis. The question remains of how to use this knowledge
in order to construct a representation theoretic basis for
2k < N. We leave this for future work, but note here that it
would involve a detailed study of the Artin-Wedderburn
decomposition in (3.48) below the stable limit. The detailed
study includes putting constraints on the irreducible rep-
resentations appearing in the decomposition below the
stable limit, as well as computing the dimension of the
multiplicity spaces.

In Sec. VIF we gave one interpretation of our model in
terms of bosonic excitations (a')/ on an N-by-N lattice
with sites labeled by (7, ). It is natural to ask if the Sy
invariant Hamiltonians described by (6.44) interpreted in
this way can be realized in experiments. In the real world
interactions tend to be local. The demand for these
Hamiltonians to be local places restrictions on the sets
of permissible terms. In Sec. VII C we used this interpre-
tation to construct a modified Bose-Hubbard Hamiltonian
exhibiting Sy invariant quantum many-body scars. More
generally, combining the lattice interpretation of matrix
oscillators with the group theoretic scheme given in
[85,86], as was done in Secs. VII A and VII B, provides
a useful framework for describing systems with many-body
scars in 2 + 1 dimensions.

A very interesting avenue towards applications of the
Hilbert spaces and Hamiltonians considered here is to find
systems where the permutation invariant sectors described
using partition algebras are naturally selected by the
physics. For example, in a Bose-Einstein condensate
composed of N identical bosons, excited by vibrational
modes between pairs of particles, oscillators (a"'){ exciting
the pair (i,j) of particles with i,j € {1,...,N} would
naturally be subject to the kind of Sy invariance we have
considered here. This would provide links between the
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theoretical application of partition algebras as considered
here with the phenomenological modeling of Bose-Einstein
physics, e.g. along the lines of [120].

As a closing remark, we note that much of the initial
study of the representation theory of partition algebras
P;(N) was done with physical motivations coming from
classical statistical models (Potts models) where k is the
number of lattice sites and N is the number of classical
states for each lattice site. The transfer matrix of the
classical statistical model plays a crucial role in these
studies [72—74]. The present application of partition alge-
bras looks substantially different: we have quantum
mechanical matrix oscillators, with matrix size N possible
values and k specifies the sector of quantum states with k
oscillators acting on the vacuum. Exploring potential
dualities relating systems of the kind studied earlier and
the matrix quantum systems defined here is a fascinating
future direction.
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APPENDIX A: MATRIX UNITS AND FOURIER
INVERSION FROM INNER PRODUCTS

In this appendix we prove the results in Sec. III C on
representation bases. We review the construction of
matrix units for semisimple algebras closely following
[84]. We focus in particular on the partition algebras
P;(N) and the symmetrized partition algebras SP;(N).
The appendix is divided into four subsections. We start
by discussing nondegenerate bilinear forms on algebras
and how they define dual elements through (A19). The
existence of dual elements allows us to prove orthogon-
ality of matrix elements of irreducible representations of
P (N), as stated in (A42). Orthogonality is essential for
the construction of matrix units of P;(N) using the
Fourier inversion formula (A43). Matrix units for
SP((N) are constructed using branching coefficients,
as in (A54). Minor modifications to the construction in
[84], which defines a nondegenerate bilinear using the
trace in the regular representation of P;(N), are neces-
sary. In this paper, the physical trace relevant to the inner
product (3.31) and two point function, is a trace in V%k.
This induces minor changes to the basic formulas. The
two traces are related in (A13), through a so-called Q
factor.

1. Schur-Weyl duality and nondegenerate
bilinear forms

The construction of matrix units for P(N) relies on the
existence of a nondegenerate bilinear form on P;(N). The
bilinear form used in [84] is defined using the trace in
the regular representation of P,(N). In this paper the
physical trace, associated with inner products, is a trace
in Vf\?k including a transposition as in Eq. (3.31). The aim
of this subsection is to prove that this trace defines a
nondegenerate bilinear form as well. The outline of the
proofis as follows. The trace in the regular representation is
related to the trace on V%’k by the insertion of a central
element. Given this relation, nondegeneracy of the bilinear
form defined by the trace on V%’k follows by the non-
degeneracy of the bilinear form defined by the trace in the
regular representation.

Let B ={by,....,bgon} be a basis for P;(N). The
regular representation of P(N) is defined by the left action
of Py(N) on itself. The matrix representation of b; is
defined by the structure constants ij

B(2Kk)
bib; =Y Ckiby. (A1)
k=1

Consequently, the trace in the regular representation can be
written as

(2k) ' (2k)
j=1 J=1

where Coeff(b;, d) is the coefficient of b; in the expansion
of d € P,(N) in the basis B.
For N > 2k, P;(N) is semisimple (see Theorem 3.27 in
[75]) and therefore,
is an invertible matrix. We say that the trace in the regular
representation defines a nondegenerate bilinear form on
P.(N) [see Eq. (5.9) in [75]]. It will be useful to use the
following equivalent definition of nondegeneracy in what
follows. A bilinear form on P, (N) is nondegenerate if there
exists no nonzero element d € P;(N) such that
tr(b;d) =0 V i=1,...,B(2k). (A4)
The regular representation of P, (N) has a decomposition
(see statements in proof of Proposition 5.7 in [75])

yreg — g\aviﬁ(N)®ViT(N) (AS)
1
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It follows that the trace of d € Pi(N) in the regular
representation can be decomposed as

tr(d) =Y _try, (d)try, (1) =Y _DimViMyAi(a),  (A6)
A A

where the sum is over all irreducible representations of
: Pi(N

Pi(N), DimV !

A; and y™ is the corresponding character.

The characters can be extracted from the trace by means
of projection operators p,, € Py(N),

) is the dimension of the representation

tr(pa,d) = DimV ™My (d). (A7)

This can be seen as a consequence of character orthogon-
ality (see Theorems 3.8 and 3.9 in [84])

(24)
S DimVE MM (b,) (G (b)) = 5NN, (AS)
ij=1

and the fact that projectors can be written as

B(2K)
DA, = Z Dimvikl(N))(A‘ (b:)(G™1);;b;,

i,j=1

(A9)

where (G™');; is the inverse of the matrix G;; in (A3).
Alternatively, it follows from the decomposition (AS).
We now move on to the trace in V}?k. As we have
reviewed in Sec. IIA, P(N)=Endg (V) when
N > 2k, where End(V$*) is the vector space of linear
maps V¥ — VEF and Endg (V¥ is the subspace of
maps that commute with the action of Sy. Note that we use
the same symbol for elements d € P;(N) and the corre-

sponding element in d € EndSN(V,%’k ) in what follows. It
will be clear from context if  is acting on VE¥,

By Schur-Weyl duality (3.34), the trace in V%’k decom-
poses as

Trye(d) = Y _DimV'x" (d),
Ay

(A10)

where the sum is over the irreducible representations that
appear in Eq. (3.34). Consequently, we can relate the two
traces by substituting (A7) into each summand of (A10)

. Sy
DimV'{|

Trvagk(d) = ZDime{T}(A' (d) = Z ) tr(pa,d).

. Py
A A Dln’lVA]

(A1)

It is convenient to define

DimV3"
Q= —— DA, (A12)
; Dimy, ™
such that Eq. (A11) becomes
‘Trvgk(d) = tr(Qd).‘ (A13)

We can now prove that the bilinear form (—,—):
Pi(N) x P,(N) - C given by

(b b) = TrV%k(bibj)

i+b; (A14)

is nondegenerate. We give a proof by contradiction.

Suppose there exists a nonzero d € P;(N) such that
(bird) =0,

Vi=1,.B(2k).  (Al5)

From above, it follows that d is such that

(bsod) = Tryex (bid) = tr(Qb;d) =0, ¥ i=1,...,B(2K).
(A16)

However, this implies that the element ' = dQ € P, (N) is
such that
tr(b;d) =0, V i=1,...,B(2k), (A17)

which contradicts the fact that the trace in the regular
representation of P, (N) defines a nondegenerate bilin-
ear form.

It immediately follows (use proof by contradiction again)
that the bilinear form given by

(A18)

=]

(b;,b;) = TrV%k (b,-bjr) =g

is nondegenerate and g;; is invertible. The inverse matrix is
used to define elements dual to b; which we denote b}

B(2k)
bi = (g7)b;. (A19)
=1
Dual elements satisfy
(bi.bj) = 6. (A20)

The dual elements are essential for proving orthogonality of
matrix elements. The proof also uses the following property
of the bilinear form

(bi, bby) = (bibi, bj) = (b]b;, by).

i»hj (A21)
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The first step uses (b;b;)"
uses cyclicity of the trace.

= by b] and the second step

2. Orthogonality of matrix elements

The matrix elements D;\é (b;) of irreducible representa-
tions of Py(N) are orthogonal. This is a generalization of
the corresponding orthogonality theorem for group alge-
bras (see Sec. III. 15 in [53]). As we will now prove, the
definition of dual elements given in the previous subsection
is such that

B(2k)

> Dy(b)D,

i=1

M((B1)T) o BagBp, 8™, (A22)

As we now prove, we can always choose irreducible
representations satisfying
Dy (d") = for d € P;(N),

Di(d), (A23)

where d7 is as in (3.30). Starting from the Clebsch-Gordan

. A
coefficients C,v*

for the decomposition of V&* and
using Schur-Weyl duality, we identify the multiplicity
index a with an orthogonal basis for Vﬁ’:W)

define

. Specifically,

ZCQL,‘,’ b Call (@) (A24)

Here we are using the fact that Clebsch-Gordan coefficients
for Sy can be chosen real (see Section 7.14 of [53]). It
follows that

DN (gt E Aj.a A]ﬁ T\ iy
a/} d Call/ Ay ul] (d) g

1,a 1B i...d 1
—Zcﬁll/ Ly Lll]/ l(d)ill.“;ka:D;\)’(l(d)' (AZS)

Because the above bilinear form (A18) includes a
transpose, the symmetrization theorem (Proposition 2.6

in [84]) is modified accordingly. Let C be a DimVi‘]' ™) by
DimVifl(N) matrix, and D (d), D™ (d) be two irreducible
of Pi(N)
DimVif(N), DimVi’,;(N), respectively. We have the follow-

matrix representations with  dimension

ing version of the symmetrization theorem. The matrix

B(2K)
Cl= Z D™ (b;)CDN ((b})T) (A26)
satisfies
DM (d)[C] = [C]D™ (), (A27)

for all d € P, (N). The proof is essentially identical to the
original case,

- ZDAI (db;)CDN ((b})T)

= ZDAI (Z<b;, db,->bj> DM ((b})7),
- ZDA' bYCDN (Y (67) (b}, dby)).
= ZDA l

_ ZDA'

= [C]DA’I (d),

DA (d)[C]

b;)CDN (D (b)T(d" b3, b)),

i

JCDN (b)),
(A28)

where in the third line we used the modified Frobenius
associativity in Eq. (A21).

By Schur’s lemma, [C] is proportional to the identity
matrix if and only if A; = A and zero otherwise. For some
constant ¢

[Clog = 881 e, (A29)
The lhs of Eq. (A22) is equal to
Z(DA] (bi)E/J’pDAq«bz’f)T))aa = [Eﬂp}ao" (A30)

i

where Ej, is the elementary matrix with O everywhere
except in row 3, column p which has a 1. It follows from the
symmetrization theorem (A27) that

ZD (b)) Dot (B1)T) = = Cp18,,0M M,

(Epplas (A31)

where C;\p‘ is a constant that a priori depends on the choice

of elementary matrix. We now show that it only depends
on A;.
Using the property

Dy (d") = Dy (d), (A32)
we derive
Cp18,00™MN = [Ep,] o ZDW (b))7),
= 2 Dlbl)Dn o ()
—ZD (b)) Do (B1)T).
= [Eglyy = Cats,8™M. (A33)
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Going from the first line to the second uses (A32). The rhs
of the second line follows by summing over b7 instead of b,
(transposition maps B to B bijectively, this is particularly
clear in the diagram basis). Comparing the lhs of the first
line to the rhs of the last line gives

cy =ct

- 1S, (A34)

which proves Eq. (A22).
The normalization constant C is important for con-
structing matrix units. We will prove that

1

ch = :
DimV "

(A35)

The normalization constant is determined by contracting all
the indices in Eq. (A22). Set A; = A/, then

> D3 b))

and all that remains is to compute the element _; b;(b})7.
As we will now see,

(DlmV )2Ch = (A36)

B(2k)

AT

i=1 Al

Dimv} ™)

A37
DimVy" (A37)

pAlv

where Q7! is the inverse of the element defined in
Eq. (Al2). Using the relationship (A13) between the
two traces we have that

HOYICUE Tryge (@Y 45))
=2_(@

= ZCoeff(b[, Qldb,),

Q- 'db;, b?),

= tr(Q1d), (A38)

holds for all d € P;(N), from which it follows that

o) -

(A39)

oM op = ZDim(
= ZDlm VAN)Dlm( )

i.j.k

VX )Dim(VYY)

Dy ((b)T)

holds for all d € P;(N). Since the trace in the regular
representation is nondegenerate we must have

B(2k)

> bi(b

i=1

—Q'=0. (A40)

Inserting this expression into Eq. (A36) gives

ZD,m

D1mV

=2

SN
o« NN DimV'y

DlmV L)
= ﬁéAAlDlmV KN ),
Ay DmVig

(DlmV )PCh =

«(N)
DQ& (PA’l )’

Dimy5: ")

=— % DimV (A41)

which gives Eq. (A35). To summarize, we have proven that

B(2K) R |

DM (b)) Dt (b)) = ————8,8,,6M™ A42
> Do (b)) DR ((57)7) DimVyy 5 (A42)

i=1

3. Matrix units for P, (N)

In this subsection we want to use orthogonality of matrix
elements to show that

0 = ZDlm (VD ((67)7)b; (A43)
multiply like a generalized matrix algebra. That is,
Q2 Qs = 555,00 (Ad4)

This is straightforward given the results in the previous
subsections. The proof goes as follows. By definition we
have

A %
Dy ((07)")bib

Jje

(BT )Dah (0)7) by, bi) by, (A45)

iYjs

where the second equality expands the product b;b; in the basis by using Eq. (A20). Using the modified Frobenius

associativity (A21) we have
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> Dim(V3)Dim(V3 ) Dy (7)) Do (b)) (bybs. b b
i)k
= > Dim(V)Dim(V 5 ) Dyt ((b7)T) Dp (b5)7) (b, bT b7 by,
i.j.k

= ZDlm SN)Dlm(VA, )

(1)) Dt (S (B2)7 (b, BT B} ).

(A46)

where in the last line we have pulled the coefficient (b;, b!b}) inside the matrix representation (using linearity). This

J* i

prepares us for the next step, where we use the fact that

> (b)) (b bl b =

J
which follows from (A20),

ZDlm Vf\N )Dim( V )

= ZDlm VA )Dlm(V )

= ZZDlm VIS\N Dlm(V )

In the last line we can use orthogonality of matrix elements (A42) to find

szm VRDim(V) D) (7)) Doy (5)T)D

which concludes the proof.

Equipped with a matrix unit basis of P,(N) we use this
to show

anﬁ = é’\f; (dT) Qvﬁ

(A50)

Expanding Q;\/‘,, on the rhs of this expression as per (A43)
we find

aﬁ = ZDIIII(VSN o ( (s
= ZDlm Vf\”
- mewif)D,;,;«dbi, ) (5"}
= ZDIIII SN
= ZD1m Vf\”
= ZDII’H SN ;;\; bT)

= 2;<dT>Q,,ﬁ

$))db;.

su(B7)7)(dbi. by by

sa((DFd, b]) (b7)")bj.
M (bTd)b,
a(d)by.

(A51)

(bIb})T. (A47)
L ((61))Dag (3 (6} {b;. BT b7)
(b7)T) Dy (BT b)) by,
(b7)") D (b)) Dy (by) . (A48)
ZZDlm )N85, Day (b)) b
= 58N, Qe (A49)

|
In the third line we have used (A21), and in the fourth line
we have used the following property of the bilinear form

(db;.by) (bid,by).

(A52)

= TI'V%k (db,bZ) = Trvgk (blT(b]{d)T) =

For the sake of brevity we omit the analogous proof of the
action of d on the rhs,

LDly(d")] (A53)

4. Matrix units for SP;(N) and normalization
constants

The matrix units for SP;(N) are constructed from le‘j
using branching coefficients.

QA]B N)—C[S;] Pk N)—C[S;]
A 0‘—’/\2 Pip A] PS=Ny.piv”
a.p.p

Az /w (A54)

Branching coefficients are understood as follows. The
partition algebra P,(N) has a subalgebra (isomorphic to)
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C[S] [for example, see Eq. (3.20)]. For any given irre-  yphere u is a multiplicity label for V%S"] in the decom-
ducible representation Vi‘l'(N) there exists a basis where the position. We demand that the representation of 7 € C[S,] is
action of C[S;] C P;(N) is manifest and irreducible. That irreducible in this basis,

is, we consider the decomposition

T(EN) D3 (7)ENH, (A59)
VI = @ v @V =ts - (Ass) np) Z Eng

AoFk

where DJ3(z) is an irreducible representation of 7 € C[S}].
The change of basis coefficients are called branching

On the 1hs we have a basis

EN ae{l, ...Dim(Vi’;(N))}, (A56) coefficients
where the representation of d € Py (N) is irreducible, ﬁi’; ZB A a_;f ,,S " Ea'. (A60)
ZD/}(I . (A57)
The matrix unit property
The rhs has a basis
Q/\Z/M/Q / i :5[\ A15A2 25 QA ’m/ (A61)

A 9
0 of the SP,(N) basis follows from that of the P(N) units

. (N)=C[Sy]
p€{l,....Dim(V ‘;A2 s (AS8) together with orthogonality of Eﬁ;’;
|

EN p € {1,...Dim(V{*)},
P
A

/
1 —’C[Sk Pr(N)=C[Si] pPr(N)=>C[S;]  pPi( )—’CSk
0N Qi = ZBAI oy BA 5 re i B ot BN i Qe Qo

/}//

)=CISH pPr(N)=CISi] pPi(N)=C[Sy] )*C[S] AN
- ZBAI Ja—N,, pl;l T/}aAz,p;l;BAf a’—>/\’ pk,/BA/ /j’—>/\’ ‘ 5 1 0/Q af’

ap.p
5

)=CISi pPr(N)=CISi] oA A sAA Al
_ZBAI am iy BN o O ENN8 8,00
—
g

_ 2 : N)=>CISi] pPi(N )_’C[Sk] AN SAA Ay
A1 a—>A2 Dip A’ B =Np 5 157 2501/ Qaﬁ”
ap.p

= gty QA2 - (A62)

Going from the first line to the second we used the matrix unit property of Q(/l\/‘, Going from the second line to the third line
uses orthogonality

ZBAI )=CISi pPUN)=CIS] _ = 5NN, 5, (A63)

a—Ny.piu A] =N gy

Further, we prove Eq. (3.60) for the normalization of the two-point function. The orthogonality of matrix elements
implies

= > DR (BT YDy (by) = 8Ny (A64)

We use this fact together with Schur-Weyl duality to compute Trvgk<Q2\[;)

Trye:(Q Z DlmV Z D1mVSN6 560N = DimV)! Y Sap (A65)
AFN AFN
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Consequently,

A N)-S; Pi(N)-S; A
Trv%"’ (QA;./H/) Z BAI a—N\,,p; ﬂBAl S—Ny,ps uTrV?\?k (Qa[;’)7
a.p.p

—>S P, (N)—)S . S
= Z BA] a_)AzkpﬂB l;,ﬁ—ﬁ\zfp;u&aﬁDlmVA]\;’ (A66)

ppuy

= 326,,8,,DimV}" = 5,,DimV" DimVy’
P

where the last two equalities hold if and only if the branching coefficients are nonzero.
|

elel:Ii]reliltls}:, we check that this construction gives S invariant Py ikl (J{Vlzgs/k’]/ Bik] f}l/\/’i—i[jlk;]ﬂ/ =35, (A69)
TON,LT = 0N, forreSi]  (A67)  on both sides. This gives
From the definition (A54) and (A50) we have Dfa' (z) = | /Z” ) B/P\’];(y lXZ:LS’k;]/ D,,fz,,u (7) Bik,(a _))—A»E:Ls/,f] B
Q= 3 BB (o) o (x70

We rewrite D,[,\(} (7) by inserting the completeness relation Inserting this into (A68) gives

Z D}//\I(T) A/lePk( )*C[SA]B W(N)=C[Si] _ Z Z B N)=CI[S;] DA’z (T)BPA )—=CI[Si] QAIBPk _’C[Sk]BPk( )=Cl[Si]
a }’ B A oo p/p//

Apa=Ny.pip = A =Ny piw y—»Az Pl Aya—Ay.p" Apa=Ay,pip P Ay =Ny pi
a.py.p ap.y. pA’ P
_ E E —’C[Sk Ay pPr(N)=C[Sy]
A] 7’_’/\/2]7//4/ / //( )5/\2/\/6 5ﬂﬂQ},ﬂB ]/}—>A2PU’ (A71)
ﬂ }, p A/ p/ 1’// !

where we used completeness in the last line. Eliminating the Kronecker deltas by carrying out the sums gives
)=C[S;] A, pPe(N)=>C[S)]
Az/w_ Z BAI 7—>Azpk/4 pp( )Q IB/\Alﬁ—H\opi‘ (A72)
By.p.p'
To finish the proof we follow the same steps for the right action: using (A53) gives
A N)=C[S¢] pPi(N)=C[S
/\2 wt = Z Qa}’lD /\1 0‘—’/\2 E’I;J]BA]; P=N, L,;] (A73)
apy.p

Inserting (A69) and carrying out the sums yields
N)—C[S,] N)=ClS] _
Az T Z BAI a—’Az Pi‘ pp’ ( )QW /\1 }’"/\2 P”kl/ o QAz % (A74)
ay.p.p”

which immediately leads to (A67).

APPENDIX B: ORBIT BASIS

In Sec. III we described two bases for the partition algebra P;(N): a diagram basis and a representation basis. Here we
describe another basis, in terms of combinatorially explicit linear combination of the diagrams from Sec. III B. This basis is
called the orbit basis [73]. In this appendix we describe this basis and show that it is orthogonal for any N and k. This makes
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it a suitable basis to describe permutation invariant matrix
quantum mechanics in the N < 2k regime, a preliminary
discussion of which concludes this subsection. A possible
future direction is to use the orbit basis to describe how the
representation basis is modified in this regime.

As in the diagram basis, this basis is indexed by the set
partitions Il,, of {I,...,k,1’,...,k'}. These are partially
ordered under the relation

z<n if every block of zis contained within a block of 7/,

(B1)

in this case we say that z is a refinement of 7’ or
equivalently that 7z’ is a coarsening of z. Since we are
already familiar with the diagram basis of P;(N) we
express the orbit basis in terms of the diagram basis using
the above partial ordering

d, = Zx,,/,

a7

(B2)

with {x,|z € I1,;}. The diagram basis element d,, is a sum
of all orbit basis elements labeled by set partitions equal to
or coarser than 7, for example

(o] (o] L] L] I L]
o] o]

The orbit basis is orthogonal with respect to the inner
product (3.31). We will prove,

|Gn:|N n if [xﬂ/} = [xrr]
(i) = { g | (87)
0 otherwise
where 7, ' are set partitions of {1,....k, ',...,k'}, Ny =

N(N —=1)...(N=1+1) is the falling factorial, |z| is the
number of blocks in 7z, and |G, | is the order of the subgroup
of S, that leaves x, invariant. As was the case in the
diagram basis, we note that |

iy

1 K
(;Cﬂ)i i

1eeelg

0 otherwise

The trace is equal to

Trysi (xzx)) =

’I

K
iy k’

Equation (B10) implies

R

+2T” +2L +2° 7] +2 [ -6]]

{ 1 if i, =i, if and only if a and b are in the same block of 7

Z ()i ()i

o=l o+l I+ o+ 1T

We will continue to distinguish the diagram and orbit bases
by drawing diagram basis elements with black vertices and
labeling them with the letter d, and drawing orbit basis
elements with white vertices and labeling them with the
letter x. The transition matrix determined by (B2) is {; and
is called the zeta matrix of the partially ordered set IT;. It is
upper triangular, with ones on the diagonal and hence
invertible.

The inverse of {y; is given in [78]. It is the matrix u,;

Xp = ZﬂZk(ﬂ’ ”/)d

=<’

(B4)

If # < 7’ and &’ consists of [ blocks such that the ith block
of 7/ is the union of b; blocks of z, then

H(— )" (b = 1)L,

For example, this gives the following expansion of the orbit
basis element labeled by = = {1|2|3|4}

N e X D

(BS)

Hor (7, ')

b ]) = bxa) (B8)
and use the rhs ket labels for the sake of notational
efficiency.

First consider the simpler proposition

‘TI‘V%k (x,,xz,) = N(‘,,Dé,,,,/. (B9)

The proof of this follows from the definition (see Sec. 5.2
in [78]) of x, acting on Vf\?k

(B10)

(B11)
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o o 1
(g5 ()i — {

0 otherwise

If 7 # 7’ two situations exist. Consider the set of all pairs
(a,b) fora,b=1,....k,1',...,k" such that @ and b are in
the same block of 7. Since 7 # 7’ at least one of these pairs
are such that a and b are in different blocks of #’. The
second case is the reverse. Consider the set of all (a, b)
such that a and b are in the same block of #’. Then 7z’ # =
implies that there exists at least one pair such that a and b
are not in the same block of z. In that case, there are no
choices of i,, i, which satisfy the first criteria in (B12).

For example, take a, b to be in the same block of z but
[ /‘..i,/
ooy
iy
i)y

vanish unless i, # i,. Therefore, the product identically

vanishes,

different blocks of z’. The matrix elements (x,)

vanish if i, # i, while the matrix elements (x,)

()i ()i = B (x)i Y (B13)
and
Trys (6x0) = 3 (61 0w
iyt
— 6,[,[,N(N — 1)...(N— \ﬂ| + 1). (B14)

The last equality is a consequence of (B10). For example,
consider the set partition 12[1'2". The trace of x5y is

> =NN-1),

I =h#i3,i3=ly

Trvgz (X1or2) = (B15)

since we have N choices of indices for i; and (N — 1)
choices for i3 (for every choice of i;). The general case is
analogous,

Trv;\?k (x,,) = N(w) (B16)
We have N choices for the indices of the first block of 7,
N — 1 choices for the indices of the second block and so on.

The inner product of two orbit basis elements of SP;(N)
is given by (3.31)

<x7r |X”/> = ZTI.V%’" (yx,,y‘lxg, ) .

7ESK

(B17)

We rewrite

if i, = i, if and only if @ and b are in the same block of 7 and the same block of 7’

(B12)

Zyx,,y‘l = |Gﬂ|zx/17

7€k =

(B18)

where the sum on the rhs is over the distinct elements in the
S, orbit of x,. Substituting this into the trace gives

(Xelxz) = |Gﬂ|zTrV,§”‘ (x2%2)
A€(x]

= |Gn|ZN(|ﬂ|)5zn'
A€(n]

_ { |Gl Ny if [x2] = [x,]

. . (B19)
0 otherwise

where [x,] denotes S; symmetrization as in Eq. (3.24).

For the majority of this paper we assume N > 2k in order
to take advantage of the many simplifications that occur
in this limit. However, utilizing results from the partition
algebra literature we are able to say something about what
happens below this limit, in which we expect to encounter
finite N effects.

In the limit N > 2k the map from the partition algebra to
Endg, (V®*) is bijective. When N < 2k this map acquires a
nontrivial kernel (but remains surjective). Accordingly, we
expect a reduction in the size of the state space H;,,. This
reduction is most easily expressed in the orbit basis of
P(N). Theorem 5.17(a) in [78] states that if N € Z; and
{x;|m € T} is the orbit basis for P;(N), then for k € Z,
the representation @ y: Py(N) — End(VE*) has the fol-
lowing image and kernel:

im(®; y) = Ends, (V")
= spanc{®; y(x,)|7 € IIy; has < N blocks},
ker(®; y) = spanc{x,|w € II,; has > Nblocks}. (B20)

Due to the bosonic symmetry of our theory we are
actually interested in the map from the symmetrized
partition algebra SP;(N), defined in (3.24), to
End(V®*). To this end we note that the definition of the
kernel of @, y given in (B20) is S invariant. If one element
of an §; orbit is in the kernel then (B20) tells us that the
entire orbit belongs to the kernel—the action of S does not
change the number of blocks in a partition z. The image
and kernel of this map are the following:
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m(¢’kﬂ) = spanc{

YESK

ker(®; )

Therefore a state basis is given by |[x,]) for 7 having N or
fewer blocks, this basis is orthogonal for all N, including
for N < 2k.

The original statement (B20) applies to multimatrix
theories in which observables are constructed from distinct
matrices—in this case there is no bosonic S; symmetry to
account for. If a state in this theory is null then all states
generated by the action of S}, on this state will also be null.
The equivalent of (3.25) for the multimatrix case is

) = > ()" (a])l] . (a))} 10)
= Trye: [d(a]®...®a))]|0), (B22)

in which we have k distinct oscillators and each element d
in the full partition algebra P,(N) corresponds to a unique
state, instead of S; equivalence classes [d] € SPi(N).

C D=l D-T DDA
:L%(a

.7 .7

We can split the first term by imposing different restrictions
on the ranges of the sum

d=>+> + Z+Z+Z (B25)
bpkiEEke g g e

Similarly, we can split the second, third, and fourth terms

2=t

i=j i#]

(B26)

The terms in (B24) cancel due to the equivalence of
coarsening diagrams and restricting summation ranges—
adding edges to a diagram d € P,(N) is equivalent to
evaluating the original diagram d over a restricted summa-
tion range. Another way of saying this is that (B2) and
(B25) encode identical expansions, in fact the five terms in
each expansion give equivalent contributions. Orbit basis
elements label states in which the oscillator indices are

= spanc{[x,]|7 € Iy, whas > N blocks}.

'Zyby‘wb @ y(x,), ¥V 7 € Iy, with sNblocks},

(B21)

We illustrate with the following examples that under the
map (B22) elements d € P,(N) that are in the kernel of
@, v label zero vectors in the Hilbert space H. For k = 2
and N =1 we see

TD=11 DT

[ (a})i(ad)) — Z(abzi(a;)Z] :
i (B23)

[ al ama;n] 0,
=0,

in the first line we have used (B4) to express the orbit basis
element in terms of the diagram basis. Similarly, taking
k=72 and N =2 we have

~D 2T

Ditah)E = > (aD)i(ad)] = Y (al);

(ab)j = >(a +2) (a] (B24)
i i

|

summed over the restricted range i; # i, # - - - # i,, where

m is the number of blocks in the orbit basis element. From
this perspective it is easy to see that these states must be
zero when N < m as there are not enough distinct values in
[1,N] to satisfy the inequality defining the summation
range. Contrastingly, the diagram basis produces states
corresponding to sums with unrestricted indices. Although
at finite N there is a stark difference between states in the
orbit and diagram bases, at large N the two descriptions are
equivalent.

Elements of SP;(N) are Sy orbits on P, (N) and so states

in Hmv are linear combinations of states in 7. If a state in H

is labeled by a partition algebra element in the kernel of
@, v, the state in Hmv generated by the action of S; on this
zero H state will also be zero. It is clear that if an element
d € P,(N) produces a zero vector under (B22) then the
equivalence class [d] € SP,(N) containing that element d €

P(N) also produces a zero vector under the map to Hmv

106020-47



BARNES, PADELLARO, and RAMGOOLAM PHYS. REV. D 106, 106020 (2022)

) = > (dDiy 5 (@), (a")110) = Tryi ([d](a)5)[0). (B27)

[e] [e]
We can also check that for suitably low values of N the norm of the orbit basis states vanishes. For x, = we expect
[e] [e]

< lT] |xﬂ1>|N<4 gx 1 Xx |N<4 =0. (B28)

Indeed, substituting (B6) into this expression gives

<xﬂ1 |xﬂ1> = <d7r1 ‘dn1> - <d7r1 ‘dn2> - <d7r2|dﬂ1> + <d7t2|dﬂ2> +o = 12<dﬂ'14|dﬂ?15> =+ 36<dﬂ]5|dﬂ15>’
— N(N = 1)(N =2)(N = 3),

which is zero for N < 4.

. . . 6o . . . . . .
Similarly, we consider x, = , which we expect to vanish for N < 3. This has a diagram basis expansion
[e] [e]

:\/z::\/:—:\/I—I\/:—:-FZI\/I. (B29)

The norm of this state is

(amlees) = (700 =

:NN )(N 2),

T (B30)

which does vanish for N < 3. For a general orbit basis state x, we expect the norm to be some polynomial in N, which
vanishes for any N < |z|.

APPENDIX C: COMPUTING LOW DEGREE MATRIX UNITS

In this appendix we find the full set of matrix units for kK = 2 and the subset of multiplicity free matrix units for k = 3.
These results can be reproduced using the accompanying Sage code.

1. Degree two

As discussed in Sec. IV C 2, we use the following elements of SP,(N) to distinguish the full set of labels on matrix units
on! A, The irreducible representation AN is distinguished by

(N—-2)(N—-3)—4 o e
TQ(Q): 2 I I—I_I + I+ +><+Nm (C1)

BB

157 = >, (C2)

on the left and right. It will be useful to know that T§21) is related to
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_ N(N -3 .
T = ( )I+ (C4)
2 .
since
el+1efV=] T+ [+NN-3)] | (C5)

As we will now explain, the eigenvalues of ngl) uniquely determine the labels y, v by left and right action, respectively.

For fixed A, A, the multiplicity labels correspond to basis elements for Vﬁf’%_}qsz}, appearing in the decomposition

Vv®Vy = (V] Vi ®VSZ®V[N [QQCSZ])@( N~ 11]®V ®V1;\3 11_”[:][&])
—CI[S,] S [S2]
® (V) IN— 11®V[11]®VN L) @V N22®V2®VN 21 } )
N
(1

1
@( [N— 211®VS121®VN 21_)10]: 21])' (Co)

( ) C[$,]

On the right-hand side, Té% acts on the vector spaces V with dimensions

2(N)—=C[Sy] __ 2(N)=C[Sy] _ 2(N)—=C[Sy] _
DlIlIV[N] 2] 2 =2, DlllIV[N 112 2 =2, DlllIV[N LI 1]2 =1
»(N)=>C[S)] _ 2(N)—=Cl[S]
DllIlV[N 2 = 1, DllIlV[N 2] = =1. (C7)

We will find that Tézl) has precisely as many distinct eigenvalues (in each subspace) as the corresponding dimension.

To confirm that this is the case, note that Tézl) acts on V,‘?z as

ng(eil ®ei2) = Tg”eil ®eiz + € ®T§l)eiz - N(N - 3)ei1 Qe (Cg)

i

It follows that the eigenvalues are directly related to the eigenvalues of Tgl) defined in (4.34). These are known by the
decomposition

Vi = VSN ® VN L1 (C9)

where Tél) acts on each summand by a normalized character. Using this on the left-hand side of (C6) gives

VN®VNE(V[S1\A/]]®V[S1</V) ( ®V[N 11])@( [N 11®VSN) ( [N— 11®V[N 11) (CIO)

Consequently, the three distinct eigenvalues of Tfl) are (one for each summand, but the vectors in the second and third space

have the same eigenvalue)

Nl(T
X \12) ( SZ)_N(N—3):N(N—l)—N(N—3):2N, (C11)
DlmV[AA,’]
[N—l 1]
2# ~N(N—=3)=N(N-3)=N(N-3)=0, (C12)
DlmV[I(,v 1]
N (T FN-L(T 1 1
Dlmv[lg] DlmVU{,V 1] 2 2
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By decomposing (C10) into Sy x S representations we
will see that the multiplicities in (C6) are uniquely
associated with one of the above eigenvalues We start

by considering the multiplicities of V ®V . The repre-

sentation V[N] occurs in the decomposmon (C10) as
subspaces

Vi Vin®Viy and Vi cviy | ®Vir . (Cl4)

The first subspace has eigenvalue 2N, while the second
subspace has eigenvalue 0 with respect to 7_“&2]) Therefore,
the two multiplicities are distinguished. Next we consider

multiple occurrences of Vo The two spaces

N-1,1]"
( ®V[N ) @ (v N—1.1] ®VSN) (C15)
combine into representations of Sy x S, as
( [N 11®VSZ) ( [N— 11®V11]) (Cl6)

Both of these spaces have an eigenvalue N with respect to

T(fl) but they are distinguished by their S, representation

(or equivalently eigenvalue of t22 ). The symmetric part of
N L1 ®V[N 1] has a subspace

S
[N 1 @S C VN 11]®VN 11]’ (C17)

with eigenvalue 0. We have found that the two subspaces
V[SIC,’_M] ®V[S22] are distinguished by the eigenvalues N and 0

with respect to ngi . The last two terms in (C6) are

multiplicity free and uniquely determined by their eigen-
value with respect to ng).
In the Sage code, we simultaneously diagonalized all the
operators by considering a linear combination
T =aT,@ + bt + IO + TR, (C18)
with a, b, ¢, f € R such that there is no eigenvalue degen-
eracy in T. The superscript L means left action and R means

2 oo 1
B )B=m. N W

R VS AN B M

right action. An eigenbasis for 7" will be a simultaneous
eigenbasis for {T,@, 7, TV Tg?l)‘R}, which corre-
sponds to a basis of matrix units. In the implementation,
these operators act on P,(N), as opposed to SP,(N). The
projection to SP,(N) was implemented by adding a fifth
operator P52(N) to T. The action of PS72(") on d € P,(N)
is d > [d]. It commutes with all of the previous operators.
This was useful in practice, since elements in SP,(N) will
have eigenvalue 1 with respect to P52(N) (the orthogonal
complement has eigenvalue 0).

The matrix units for k =2 are given below. The

multiplicity labels have been chosen to correspond to

(2).L

eigenvalues of 75" and T2 as follows:

1 < 2N,
2«0,

3 N. (C19)

The elements below have not gone through the final step of
being normalized.

(Qié\][])ll = : : (C20)
1 ° ° o__ 9o
@a=-~1 T+ (€
@ =g L] e N L

@y m==] T+ N0 ]
(C23)
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[N} N 1. ° o o
(Qpy )12__N- LT (C25)
[N 11} _i- -_z- -_i ° -_i- _i o ° _l.
(Q[2] )32_N2.. N e NI.+ N . N\ r\I N.I’ (C26)
Ny Lo Lo Lo e (C27)

N-11y A e e 2 e
(Q[Q} )22 = N3 . ,+N2. +NQI . NI\)+N2/+ (C28)

S e IR O BN S B N2°17

-1
N

I . +< 1 > o o _( 1 ) e
2N o N2_-N/ e N2 _N /) e
J 1 —sN+1 (C29)
PN () X
1 1. —5N +1
e ()L
@2 )2 —iI T L —ix+><+—° 1-11 (C30)
[1 1] N . N ° N ° ° '
For example,
(@@ = N5, (C31)
and the properly normalized matrix unit is given by
(25
1[\/]2 (C32)
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2. Degree three

For degree k = 3, we find the multiplicity free matrix units Qﬁ; where Ay = [N = 3,3],[N=3,2,1],[N=3,1,1,1]. Itis
sufficient to use

which distinguishes A;. The square brackets denote S; symmetrization as in (3.24).
The multiplicity free matrix units for k = 3 are given below, where (N),, is the falling factorial N(N — 1)...(N —m + 1),

N3, 1 e o o 1 [e_a 2 [e_as 1 e
QE]?’?’]: ( ){ }JF(N)J. }_(N)J. . .}JF(N)JK» }
+ 1)(N — e1 2(N —2)re_s 2(N -2
= (3\(7) )Ht: |+ (3(]\7)5){.f/}— (3(N)5)[‘\/I ]
(N 2

e N B I B =l g s iy
_(N)J;;f;}*(zi)g){:ﬁ} 45{X}+ ((N) )[LYJ
T e i P o A ] - 22
e N S i P e N
e e by | e bl
e A S (5 - e 1)
A L) - a2 )+ SR )
- A o] - G i+ = ]
(N —62\(]1)\;—3) [.\I\.} n (N_2)(é\gz\_r)?(N_4) {>I< W —62\(71)\;—3) [y}
# I =052 ] - 22 [N
- LX) P X A
S P IR o o M IR 5 b
Gl 1+ G -y 0 ]

(

3(N)s 3(N)s Lo 3(N)s
(N —2)(N — 3) (N —2)(N —3) (N —2)(N — 3)(N — 4)
* 3(N)s [‘\%I I B 6(N)s [ I H+ 6(N)s H I H
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nosoq  2(N —2 . 2 [e_s 1 .
Q{z,l]””:(N@)[ﬁ .}—N(E,){M}—N@[.uf ]
2 o o

e [ AL A )
e N [ e [

5)

B N A .
I )+ e [N - 5 [N
T g B I R M |
=Tl e
S e I R I B R N
A ]

it - (PR R g PR g )

~we A T T

APPENDIX D: THE METRIC AND ITS INVERSE

We would like to be more explicit about the form of the metric on P, (N) as well as its inverse, defined by our inner
product on observables

(04,04,) = ZTrvgk(dlydgV_l)- (D1)

7ESK

We note that similar results hold for the metric on SP; (N). First of all we write an explicit form for the metric. It was shown
in [37] that in the large N limit the inner product on normalized PIMOs
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A O,

Oy = e,
! V <Od0d>con

factorizes, and so the metric is given by a delta function at
leading order

(D2)

(100N i (] = (@]
Garts = (O Ot o = {o + O(/VN) if [dy] # [do]
(D3)

Furthermore, it was shown that the \/LN corrections are given
by the inclusion of a second term

G=1+ Y Neldv) e,
di#d;

(D4)

with E, 4, the matrix consisting of a 1 in the (d;,d,)
position and zeros elsewhere. Setting

X = ZNf(dl\/dz)—%(c(dl)+C(d2))Ed1d2 (DS)
d#dy
we have
T'=1+X)"'=1-X+X>-X>+.... (D6)

We now calculate the inverse metric for P (N) explicitly.
P{(N) is spanned by just two diagrams

Pl(N):Span{: , I} (D7)

Using our expression for off-diagonal elements of the
metric

XP,(N) — ZNC(d]VdZ)_%<C(d1)+C(d2))Edld2
di#d,

(D8)

we find the one independent element

N (D)D) Z yommn) e

(D9)

D=

and therefore

. 1 0 0 N
gP‘(N)_HXP‘(N)_[O I}JF{N—% 0]' (D10)

Substituting this into our equation for the inverse metric
(D6) we find that the inverse is given by

N_l[l 0]
0 1

(D11)

i=0

N~ = N7y N7 =N — = (D12)

00
i=0 i=0

As a further example we calculate the inverse metric for
P,(N), which is spanned by 15 diagrams. We are interested
in the off-diagonal elements of our metric and so we have
w = 105 independent elements. Using Sage we find

the metric is given by
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gr,v) = T+ Xp,)

1 N2 N2 N N2 Nz N2 N3 N' N N' N' N1 N N
Nz 1 N' NT' N N N N NT NT ONT NI NI NG ONT!
N N 1 N' N N N N NT N ONT ONT NG NG N
NZ N NTT 1 NN N N ONT ONE ONT NG NG ONTE N
N N Nt Nt 1 N N1 N N3 O NT O NZ N:I N2 N3 ONTD
N N Nl N ND 1 N1 N N2 N? ONTD NJ ON: N N
N N1 Nt N ND ND 1 Nl N3 N2 ONT NI N2 N3 ON!
=|N> N N N N N1 N 1 O N? NS NI N2 N3 NG NI (D13)
N N? N3 N3 N3 N3 N3 N2 1 NUNTU N N N N
N N? N3 N3 N2 N3 N3 N3 NP 1 NN N N N
N' N N3P N3 N3 N3P N: N: N' N 1 NT' N' N N
N-' N3 N2 N3 N: N3 N: N3 N ONT N 1 NN N
N-' N3 NP NF N3 ONE N3 ONT NN N N 1 NN
N-' N3 N3 NZ N3 ONE N3 ONE NN N NN 1 N
N3 N N N N N N NTT N N N3 N ONT ONTOOD
Inverting this metric directly gives
. N
ST NENN-2)(N-3)
N24N  ((=N)=1)N: ((=N)=1)N: (1=N)N: ((=N)=1)N} (1-N)N: (1=N)N: ((-N)—=1)N! 2N 2N 2N 2N 2N 2N —6N7|
(=N)=1)N+  (N=1) N+1 N-1 N+1 N-1 N-1 N+1  (I=N)N! (I=N)N: (I-N)N:* —2N*  —2N*  —2N* 2N
(-N)-1)N:  N+1 (N=1)? N-1 N+1 N-1 N-1 N+1 (I-N)N:  -2N: —2N  (1=N)N: (1-N)N}* -2N: 2N
(1-N)N? N-1 N-1  N*-3N+1  N-1 1 1 N-1  (2=N)N} -N: -N? —-N? -N}  (2-N)N! N
(-N)=1)N:  N+1 N+1 N-1 (N=1)? N-1 N-1 N+1 —2N*  (1-N)N! —2Ni (I-N)N: -2N: (1-N)N: 2N
(1-N)N: N-1 N-1 1 N-1  N2-3N+1 1 N-1 —N}  (2=N)N! N} -N:  (2-N)N: —N: N
(1-N)N: N-1 N-1 1 N-1 1 N2-3N+1  N-1 —N} —N!  (2=N)N! (2=N)N}  —N? —N: N
x| ((=N)=1)N*  N+1 N+1 N-1 N+1 N-1 N-1 (N=1)2 —2N} —2N:  (1-N)N: —2N: (1-N)N: (1-N)N: 2N
2N (1-N)N:  (1-N)N:  (2=N)N? —2N: —N: —N: —2N: N2-2N N N N N N -N:
2N (1-N)N: —2N: —N: (1-N)N:  (2—N)N: —N: —2N: N N2-2N N N N N -N:
2N (1-N)N: —2N: —N: —2N: —N: (2-N)N:  (1-N)N: N N N2-2N N N N -N?
2N —2N: (1-N)N? —N: (1-N)Nz —N: (2—-N)N: —2N: N N N N2-2N N N -N?
2N —2N: (1-N)N? —N: —2N: (2—-N)N2 —N: (1-N)Nz N N N N N2-2N N -N?
2N 2N} 2N} (2=N)N:  (1-N)N: —N? -N? (1=N)N? N N N N N N*-2N -N
—6N* 2N 2N N 2N N N 2N -N —N -N -N? —N? -N: N2
(D14)

1. First and second order corrections

The leading corrections to this are of order N =2 and occur precisely when d, is obtained from d; by removing a single
edge (or vice versa). We recognize this as a method of constructing the Hasse diagram for P, (N). Accordingly the leading
order corrections to the metric are given precisely by the elements d;, d, € P;(N) that share a connection in the relevant
Hasse diagram. For example, the following is the Hasse diagram for k = 2
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(D15)

Indeed, every connection in this diagram corresponds to an
Nz element in 9p,(v) and all N2 elements of gp,(n) are given
by a connection in the diagram. We call each row in the
Hasse diagram a level L; and index them by i—the number
of connected components in the partition diagrams on that

€ Ls,

I::I ELLL; ELQ,:/_\.

level. For example

and € Ly.

Ordering our basis according to the levels in the Hasse
diagram we see that the metric has block diagonal con-
tributions from within any given level of the Hasse
diagram. As the leading order corrections are generated
by d; and d, in different levels these occur outside of the
diagonal blocks. Everything we have said here about the
metric applies equally well to the inverse metric, as to first
order this is given by

Fl~1-X. (D16)

The N~! corrections to the metric are again easily
described with reference to the Hasse diagram. There are
two ways in which we can get N~! contributions:

(1) For any d,,d,elL; if d,vd,eL,;, then

Jay.a, = N7".
(2) Forandd, € L;,d, € L,_,ifd; < d,, thatisif d; is

contained within d», then g, 4, = N™'. If d; and d,
are incomparable then their inner product will be a
larger negative power of N as this incomparability
will only reduce the number of connected compo-
nents of the merge of d; and d,.

More generally for d, € L;, d, € L,_,, for n € Z* and

d, < d, we have

= Neldivd)=3c(di)+e(dr)) — N(i=2n)=(i+i=2n) — N-n

(D17)
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