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We describe the implications of permutation symmetry for the state space and dynamics of quantum
mechanical systems of matrices of general size N. We solve the general 11-parameter permutation invariant
quantum matrix harmonic oscillator Hamiltonian and calculate the canonical partition function. The
permutation invariant sector of the Hilbert space, for general Hamiltonians, can be described using partition
algebra diagrams forming the bases of a tower of partition algebras PkðNÞ. The integer k is interpreted as
the degree of matrix oscillator polynomials in the quantummechanics. Families of interacting Hamiltonians
are described which are diagonalized by a representation theoretic basis for the permutation invariant
subspace which we construct for N ≥ 2k. These include Hamiltonians for which the low-energy states are
permutation invariant and can give rise to large ground state degeneracies related to the dimensions of
partition algebras. A symmetry-based mechanism for quantum many body scars discussed in the literature
can be realized in these matrix systems with permutation symmetry. A mapping of the matrix index values
to lattice sites allows a realization of the mechanism in the context of modified Bose-Hubbard models.
Extremal correlators analogous to those studied in AdS=CFT are shown to obey selection rules based on
Clebsch-Gordan multiplicites (Kronecker coefficients) of symmetric groups.
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I. INTRODUCTION

Systems with matrix degrees of freedom transforming in
the adjoint or bifundamental representation of a group G,
such as UðNÞ, SUðNÞ, SOðNÞ, SPðNÞ, are ubiquitous in
physics. The group G is often a gauge symmetry and
physical states or operators of interest are G invariant.
The large N limit has been known, since the work of
’t Hooft [1], to exhibit important simplifications related to
the combinatorics of string worldsheets. Notable examples
of gauge-string duality based on such large N properties
include: the duality between low-dimensional noncritical
strings and matrix models [2–4], between two-dimensional
Yang-Mills theories and Hurwitz spaces [5–13]; the
AdS=CFT correspondence [14–16]; the correspondence
between Gaussian matrix theories and Belyi maps [17–20].
Random matrix theories have also been used to model

statistical properties of complex systems [21–26]. In zero-
dimensional matrix models, invariance is not forced upon
us by any gauge symmetry. However, it is still a fruitful
perspective to consider the invariant sectors as computa-
tionally tractable sectors which encode significant proper-
ties of complex systems. This was the perspective taken in
[27–30], which used zero-dimensional matrix models with
permutation symmetry to model the statistics of words in
computational linguistics [31–34].
Large discrete groups, e.g. the symmetric groups SN of

all permutations of N objects, also play a central role in
holography. Two-dimensional conformal field theories
(CFTs) for orbifolds MN=SN , for some CFT M, provide
the CFTs in AdS3=CFT2 dualities [35]. These orbifold
CFTs have recently provided the setting for a derivation of
holographic duality [36]. It is natural to ask if matrix
systems with discrete symmetries such as SN have holo-
graphic duals. Recent results on large N factorization in
permutation invariant matrix models [37] are encouraging
for this prospect. By regarding matrix models as zero-
dimensional quantum field theories (QFTs), in this paper
we take the natural next step of considering one-dimen-
sional QFTs, i.e. matrix quantum mechanical systems with
permutation symmetry. We pay particular attention to
methods which are applicable for general N and allow
large N expansions. We give a general description of the
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permutation invariant subspace in matrix quantum
mechanical systems, drawing on relevant results from
the mathematical literature on partition algebras. This is
followed by a discussion of interesting Hamiltonians for
many-body quantum physics. This is motivated by the
vibrant interplay between holography and many-body
quantum mechanical systems which manifests itself, for
example, in the connection between free fermions and large
N two-dimensional Yang Mills theory [38]; free fermions
and the half-Bogomol'nyi–Prasad–Sommerfield (BPS) sector
of N ¼ 4 Super Yang-Mills (SYM) [39,40]; free fermions
and supersymmetric indices [41], bosons in a 3D harmonic
oscillator and eighth BPS states in N ¼ 4 SYM [42–44];
quantum mechanical spin matrix theory which is used as a
simplified setup to study the emergence mechanisms of
AdS=CFT [45,46]. This interplay is also visible in the
prominent role of coherent states, a technique widely used
in many body quantum physics, in the study of large N
systems. This theme appears in early work on large N (e.g.
[47,48]) as well as more recent developments (e.g. [49–51]).
Many aspects of large N simplifications in matrix

systems are consequences of Schur-Weyl duality. The
standard instance of Schur-Weyl duality [52] concerns the
tensor product V⊗k of the fundamental representation V
of UðNÞ. The symmetric group Sk of all permutations of
k objects acts on V⊗k by permuting the factors of the
tensor product. Schur-Weyl duality states that the algebra
of operators commuting with the standard UðNÞ action

on the tensor product V⊗k is the group algebra C½Sk�.
This has important implications for the classification of
UðNÞ gauge invariant polynomial functions of matrix
variables, where a matrix X transforms as X → UXU† for
U ∈ UðNÞ. Schur-Weyl duality relates this problem to the
rich combinatorics and representation theory of symmet-
ric groups (see e.g. [53]). For example, the gauge
invariant polynomial functions of degree k for one matrix
of size N, taking N > k for simplicity, are labeled by
conjugacy classes of Sk. Finite N effects are captured
with the use of Young diagrams. Schur-Weyl duality has
been used as a powerful tool in the construction of gauge
invariant observables in one-matrix and multimatrix
systems in connection with the AdS=CFT correspon-
dence. This played an important role in identifying the
CFT duals [39,40,54] of giant gravitons [55–57] in the
AdS=CFT correspondence. The Schur-Weyl duality
framework has been further applied to the computation
of one-matrix and multimatrix correlators [39,58–70]. A
short review is [71]. These multimatrix applications
involve dual algebras beyond the symmetric group
algebras. For example Brauer algebras, which have a
basis of diagrams, are used in [58]. The symmetric group
algebra C½Sk� can also be viewed as a diagram algebra
with multiplication given by the composition of dia-
grams. For example the following six diagrams give a
basis of C½S3�, the corresponding permutations are given
in cycle notation

ð1:1Þ

The same general philosophy can be applied to the case
where we are considering polynomial functions of a matrix
X invariant under the transformation X → MσXMT

σ , where
Mσ is a matrix representing the permutation σ ∈ SN in
the N-dimensional natural representation of SN , satisfying
MT

σ ¼ M−1
σ . This problem in the invariant theory of

matrices arises in the application of permutation invariant
matrix models to language data [27,28] and Schur-Weyl
duality was used to study these invariants in [37]. The
algebra dual to SN acting on V⊗k

N , where VN is the natural
representation of the symmetric group SN , is called the
partition algebra PkðNÞ. Partition algebras were first
introduced in [72–74] in application to the statistical
mechanics of Potts models (see [75] for a survey of
partition algebras). Partition algebras PkðNÞ are diagram

algebras with a basis labeled by diagrams corresponding to
set partitions of 2k objects. These include the diagrams
corresponding to elements of C½Sk� as well as more general
diagrams. For example, in addition to the diagrams in (1.1),
the following are elements of P3ðNÞ

ð1:2Þ

We will discuss these diagrams in more detail in Sec. III.
Matrix systems with SN symmetry together with partition
algebras allow us to study large N simplifications in the
case of discrete (finite) groups. Partition algebras and their
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relation to the representation theory of symmetric groups is
an active area of mathematical research [76–79].
An algebraic description of permutation invariant matrix

polynomials of degree k was given in [37] using sym-
metrized partition algebras SPkðNÞ. SPkðNÞ consists of
equivalence classes of elements in PkðNÞ. The equivalence
is defined using the C½Sk� subalgebra of PkðNÞ and
accounts for the commuting nature of matrix variables.
The work in [37] showed that distinct permutation invariant
matrix polynomials in the diagram basis satisfy a factori-
zation property at large N. The diagram basis is the analog
of the trace basis for UðNÞ invariant matrix polynomials.
Partition algebras have also been used to study permutation
invariant random matrix distributions from the point of
view of mathematical statistics [80–82].
Polynomials in matrix variables Mi

j are closely related to
quantum mechanical states constructed from matrix oscil-
lators ða†Þij. This allows us to translate the technology
developed for zero-dimensional matrix models [27,28,37,83]
to the setting of matrix quantum mechanics. We will give a
detailed description of the space of SN invariant states
constructed from matrix oscillators. Polynomials in matrix
oscillators can be organized by the degree of the polyno-
mials. At degree k, the state space is isomorphic to an Sk
symmetric subspace HðkÞ of EndðV⊗k

N Þ:

HðkÞ → EndðV⊗k
N Þ: ð1:3Þ

There is a one-to-one correspondence between tensors

hei1 � � � eik jTjej1 � � � ejki ¼ Ti1���ik
j1���jk ð1:4Þ

and elements in EndðV⊗k
N Þ. The bosonic symmetry of the

oscillators imposes an invariance under simultaneous reor-
dering of the upper and lower indices. Commuting with the
Sk action is the SN action on V⊗k

N which we denote LðσÞ.
The SN permutation invariance translates to an invariance of
T under an adjoint action

AdðσÞ½T� ¼ LðσÞTLðσ−1Þ: ð1:5Þ

Many of our results on the SN invariant state space of matrix
oscillators, particularly in Secs. III and IVare independent of
the Hamiltonian. They can be viewed as a detailed account of
the SN invariant subspace in matrix quantum mechanics
using partition algebras and representation theory. The use of
the partition algebra PkðNÞ to study operators and quantum
states in HðkÞ allows us to take advantage of simplifications
in the limit where k is kept fixed as N → ∞.
The representation theoretic approach allows the con-

struction of solvable algebraic Hamiltonians where the SN
invariant states are resolved according to representation
theoretic characteristics. Sections V and VI discuss differ-
ent classes of solvable SN invariant Hamiltonians obeying

AdðσÞH ¼ HAdðσÞ: ð1:6Þ

Webuild on this discussion inSec.VII, usingHamitonians of
the form ðH þHsÞ: H obeys (1.6) while Hs is subject to a
restriction defined in terms of permutation invariant states.
Thepaper isorganizedas follows.Forconcreteness,Sec. II

contains a reviewof the simplest quantummechanicalmodel
with matrix degrees of freedom. This is the free matrix
quantum harmonic oscillator. It is a model containing N2

decoupled harmonic oscillators Xij; i; j ¼ 1;…; N with a
globalUðN2Þ symmetry. TheHilbert space of thismodel is a
Fock spaceH of states constructed using matrix oscillators
ða†Þij. Thismodel also serves as a good place to introduce the
diagram notation that we will use in the rest of the paper.
In Sec. III we consider the SN invariant subspace Hinv of

the total Hilbert space H of a general quantum mechanics
matrix system. This is the subspace of states invariant under
a† → Mσa†MT

σ , where Mσ is a permutation matrix of
size N. We explain the correspondence between permutation
invariant matrix states of degree k and partition algebras
PkðNÞ. The partition algebras have three natural bases, and
each one gives rise to a different basis forHinv. The diagram
basis is natural when discussing inner and outer products.
The factorization property in [37] translates to orthogonality
of the diagram basis at large N. The so-called orbit basis
gives rise to an orthogonal basis for all N. We call the third
basis the representation basis. In the mathematical literature,
the representation basis is called a complete set of matrix
units. The product in the matrix unit basis is a generalization
of the product for elementary matrices for matrix algebras.
The representation basis can be constructed using Fourier
transformation on PkðNÞ and is a direct analog of the Schur
basis for UðNÞ invariants. Appendix A gives the necessary
background for Fourier transforms on semisimple algebras,
closely following [84] but with some modifications that are
important for our application. Physically, the representation
basis can be understood as a basis that diagonalizes a set of
algebraic commuting charges.
Section IV is devoted to the construction and diagonal-

ization of these charges, which can be used to give the
explicit transformation from the diagram basis to the
representation basis at large N. We illustrate the method
for small k and large N. These are tabulated in Appendix C.
The representation basis forms an energy eigenbasis for the
Hamiltonian of the free matrix quantum harmonic oscillator
presented in Sec. II.
In Sec. V we introduce an 11 parameter family of exactly

solvable quantum matrix systems. The potential in these
systems is the most general permutation invariant quadratic
function of the matrix variables. These quantum systems
can therefore be viewed as general matrix harmonic
oscillator systems compatible with permutation symmetry.
We find the spectrum for general choices of the parameters
by adapting the representation theoretic techniques which
have been used to compute correlators in permutation
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invariant Gaussian matrix models [28]. Further, we write
the canonical partition function in a simple closed form.
The representation basis states from Sec. III do not form an
eigenbasis for the general Hamiltonians considered here.
The action of the Hamiltonians on the representation basis
states leads to a mixing which is constrained by Clebsch-
Gordan multiplicities for the symmetric groups. We briefly
discuss this mixing.
In Sec. VI we discuss interacting Hamiltonians, para-

metrized by a positive integerK, constructed using partition
algebra elements, with the property that the ground states
are all permutation invariant states and have degeneracies
controlled by a sequence of partition algebras PkðNÞ for
k ∈ f0; 1;…; Kg. The energy gap between the ground
states and the lowest excited state is also determined by K.
By deforming these Hamiltonians with other partition
algebra elements, we design Hamiltonians where the
degeneracy of the ground states is broken by small
amounts—these two scenarios are illustrated in Fig. 1.
We also include a general description of permutation
invariant Hamiltonians, finding an interesting relation to
the counting of 2-matrix permutation invariants of the kind
considered in [83]. We conclude this section with an
interpretation of the oscillators ða†Þji as creation operators
on a square lattice with sites labeled ði; jÞ.
Subspaces of invariant states play an important role in

the group-theoretic proposal [85,86] for a mechanism of
weak ergodicity breaking, experimentally discovered in
[87], now known as quantum many-body scars [88]. In
Sec. VII we discuss how the permutation invariant state
space in this paper can be turned into a scar subspace.
Adapting the ideas in [85,86] for the realization of group-
theoretic scar states, we describe Hamiltonians which
exhibit the revival properties characteristic of scars. The
lattice interpretation of the matrix oscillators from Sec. VI
allows us to interpret these Hamiltonians as deformations
of Bose Hubbard models.
We compute a set of two- and three-point correlators of

invariant operators in Sec. VIII. The two-point correlators

have a large N factorization property described in the
context of matrix models in [37]. The three-point functions
are similar to extremal correlators, which are relevant to
quantum mechanical models considered in AdS=CFT. The
extremal correlators are shown to obey selection rules
based on Clebsch-Gordan multiplicities (Kronecker coef-
ficients) of symmetric groups.

II. REVIEW: MATRIX HARMONIC OSCILLATOR

This section is a review of the simplest matrix quantum
harmonic oscillator. The Lagrangian (2.1) describesN2 free
harmonic oscillators. The corresponding Hamiltonian has a
globalUðN2Þ symmetry. This has aUðNÞ × UðNÞ subgroup
of unitary matrices acting by left and right multiplication.
There is also a smaller SN × SN subgroup of the UðNÞ ×
UðNÞwhich plays an important role in subsequent sections.
The simplest, noninteracting UðN2Þ invariant model will
serveasaverygoodsetup to introduce thenotationused in the
rest of the paper. In particular, we describe how to construct
states and operators inH, the Hilbert space of the theory, by
considering the oscillators aij; a

†
ij as endomorphisms on VN

(an N-dimensional vector space). We will frequently have
thisviewinmindwhenmanipulatingstatesandoperators and
it is often practical to employ diagrammatic notation in order
to do so. The basics of this diagrammatic notation we
introduce at the end of this section.
The simplest matrix harmonic oscillator is described by

the Lagrangian

L0 ¼
1

2

�XN
i;j¼1

∂tXij∂tXij − XijXij

�
: ð2:1Þ

It describes N2 decoupled oscillators. The conjugate
momenta are

Πij ¼
∂L0

∂ð∂tXijÞ
¼ ∂

∂t
Xij: ð2:2Þ

(a) (b)

FIG. 1. The figure illustrates the type of spectra that can be engineered using the algebraic Hamiltonians discussed in this section. Blue
lines correspond to states that are invariant under the adjoint action of SN . Black lines are noninvariant states. (a) Illustrates the splitting
of the ground state degeneracy achieved by adding a term to the Hamiltonian involving central algebraic charges (b) a spectrum in which
the degeneracy associated with multiplicity labels has been lifted.
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The Hamiltonian corresponding to L0 is

H0 ¼
1

2

�XN
i;j¼1

ΠijΠij þ XijXij

�
: ð2:3Þ

The canonical commutation relations are

½Xij;Πkl� ¼ iδikδjl: ð2:4Þ

The Hamiltonian given in (2.3) is diagonalized in the
usual way—introducing oscillators a†ij; aij defined by

Xij ¼
ffiffiffi
1

2

r
ða†ij þ aijÞ;

Πij ¼ i

ffiffiffi
1

2

r
ða†ij − aijÞ; ð2:5Þ

with commutation relations

½aij; a†kl� ¼ δikδjl: ð2:6Þ

Normal ordering H0 gives

H0 ¼
XN
i;j¼1

a†ijaij; ð2:7Þ

which is just a number operator. We now show that H0

is invariant under a UðN2Þ symmetry that acts on
oscillators as

aij →
XN
k;l¼1

Uij;klakl; ð2:8Þ

a†ij →
XN
k;l¼1

U†
kl;ija

†
kl; ð2:9Þ

with Uij;kl an N2 × N2 unitary matrix satisfying

XN
k;l¼1

Uij;klU
†
kl;mn ¼ δimδjn: ð2:10Þ

Under the UðN2Þ transformation H0 is invariant,

H0 →
X

i;j;k;l;m;n

U†
kl;ijUij;mna

†
klamn

¼
X
k;l;m;n

δkmδlna
†
klamn

¼
X
k;l

a†klakl: ð2:11Þ

The oscillator states

Y
i;j

ða†ijÞkijffiffiffiffiffiffiffi
kij!

p j0i ð2:12Þ

labeled by non-negative integers kij with i; j ¼ 1;…; N are
energy eigenstates of H0. The total Hilbert (Fock) space H
decomposes into subspaces HðkÞ with fixed number of
oscillators (degree) k,

H ≅ ⨁
∞

k¼0

HðkÞ: ð2:13Þ

The subset of states with k ¼Pi;j kij form an eigenbasis

for the subspace HðkÞ and have energy k. In general the
spectrum is highly degenerate. The number of states with
energy k is

DimHðkÞ ¼
�
N2 þ k− 1

k

�
¼ N2ðN2 þ 1Þ…ðN2 þ k− 1Þ

k!
:

ð2:14Þ

This is the number of ways to choose k elements from a set
of N2 when repetition is allowed. It is also the dimension of
the symmetric part of a k-fold tensor product of a vector
space with dimension N2. Equivalently, it is the dimension
of the vector space of states composed of k bosonic
oscillators a†ij. For fixed k and N ≫ 2k the dimension
grows as N2k.

A. Diagram notation

Throughout this paper we will use diagrammatic nota-
tion to describe states and operators in HðkÞ. For this
purpose, it is useful to introduce the following matrices of
oscillators ða†Þij ¼ a†ji and aij ¼ aij which satisfy

½aij; ða†Þlk� ¼ δikδ
l
j: ð2:15Þ

Let VN be an N-dimensional vector space with basis
fe1;…; eNg. The matrices of oscillators can be viewed
as (operator-valued) elements in EndðVNÞ, where EndðVNÞ
is the set of all linear maps VN → VN . In this language, the
above oscillators are matrix elements,

a†ðeiÞ ¼
XN
j¼1

ða†Þji ej and aðeiÞ ¼
XN
j¼1

ajiej: ð2:16Þ

Consequently, a general degree one state in H can be
written as
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TrVN
ðTa†Þj0i ¼

XN
i;j¼1

Ti
jða†Þji j0i≡ jTi; ð2:17Þ

where T ∈ EndðVNÞ (an N-by-N matrix) and the last
equality is a definition of jTi.
The degree k subspace is given by

HðkÞ ≅ SpanC fða†Þi1j1…ða†Þikjk j0ig; ð2:18Þ

therefore general states are parametrized by tensors Tj1…jk
i1…ik

.
It is convenient to view these tensors as elements of
EndðV⊗k

N Þ, where V⊗k
N is the kth tensor product of VN .

That is, in the usual basis for tensor product spaces

Tðei1⊗ei2⊗…⊗eikÞ

¼
XN

j1;j2;…;jk¼1

Tj1…jk
i1…ik

ej1⊗ej2⊗…⊗ejk : ð2:19Þ

Analogous to the degree one case, a general state jTi ∈
HðkÞ can be written as a trace

jTi ¼ TrV⊗k
N
ðTða†Þ⊗kÞj0i ¼

X
i1 ;…;ik
j1 ;…;jk

Tj1…jk
i1…ik

ða†Þi1j1…ða†Þikjk j0i;

ð2:20Þ

for T ∈ EndðV⊗k
N Þ and ða†Þ⊗k ¼ a†⊗…⊗a† with matrix

elements

ða†Þ⊗kðej1⊗…⊗ejkÞ
¼
X
i1;…;ik

ða†Þi1j1…ða†Þikjkei1⊗…⊗eik : ð2:21Þ

It should be emphasized that, due to the bosonic symmetry
of the oscillators, Tj1…jk

i1…ik
is a symmetric tensor (under

simultaneous permutations of upper and lower indices), for
example Tj1j2…jk

i1i2…ik
¼ Tj2j1…jk

i2i1…ik
.

It is useful to formulate this restriction in terms of Sk
invariance. An element τ ∈ Sk, viewed as a bijective map
τ∶f1;…; kg → f1;…; kg, defines a linear operator Lτ−1

which acts on V⊗k
N as

Lτ−1ðei1⊗…⊗eikÞ ¼ eiτð1Þ⊗…⊗eiτðkÞ : ð2:22Þ

The symmetry of T is equivalent to the statement

LτTLτ−1 ¼ T; ∀ τ ∈ Sk; ð2:23Þ

or in index notation

T
jτð1Þ…jτðkÞ
iτð1Þ…iτðkÞ ¼ Tj1…jk

i1…ik
; ∀ τ ∈ Sk: ð2:24Þ

Therefore, states in HðkÞ are in one-to-one correspondence
with elements T ∈ EndSkðV⊗k

N Þ, the subspace of linear
maps that commute with the action of Sk.
We introduce diagrammatic notation to simplify manip-

ulations involving tensor equations. A map T ∈ EndðV⊗k
N Þ

is represented by a box

ð2:25Þ

where the edges correspond to states in V⊗k
N . Internal lines

in a diagram correspond to contracted indices. For example,
the state jTi ∈ HðkÞ can be represented diagrammatically as

ð2:26Þ

The horizontal lines identify the top edge with the bottom
edge to give a trace, and the line between the ða†Þ⊗k and T
boxes signifies that the corresponding indices are identified
and summed over. This diagram should be compared
to (2.20).

III. PERMUTATION INVARIANT SECTORS
FOR QUANTUM MATRIX SYSTEMS

In this section we consider the action of SN on the
subspace HðkÞ, spanned by degree k polynomials in matrix
oscillators ða†Þij acting on the vacuum. The adjoint action
of permutations σ ∈ SN on the quantum mechanical matrix
variables

σ∶Xi
j → ðMσXMσ−1Þij ¼ XσðiÞ

σðjÞ ð3:1Þ

translates into action on oscillators

σ∶ ða†Þij → ða†ÞσðiÞσðjÞ: ð3:2Þ

We turn our attention to the subspace HðkÞ
inv ⊂ HðkÞ of SN

invariant states constructed from polynomials in these
oscillators. We will construct bases for Hinv

ðkÞ, for general
k, taking inspiration from [37]. There, a basis for the space
of SN invariant polynomials in matrix indeterminates Xi

j of
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degree k was given in terms of elements of the diagram-
matic partition algebra PkðNÞ [75]. With the identification

Xi
j ↔ ða†Þij; ð3:3Þ

we can employ these techniques to construct SN invariant
states in matrix quantum mechanics.
The algebra EndSN ðV⊗k

N Þ, of linear operators on V⊗k
N that

commute with SN , is of central importance in understand-
ing the implications of permutation invariance in quantum
mechanical matrix systems. For N ≥ 2k this algebra is
isomorphic to the partition algebra PkðNÞ [75]:

EndSN ðV⊗k
N Þ ≅ PkðNÞ: ð3:4Þ

The Hilbert spaceHðkÞ
inv spanned by degree k polynomials in

the oscillators is isomorphic to an Sk invariant subalgebra
of PkðNÞ:

HðkÞ
inv ≅ EndSN×SkðV⊗k

N Þ ⊆ EndSN ðV⊗k
N Þ: ð3:5Þ

The partition algebras are finite-dimensional associative
algebras with dimension Bð2kÞ, the Bell numbers. The Bell
numbers BðkÞ count the number of possible set partitions of
a set of k elements. Notably, Bð2kÞ does not depend on N.

Consequently, DimHðkÞ
inv does not grow with N for N ≥ 2k.

This is in contrast to DimHðkÞ, which grows like N2k

for N ≫ 2k.
We have chosen to construct states using the oscillators

ða†Þij. This produces a basis forHinv that is simultaneously
an energy eigenbasis ofH0. However, it is worth emphasiz-
ing that the resulting description of Hinv is applicable to
any quantum matrix system, not only the system with
Hamiltonian H0. For example, the description of Hinv in
terms of partition algebras holds equally well if the
Hamiltonian is a perturbation of H0 by a polynomial in
the matrix creation and annihilation operators.
We begin this Section in III A by reviewing the con-

nection between partition algebras and states in Hinv. The
basic algebraic structure of partition algebras is reviewed in
Sec. III B. The partition algebras are introduced in the most
geometrical basis, the diagram basis, where multiplication
is given by diagram concatenation. In Sec. III C we
introduce the representation basis, so called because it is
labeled by a set of representation theoretic data. This basis
uses Fourier transforms [84] on PkðNÞ to construct an all-
orders orthogonal basis for N ≥ 2k, which diagonalizes a
set of algebraic charges. These charges are discussed in
detail in Sec. IV and used in Sec. VI to construct algebraic
Hamiltonians with interesting spectra.

A. Partition algebras and invariant tensors

For any σ ∈ SN we have a linear operator LðσÞ ∈
EndðV⊗k

N Þ defined by

Lðσ−1Þðei1⊗ei2⊗…⊗eikÞ
¼ eσði1Þ⊗eσði2Þ⊗…⊗eσðikÞ: ð3:6Þ

Here σ ∈ SN is a bijective map f1;…; Ng → f1;…; Ng.
Group multiplication is given by composition of maps
σ1σ2ðiÞ ¼ σ2ðσ1ðiÞÞ for σ1; σ2 ∈ SN. This is used to define
the adjoint action AdðσÞ of σ ∈ SN on states jTi ∈ HðkÞ,

AdðσÞjTi ¼ TrV⊗k
N
½LðσÞTLðσ−1Þða†Þ⊗k�j0i;

¼
X
i1 ;…;ik
j1 ;…;jk

Tj1…jk
i1…ik

ða†Þσ−1ði1Þ
σ−1ðj1Þ…ða†Þσ−1ðikÞ

σ−1ðjkÞj0i;

¼
X
i1 ;…;ik
j1 ;…;jk

Tσðj1Þ…σðjkÞ
σði1Þ…σðikÞ ða†Þ

i1
j1
…ða†Þikjk j0i: ð3:7Þ

This adjoint action on the tensor coefficients of the
oscillators corresponds to the adjoint action on the oscil-

lators which follows from (3.2). States jTi ∈ HðkÞ
inv are

called SN invariant because they satisfy

AdðσÞjTi ¼ jTi: ð3:8Þ

That is, all states in HðkÞ
inv can be constructed from tensors

satisfying

Tσðj1Þ…σðjkÞ
σði1Þ…σðikÞ ¼ Tj1…jk

i1…ik
; ∀ σ ∈ SN; ð3:9Þ

or

LðσÞTLðσ−1Þ ¼ T: ð3:10Þ

The vector space of SN invariant linear maps on V⊗k
N is

denoted EndSN ðV⊗k
N Þ. For N ≥ 2k, EndSN ðV⊗k

N Þ is isomor-
phic to the partition algebra PkðNÞ:

EndSN ðV⊗k
N Þ ¼ SpanCfT ∈ EndðV⊗k

N Þ∶ LðσÞTLðσ−1Þ
¼ T; ∀ σ ∈ SNg ≅ PkðNÞ: ð3:11Þ

For tensors labeling states we have further Sk invariance.
The vector space of SN × Sk invariant linear maps is
denoted

EndSN×SkðV⊗k
N Þ ¼ SpanCfT ∈ EndðV⊗k

N Þ∶ LðσÞTLðσ−1Þ
¼ LτTLτ−1 ¼ T; ∀ σ ∈ SN; τ ∈ Skg:

ð3:12Þ

and we have the correspondence

HðkÞ
inv ≅ EndSN×SkðV⊗k

N Þ: ð3:13Þ

PERMUTATION SYMMETRY IN LARGE-N MATRIX QUANTUM … PHYS. REV. D 106, 106020 (2022)

106020-7



The partition algebra PkðNÞ contains a subalgebra SPkðNÞ,
spanned by elements that commute with C½Sk� ⊂ PkðNÞ,
called a symmetrized partition algebra. For N ≥ 2k,
SPkðNÞ is isomorphic to EndSN×SkðV⊗k

N Þ, and by extension
Hinv

ðkÞ:

HðkÞ
inv ≅ EndSN×SkðV⊗k

N Þ ≅ SPkðNÞ: ð3:14Þ

This motivates the next subsection, where we study PkðNÞ
and its symmetrized subalgebra SPkðNÞ.
To summarize the above steps in words, we are

investigating the adjoint action of permutations in SN
on N × N quantum mechanical matrix variables Xi

j. The
corresponding oscillators inherit the adjoint SN action.
Oscillator states with k oscillators correspond to tensors T
with k upper and lower indices, subject to an Sk symmetry
permuting the k upper-lower index pairs along the tensor.
This Sk symmetry arises from the bosonic nature of the
oscillators. The SN invariant k-oscillator states corre-
spond to tensors having k upper and k lower indices,
subject to an SN × Sk invariance. This subspace of tensors
can be described as a symmetrized subalgebra SPkðNÞ of
the partition algebra PkðNÞ.

B. Diagram basis

We introduce the partition algebras in the diagram basis
following the treatment in [75]. This is a nice starting point
because it gives the most straightforward description of
multiplication in PkðNÞ. As we will see in Sec. VIII, the
diagram basis also gives a simple description of an outer
product in PkðNÞ, which is relevant to the discussion of
extremal correlators.
The partition algebra PkðNÞ is an algebra of dimension

Bð2kÞ. The Bell number Bð2kÞ is the number of possible
partitions of a set with 2k distinct elements. Bell numbers
can be computed from the generating function

X∞
k¼0

BðkÞ
k!

xk ¼ ee
x−1; ð3:15Þ

from which one finds Bð2kÞ ¼ 2, 15, 203, 4140 for k ¼ 1,
2, 3, 4.
A set partition π of a set S is a set of disjoint subsets of S

such that their union is all of S. The diagram basis for
PkðNÞ is labeled by set partitions of the set f1;…; k;
10;…; k0g. The set of all set partitions of f1;…; k;
10;…; k0g is denoted Π2k. For example, the set Π4 contains
the following Bð4Þ ¼ 15 set partitions (subsets are sepa-
rated by a vertical bar)

1j2j10j20;
110j2j20; 120j10j2; 12j10j20; 1020j1j2; 102j1j20; 220j10j1;
11020j2; 1210j20; 1220j10; 10202j1; 110j220; 120j102; 12j1020;
121020: ð3:16Þ

Each π ∈ Π2k labels an element of the diagram basis of PkðNÞ. We write dπ for the diagram basis element corresponding
to π ∈ Π2k. As the name suggests, dπ should be thought of as a diagram. It is a diagram with 2k vertices divided into two
rows. The bottom vertices are labeled 1;…; k from left to right and the vertices of the top row are labeled 10;…; k0 from left
to right. Two vertices are connected by an edge if they belong to the same subset of π. The diagrams corresponding to the set
partitions in (3.16) are

ð3:17Þ
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There is a redundancy in the diagram picture. The redun-
dancy arises from the fact that we are free to choose any set
of edges, as long as every vertex in a subset of the set
partition can be reached from any other vertex in the same
subset, by a path along the edges. For example, the
following pairs of diagrams correspond to the same element
in P3ðNÞ

ð3:18Þ

The partition algebras are so-called diagram algebras
because multiplication can be defined through diagram
concatenation (in the diagram basis). The product in PkðNÞ
is independent of the choice of representative diagram. Let
dπ and dπ0 be two diagrams in PkðNÞ. The composition
dπ00 ¼ dπdπ0 is constructed by placing dπ above dπ0 and
identifying the bottom vertices of dπ with the top vertices of
dπ0 . The diagram is simplified by following the edges
connecting the bottom vertices of dπ0 to the top vertices
of dπ . Any connected components within the middle rows
are removed and we multiply by Nc, where c is the number
of these complete blocks removed. For example,

ð3:19Þ

where the factor of N in the first equation comes from
removing the middle component at vertex 1 and 2. For
linear combinations of diagrams, multiplication is defined
by linear extension.
The subset of diagrams with k edges, each connecting a

vertex at the top to a vertex at the bottom, where every
vertex has exactly one incident edge, span a subalgebra.
This subalgebra is isomorphic to the symmetric group
algebra C½Sk�. For example, there is a one-to-one corre-
spondence between permutations in S3 and the following
set of diagrams in P3ðNÞ

ð3:20Þ

In the language of set partitions, these diagrams correspond
to set partitions with subsets of the form fij0g for
i; j ∈ 1;…; k. We denote the diagrams forming a basis
for C½Sk� by τ.
The diagram dπ ∈ PkðNÞ corresponds to an element of

EndðV⊗k
N Þ through the following action

dπðei1⊗…⊗eikÞ ¼
X

i10 ;…;ik0

ðdπÞi10…ik0
i1…ik

ei10⊗…⊗eik0 :

ð3:21Þ

The matrix elements ðdπÞi10…ik0
i1…ik

correspond to the diagram
representation by associating a Kronecker delta to every
edge connecting a pair of vertices. For example,

ð3:22Þ

Every diagram corresponds to an SN invariant tensor in the
sense of equation (3.10). As mentioned previously, this
gives a basis for EndSN ðV⊗k

N Þ for N ≥ 2k [75].
Due to the bosonic symmetry of the oscillators, the

invariant states are not in one-to-one correspondence with
elements in PkðNÞ. Instead, every state in Hinv

ðkÞ corre-
sponds to an element in the Sk invariant subalgebra of
PkðNÞ, which we call the symmetrized partition algebra
and denote SPkðNÞ. Consider the action of Sk on the
diagrams given, for any τ ∈ Sk; dπ ∈ PkðNÞ, by

τ∶dπ → τdπτ−1: ð3:23Þ

A basis for SPkðNÞ is labeled by distinct orbits under this
action. We denote as ½dπ� ∈ SPkðNÞ the invariant element
obtained by averaging over the Sk orbit of dπ:

½dπ� ¼
1

k!

X
τ∈Sk

τdπτ−1 ¼
1

j½dπ�j
X

dπ0∈½dπ �
dπ0 ; ð3:24Þ

where j½dπ�j is the size of the orbit. The equality follows
because j½dπ�j is equal to k! divided by the number of
permutations τ leaving dπ fixed (orbit stabilizer theorem). It
follows that a basis for Hinv

ðkÞ is labeled by ½dπ� ∈ SPkðNÞ
through the correspondence

j½dπ�i ¼ TrV⊗k
N
ð½dπ�ða†Þ⊗kÞj0i

¼
X
i1 ;…;ik
i
10 ;…;ik0

ð½dπ�Þi10…ik0
i1…ik

ða†Þi1i10…ða†Þikik0 j0i: ð3:25Þ

Note that

jdπi ¼ TrV⊗k
N
ðdπða†Þ⊗kÞj0i ¼ j½dπ�i; ð3:26Þ

for the sake of notational efficiency we will often label
states with dπ instead of ½dπ�. Examples are
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ð3:27Þ

and

ð3:28Þ

States obtained by acting with the annihilation operators
aij on the dual vacuum h0j can also be labeled by partition
algebra diagrams as follows:

hdπj ¼ h0jTrV⊗k
N
ðdTπa⊗kÞ

¼ h0jTrV⊗k
N
ð½dTπ �a⊗kÞ

¼ h0j
X
i1 ;…;ik
i
10 ;…;ik0

ð½dπ�Þi10…ik0
i1…ik

ai10i1 …aik0ik

¼ h0j
X
i1 ;…;ik
i
10 ;…;ik0

ð½dTπ �Þi1…ik
i10…ik0

ai10i1 …aik0ik ; ð3:29Þ

where dTπ is the transpose of dπ . As a diagram, dTπ is the
reflection of dπ across a horizontal line, for example

ð3:30Þ

The use of the transpose in this definition is motivated by
the orthonormality property below (3.33). Using the
commutation relations in Eq. (2.15), the inner product
can be written as a trace of products of elements in SPkðNÞ,

hdπjjdπ0 i ¼
X
τ∈Sk

ðdTπ τdπ0τ−1Þi1…ik
i1…ik

¼
X
τ∈Sk

TrV⊗k
N
ðdTπ τdπ0τ−1Þ:

ð3:31Þ

The large N factorization result in [37] implies that the
normalized states

jd̂πi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihdπjjdπi

p jdπi; ð3:32Þ

are orthonormal at large N (to leading order in 1=
ffiffiffiffi
N

p
)

hd̂πjjd̂π0 i ¼
�
1þOð1= ffiffiffiffi

N
p Þ if ½dπ� ¼ ½dπ0 �

0þOð1= ffiffiffiffi
N

p Þ otherwise
: ð3:33Þ

C. Representation basis

The connection between SN invariant states and partition
algebras gives rise to a natural basis, labeled by represen-
tation theoretic data. The representation basis diagonalizes
a set of commuting algebraic charges that we introduce in
Sec. IV. This observation gives a concrete construction
algorithm for the change of basis matrix (from diagram
basis to representation basis). We now describe how the
representation theoretic basis for SPkðNÞ arises using
Schur-Weyl duality between SN and PkðNÞ, along with
the implementation of the invariance under the Sk action
of (3.23) in the representation theoretic basis. The transition
from a combinatorial basis of diagrams in an algebra
defined by physical constraints (in this case a bosonic
symmetry of matrix oscillators) to a representation theoretic
basis is an example of Fourier transformation which has
been useful in a multimatrix as well as tensor systems of
interest in AdS=CFT and holography (a short review of
these applications is in [71]). The proofs of some state-
ments quoted here are in Appendix A.
From the point of view of representation theory, the

correspondence between permutation invariant states and
partition algebras should be understood as a consequence
of Schur-Weyl duality. In particular, Schur-Weyl duality
says that the decomposition (see Sec. II. 5 in [79])

V⊗k
N ≅ ⨁

k

l¼0

⨁
Λ#
1
⊢l
VSN
½N−l;Λ#

1
�⊗VPkðNÞ

½N−l;Λ#
1
� ð3:34Þ

is multiplicity free in terms of irreducible representations
of SN and PkðNÞ. The Young diagram Λ1 ¼ ½N − l;Λ#

1�,
which is an integer partition of N, is constructed by placing
the diagram Λ#

1 (having l boxes) below a first row of N − l
boxes. RequiringΛ1 to be a valid Young diagram imposes a
condition on the first row length of r1ðΛ#

1Þ ≤ N − l. This
condition is nontrivial for N < 2k, while it is trivially
satisfied for all Λ#

1 having up to k boxes for N ≥ 2k. The
latter is called the stable limit. In this limit we can write the
decomposition (3.34) in a simplified form

V⊗k
N ¼ ⨁

Λ1∈YSðkÞ
VSN
Λ1
⊗VPkðNÞ

Λ1
; ð3:35Þ

in which the sum can be labeled by the set of all Young
diagrams Λ#

1 having up to k boxes: these are inserted below
a first row to form Young diagrams with N boxes. This
stable set of Young diagrams having N boxes is denoted
YSðkÞ. With the exception of Appendix B this is the limit
within which we will work.
Equation (3.7) implies that we can identify

EndðV⊗k
N Þ ≅ V⊗k

N ⊗V⊗k
N ; ð3:36Þ
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as a representation of SN . We use Schur-Weyl duality (3.35)
to decompose each factor on the rhs as

V⊗k
N ⊗V⊗k

N ¼
 

⨁
Λ1∈YSðkÞ

VSN
Λ1
⊗VPkðNÞ

Λ1

!

⊗
 

⨁
Λ0
1
∈YSðkÞ

VSN
Λ0
1
⊗VPkðNÞ

Λ0
1

!
; ð3:37Þ

where we are assuming the stable limit. Projecting to SN
invariants on both sides gives

PkðNÞ ≅ EndSN ðV⊗k
N Þ ≅ ⨁

Λ1∈YSðkÞ
VPkðNÞ
Λ1

⊗VPkðNÞ
Λ1

: ð3:38Þ

This follows because the decomposition of VSN
Λ1
⊗VSN

Λ0
1

contains an invariant if and only if Λ1 ¼ Λ0
1.

The rhs of (3.38) reflects a decomposition of PkðNÞ into
a direct sum of matrix algebras. Such a decomposition
always exists for a semisimple algebra by the Artin-
Wedderburn theorem. This implies that there exists a basis
of generalized elementary matrices (also called a complete
set of matrix units) for PkðNÞ. A complete set of matrix
units is a basis

QΛ1

αβ ; Λ1∈YSðkÞ; α;β∈f1;…;DimðVPkðNÞ
Λ1

Þg; ð3:39Þ

with the property

QΛ1

αβQ
Λ0
1

α0β0 ¼ δΛ1Λ0
1δβα0Q

Λ1

αβ0 : ð3:40Þ

In other words, PkðNÞ can be realized as block-diagonal
matrices, with each block labeled by an irreducible repre-
sentation Λ1 of PkðNÞ. The Artin-Wedderburn decompo-
sition implies

DimðPkðNÞÞ ¼ Bð2kÞ ¼
X

Λ1∈YSðkÞ
ðDimVPkðNÞ

Λ1
Þ2; ð3:41Þ

which is analogous to the expression

jGj ¼
X

R∈RepðGÞ
ðDimVG

RÞ2 ð3:42Þ

for the order of a finite group G in terms of its irreducible
representations R.

As we prove in Appendix A 3, the following set of linear
combinations of elements in PkðNÞ form a complete set of
matrix units for PkðNÞ,

QΛ1

αβ ¼
XBð2kÞ
i¼1

DimðVSN
Λ1
ÞDΛ1

βαððb�i ÞTÞbi: ð3:43Þ

The coefficients DΛ1

βαðdÞ are matrix elements of the repre-
sentation of PkðNÞ, labeled by Λ1⊢N. The sum is over a
basis bi; i ∈ f1;…; Bð2kÞg for PkðNÞ (for example the
diagram basis). The element b�i is called the dual of bi. It
has an explicit construction in terms of the inverse of the
Gram matrix defined by

gij ¼ TrV⊗k
N
ðbibTj Þ: ð3:44Þ

The dual of bi is

b�i ¼
XBð2kÞ
j¼1

g−1ij bj; ð3:45Þ

and the inverse of the Gram matrix in the diagram basis can
be written as a series expansion in N [see Eq. (D6)].
To construct a representation basis forHinv

ðkÞ, we need to
construct matrix units for SPkðNÞ. They can be constructed
from matrix units for PkðNÞ as follows. The partition
algebra PkðNÞ contains a subalgebra C½Sk�. Consequently,
we can restrict an irreducible representation VPkðNÞ

Λ1
to a

representation of C½Sk�, which in general is reducible.

Letting VC½Sk�
Λ2

be an irreducible representation of C½Sk�
labeled by a Young diagram Λ2 with k boxes, we have

VPkðNÞ
Λ1

≅ ⨁
Λ2⊢k

VC½Sk�
Λ2

⊗VPkðNÞ→C½Sk�
Λ1Λ2

: ð3:46Þ

The dimension of VPkðNÞ→C½Sk�
Λ1Λ2

is the branching multiplicity

DimðVPkðNÞ→C½Sk�
Λ1Λ2

Þ ¼ MultðVPkðNÞ
Λ1

→ VC½Sk�
Λ2

Þ: ð3:47Þ

In the rest of the paper we will use Λ1 to label irreducible
representations of SN and PkðNÞ. Irreducible representa-
tions of Sk are denoted by Λ2. Inserting the decomposition
(3.46) into Eq. (3.38) and projecting to Sk invariants gives

Hinv
ðkÞ ≅ EndSN×SkðV⊗k

N Þ ≅ ⨁
Λ1∈YS ðkÞ

Λ2⊢k

VPkðNÞ→C½Sk�
Λ1Λ2

⊗VPkðNÞ→C½Sk�
Λ1Λ2

: ð3:48Þ

This should be understood as an Artin-Wedderburn decomposition of SPkðNÞ.
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Equation (3.46) points us towards a construction of
matrix units for SPkðNÞ from matrix units of PkðNÞ. On the
lhs we have a basis

EΛ1
α ; α ∈ f1;…DimðVPkðNÞ

Λ1
Þg; ð3:49Þ

where the representation of d ∈ PkðNÞ is irreducible,

dðEΛ1
α Þ ¼

X
β

DΛ1

βαðdÞEΛ1

β : ð3:50Þ

The rhs has a basis

EΛ1;μ
Λ2;p

; p ∈
n
1;…;Dim

�
VC½Sk�
Λ1

�o
;

μ ∈
n
1;…;Dim

�
VPkðNÞ→C½Sk�
Λ1Λ2

�o
; ð3:51Þ

where μ is a multiplicity label for VC½Sk�
Λ2

in the decom-
position. We demand that the representation of τ ∈ C½Sk� is
irreducible in this basis,

τðEΛ1;μ
Λ2;p

Þ ¼
X
q

DΛ2
qpðτÞEΛ1;μ

Λ2;q
; ð3:52Þ

where DΛ2
qpðτÞ is an irreducible representation of τ ∈ C½Sk�.

The change of basis coefficients are called branching
coefficients

EΛ1;μ
Λ2;p

¼
X
α

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

EΛ1
α ; ð3:53Þ

or in bracket notation

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

¼ hEΛ1
α jEΛ1;μ

Λ2;p
i: ð3:54Þ

The elements

QΛ1

Λ2;μν
¼
X
α;β;p

QΛ1

αβB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

ð3:55Þ

form a complete set of matrix units for SPkðNÞ. The sum
over p implements the projection to Sk invariants. The
above elements satisfy [see Eq. (A62)]

QΛ1

Λ2;μν
Q

Λ0
1

Λ0
2
;μ0ν0 ¼ δΛ1Λ0

1δΛ2Λ0
2
δνμ0Q

Λ1

Λ2μν
0 ; ð3:56Þ

and orthogonality of states

jQΛ1

Λ2;μν
i ¼ TrV⊗k

N
ðQΛ1

Λ2;μν
ða†Þ⊗kÞ ð3:57Þ

follows from the form of the inner product (3.31). The
proof goes as follows

hQΛ1

Λ2;μν
jQΛ0

1

Λ0
2
;μ0ν0 i ¼

X
τ∈Sk

TrV⊗k
N
ðQΛ1

Λ2;μν
τðQΛ0

1

Λ0
2
;μ0ν0 ÞTτ−1Þ;

¼
X
τ∈Sk

TrV⊗k
N
ðQΛ1

Λ2;μν
τQ

Λ0
1

Λ0
2
;ν0μ0τ

−1Þ;

¼ k!TrV⊗k
N
ðQΛ1

Λ2;μν
Q

Λ0
1

Λ0
2
;ν0μ0 Þ;

¼ k!δΛ1Λ0
1δΛ2Λ0

2
δνν0TrV⊗k

N
ðQΛ1

Λ2;μμ0
Þ: ð3:58Þ

In the second equality we used ðQΛ0
1

Λ0
2
;μ0ν0 ÞT ¼ Q

Λ0
1

Λ0
2
;ν0μ0 which

follows from Eq. (A25). Note that

TrV⊗k
N
ðQΛ1

Λ2;μμ0
Þ ¼ TrV⊗k

N
ðQΛ1

Λ2;μ1
QΛ1

Λ2;1μ0
Þ;

¼ TrV⊗k
N
ðQΛ1

Λ2;1μ0
QΛ1

Λ2;μ1
Þ;

¼ δμμ0TrV⊗k
N
ðQΛ1

Λ2;11
Þ;

¼ δμμ0N Λ1Λ2
; ð3:59Þ

such that the normalization [see Eq. (A66)]

N Λ1Λ2
¼ DimVSN

Λ1
DimVSk

Λ2
; ð3:60Þ

only depends on irreducible representations Λ1, Λ2, which
proves orthogonality.
To summarize, we have shown that there exists an

orthogonal basis for Hinv
ðkÞ labeled by representation

theoretic data, for arbitrary N ≥ 2k, using Fourier trans-
forms on semisimple algebras. In Appendix A we provide
the detailed proofs of these results. In the next section we
will provide explicit formulas for the change of basis from
the diagram basis to the basis of matrix units. We leave
the elucidation of finite N effects (the case N < 2k which
lies beyond the stable limit) in the representation basis for
future work.

IV. REPRESENTATION BASIS AND
ALGEBRAIC CHARGES

In this section we discuss the construction of the
representation basis elementsQΛ1

Λ2;μν
as linear combinations

of diagrams in PkðNÞ. These can, in principle, be computed
using Eq. (3.55) by first computing the branching coef-
ficients. The computation of these requires explicit choices

of basis in the representations VPkðNÞ
Λ1

and VC½Sk�
Λ2

. Such

choices can be bypassed. The basic idea is to find theQΛ1

Λ2;μν

as eigenvectors of appropriate elements of PkðNÞ which
can be viewed as operators on PkðNÞ acting by the algebra
multiplication. The subspaces labeled by Λ1, Λ2, associated
with irreducible representations of SN and Sk, respectively,
are identified using central elements (Casimirs) in the group
algebras C½SN � and C½Sk�. These Casimirs can be expressed
as elements of PkðNÞ using Schur-Weyl duality. This is
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particularly useful in the large N limit where k is kept fixed
and N ≫ k, since the dimension of PkðNÞ does not grow
with N. The more refined determination of subspaces
labeled by μ and ν is achieved by picking noncentral
elements of PkðNÞ which nevertheless generate a max-
imally commuting subalgebra.
We explicitly construct the change of basis for the special

cases of degree k ¼ 1, 2, 3. Tables of these basis elements
are found in Appendix C. The expansion coefficients
are given as functions of N and are therefore valid for
all N ≥ 2k.
Analogous constructions in multimatrix systems with

continuous gauge symmetry, relevant to AdS=CFT, are
given in [62,89]. They also played a role, using develop-
ments in tensor models with UðNÞ symmetries, in [90]
in giving a combinatorial interpretation of Kronecker
coefficients.

A. Central elements in the partition algebra

For a fixed pair Λ1, Λ2, the linear span of QΛ1

Λ2;μν
for

μ; ν ¼ 1;…;DimVPkðNÞ→C½Sk�
Λ1Λ2

forms a subspace of SPkðNÞ.
We will now describe how this subspace can be identified
with simultaneous eigenspaces of Casimirs associated with
C½SN � and C½Sk�.
First, we will define Casimirs of C½SN �, and explain their

relation to PkðNÞ. The center ZðC½SN �Þ of C½SN � consists
of elements

ZðC½SN �Þ¼fz∈C½SN �∶ zσ¼σz; ∀ σ∈C½SN �g: ð4:1Þ

Elements in the center are called central elements. For a
central element z, the homomorphism property of repre-
sentations implies

LðzÞLðσÞ ¼ LðσÞLðzÞ; ∀ σ ∈ SN; ð4:2Þ

and it follows that LðzÞ is an element of the algebra of
operators acting on V⊗k

N which commutes with SN . This
algebra is denoted EndSN ðV⊗k

N Þ.
As we reviewed in the previous section, PkðNÞ ≅

EndSN ðV⊗k
N Þ for N ≥ 2k. This establishes a connection

between ZðC½SN �Þ and PkðNÞ as linear operators acting on

V⊗k
N . In particular, for every z ∈ ZðC½SN �Þ, there exists an

element z̄ ∈ PkðNÞ defined by

z̄ðei1⊗…⊗eikÞ ¼ LðzÞðei1⊗…⊗eikÞ: ð4:3Þ

Note that the definition of z̄ depends on k. Further, observe
that

LðzÞdðei1⊗…⊗eikÞ ¼ dLðzÞðei1⊗…⊗eikÞ; ð4:4Þ

for all d ∈ PkðNÞ because PkðNÞ and C½SN � are mutual
commutants in EndðV⊗k

N Þ. This implies that z̄ is automati-
cally in the center of PkðNÞ, which we denoteZðPkðNÞÞ. In
other words, Eq. (4.3) defines a homomorphism from
ZðC½SN �Þ to ZðPkðNÞÞ. As a particular case of being
central in PkðNÞ, z̄ commutes with C½Sk� ⊂ PkðNÞ.
Central elements play a special role in representation

theory. Schur’s lemma implies that an irreducible matrix
representation of a central element is proportional to the
identity matrix. The proportionality constant is a normal-
ized character. In particular we have

DΛ1

abðzÞ ¼ χ̂Λ1ðzÞδab; ð4:5Þ

where we have introduced the short-hand

χ̂Λ1ðzÞ ¼ χΛ1ðzÞ
DimVSN

Λ1

ð4:6Þ

for normalized characters. In this sense central elements are
Casimirs, they act by constants on irreducible subspaces,
and the constants can be used to determine the particular
representation.
The element of C½SN � formed by summing over all

elements in a distinct conjugacy class of SN is central. For
example, we define the element T2 ∈ ZðC½SN �Þ as

T2 ¼
X

1≤i<j≤N
ðijÞ; ð4:7Þ

where the sum is over all transpositions. By the argument in

the previous paragraph, there exists an element T̄ðkÞ
2 ∈

ZðPkðNÞÞ such that

ð4:8Þ
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As we will explain, the eigenvalues of the central element

T̄ðkÞ
2 can be used to distinguish the label Λ1 on matrix units.

Since T̄ðkÞ
2 is an element of SPkðNÞ, it has an expansion in

terms of diagrams [see Eq. (3.32), Theorem 3.35 in [75] ]

T̄ðkÞ
2 ¼

X
π∈Π2k

ðT̄ðkÞ
2 Þπdπ: ð4:9Þ

The equality in (4.8) implies a radical simplification for
large N. The element T2 contains order N2 transpositions,

while T̄ðkÞ
2 contains at most Bð2kÞ diagrams. The depend-

ence on N is incorporated in the coefficients ðT̄ðkÞ
2 Þπ , which

are polynomial functions of N. Explicit examples are in
(4.34), (4.39), and (4.47).

There exist similar elements tðkÞ2 ∈ZðC½Sk�Þ⊂ZðPkðNÞÞ
defined by summing over transposition diagrams. For
example,

ð4:10Þ

The eigenvalues of tðkÞ2 will be used to distinguish the
label Λ2.
Equation (4.8) together with Eq. (4.5) gives

DΛ1

αβðT̄ðkÞ
2 Þ ¼ χΛ1ðT̄ðkÞ

2 Þ
DimVPkðNÞ

Λ1

δαβ ¼ χ̂Λ1ðT2Þδαβ; ð4:11Þ

where the distinction between the two characters is

χΛ1ðT̄ðkÞ
2 Þ ¼

XDimV
PkðNÞ
Λ1

α¼1

DΛ1
ααðT̄ðkÞ

2 Þ; and

χΛ1ðT2Þ ¼
XDimV

SN
Λ1

a¼1

DΛ1
aaðT2Þ: ð4:12Þ

That is, the first character is a character of PkðNÞ, the
second is a character of C½SN �. Similarly,

DΛ2
pqðtðkÞ2 Þ ¼ χ̂Λ2ðtðkÞ2 Þδpq; ð4:13Þ

where

χ̂Λ2ðtðkÞ2 Þ ¼ χΛ2ðtðkÞ2 Þ
DimVSk

Λ2

: ð4:14Þ

Normalized characters of T2 and t
ðkÞ
2 can be expressed in

terms of combinatorial quantities (known as the contents)
of boxes of Young diagrams (see example 7 in Sec. I. 7 of
[91]). Let YΛ1

; YΛ2
be the Young diagrams corresponding to

integer partitions Λ1 ∈ YSðkÞ;Λ2⊢k. Then

χ̂Λ1ðT2Þ¼
X

ði;jÞ∈YΛ1

ðj− iÞ; χ̂Λ2ðtðkÞ2 Þ¼
X

ði;jÞ∈YΛ2

ðj− iÞ;

ð4:15Þ

where ði; jÞ corresponds to the cell in the ith row and jth
column of the Young diagram [the top left box has
coordinate (1,1)].
With the above facts at hand, we can understand how the

Λ1, Λ2 labels correspond to eigenvalues of T̄ðkÞ
2 ; tðkÞ2 . As we

prove in Appendix A 3 the PkðNÞ matrix units have the
property

dQΛ1

αβ ¼
X
γ

DΛ1
γα ðdÞQΛ1

γβ ; for d ∈ PkðNÞ; ð4:16Þ

and therefore

QΛ1

αβ T̄
ðkÞ
2 ¼ T̄ðkÞ

2 QΛ1

αβ ¼
X
γ

DΛ1
γα ðT̄ðkÞ

2 ÞQΛ1

γβ ¼ χ̂Λ1ðT2ÞQΛ1

αβ :

ð4:17Þ

We derive a similar equation for tðkÞ2 acting on QΛ1

Λ2;μν
using

the definition in (3.55). From the definition we have

tðkÞ2 QΛ1

Λ2;μν

¼
X
α;β;p

tðkÞ2 QΛ1

αβB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

;

¼
X

α;β;γ;γ0;p

DΛ1
γα ðtðkÞ2 Þδγγ0QΛ1

γ0βB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

:

ð4:18Þ

We rewrite the Kronecker delta using the completeness
relation

X
Λ0
2
;p0;μ0

BPkðNÞ→C½Sk�
Λ1;γ→Λ0

2
;p0;μ0B

PkðNÞ→C½Sk�
Λ1;γ0→Λ0

2
;p0;μ0 ¼ δγγ0 : ð4:19Þ

Inserting this into (4.18) gives
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X
α;β;γ;γ0;p

DΛ1
γα ðtðkÞ2 Þδγγ0QΛ1

γ0βB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

¼
X

α;β;γ;γ0;p

X
Λ0
2
;p0;μ0

DΛ1
γα ðtðkÞ2 ÞBPkðNÞ→C½Sk�

Λ1;γ→Λ0
2
;p0;μ0B

PkðNÞ→C½Sk�
Λ1;γ0→Λ0

2
;p0;μ0Q

Λ1

γ0βB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

: ð4:20Þ

Now note that

X
γ;α

DΛ1
γα ðtðkÞ2 ÞBPkðNÞ→C½Sk�

Λ1;γ→Λ0
2
;p0;μ0B

PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

¼ δΛ2Λ0
2
δμ0μD

Λ2

p0pðtðkÞ2 Þ ¼ δΛ2Λ0
2
δμ0μδp0pχ̂

Λ2ðtðkÞ2 Þ: ð4:21Þ

We substitute this into (4.20) and find

X
α;β;γ;γ0;p

X
Λ0
2
;p0;μ0

DΛ1
γα ðtðkÞ2 ÞBPkðNÞ→C½Sk�

Λ1;γ→Λ0
2
;p0;μ0B

PkðNÞ→C½Sk�
Λ1;γ0→Λ0

2
;p0;μ0Q

Λ1

γ0βB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

¼
X
β;γ0;p

X
Λ0
2
;p0;μ0

δΛ2Λ0
2
δμ0μδp0pχ̂

Λ2ðtðkÞ2 ÞBPkðNÞ→C½Sk�
Λ1;γ0→Λ0

2
;p0;μ0Q

Λ1

γ0βB
PkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

¼
X
β;γ0;p

χ̂Λ2ðtðkÞ2 ÞQΛ1

γ0βB
PkðNÞ→C½Sk�
Λ1;γ0→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

¼ χ̂Λ2ðtðkÞ2 ÞQΛ1

Λ2;μν
; ð4:22Þ

which proves the analog of (4.17) in the case of tðkÞ2 .

We define linear operators on SPkðNÞ using multipli-

cation by T̄ðkÞ
2 ; tðkÞ2

T̄ðkÞ
2 ðQΛ1

Λ2;μν
Þ ¼ T̄ðkÞ

2 QΛ1

Λ2;μν
¼ χ̂Λ1ðT2ÞQΛ1

Λ2;μν
; ð4:23Þ

and

tðkÞ2 ðQΛ1

Λ2;μν
Þ ¼ tðkÞ2 QΛ1

Λ2;μν
¼ χ̂Λ2ðtðkÞ2 ÞQΛ1

Λ2;μν
: ð4:24Þ

That is, the matrix units for SPkðNÞ are eigenvectors of the
linear operators associated with T̄ðkÞ

2 ; tðkÞ2 . The eigenvalues
are sufficient to determine the subspaces labeled by
irreducible representations Λ1, Λ2 for k ¼ 1, 2, 3 and
general N. As discussed in detail in [89], a larger set of
central elements is needed to distinguish different pairs Λ1,
Λ2 for general k and N.

B. Multiplicity labels and maximal
commuting subalgebras

In the previous subsection we described how the sub-
space spanned by QΛ1

Λ2;μν
for fixed Λ1, Λ2 is a simultaneous

eigenspace of central elements T̄ðkÞ
2 ; tðkÞ2 . The subspaces

labeled by fixed μ, ν are not eigenspaces of any central
elements of SPkðNÞ. Nevertheless, they are eigenspaces of
elements that (multiplicatively) generate a maximal com-
mutative subalgebra of SPkðNÞ.
We illustrate this in the simple case of a single matrix

algebra. This is directly relevant, because the matrix units

QΛ1

Λ2;μν
form (are isomorphic to) a matrix algebra Mn with

n ¼ DimVPkðNÞ→C½Sk�
Λ1Λ2

, for fixed Λ1, Λ2. The matrix algebra
Mn has a basis of matrix units Ers for r; s ¼ 1;…; n.
These are just the elementary matrices with zeroes
everywhere except in row r, column s where there is a
one. In this explicitly realized algebra, it is straightforward
to verify that

ErsEr0s0 ¼ δsr0Ers0 : ð4:25Þ

It follows from Eq. (4.25) that

EttErs ¼ δtrEts ¼
�
Ers if r ¼ t

0 otherwise
: ð4:26Þ

This fact will be useful in what follows.
We will now define a pair of linear operators acting on

Mn whose eigenvalues uniquely determine the indices r, s
on Ers. Let

T ¼ 1E11 þ 2E22 þ � � � þ nEnn; ð4:27Þ

and TL, TR be the linear operators on Mn defined by left
and right action of T, respectively,

TLðErsÞ ¼ TErs; TRðErsÞ ¼ ErsT: ð4:28Þ

The n2 × n2 matrix ðTLÞturs associated with the linear
operator TL has eigenvalues f1; 2;…; ng (each one is
n-fold degenerate) with eigenvectors Ers,
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X
t;u

ðTLÞtursEtu ¼ TLðErsÞ ¼ rErs: ð4:29Þ

Similarly for the matrix ðTRÞturs associated with the linear
operator TR,

X
t;u

ðTRÞtursEtu ¼ TRðErsÞ ¼ sErs: ð4:30Þ

The operators TL and TR commute, and their simultaneous
eigenvectors Ers have eigenvalues r and s, respectively.
The algebra spanned by fE11; E22;…; Enng is a maximal

commuting subalgebra of Mn. It is multiplicatively gen-
erated by T. In particular (see Lemma 3.3.1 of [89] or
Lemma 2.1 of [92])

Err ¼
Y
s≠r

ðT − sÞ
ðr − sÞ : ð4:31Þ

These ideas generalize to QΛ1

Λ2;μν
, and in the next section

we will give the appropriate operators corresponding to TL,
TR for SP2ðNÞ.

C. Construction of low degree representation bases

We now use the tools presented in this section to
explicitly construct the representation basis elements as
sums of diagrams, for k ¼ 1, 2, 3 and large N. Tables of the
representation basis elements expanded in terms of dia-
grams are found in Appendix C. The associated Sage code
can be found together with the arXiv version of this paper.

1. Degree one basis

For k ¼ 1 it is enough to use T̄2
ð1Þ to distinguish the

irreducible representations. We expect to find matrix units

Q½N�
½1� ; Q

½N−1;1�
½1� ; ð4:32Þ

since S1 only has the trivial representation and the
decomposition in (3.35) only contains irreducible repre-
sentations [N] and [N − 1, 1] of P1ðNÞ.
The map

T2 ↦ T̄ð1Þ
2 ð4:33Þ

is given by [see the section called Murphy elements for
CAkðNÞ in [75] ]

ð4:34Þ

It is straightforward to diagonalize T̄ð1Þ
2 acting on P1ðNÞ

from the left. We define

ð4:35Þ

and they satisfy

Q½N�
½1� Q

½N−1;1�
½1� ¼0; Q½N�

½1� Q
½N�
½1� ¼Q½N�

½1� ;

Q½N−1;1�
½1� Q½N−1;1�

½1� ¼Q½N−1;1�
½1� ð4:36Þ

and have eigenvalues

T̄ð1Þ
2 Q½N�

½1� ¼
NðN − 1Þ

2
Q½N�

½1� ;

T̄ð1Þ
2 Q½N−1;1�

½1� ¼ NðN − 3Þ
2

Q½N−1;1�
½1� ; ð4:37Þ

which are exactly equal to the normalized characters. Note

that S1 has no nontrivial representations, and tð1Þ2 ¼ 0,

which is consistent with the normalized character kðk−1Þ
2

¼ 0

of the trivial representation.
The orthogonal basis elements forHinv

ð1Þ, corresponding
to these matrix units, are

jQ½N�
½1� i ¼

1

N

X
i1;i10

ða†Þi10i1 j0i and

jQ½N−1;1�
½1� i ¼

X
i1

ða†Þi1i1 −
1

N

X
i1;i10

ða†Þi10i1 j0i: ð4:38Þ

2. Degree two basis

The procedure was particularly easy at degree one
because S1 is trivial, and there are no multiplicities
appearing. For k ¼ 2 we have the sign representation
[1, 1] and the trivial representation ½2� of S2, and pairs
of irreducible representations Λ1, Λ2 appear with multi-
plicity larger than one. To distinguish multiplicities we will
have to introduce noncentral elements, as discussed in
Sec. IV B.
At degree two, the partition algebra element we use to

distinguish Λ1 is [75]
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ð4:39Þ

As a linear map (acting on the left or right) on P2ðNÞ, it has
eigenvalues

T̄ð2Þ
2 ðQ½N�

Λ2;μν
Þ ¼ NðN − 1Þ

2
Q½N�

Λ2;μν
;

T̄ð2Þ
2 ðQ½N−1;1�

Λ2;μν
Þ ¼ NðN − 3Þ

2
Q½N−1;1�

Λ2;μν
;

T̄ð2Þ
2 ðQ½N−2;2�

Λ2;μν
Þ ¼ ðN − 1ÞðN − 4Þ

2
Q½N−2;2�

Λ2;μν
;

T̄ð2Þ
2 ðQ½N−2;1;1�

Λ2;μν
Þ ¼ NðN − 5Þ

2
Q½N−2;1;1�

Λ2;μν
: ð4:40Þ

The element we use to distinguish Λ2 is

ð4:41Þ

The eigenvalues of the corresponding linear map are 1 for
½2� and −1 for [1, 1].
The noncentral element we will use to distinguish

multiplicities is

ð4:42Þ

It is closely related to T̄ð1Þ
2 ∈ ZðP1Þ in Eq. (4.34) because

ð4:43Þ

Roughly speaking, T̄ð2Þ
2;1 comes from the embedding of T̄ð1Þ

2

into SP2ðNÞ by adding strands. Symmetrization has been
used to ensure that we have an element in SP2ðNÞ.
To determine the multiplicity labels we need to act from

the left as well as the right using T̄ð2Þ
2;1. We define T̄ð2Þ;L

2;1 and

T̄ð2Þ;R
2;1 acting on d ∈ P2ðNÞ by

T̄ð2Þ;L
2;1 d ¼ T̄ð2Þ

2;1d; T̄ð2Þ;R
2;1 d ¼ dT̄ð2Þ

2;1: ð4:44Þ

Appendix C gives a representation theoretic argument
for why these operators fully distinguish all labels on
matrix units, together with a complete table of all k ¼ 2
matrix units. As an example, we find a matrix unit
[see (C30)]

ð4:45Þ

which corresponds to the (unnormalized) SN invariant state

jðQ½N−2;1;1�
½1;1� Þ22i ¼

2

N

� XN
i;j;k¼1

½ða†Þiiða†Þjk − ða†Þjiða†Þik� þ
XN
i;j¼1

½ða†Þijða†Þji − ða†Þiiða†Þjj�
�
j0i: ð4:46Þ

3. Degree three basis

The multiplicity free matrix units for k ¼ 3 have Λ1 ¼ ½N − 3; 3�; ½N − 3; 2; 1�; ½N − 3; 1; 1; 1�. To find the corresponding
linear combinations of diagrams it is sufficient to find eigenvectors of T̄ð3Þ

2 defined by

ð4:47Þ
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with eigenvalues

T̄ð3Þ
2 ðQ½N−3;3�

Λ2;μν
Þ ¼ ðN − 3ÞðN − 4Þ

2
Q½N−3;3�

Λ2;μν
;

T̄ð3Þ
2 ðQ½N−3;2;1�

Λ2;μν
Þ ¼ ðN − 1ÞðN − 6Þ

2
Q½N−3;2;1�

Λ2;μν
;

T̄ð3Þ
2 ðQ½N−3;1;1;1�

Λ2;μν
Þ ¼ NðN − 7Þ

2
Q½N−3;1;1;1�

Λ2;μν
: ð4:48Þ

The square brackets in (4.47) denote S3 symmetrization as
in Eq. (3.24). Explicit expansions of these matrix units in
terms of diagrams are given in Appendix C.

V. EXACTLY SOLVABLE PERMUTATION
INVARIANT MATRIX HARMONIC OSCILLATOR

The simplest quantum mechanical matrix Hamiltonian
we considered in Sec. II is invariant under the symmetric
group action

σ∶Xij → XσðiÞσðjÞ; ∀ σ ∈ SN: ð5:1Þ

It is also invariant under the much larger symmetry of
continuous transformations by UðN2Þ. In this section we
generalize the quadratic potential to the most general
quadratic function VðXÞ invariant under the above permu-
tation symmetry. We will thus present a quantum mechani-
cal model of N2 matrix variables Xij in a permutation
invariant quadratic potential VðXÞ. The most general
permutation invariant quadratic action in a zero-
dimensional matrix model was constructed in [28] using
representation theory. Borrowing these techniques, we
explicitly construct an 11 parameter family of permutation
invariant quadratic potentials. The corresponding
Hamiltonian is exactly diagonalizable. In general, the
diagonalization only involves diagonalizing a 3 × 3 sym-
metric matrix and a 2 × 2 symmetric matrix. We describe
the spectrum of the full Hamiltonian and discuss the
degeneracy when the quanta of energy are generic, and
when they satisfy integrality properties. In the former case
we are able to give a lower bound on the order of the
degeneracy, this is given in Eq. (5.35). In the latter case, the
degeneracy can be phrased in terms of an integer partition
problem. The integer partition problem has a solution in
terms of a canonical partition function (generating func-
tion) given by Eq. (5.38). We end this section in V D with a
brief discussion of the role that the representation basis
could play in simplifying the diagonalization ofH, given in
Eq. (5.27), on Hinv.

A. Construction

A matrix harmonic oscillator in a potential is described
by the Lagrangian

L ¼ 1

2

XN
i;j¼1

∂tXij∂tXij −
1

2
VðXÞ: ð5:2Þ

We take the potential to be a general quadratic SN
(permutation) invariant potential

VðXijÞ ¼ VðXσðiÞσðjÞÞ: ð5:3Þ

The action of SN on Xij defined in (5.3) corresponds to the
diagonal action on the tensor product VN⊗VN . This is
given in (3.6) for general k, for the k ¼ 2 case at hand
we have

Lðσ−1Þðei⊗ejÞ ¼ eσðiÞ⊗eσðjÞ: ð5:4Þ

The vector space VN⊗VN is reducible with respect to the
diagonal action. There exists an isomorphism

VN⊗VN ≅ 2VSN
½N� ⊕ 3VSN

½N−1;1� ⊕ VSN
½N−2;2� ⊕ VSN

½N−2;1;1�

ð5:5Þ

into irreducible subspaces. The representation VSN
½N� is the

one-dimensional trivial representation of SN . The repre-
sentations VSN

½N−1;1�; V
SN
½N−2;2�; V

SN
½N−2;1;1� are nontrivial irreduc-

ible representations of SN , labeled by integer partitions of
N. Detailed descriptions, including explicit constructions
of irreducible representations of SN can be found in [53,93].
The dimensions of the nontrivial irreducible representations
in (5.5) are, respectively,

N − 1; ðN − 1ÞðN − 2Þ=2; NðN − 3Þ=2: ð5:6Þ

We take the rhs of the isomorphism (5.5) to be a vector
space with orthonormal basis XΛ;α

a labeled by

Λ ∈ f½N�; ½N − 1; 1�; ½N − 2; 2�; ½N − 2; 1; 1�g;
a ∈ f1;…;DimVSN

Λ g;
α ∈ f1;…;MultðVN⊗VN → VSN

Λ Þg: ð5:7Þ

By definition the Clebsch-Gordan coefficients CΛ;α
a;ij are the

matrix elements of the equivariant map between the two
sides of Eq. (5.5),

XΛ;α
a ¼

X
i;j

CΛ;α
a;ijXij: ð5:8Þ

As a consequence, they have the following property

X
i;j

CΛ;α
a;ijXσ−1ðiÞσ−1ðjÞ ¼

X
b

DΛ
baðσÞXΛ;β

b ; ð5:9Þ
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where DΛðσÞ is an irreducible (unitary and real) matrix
representation of σ ∈ SN .
In the representation basis the potential has a simple

form,

VðXÞ ¼
X

Λ;α;β;a
XΛ;α
a gΛαβX

Λ;β
a ; ð5:10Þ

where gΛαβ are symmetric matrices. To define a system with
energy bounded from below they are required to have non-
negative eigenvalues. Translating back to the original basis
gives

VðXÞ ¼
X

Λ;α;β;a

X
i;j;k;l

CΛ;α
a;ijg

Λ
αβC

Λ;β
a;klXijXkl: ð5:11Þ

We define the tensors

QΛ;αβ
ijkl ¼

X
a

CΛ;α
a;ijC

Λ;β
a;kl ð5:12Þ

and write the potential VðXÞ as

VðXÞ ¼
X
Λ;α;β

X
i;j;k;l

QΛ;αβ
ijkl g

Λ
αβXijXkl: ð5:13Þ

The tensors QΛ;αβ
ijkl are known explicitly [28]. For example,

Q½N�;11
ijkl ¼ 1

N2
; ð5:14Þ

Q½N�;22
ijkl ¼ 1

N − 1

�
δijδkl −

1

N
δij −

1

N
δkl −

1

N2

�
: ð5:15Þ

Their construction using Clebsch-Gordan coefficients
means that they satisfy

QΛ;αβ
σðiÞσðjÞσðkÞσðlÞ ¼ QΛ;αβ

ijkl : ð5:16Þ

This follows from the equivariance property (5.9)

QΛ;αβ
σðiÞσðjÞσðkÞσðlÞ ¼

X
a

CΛ;α
a;σðiÞσðjÞC

Λ;β
a;σðkÞσðlÞ

¼
X
a;b;c

CΛ;α
b;ijC

Λ;β
c;klD

Λ
abðσÞDΛ

acðσÞ;

¼
X
b;c

CΛ;α
b;ijC

Λ;β
c;klδbc ¼ QΛ;αβ

ijkl : ð5:17Þ

Going to the second line uses DΛ
abðσÞ ¼ DΛ

baðσ−1Þ which
follows from the fact that representation matrices for SN
can be chosen to real and unitary, i.e. orthogonal matrices.

B. Spectrum

The full Hamiltonian with quadratic potential given
in (5.13) can be diagonalized using oscillators. We will
see that diagonalizing the Hamiltonian only requires the
diagonalization of a set of small parameter matrices (one
3 × 3 and another 2 × 2), despite having a potentially large
number of harmonic oscillators (N2).
The full Lagrangian in the representation basis is

L ¼
X

Λ;α;β;a
δαβ∂tX

Λ;α
a ∂tX

Λ;β
a − XΛ;α

a gΛαβX
Λ;β
a : ð5:18Þ

It describes a set of coupled harmonic oscillators. We write
the Lagrangian in decoupled form in the usual way. Let
ΩΛ

αβ ¼ ðωΛ
α Þ2δαβ be the diagonal matrix1 such that

gΛαβ ¼
X
γ;δ

UΛ
αγΩΛ

γδU
Λ
βδ; ð5:19Þ

where UΛ is orthogonal change of basis matrices. In the
decoupled basis

SΛ;αa ¼
X
β

XΛ;β
a UΛ

βα; ð5:20Þ

we have

L ¼
X
Λ;α;a

1

2
∂tS

Λ;α
a ∂tS

Λ;α
a −

1

2
ðωΛ

α Þ2SΛ;αa SΛ;αa : ð5:21Þ

The canonical momenta are given by

ΣΛ;α
a ¼ ∂tS

Λ;α
a : ð5:22Þ

The new canonical coordinates satisfy

½ΣΛ;α
a ; SΛ

0;β
b � ¼ iδΛΛ

0
δαβδab; ð5:23Þ

since UΛ are orthogonal matrices.
The corresponding Hamiltonian,

H ¼ 1

2

X
Λ;α;a

ΣΛ;α
a ΣΛ;α

a þ ðωΛ
α Þ2SΛ;αa SΛ;αa ; ð5:24Þ

is diagonalized by introducing oscillators

1We assume the eigenvalues are positive such that the spectrum
of the Hamiltonian is bounded from below. Therefore, we may
write the eigenvalues as squares without loss of generality.
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SΛ;αa ¼
ffiffiffiffiffiffiffiffiffi
1

2ωΛ
α

s
ððA†ÞΛ;αa þ AΛ;α

a Þ;

ΣΛ;α
a ¼ i

ffiffiffiffiffiffi
ωΛ
α

2

r
ððA†ÞΛ;αa − AΛ;α

a Þ; ð5:25Þ

which satisfy

½AΛ;α
a ; ðA†ÞΛ0;α0

a0 � ¼ δΛΛ
0
δαα

0
δaa0 : ð5:26Þ

In the oscillator basis, the normal ordered Hamiltonian has
the form

H ¼
X
Λ;α;a

ωΛ
α ðA†ÞΛ;αa AΛ;α

a : ð5:27Þ

Defining number operators N̂Λ;α
a and N̂Λ;α:

N̂Λ;α
a ¼ ðA†ÞΛ;αa AΛ;α

a ; ð5:28Þ

N̂Λ;α ¼
X
a

N̂Λ;α
a ; ð5:29Þ

we may write

H ¼
X
Λ;α;a

N̂Λ;α
a ¼

X
Λ;α

N̂Λ;α: ð5:30Þ

The energy quanta ωΛ
α do not depend on the oscillator state

index a. This is a manifestation of the SN invariance of the
Hamiltonian H.

The Hilbert space HðkÞ has a basis of energy eigenstates

Y
Λ∈f½N�;½N−1;1�;½N−2;2�;½N−2;1;1�g
α∈f1;…MultðVN⊗VN→V

SN
Λ Þg

a∈f1;…;DimV
SN
Λ g

½ðA†ÞΛ;αa �NΛ;α
affiffiffiffiffiffiffiffiffiffiffi

NΛ;α
a !

p j0i; ð5:31Þ

where k ¼PΛ;α;a N
Λ;α
a is the eigenvalue of the (total)

number operator

N̂ ¼
X
Λ;α;a

N̂Λ;α
a ; ð5:32Þ

and NΛ;α
a is the eigenvalue of N̂Λ;α

a .
Since the Hamiltonian (5.27) is a linear combination of

number operators N̂Λ;α, it is natural to organize HðkÞ into
eigenspaces of N̂Λ;α with eigenvalues NΛ;α ¼Pa N

Λ;α
a

satisfying k ¼PΛ;α N
Λ;α. Diagonalizing the number oper-

ators N̂Λ;α organizes HðkÞ into subspaces

HðkÞ ≅ ⨁
ΣNΛ;α¼k

⊗
Λ;α

H½NΛ;α�; ð5:33Þ

where

H½NΛ;α� ≅ SymNΛ;αðVSN
Λ Þ: ð5:34Þ

Each summand in (5.33) is a vector space of dimension

Dim
�⊗
Λ;α

H½NΛ;α�
�
¼
Y
Λ;α

�
DimVSN

Λ þ NΛ;α − 1

NΛ;α

�

¼
�
1þ N½N�;1 − 1

N½N�;1

��
1þ N½N�;2 − 1

N½N�;2

�

×

�
N − 1þ N½N−1;1�;1 − 1

N½N−1;1�;1

��
N − 1þ N½N−1;1�;2 − 1

N½N−1;1�;2

��
N − 1þ N½N−1;1�;3 − 1

N½N−1;1�;3

�

×

� ðN − 1ÞðN − 2Þ=2þ N½N−2;2� − 1

N½N−2;2�

��
NðN − 3Þ=2þ N½N−2;1;1� − 1

N½N−2;2�

�

¼
�
N − 2þ N½N−1;1�;1

N½N−1;1�;1

��
N − 2þ N½N−1;1�;2

N½N−1;1�;2

��
N − 2þ N½N−1;1�;3

N½N−1;1�;3

�

×
�
NðN − 3Þ=2þ N½N−2;2�

N½N−2;2�

��
NðN − 3Þ=2 − 1þ N½N−2;1;1�

N½N−2;2�

�
: ð5:35Þ

The vectors in ⊗
Λ;α

H½NΛ;α� have energy
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EðfNΛ;αgÞ ¼
X
Λ;α

NΛ;αωΛ
α : ð5:36Þ

Equation (5.35) thus gives the degeneracy of energy
eigenstates for the specified integers fNΛ;αg, associated
with Λ, α as given in (5.7). This puts a lower bound on the
degeneracy of energy eigenstates. Further degeneracy may
occur for particular choices of the constants ωΛ

α , which can
lead to the same numerical value of EðfNΛ;αgÞ for different
choices of fNΛ;αg.

C. Canonical partition function

The canonical partition function is defined as

ZðβÞ ¼ TrHe−βH ¼
X
E

NðEÞe−βE ; ð5:37Þ

where NðEÞ is the degeneracy of eigenstates at energy E
and β is the inverse temperature.
The binomial factors in (5.35) arise in the expansion of

simple rational functions. Defining x ¼ e−β for conven-
ience, we can therefore write

ZðβÞ ¼ 1

ð1− xω
½N�
1 Þð1− xω

½N�
2 Þ

×
1

ð1− xω
½N−1;1�
1 ÞN−1ð1− xω

½N−1;1�
2 ÞN−1ð1− xω

½N−1;1�
3 ÞN−1

×
1

ð1− xω
½N−2;2� ÞðN−1ÞðN−2Þ=2ð1− xω

½N−2;1;1� ÞNðN−3Þ=2 :

ð5:38Þ

When the quanta of energy (ωΛ
α ) in (5.27) are integers, the

possible state energies E are integers and NðEÞ is related to
what we refer to as an integer partition problem. The integer
partition problem is the following: Pick any integer E,
enumerate the set of solutions (choices of NΛ;α

a ) to

E ¼
X
Λ;α;a

NΛ;α
a ωΛ

α : ð5:39Þ

The number of solutions is equal toNðEÞ and a single solution
is denoted NΛ;α

a ðEÞ. This problem depends on N because
the state labela ranges over f1;…;DimVSN

Λ g. Fortunately the
N dependence can be factorized, due to the SN symmetry of
the problem, thus greatly simplifying the problem.
To see this, consider the N-independent integer partition

problem

E ¼
X
Λ;α

NΛ;αωΛ
α ; ð5:40Þ

where a solution is given by a list of seven integersNΛ;αðEÞ.
For every solution NΛ;αðEÞ to (5.40) the number of

solutions to the integer partition problem in (5.39) is
given by

Dim

�
⊗
Λ;α

H½NΛ;αðEÞ�
�
: ð5:41Þ

In this sense, the N dependence in the problem has
factorized: we only need to find solutions to the
N-independent equation (5.40) and multiply each solution
by a known N-dependent factor. The total number of
solutions to (5.39) is given by

X
NΛ;αðEÞ

Dim

�
⊗
Λ;α

H½NΛ;αðEÞ�
�
; ð5:42Þ

where the sum is over the set of solutions to (5.40).

D. Energy eigenbases

We have observed that the oscillator states constructed
using partition algebra diagram operators in tensor space
contracted with oscillators ða†Þji obeying (2.6) are eigen-
states of the simplest matrix Hamiltonian H0 in (2.7). By
contracting the representation basis elements in the parti-
tion algebra with the oscillators we produce quantum states

jQΛ1

Λ2;μν
i ¼ TrV⊗k

N
ðQΛ1

Λ2;μν
ða†Þ⊗kÞj0i; ð5:43Þ

which are eigenstates of H0 and also diagonalize algebraic
conserved charges.
The representation basis states are not eigenstates of

the general permutation invariant harmonic oscillator
Hamiltonians H in (5.24). There is mixing of the repre-
sentation basis labels ðΛ1;Λ2; μ; νÞ caused by the different
weights for the representations Λ appearing in the expan-
sion of the SN invariant harmonic oscillator Hamiltonian
defined in Eq. (5.27). We expect this mixing of the labels in
the ðΛ1;Λ2; μ; νÞ basis to be constrained, for example by
the SN Clebsch-Gordan decompositions of Λ⊗Λ1. Such
constrained mixing of representation theory bases for
matrix systems arises in Hamiltonians of interest in
AdS=CFT. A number of representation theory bases for
UðNÞ invariant multimatrix systems have been described
which capture information about finite N effects and are
eigenstates of the Hamiltonian (in radial quantization) in
the free Yang-Mills limit [58–63]. However, the one-loop
dilatation operator defines a nontrivial Hamiltonian which
is, in general, not diagonalized by these representation
theoretic bases (although there are some interesting excep-
tions to this statement, see [94]). Representation theoretic
constraints on the mixing caused by the one-loop dilatation
operator are described in [94–98], following earlier work
on one-loop mixings related to strings attached to giant
gravitons, e.g. [99,100].
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VI. ALGEBRAIC HAMILONIANS AND
PERMUTATION INVARIANT GROUND STATES

So far our discussion of SN invariant subspaces in
quantum mechanical matrix systems has largely (with
the exception of the previous section) been independent
of any choice of Hamiltonian acting on the Hilbert space. It
can be viewed as a general description of the kinematics of
SN invariance, independent of the dynamics determined by
the Hamiltonian. In this section we present HamiltoniansH
which realize the eigenspectrum scenarios depicted in
Fig. 1, this includes Hamiltonians for which the low energy
eigenstates are permutation invariant states.
The Hamiltonians we consider here preserve the SN

invariant subspace Hinv defined as

Hinv¼fjTi∈H s:t: AdðσÞjTi¼ jTi; ∀ σ∈SNg: ð6:1Þ

The adjoint action of permutations σ ∈ SN on the tensors T
labeling the states simultaneously transforms the upper
and lower indices of T according to (3.7). For any state
jTi ∈ Hinv the Hamiltonians H obey the condition

HjTi ∈ Hinv: ð6:2Þ

A sufficient condition forH to satisfy (6.2) is forH itself to
be SN invariant or ½AdðσÞ;H� ¼ 0 for all σ ∈ SN .
We will show how to construct Hamiltonians HK of this

type, depending on an integer parameter K, with a finite-
dimensional space of SN invariant ground states. Both the
energy gap between the ground states and the lowest
nonzero energy level, and the ground state degeneracy
depend on K in a way that is determined by the algebraic
construction. As sketched in the left-hand side of Fig. 1(a),
HK has an energy gap of order K. The construction of HK
can be viewed as including, in the Hamiltonian, central
elements in C½SN � acting on HðkÞ using AdðσÞ for k ≤ K.
This can be related to the action of elements of P2kðNÞ
acting on HðkÞ for k ≤ K. We will briefly mention some
analogies between the present construction and the phe-
nomenon of topological degeneracy which is widely
studied in condensed matter physics.
The ground state degeneracy of HK can be resolved by

adding a termHres, made from the central algebraic charges
discussed in Sec. IV. This breaks the degeneracy of the
invariant ground states as illustrated in the spectrum on the
right of Fig. 1(a). The representation basis jQΛ1

Λ2;μν
i pre-

sented in Sec. III C diagonalizes these Hamiltonians in the
invariant subspace, and the state energies depend on labels
Λ1, Λ2.
Multiplicity labels μ, ν are not distinguished by the

central algebraic charges. Distinguishing multiplicity labels
requires more general elements of PkðNÞ, as discussed in
Sec. IV B. Generalizing the construction of Hres naturally
leads to a large class of SN invariant Hamiltonians related to

the left action of elements of PkðNÞ, which can be used to
break the degeneracy associated with multiplicity labels.
Hamiltonians of this type can have nontrivial spectra, in
which invariant states are distributed across the energy
spectrum, with no discernible pattern of difference com-
pared to noninvariant states, as illustrated in Fig. 1(b).
The 11-parameter Hamiltonians in Sec. V typically have

such nontrivial spectra. Given the nontrivial index con-
tractions in (5.13),X

i;j;k;l

QΛ;αβ
ijkl XijXkl → ða†Þijakl QΛ;αβ

ijkl ; ð6:3Þ

these Hamiltonians are not of the kind involving only the
left action of PkðNÞ. Similarly, HK is not of this kind. This
implies that a more general construction of SN invariant
Hamiltonians exists. We give a description of this more
general construction, which involves elements of P2kðNÞ.
We end the section with a lattice interpretation of the matrix
oscillators. This sets us up for Sec. VII which concerns the
nontrivial interplay between the invariant sector and the
Hamiltonian and includes realizations based on the lattice
interpretation.

A. Partition algebra elements as quantum
mechanical operators

We now translate much of the discussion in Sec. IV into
the language of quantum mechanical operators on H.
Finding representation bases corresponds to the diagonal-
ization of commuting operators onH. Notably, elements of
SPkðNÞ naturally correspond to operators for fixed k, or
maps HðkÞ → HðkÞ. However, it will be useful to have
expressions for these fixed k operators in terms of oscil-
lators, which act on the entire Hilbert space H. These two
kinds of operators are related by projectors Pk∶ H → HðkÞ
to fixed k subspaces. We use this in the construction of
Hamiltonians in the remainder of Sec. VI.
For a general state jTi ∈ HðkÞ [see (2.20)] and element

½d� ∈ SPkðNÞ there is a corresponding operator defined as

½d�LjTi ¼ j½d�Ti ¼ jdTi; ð6:4Þ

where the superscript L stands for left action, and

ðdTÞi1…ik
i10…ik0

¼
X

j1;…;jk

di1…ik
j1…jk

Tj1…jk
i10…ik0

: ð6:5Þ

The second equality in (6.4) follows since

j½d�Ti ¼ TrV⊗k
N
ð½d�Tða†Þ⊗kÞj0i

¼ 1

k!

X
γ∈Sk

TrV⊗k
N
ðLγdLγ−1Tða†Þ⊗kÞj0i;

¼ TrV⊗k
N
ðdTða†Þ⊗kÞj0i ¼ jdTi; ð6:6Þ
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where LðσÞ is defined in Eq. (3.6). We have used
LγT ¼ TLγ together with Lγða†Þ⊗k ¼ ða†Þ⊗kLγ to go to
the second line. We may also define operators correspond-
ing to right action,

½d�RjTi ¼ jTdi: ð6:7Þ

We extend ½d�L to an operator onH, expressible in terms
of oscillators and projectors Pk∶ H → HðkÞ as

½d�L ¼ 1

k!
PkTrV⊗k

N
ðða†Þ⊗kda⊗kÞPk: ð6:8Þ

Similarly, we can extend ½d�R to an operator on H,

½d�R ¼ 1

k!
PkTrV⊗k

N
ðdða†Þ⊗ka⊗kÞPk: ð6:9Þ

In what follows we will prove results explicitly for the left
action. For the sake of brevity we omit the analogous proofs
for the right action.

The definition of Pk in the oscillator basis is

Pk0 ða†Þi1j1…ða†Þikjk j0i ¼ δkk0 ða†Þi1j1…ða†Þikjk j0i: ð6:10Þ

We now prove

1

k!
PkTrV⊗k

N
ðða†Þ⊗kda⊗kÞPkjTi ¼ jdTðkÞi; ð6:11Þ

where jTi ¼P∞
k¼0 jTðkÞi and jTðkÞi ∈ HðkÞ. The projector

immediately gives PkjTi ¼ jTðkÞi. It remains to prove

1

k!
PkTrV⊗k

N
ðða†Þ⊗kda⊗kÞjTðkÞi ¼ jdTðkÞi: ð6:12Þ

We prove this diagrammatically, using the state definition
in terms of diagrams (2.26)

ð6:13Þ

In the second equality we have moved all annihilation
operators past the creation operators, giving a sum over
contractions. The sum over γ ∈ Sk encodes the contractions
and in the second line we have straightened the diagram.
The last identification follows since Lγ−1T

ðkÞLγ ¼ TðkÞ.
Because jdTðkÞi ∈ HðkÞ we have PkjdTðkÞi ¼ jdTðkÞi,
which establishes the equality in (6.11).

As we now show, the Hermitian conjugate of the
operator ½dπ�L is ½dTπ �L, where dTπ is the element obtained
by flipping the diagram dπ horizontally. This follows from
the inner product

hT 0jTi ¼
X
γ∈Sk

TrV⊗k
N
ððT 0ÞTγTγ−1Þ; ð6:14Þ
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defined in (3.31) and

hT 0jdπTi ¼
X
γ∈Sk

TrV⊗k
N
ððT 0ÞTγdπTγ−1Þ

¼ k!TrV⊗k
N
ððT 0ÞTdπTÞ;

¼
X
γ∈Sk

TrV⊗k
N
ððdTπT 0ÞTγ−1TγÞ

¼ hdTπT 0jTi: ð6:15Þ

As operators onH, T2 ∈ ZðC½SN �Þ; T̄2 ∈ ZðPkðNÞÞ and
t2 ∈ ZðC½Sk�Þ can be written as oscillators. From the
definition of the action of T2 in (4.8) we have

TðkÞ;L
2 ≡ 1

k!
PkTrV⊗k

N
½ða†Þ⊗kLðT2Þa⊗k�Pk;

¼ 1

k!
Pk

X
σ¼ðijÞ

1≤i<j≤N

TrV⊗k
N
½ða†Þ⊗kLðσÞa⊗k�Pk;

¼ 1

k!
Pk

X
σ¼ðijÞ

1≤i<j≤N

X
i1…ik
i
10…ik0

ða†Þi10
σ−1ði1Þ…ða†Þik0

σ−1ðikÞa
i1
i10
…aikik0Pk:

ð6:16Þ

Similarly, the fixed k operators corresponding to T̄2 are

T̄2
ðkÞ;L ¼ 1

k!
PkTrV⊗k

N
½ða†Þ⊗kT2a⊗k�Pk;

¼ 1

k!
Pk

X
i1…ik
j1…jk
j
10…jk0

ða†Þi1i10…ða†Þikik0 ðT2Þi10…ik0
j1…jk

aj1i1…ajkikPk;

ð6:17Þ

where T2 can be expanded in in the diagram basis as in
(4.9). Finally, the fixed k operators corresponding to t2 are

tðkÞ;L2 ¼ 1

k!
Pk

X
τ¼ðijÞ

1≤i<j≤k

TrV⊗k
N
½ða†Þ⊗kLτ−1a

⊗k�Pk;

¼ 1

k!
Pk

X
τ¼ðijÞ

1≤i<j≤k

X
i1…ik
i
10…ik0

ða†Þi10iτð1Þ…ða†Þik0iτðkÞa
i1
i10
…aikik0Pk:

ð6:18Þ

These operators are Hermitian, because ðT2ÞT ¼ T2 and
ðt2ÞT ¼ t2, and consequently their eigenvectors with dis-
tinct eigenvalues are orthogonal. They are difficult to
diagonalize over the entirety of HðkÞ, since the dimension
grows asN2k forN ≫ k. But the diagonalization overHinv

k

is feasible since the dimension is bounded by Bð2kÞ, which
does not scale with N. Further simplification arises when
acting on states jdi ∈ Hinv

ðkÞ, since the action can be

formulated as multiplication in SPkðNÞ, thus bypassing
the computation of large index contractions. That is, for
jdi ∈ Hinv

k

T2
ðkÞ;Ljdi ¼ jT2di; ð6:19Þ

where the product T2
ðkÞd can be taken in PkðNÞ. It follows

that,

T2
ðkÞ;LjQΛ1

Λ2;μν
i ¼ jT2Q

Λ1

Λ2;μν
i ¼ χ̂Λ1ðT2ÞjQΛ1

Λ2;μν
i; ð6:20Þ

and similarly for tðkÞ;L2 .
The free Hamiltonian H0 in Eq. (2.3) is just the number

operator. The above operators conserve the number of
particles. Consequently,

½H0; T
ðkÞ;L
2 � ¼ ½H0; T2

ðkÞ;L� ¼ ½H0; t
ðkÞ;L
2 � ¼ 0; ð6:21Þ

and the corresponding charges are conserved.

B. Decoupling invariant sectors
and invariant ground states

We now present a Hermitian operator with algebraic
origin that can be used to control the energies of states
invariant under the adjoint action of SN onHðkÞ. We use the
operator to construct a Hamiltonian with a large number of
invariant ground states.
The adjoint action of σ ∈ SN on HðkÞ is defined in

Eq. (3.7) as

AdðσÞjTi ¼ TrV⊗k
N
ðLðσÞTLðσ−1Þða†Þ⊗kÞj0i

¼
X
i1 ;…;ik
j1 ;…;jk

Tσðj1Þ…σðjkÞ
σði1Þ…σðikÞ ða†Þ

i1
j1
…ða†Þikjk j0i: ð6:22Þ

We may write AdðσÞ in terms of oscillators and projectors
Pk∶ H → HðkÞ defined in Eq. (6.10). For jTi ∈ HðkÞ,

AdðσÞjTi ¼ 1

k!
PkTrV⊗k

N
ðLðσ−1Þða†Þ⊗kLðσÞa⊗kÞPkjTi:

ð6:23Þ

We note that the ordering of a† relative to a is understood
to be as shown in the above equation. To understand the
equality in (6.23), we evaluate

TrV⊗k
N
ðLðσ−1Þða†Þ⊗kLðσÞa⊗kÞjTi; ð6:24Þ

where we take jTi ∈ HðkÞ (there is no loss of generality
since Pk projects to HðkÞ). Diagrammatically we have
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ð6:25Þ

The first equality follows by encoding the contraction of
annihilation/creation operators in a sum over γ ∈ Sk, and
the last equality follows by LγT ¼ TLγ. This establishes
the equality (6.23).
We are now in a position to define the Hermitian

operator of interest. Let CðkÞ
3 be the operator defined to

act on jTi ∈ HðkÞ as

ð6:26Þ

where the sum is over all 3-cycles. It commutes with the
adjoint action of SN ,

AdðγÞCðkÞ
3 ¼ CðkÞ

3 AdðγÞ; ∀ γ ∈ SN; ð6:27Þ

because CðkÞ
3 is a sum over an entire conjugacy class. We

now use a sequence of diagrammatic manipulations to

show that the action of CðkÞ
3 can equivalently be expressed

using an element T̄ð2kÞ
3 ∈ P2kðNÞ. A useful way to rewrite

the diagram in (6.26) is

ð6:28Þ

where we have gone from a trace in V⊗k
N to a trace in V⊗2k

N .
By arguments analogous to those in Sec. IVA, the action of

1

3

X
σ¼ðijkÞ

1≤i≠j≠k≤N

LðσÞ; ð6:29Þ

on V⊗2k
N is related to an element in P2kðNÞ, which we call

T̄ð2kÞ
3 . Diagrammatically, this is understood from the fol-

lowing sequence of identifications,

ð6:30Þ

That is, we have

CðkÞ
3 jTi¼TrV⊗2k

N
ðcðT⊗1ÞT̄ð2kÞ

3 ðða†Þ⊗k⊗1ÞÞÞj0i; ð6:31Þ

where c ∈ P2kðNÞ is the bottom box in the diagram on the
rhs of (6.30) and

ðcÞi1…i2k
j1…j2k

¼ δi1ikþ1…δiki2kδj1jkþ1
…δjkj2k : ð6:32Þ

The explicit formula for T̄ð2kÞ
3 could be derived using steps

similar to the derivation of the relation between T̄ðkÞ
2 and

TðkÞ
2 in Sec. IVA. Relating CðkÞ

3 to an element T̄ð2kÞ
3 using

P2kðNÞ allows for two kinds of large N simplification.
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First, in place of N!=ðN − 3Þ!3! terms in CðkÞ
3 we have no

more than Bð2kÞ terms in T̄ð2kÞ
3 , where Bð2kÞ are the Bell

numbers. Additionally, index contractions ranging over N
can be replaced by multiplication in the partition algebra
P2kðNÞ when jTi ∈ Hinv, the complexity of this multipli-
cation scales with k.

We now move on to discuss the spectrum of CðkÞ
3 . Since

HðkÞ is reducible with respect to the adjoint action of SN , it
decomposes into irreducible representations of SN , labeled
by Young diagrams Y with N boxes. By Schur’s lemma the

action of CðkÞ
3 on each irreducible subspace of this decom-

position is proportional to the identity. The constant of

proportionality is the normalized character of CðkÞ
3 in the

irreducible representation Y,

χ̂YðCðkÞ
3 Þ ¼ χYðCðkÞ

3 Þ
DimVSN

Y

: ð6:33Þ

Normalized characters of CðkÞ
3 are known (Theorem 4

of [101]) to equal

χ̂YðCðkÞ
3 Þ ¼

X
ðp;qÞ∈Y

ðq − pÞ2 − NðN − 1Þ
2

; ð6:34Þ

where the sum is over all cells in the Young diagram Y,
using coordinates ðp; qÞ for rows and columns, respec-

tively. For example, the largest eigenvalue of CðkÞ
3 corre-

sponds to the trivial representation (Young diagram with all
N boxes in the first row) where

X
ðp;qÞ∈Y

ðq − pÞ2 ¼ 02 þ 12 þ 22 þ � � � þ ðN − 1Þ2

¼ NðN − 1Þð2N − 1Þ
6

; ð6:35Þ

which gives the eigenvalue NðN−1ÞðN−2Þ
3

in (6.34). In what
follows it will be useful to shift the eigenvalue of the trivial
representation to zero by considering the operator

ĈðkÞ
3 ¼ NðN − 1ÞðN − 2Þ

3
− CðkÞ

3 : ð6:36Þ

In terms of oscillators and projectors, ĈðkÞ
3 is written as

ĈðkÞ
3 ¼ 1

k!
Pk

�
NðN − 1ÞðN − 2Þ

3

−
X
σ¼ðijkÞ

1≤i≠j≠k≤N

TrV⊗k
N
ðLðσ−1Þða†Þ⊗kLðσÞa⊗kÞ

	
Pk:

ð6:37Þ

We can use ĈðkÞ
3 to construct Hamiltonians with inter-

esting spectra. Consider the family of Hamiltonians
(depending on K)

HK ¼
XK
k¼0

ĈðkÞ
3 H0 þ

X∞
k¼Kþ1

PkH0; ð6:38Þ

where H0 is the free Hamiltonian (number operator)
defined in (2.3). In this model, all invariant states of degree
k ≤ K have zero energy, while noninvariant states have
energies that scale with N. For example, degree k ≤ K
states in the representation [N − 1, 1] (a Young diagram
with N − 1 boxes in the first row and a single box in the
second row) of SN have energies kNðN − 2Þ. More gen-
erally, degree k ≤ K states in the representation [N − a, a]
for 1 ≤ a < bN=2c have energy kðN − aþ 1ÞðN − 2Þa.
States of degree k > K have energy k. The spectrum of HK
is illustrated on the left-hand side of Fig. 1(a). Taking
N ≫ K, there is a K-dependent degeneracy of invariant
ground states and a gap of order K. In this scenario, the
subspace of ground states has dimension

XK
k¼0

DimHinv
ðkÞ ¼ 1þ

XK
k¼1

DimSPkðNÞ; ð6:39Þ

where Hinv
ðkÞ is the degree k subspace of Hinv [see

Eq. (B.11) in [27] for explicit formulas computing
DimHinv

ðkÞ]. By taking N ≫ K ≫ 1, we can have a large
degeneracy of ground states alongside the interesting
correlations between the degeneracy of ground states and
the energy gap. A large ground state degeneracy associated
with elements of a diagrammatic algebra, in this case the
partition algebras SPkðNÞ for k ≤ K, is reminiscent of
topological degeneracy and its links to anyons [102,103].
We leave a more detailed investigation of the analogies
between the present algebraic constructions and topological
degeneracy for the future.

C. Resolving the invariant spectrum

In the previous section we discussed a Hamiltonian
(6.38) with degenerate ground state. We will now use

the commuting algebraic charges T̄ðkÞ
2 ; tðkÞ2 ∈ PkðNÞ, con-

structed in Sec. IV, to resolve this degeneracy. Note that the
charges commute with AdðσÞ and in particular they

commute with ĈðkÞ
3 . We prove this in the next subsection,

where we consider more general operators coming from

elements of PkðNÞ. Note that because T̄ðkÞ
2 and tðkÞ2 are

central elements of PkðNÞ, and the representation basis
states jQΛ1

Λ2;μν
i correspond to elements in PkðNÞ, the

charge’s left and right actions are equivalent on these
basis states.
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The algebraic charges can be written in terms of
oscillators and projectors as in (6.17) and (6.18).
Importantly, the representation basis states jQΛ1

Λ2;μν
i are

eigenstates of T̄ðkÞ;L
2 ; tðkÞ;L2 . The eigenvalues are normalized

characters of the representations Λ1 of SN and Λ2 of Sk,
respectively [see (6.20)]. That is

T̄ðkÞ;L
2 jQΛ1

Λ2;μν
i ¼ jT̄ðkÞ

2 QΛ1

Λ2;μν
i

¼ T̄ðkÞ;R
2 jQΛ1

Λ2;μν
i ¼ χ̂Λ1ðT2ÞjQΛ1

Λ2;μν
i; ð6:40Þ

tðkÞ;L2 jQΛ1

Λ2;μν
i ¼ jtðkÞ2 QΛ1

Λ2;μν
i

¼ tðkÞ;R2 jQΛ1

Λ2;μν
i ¼ χ̂Λ2ðt2ÞjQΛ1

Λ2;μν
i; ð6:41Þ

where the normalized characters χ̂ are defined in (4.15).

Note that the eigenvalues of the operator tðkÞ;L2 range

between � kðk−1Þ
2

and those of T̄ðkÞ;L
2 between � NðN−1Þ

2
,

including an infinite number of such operators in a
Hamiltonian may result in a spectrum that is not bounded
from below. By adding these algebraic charges to the
Hamiltonian (6.38) the energy of the states jQΛ1

Λ2;μν
i labeled

by distinct pairs Λ1, Λ2 will split. As discussed in
Sec. IV B, the multiplicity labels μ, ν are not distinguished
by these central algebraic charges. Hamiltonians that
resolve more detailed information such as multiplicity
labels are discussed in the next subsection.
For concreteness we consider the spectrum of the

Hamiltonian

H0
K ¼ HK þHres

¼ HK −
2

NðN − 1Þ
XK
k¼1

T̄ðkÞ;L
2 ;

¼
XK
k¼0

ĈðkÞ
3 H0 þ

X∞
k¼Kþ1

PkH0 −
2

NðN − 1Þ
XK
k¼1

T̄ðkÞ;L
2 :

ð6:42Þ

The ground state degeneracy is reduced compared to HK .

The lowest energy states are degree k ≤ K states jQ½N�
Λ2;μν

i
with energy−1. The highest energy state with degree k ≤ K

is jQ½N−K;1K �
½1K � i, it has degree K and energy − ðN−2K−1Þ

ðN−1Þ .

The gap of order K remains, as illustrated on the right

of Fig. 1(a). The labelΛ2 can be resolved by including t
ðkÞ;L
2

in the Hamiltonian.
To fully resolve the labels Λ1, Λ2 for general k and N,

new charges are necessary. Detailed discussions of the
problem of using such charges in the center of the
symmetric group algebra C½Sn�, with motivations coming

from a model for information loss in AdS=CFT [104], are
given in [89,105]. It can be proved that fT2; T3;…; Tng
provide an adequate set of charges and these also provide a
multiplicative generating set for the center of the group
algebra. Typically, a smaller set fT2; T3;…; Tk�ðnÞg suffi-
ces. For example k�ð5Þ ¼ 2; k�ð14Þ ¼ 3; k�ð80Þ ¼ 6. In the
present discussion these results can be applied by choosing
n ¼ k and n ¼ N, respectively.

D. Precision resolution of the invariant spectrum

In the previous section we presented Hamiltonians
involving commuting algebraic charges, constructed from
central elements in PkðNÞ, that resolve the representation
labels Λ1, Λ2 of representation basis elements jQΛ1

Λ2;μν
i. As

discussed in Sec. IV B, and illustrated in an explicit
example in Sec. IV C 2, more general elements of
SPkðNÞ are necessary to resolve the multiplicity labels
μ, ν. We will use this observation to construct SN invariant
Hamiltonians, involving operators ½d�L and ½d�R con-
structed from noncentral elements ½d� ∈ SPkðNÞ, with
nondegenerate eigenvalues.
Since we want to construct Hamiltonians H satisfying

½AdðσÞ;H� ¼ 0, built from operators ½d�L; ½d�R, we will now
prove that ½AdðσÞ;½d�L� ¼ ½AdðσÞ;½d�R� ¼ 0. To show that
½d�LAdðσÞ ¼ AdðσÞ½d�L we combine Eq. (6.4) with (6.22)

AdðσÞ½d�LjTi ¼ TrV⊗k
N
ðLðσÞdTLðσ−1Þða†Þ⊗kÞj0i;

¼ TrV⊗k
N
ðdLðσÞTLðσ−1Þða†Þ⊗kÞj0i;

¼ ½d�LAdðσÞjTi; ð6:43Þ

where the second line follows since LðσÞd ¼ dLðσÞ as
elements of EndðV⊗k

N Þ (linear maps V⊗k
N → V⊗k

N ). The
argument is identical for ½d�RAdðσÞ ¼ AdðσÞ½d�R.
To construct Hamiltonians H, using the above operators,

we need to ensure that any operator we include in H is
Hermitian. The operators ½d�L, ½d�R are not Hermitian in
general, unless ½dT � ¼ ½d�. Taking this into account, we can
parametrize a large family of SN invariant Hamiltonians
using the diagram basis for PkðNÞ. We write

H ¼ 1

2

X∞
k¼1

X
½dπ �

ðLk;π½dπ�L þ L�
k;π½dTπ �L

þ Rk;π½dπ�R þ R�
k;π½dTπ �RÞ; ð6:44Þ

where the sum over ½dπ� runs over a basis for SPkðNÞ and
Lk;π; Rk;π are complex parameters with the constraint
L�
k;π ¼ Lk;π0 and R�

k;π ¼ Rk;π0 if dTπ ¼ dπ0 . The equivalent
expression for H in terms of oscillators and projectors is
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H¼ 1

2

X∞
k¼1

X
½dπ �

PkTrV⊗k
N

�
ða†Þ⊗k

Lk;πdπþL�
k;πd

T
π

k!
a⊗k

�
Pk

þ1

2

X∞
k¼1

X
½dπ �

PkTrV⊗k
N

�
Rk;πdπþR�

k;πd
T
π

k!
ða†Þ⊗ka⊗k

�
Pk:

ð6:45Þ

Progressively turning on parameters in Eq. (6.44) will tend
to break degeneracy in the spectrum. Eventually, the
spectrum may take the form in Fig. 1(b) where invariant
and noninvariant states are mixed, and most of the
degeneracy is broken.

E. General invariant Hamiltonians
from partition algebras

The Hamiltonian H in (6.44) is not the most general
Hamiltonian satisfying ½H;AdðσÞ� ¼ 0. For example, it
does not include the Hamiltonian (5.27) constructed in

Sec. V nor HK in (6.38). As we noticed in (6.30), CðkÞ
3 is

related to an element in P2kðNÞ. We now generalize this
observation to give a construction of general SN invariant
operators from elements in P2kðNÞ.

General degree preserving operators that commute with
AdðσÞ can be constructed from elements d ∈ P2kðNÞ as

ð6:46Þ

The action of these operators on jTi ∈ HðkÞ is

ð6:47Þ

Commutativity with AdðσÞ follows from the following
diagrammatic manipulations

ð6:48Þ

where the first equality uses Eq. (6.47). The second line introduces an identity operator of the form Lðσ−1ÞLðσÞ acting on
the left-hand vector space V⊗k

N . The third equality follows from Lðσ−1Þd ¼ dLðσ−1Þ and the cyclicity of the trace. The last

BARNES, PADELLARO, and RAMGOOLAM PHYS. REV. D 106, 106020 (2022)

106020-28



line removes the identity operator LðσÞLðσ−1Þ acting
on the right-hand vector space V⊗k

N . The last diagram is
equal to

AdðσÞ 1
k!
TrV⊗2k

N
ðdða†Þ⊗k⊗a⊗kÞjTi; ð6:49Þ

which proves that they commute.
The construction readily generalizes to operators that do

not preserve the degree of states. Consider

1

k1!
Pk2TrV⊗2k

N
ðdða†Þ⊗k2⊗a⊗k1ÞPk1 ; ð6:50Þ

this gives a map d∶ Hðk1Þ → Hðk2Þ labeled by elements
d ∈ Pk1þk2ðNÞ. Note that these operators have a Sk2 × Sk1
symmetry, which permutes the creation operators and
annihilation operators separately. Therefore, the dimension
of the space of these operators is related to the counting
of 2-matrix permutation invariants, which was studied in
Sec. 2 of [83].

F. Bosons on a lattice

The Fock space of matrix oscillators can be interpreted
as the Fock space of bosons on a two-dimensional lattice
of size N2. The lattice is parametrized by ordered pairs
ði; jÞ for i; j ¼ 1;…; N which label the site in the ith row,
jth column as in Fig. 2. The creation operator ða†Þji creates
a quantum of excitation at the site ði; jÞ. In our conventions,
aij annihilates a quantum at site ði; jÞ. Permutation invariant
states naturally contain excitations spread throughout the
entire lattice. For example, the state

ð6:51Þ

contains an excitation of every site on the diagonal, and the
state

ð6:52Þ

contains an excitation on every off-diagonal site.
Most choices of SN invariant Hamiltonians constructed

in Eq. (6.44) contain nonlocal interactions, connecting sites
at opposite sides of the lattice. Note that the left acting
terms in the Hamiltonian (6.44) leave the columns fixed
while the right acting terms fix the rows. An example of the
nonlocality is seen by considering

ð6:53Þ

This interaction moves a single excitation at site ði; jÞ to
every row in column j. In particular,

Hða†Þ11j0i ¼
XN
i¼1

ða†Þ1i j0i; ð6:54Þ

contains the state ða†Þ1N .
We can enumerate a set of diagrams that give local SN

invariant terms, through left and right action, as follows.
First note that the identity element in PkðNÞ gives a local
term. For example, in k ¼ 2

ð6:55Þ

It follows that any diagram that can be constructed from the
identity element by adding additional edges is local. For
example

ð6:56Þ

which is still local.

FIG. 2. Matrix oscillators are naturally associated with a
N-by-N square lattice. The creation operator ða†Þji creates a
quanta of excitation at row i column j in the lattice.
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VII. PERMUTATION INVARIANT
QUANTUM SCARS

Energy eigenstates in quantum ergodic many-body
systems are expected to thermalize, in accordance with
the eigenstate thermalization hypothesis [106,107], which
says that such systems are well described by statistical
mechanical ensembles. Integrable systems, and systems
which exhibit many-body localization [108] are known
exceptions to the eigenstate thermalization hypothesis. This
is a consequence of the existence of a large number of
conserved quantities, which leads to nonergodicity. Aweak
form of nonergodicity was recently observed in experi-
ments involving Rydberg-atom quantum simulators [87].
For some initial states, the behavior was as expected from
an ergodic system, while other states would exhibit
periodic revival. This is unexpected, since the experiment
is described by a system without any conserved charges
or disorder [109]. The term “quantum many-body scars”
was coined in [88] to describe these nonergodic states
embedded in a large space of ergodic states. Many
mechanisms and construction schemes for systems and
states that exhibit quantum many-body scars have been
discussed in the theoretical literature [110–114].
In this section, we will follow the group theoretic scheme

invented in [85,86] for constructing Hamiltonians which
have many-body scars. Two basic ingredients are required
in this scheme: a groupG acting on a Hilbert spaceH, and a
subspace Hinv ⊂ H of states that are invariant under the
action of G. To promote Hinv to a space of many-body
scars, the prescription is as follows. First, find a
Hamiltonian H such that for all states jdi ∈ Hinv

Hjdi ∈ Hinv; ð7:1Þ

and the time-evolution of jdi using H is periodic. This
condition is discussed in Sec. VII A. Note that H commut-
ing with the action of g ∈ G is sufficient to satisfy (7.1).
Now we break the symmetry of H, while retaining the
many-body scars, by constructing a total Hamiltonian

Htot ¼ H þHs: ð7:2Þ

The new term will completely break the symmetry ofH but
is required to satisfy

Hsjdi ¼ 0 for all jdi ∈ Hinv: ð7:3Þ

This ensures that the time evolution of jdi using Htot is
equivalent to time evolution using H, which was periodic
by construction. Since Htot has no remaining symmetry the
noninvariant states in H, which are not annihilated by Hs,
will be ergodic and therefore thermalize. The group
theoretic construction of Hs is reviewed in Sec. VII B.
By combining the technology presented in this paper

with the above scheme, we can construct models with

many-body scars for G ¼ SN acting on the Fock spaceH of
matrix oscillators. In particular, Sec. III A contains a detailed
description of the SN invariant subspace Hinv ⊂ H and the
Hamiltonians in Sec. VI can be used forH in (7.2). We gave
a lattice interpretation of the matrix oscillators in Sec. VI F,
which we will use to construct a lattice model with many-
body scars. The model will be a modified version of the
Bose-Hubbard model [115], which is relevant for physics of
cold atoms in an optical lattice [116].

A. Periodic time evolution and revival

The Hamiltonian in (7.2) contains two pieces, but the
dynamics (time evolution) of invariant states is governed by
H alone. In this subsection we will focus on H, and give a
sufficient condition for it to give rise to periodic time
evolution in the invariant subspace, turning the subspace
into a many-body scar space.
Let jdi be a (normalized) state in Hinv. Since H is SN

invariant we have Hjdi ∈ Hinv and we can construct an
orthonormal energy eigenbasis jeii for Hinv with eigen-
values Ei,

Hjeii ¼ Eijeii: ð7:4Þ

The state jdi exhibits revival with periodicity T if the
quantum fidelity (return probability) [117]

fðtÞ ¼ jhdje−iHtjdij2; ð7:5Þ

satisfies fðmTÞ ¼ 1 for m ¼ 0; 1;…. Expanding jdi in the
eigenbasis

jdi ¼
X
i

dijeii; ð7:6Þ

and computing fðtÞ gives

fðtÞ ¼ jhdje−iHtjdij2 ¼
X
i;j

jdij2jdjj2e−iðEi−EjÞt: ð7:7Þ

If all energy differences ΔEij ¼ Ei − Ej have a greatest
common divisor E, that is

ΔEij ¼ Ei − Ej ¼ Eðεi − εjÞ ð7:8Þ

and εi − εj is an integer for all i, j, then fðmTÞ ¼ 1 for
T ¼ 2π=E. Note that trading H for Htot in (7.7) does not
change the argument above since Hsjdi ¼ 0 by construc-
tion. That is, the time evolution of states in Hinv is
determined by H. As a special case, fðtÞ is periodic if
the energies Ei of the states jeii relevant to the expansion of
jdi are integers.
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B. Scar Hamiltonians

We now turn to the construction of the second part of
the Hamiltonian (7.2), using the group theoretic scheme
introduced in [85,86]. In order to implement this scheme in
the present setup we observe

ð1 − AdðσÞÞjdi ¼ 0; ∀ σ ∈ SN; jdi ∈ Hinv: ð7:9Þ

This follows from AdðσÞjdi ¼ jdi, and we will use it to
construct Hs.
As we show below, the Hermitian conjugate of AdðσÞ is

Adðσ−1Þ. This will be important because, at the end of the
day, we want Hs to be Hermitian. Starting from the
definition of the inner product we have

hT 0jjAdðσÞTi ¼
X
γ∈Sk

TrV⊗k
N
ððT 0ÞTLγLðσÞTLðσ−1ÞLγ−1Þ;

¼
X
γ∈Sk

TrV⊗k
N
ðLðσ−1ÞðT 0ÞTLðσÞLγTLγ−1Þ;

¼
X
γ∈Sk

TrV⊗k
N
ððLðσ−1ÞT 0LðσÞÞTLγTLγ−1Þ;

¼ hAdðσ−1ÞT 0jjTi; ð7:10Þ

where the second equality uses LγLðσÞ ¼ LðσÞLγ and the
third equality follows from

ðLðσ−1ÞT 0LðσÞÞT ¼ Lðσ−1ÞðT 0ÞTLðσÞ: ð7:11Þ

Consequently, an operator of the form

Hσ ¼ ð1 − Adðσ−1ÞÞhσð1 − AdðσÞÞ; ð7:12Þ

where hσ is any Hermitian operator, is itself Hermitian and
satisfies Hσjdi ¼ 0, in accordance with the setup in (7.2).
In general, we can write Hs in the form

Hs ¼
X
σ∈SN

cσHσ; ð7:13Þ

where cσ ∈ R is a parameter for every σ ∈ SN.
The real dimension of the space of independent

Hermitian operators (candidate choices for hσ) can be
counted as follows. We organize general (normal ordered)
k-oscillator operators in terms of the number of creation
and annihilation operators (k1, k2, respectively). They have
the form

O ¼ Oi1…ik
j1…jk

ða†Þj1i1…ða†Þjk1ik1
a
jk1þ1

ik1þ1
…ajkik : ð7:14Þ

Their adjoints contain k2 creation and k1 annihilation
operators

O† ¼ ðO�Þi1…ik1 ik1þ1…ik
j1…jk1 jk1þ1…jk

ða†Þik1þ1

jk1þ1
…ða†Þikjka

i1
j1
…a

ik1
jk1
: ð7:15Þ

For every k ¼ k1 þ k2 oscillator operator O with k1 > k2
there is a Hermitian operator OþO†. The real dimension
of the independent Hermitian operators of this form can be
counted in terms of the dimensions of symmetric tensor
product spaces

2 DimðSymk1ðVN⊗VNÞ⊗Symk2ðVN⊗VNÞÞ

¼ 2

�
N2 þ k1 − 1

k1

��
N2 þ k2 − 1

k2

�
; ð7:16Þ

which follows by identifying operators ða†Þj1i1 and aj1i1 with
the vector space VN⊗VN . The factor of 2 comes from the
fact that Oi1…ik

j1…jk
are complex numbers. The Hermitian

operators associated with k2 < k1 oscillator operators are
accounted for in (7.16) as their conjugates are the k1 < k2
oscillator operators.
The remaining Hermitian operators to count are those

with equal numbers of creation and annihilation oscillators,
i.e., those with k1 ¼ k2. Some of these will be self-adjoint,
while the remaining operators can be paired with their
adjoints to construct Hermitian operators as before.
Inspecting Eqs. (7.14) and (7.15) we see that for an operator
to be equal to its own adjoint it must be real, with k1 ¼ k2
and

O
i1…ik1 ik1þ1…ik
j1…jk1 jk1þ1…jk

¼ ðO�Þjk1þ1…jkj1…jk1
ik1þ1…iki1…ik1

: ð7:17Þ

As they are real, the number of these operators is equal to
their real dimension

DimðSymk1ðVN⊗VNÞÞ ¼
�
N2 þ k1 − 1

k1

�
: ð7:18Þ

This counting can be understood as there being exactly
one choice of ffik1þ1;…; i2k1g; fjk1þ1;…; j2k1gg for which
each choice of ffi1;…ik1g; fj1;…jk1gg satisfies (7.17).
The remaining number of operators is

DimðSymk1ðVN⊗VNÞÞ × ½DimðSymk1ðVN⊗VNÞÞ − 1�

¼
�
N2 þ k1 − 1

k1

�
×

��
N2 þ k1 − 1

k1

�
− 1

	
: ð7:19Þ

The factor of 2 due to Oi1…ik
j1…jk

being complex is canceled by
the factor of a half introduced when forming Hermitian
operators. The real dimension of Hermitian operators of
type k1 ¼ k2 is then

�
N2 þ k1 − 1

k1

�
×

�
N2 þ k1 − 1

k1

�
: ð7:20Þ
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C. Modified Bose-Hubbard on a square lattice

Having discussed the general setup, we will now imple-
ment the scheme in a specific example. In Sec. VI F we
gave a lattice interpretation of the matrix oscillators ða†Þji ,
where they played the role of bosonic creation operators on
the lattice site labeled ði; jÞ. For simplicity, we will consider
a square lattice of dimension N. A simple model of
interacting bosons on a lattice is the Bose-Hubbard model
[115], relevant for the physics of cold atoms in an optical
lattice [116]. The Bose-Hubbard Hamiltonian HBH con-
tains hopping (kinetic) terms, on-site interactions and
chemical potentials. In the simplest case, the model con-
tains three parameters t, U, μ, and in terms matrix of
oscillators it takes the form

HBH ¼ −t
X

hði;jÞ;ðk;lÞi
ða†Þjiakl

þ U
2

XN
i;j¼1

ða†Þjiaijðða†Þjiaij − 1Þ − μ
XN
i;j¼1

ða†Þjiaij;

ð7:21Þ

where the sum in the first term is over neighboring sites.
For a square lattice this implies the restriction ði; jÞ ¼
ðk� 1; lÞ or ði; jÞ ¼ ðk; l� 1Þ. On-site interactions are
implemented using the operators Nij ¼ ða†Þjiaij, which
count the number of excitations on site ði; jÞ.
Our aim is to construct a modified Bose-Hubbard

Hamiltonian H0
BH such that

H0
BH ¼ H þHs; ð7:22Þ

where ½AdðσÞ;H� ¼ 0 for all σ ∈ SN , and Hsjdi ¼ 0 for all
jdi ∈ Hinv, as per the construction in (7.2). To this end, we
observe that the second and third term in (7.21) are SN
invariant. That is,

H ¼ U
2

XN
i;j¼1

ða†Þijajiðða†Þijaji − 1Þ − μ
XN
i;j¼1

ða†Þijaji ; ð7:23Þ

satisfies ½AdðσÞ;H� ¼ 0.
The hopping term

ht ¼ −t
X

hði;jÞ;ðk;lÞi
ða†Þjiakl ð7:24Þ

is not SN invariant, but the combination

Hs ¼ ð1 − Adðσ−1ÞÞhtð1 − AdðσÞÞ ð7:25Þ

satisfies Hsjdi ¼ 0 for any choice of σ ∈ SN by the
construction in (7.12).
To keep Hs as local as possible, σ should not permute

distant sites. With this restriction in mind, a simple choice is
σ ¼ ð23Þ [for the choice σ ¼ ð12Þ we have to consider
additional complications from being near the boundary of
the square lattice]. This defines our modified Bose-
Hubbard Hamiltonian H0

BH,

H0
BH ¼ U

2

XN
i;j¼1

ða†Þijajiðða†Þijaji − 1Þ − μ
XN
i;j¼1

ða†Þijaji − t
X

hði;jÞ;ðk;lÞi
ð1 − Adðð23ÞÞÞða†Þjiakl ð1 − Adðð23ÞÞÞ: ð7:26Þ

It can be written as

H0
BH ¼ HBH − t

X
hði;jÞ;ðk;lÞi

Adðð23ÞÞða†ÞjiaklAdðð23ÞÞ

þ t
X

hði;jÞ;ðk;lÞi
Adðð23ÞÞða†Þjiakl

þ t
X

hði;jÞ;ðk;lÞi
ða†ÞjiaklAdðð23ÞÞ: ð7:27Þ

We now investigate the conditions on U and μ for which
H0

BH exhibits revival. It is useful to rewrite Eq. (7.23) as

H ¼ U
2

XN
i;j¼1

ða†Þijaji
�
ða†Þijaji − 1 −

2μ

U

	
: ð7:28Þ

For integer values of 2μ
U the eigenvalues of H are integer

multiples of U
2
, and similarly for differences of eigenvalues.

By the argument given in Sec. VII A we therefore expect
H0

BH to have many-body scars that revive with period
T ¼ 4π

U . Similarly, we may write (7.23) as

H ¼ μ

2

XN
i;j¼1

ða†Þijaji
�
U
μ
ða†Þijaji −

U
μ
− 2

	
; ð7:29Þ

from which we conclude that revival is possible when U
μ is

an integer as well, with an expected revival time of 4πμ . In the
special case U ¼ 2μ where both integrality conditions are
satisfied, the revival time is T ¼ minð4πμ ; 4πUÞ ¼ 4π

U .

BARNES, PADELLARO, and RAMGOOLAM PHYS. REV. D 106, 106020 (2022)

106020-32



In the subspace where there is a single excitation, the
operator Adðð23ÞÞ takes the form

Adðð23ÞÞ ¼ ða†Þ33a22þða†Þ22a33
þ
X
i≠2;3

ðða†Þi3a2i þða†Þi2a3i þða†Þ3i ai2þða†Þ2i ai3Þ

þ
X
i;j≠2;3

ða†Þjiaij: ð7:30Þ

The first term is a diagonal hopping term, between sites
(2,2) and (3,3). Consequently, the modified Bose-Hubbard
Hamiltonian (7.26) will contain some hopping terms
beyond nearest neighbors.

VIII. AdS/CFT INSPIRED EXTREMAL
CORRELATORS IN MATRIX QUANTUM

MECHANICS

Extremal correlators in N ¼ 4 SYM form interesting
sectors having nonrenormalization properties [118]. They
are closely connected to representation theoretic quantities
such as Littlewood-Richardson coefficients, and form a
crucial set of examples for checking the AdS=CFT corre-
spondence. In the quantum mechanical model presented in
this paper, vacuum expectation values similar to extremal
correlators can be computed exactly. In this section we
make use of a recent factorization result concerning the
two-point function of permutation invariant matrix observ-
ables [37]—this is used to demonstrate that a similar
factorization property holds for quantum mechanical

permutation invariant states. We then compute an expres-
sion for extremal three-point correlators associated with SN
invariant states, which are simple in the diagram basis and
obey representation theoretic selection rules.

A. Two-point correlators

The Eq. (3.25) can be interpreted as a quantum mechani-
cal operator-state correspondence for SN invariant states
labeled by ½dπ� ∈ SPkðNÞ,

jdπi ↔ Oπ ¼ TrV⊗k
N
ð½dπ�ða†Þ⊗kÞ: ð8:1Þ

From Eq. (3.29) we have

O†
π ¼ TrV⊗k

N
ð½dTπ �a⊗kÞ; ð8:2Þ

where the transpose dTπ is the diagram obtained by reflect-
ing dπ across a horizontal line, as illustrated in (3.30). The
time-dependent operators are given by

OπðtÞ ¼ e−iH0tOπeiH0t ¼ e−iktOπ; ð8:3Þ

where H0 is the free Hamiltonian, defined in Eq. (2.7).
In [37] the two-point function of permutation invariant

matrix observables was shown to factorize in the large N
limit. Here we use this result to show an equivalent
factorization property for the two-point function of
permutation invariant quantum mechanical states. Let
½dπ1 � ∈ SPk1ðNÞ, ½dπ2 � ∈ SPk2ðNÞ, and define the two-point
correlator to be the vacuum expectation value

h0jO†
π1ðt1ÞOπ2ðt2Þj0i ¼ eik1t1−ik2t2h0jTr

V
⊗k1
N

ð½dTπ1 �a⊗k1ÞTr
V
⊗k2
N

ð½dπ2 �ða†Þ⊗k2Þj0i: ð8:4Þ

Ignoring the trivial time dependence and taking normalized operators ½d̂π1 �; ½d̂π2 �, as defined in (3.32), in the large N limit
we have

h0jTr
V
⊗k1
N

ð½d̂Tπ1 �a⊗k1ÞTr
V
⊗k2
N

ð½d̂π2 �ða†Þ⊗k2Þj0i ¼ δk1k2
X
γ∈Sk1

Tr
V
⊗k2
N

ðγ−1d̂Tπ1γd̂π2Þ;

¼
�
1þOð1= ffiffiffiffi

N
p Þ if ½dπ1 � ¼ ½dπ2 �

0þOð1= ffiffiffiffi
N

p Þ otherwise
: ð8:5Þ

In the first line we have absorbed the Sk1 averaging into the sum over γ ∈ Sk1 arising from theWick contractions of a and a†.
In the second line we have used the factorization result of [37].

B. Three-point correlators

Let ½dπ1 � ∈ SPk1ðNÞ; ½dπ2 � ∈ SPk2ðNÞ; ½dπ� ∈ SPkðNÞ, and define the extremal three-point correlator to be the vacuum
expectation value

h0jO†
π1ðt1ÞO†

π2ðt2ÞOπðtÞj0i ¼ eik1t1þik2t2−ikth0jTr
V
⊗k1
N

ð½dTπ1 �a⊗k1ÞTr
V
⊗k2
N

ð½dTπ2 �a⊗k2ÞTrV⊗k
N
ð½dπ�ða†Þ⊗kÞj0i; ð8:6Þ
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with the constraint that k ¼ k2 þ k1. As we now show,
extremal correlators are simple in the diagram basis. We
compute (8.6) by Wick contractions, which are encoded in
a sum over γ ∈ Sk. Ignoring the trivial time dependence
we have

h0jTr
V
⊗k1
N

ð½dTπ1 �a⊗k1ÞTr
V
⊗k2
N

ð½dTπ2 �a⊗k2ÞTrV⊗k
N
ð½dπ�ða†Þ⊗kÞj0i

¼
X
γ∈Sk

TrV⊗k
N
ðγ−1ðdTπ1⊗dTπ2ÞγdπÞ;

¼
X
γ∈Sk

Ncðγ−1ðdπ1⊗dπ2 Þγ∨dπÞ: ð8:7Þ

The tensor product dπ1⊗dπ2 is the diagram obtained by
horizontal concatenation of dπ1 and dπ2 , for example

ð8:8Þ

This can be viewed as an outer product on partition algebra
diagrams which maps Pk1ðNÞ × Pk2ðNÞ to Pk1þk2ðNÞ. It is
a diagram with 2k1 þ 2k2 vertices. The join dπ1∨dπ2 of two
diagrams, each with 2k vertices, is obtained by adding all
the edges of dπ1 to the edges of dπ2 (or vice versa), for
example

ð8:9Þ

The resulting diagram also has 2k vertices. For general
elements (linear combinations of diagram basis elements)
the two operations are defined by linear extension.
We will now derive a set of representation theoretic

selection rules for the extremal correlators. To state the
result we are going to prove, we define the operators

OΛ1

Λ2;μν
¼ TrV⊗k

N
ðQΛ1

Λ2;μν
ða†Þ⊗kÞ; ð8:10Þ

associated with representation basis elements QΛ1

Λ2;μν
∈

SPkðNÞ. Consider the extremal correlator (time-
independent part)

h0jðOΛ1

Λ2;μν
Þ†ðOΛ0

1

Λ0
2
;μ0ν0 Þ†O

Λ00
1

Λ00
2
;μ00ν00 j0i

¼ k!TrV⊗k
N
ððQΛ1

Λ2;νμ
⊗Q

Λ0
1

Λ0
2
;ν0μ0 ÞQ

Λ00
1

Λ00
2
;μ00ν00 Þ; ð8:11Þ

for QΛ1

Λ2;μν
∈SPk1ðNÞ;QΛ0

1

Λ0
2
;μ0ν0 ∈SPk2ðNÞ;QΛ00

1

Λ00
2
;μ00ν00 ∈SPkðNÞ.

The factor of k! follows since the matrix units for SPkðNÞ
are invariant under conjugation by Sk. Note that the
multiplicity labels are exchanged under diagram trans-
position, which follows from (A25). The selection rule that
we will find says that the trace in (8.11) vanishes if
CðΛ1;Λ0

1;Λ00
1Þ¼0, where CðΛ1;Λ0

1;Λ00
1Þ is the Kronecker

coefficient for tensor products of irreducible representa-
tions of SN .
We start with the simpler but analogous expression for

matrix units of PkðNÞ,

ð8:12Þ

Using [see e.g. Eq. (4.16)]

ðQΛ1

βα⊗Q
Λ0
1

β0α0 ÞQ
Λ00
1

α00β00 ¼
X
γ00

D
Λ00
1

γ00α00 ðQΛ1

βα⊗Q
Λ0
1

β0α0 ÞQ
Λ00
1

γ00β00 ;

ð8:13Þ
we have

ð8:14Þ
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The second equality uses (A65).
To further simplify, we want to turn the rhs into a product

of matrix elements. This is achieved by inserting a
resolution of the identity using representations of
Pk1ðNÞ⊗Pk2ðNÞ. This resolves to a set of branching
coefficients for PkðNÞ → Pk1ðNÞ⊗Pk2ðNÞ. We denote
these by

B
Λ00
1
→Λ̃1⊗Λ̃0

1;ξ
γ00→γγ0 ; ð8:15Þ

where it is implicit that k ¼ k1 þ k2. The ranges of the
labels are

γ ∈ ½1;…;DimðVPk1
ðNÞ

Λ̃1
Þ�;

γ0 ∈ ½1;…;DimðVPk2
ðNÞ

Λ̃0
1

Þ�;

γ00 ∈ ½1;…;DimðVPkðNÞ
Λ00
1

Þ�;

ξ ∈ ½1;…;MultðVPkðNÞ
Λ00
1

→ V
Pk1

ðNÞ
Λ̃1

⊗V
Pk2

ðNÞ
Λ̃0
1

Þ�; ð8:16Þ

the final label, ξ, gives the multiplicity of Λ00
1 in the

decomposition. Branching coefficients are represented by
the following diagrams

ð8:17Þ

It is worth noting that by Schur-Weyl duality the branching
multiplicities for partition algebras are related to the
multiplicities CðΛ̃1; Λ̃0

1;Λ00
1Þ, known as Kronecker coeffi-

cients, of irreducible representations Λ00
1 in tensor products

of SN representations Λ̃1⊗Λ̃0
1 [see Eq. (3.1.3) of [119] ]

MultðVPkðNÞ
Λ00
1

→ V
Pk1

ðNÞ
Λ̃1

⊗V
Pk2

ðNÞ
Λ̃0
1

Þ ¼ CðΛ̃1; Λ̃0
1;Λ00

1Þ:
ð8:18Þ

For simiplicity we are assuming N ≥ ð2k1 þ 2k2Þ. For
comparison, in Schur-Weyl duality between UðNÞ and
C½Sk�, Littlewood-Richardson coefficients are branching
multiplicities for Sk1þk2 → Sk1 × Sk2 but correspond to
decomposition of tensor products of UðNÞ representations.

Branching coefficients are equivariant:

D
Λ00
1

γ00δ00 ðdπ1⊗dπ2Þ

¼
X

Λ̃1;Λ̃0
1
;γ;δ;γ0;δ0;ξ

B
Λ00
1
→Λ̃1⊗Λ̃0

1
;ξ

γ00→γγ0 DΛ̃1

γδ ðdπ1ÞD
Λ̃0
1

γ0δ0 ðdπ2ÞB
Λ00
1
→Λ̃1⊗Λ̃0

1
;ξ

δ00→δδ0 ;

ð8:19Þ

for dπ1 ∈ Pk1ðNÞ; dπ2 ∈ Pk2ðNÞ. Setting dπ1 ¼ QΛ1

αβ ;

dπ2 ¼ Q
Λ0
1

α0β0 , Eq. (8.19) corresponds to the diagram identity

ð8:20Þ

Inserting this into Eq. (8.14) gives

TrV⊗k
N
ððQΛ1

βα⊗Q
Λ0
1

β0α0 ÞQ
Λ00
1

α00β00 Þ

¼ DimVSN
Λ00
1

X
Λ̃1;Λ̃0

1
;γ;η;γ0;η0;ξ

B
Λ00
1
→Λ̃1⊗Λ̃0

1
;ξ

γ00→γγ0 DΛ̃1
γη ðQΛ1

αβÞ

×D
Λ̃0
1

γ0η0 ðQ
Λ0
1

α0β0 ÞB
Λ00
1
→Λ̃1⊗Λ̃0

1;ξ
η00→ηη0 : ð8:21Þ

Matrix elements of irreducible representations are orthogo-
nal [see Eq. (A42)]. This implies

DΛ̃1
00

η00γ00 ðQ
Λ00
1

α00β00 Þ ¼ δΛ̃1
00Λ00

1δη00β00δγ00α00 ð8:22Þ
or the equivalent diagrammatic expression

ð8:23Þ

Substituting this identity into (8.21) reduces it to
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ð8:24Þ

This gives the final result for matrix units of PkðNÞ.
The full expression for (8.11)—extremal three-point correlators in the representation basis—is given by (8.24) together

with branching coefficients from the partition algebras to symmetric group algebras [see (3.53)],

TrV⊗k
N
ððQΛ1

Λ2;νμ
⊗Q

Λ0
1

Λ0
2
;ν0μ0 ÞQ

Λ00
1

Λ00
2
;μ00ν00 Þ ¼ DimVSN

Λ00
1

X
α;β;α0 ;β0 ;α00 ;β00 ;

p;p0 ;p00 ;ξ

B
Λ00
1
→Λ1⊗Λ0

1
;ξ

α00→αα0 B
Λ00
1
→Λ1⊗Λ0

1
;ξ

β00→ββ0 B
Pk1

ðNÞ→C½Sk1 �
Λ1;α→Λ2;p;μ

B
Pk1

ðNÞ→C½Sk1 �
Λ1;β→Λ2;p;ν

× B
Pk2

ðNÞ→C½Sk2 �
Λ0
1
;α0→Λ0

2
;p0;μ0B

Pk2
ðNÞ→C½Sk2 �

Λ0
1
;β0→Λ0

2
;p0;ν0 B

PkðNÞ→C½Sk�
Λ00
1
;α00→Λ00

2
;p00;μ00B

PkðNÞ→C½Sk�
Λ00
1
;β00→Λ00

2
;p00;ν00 : ð8:25Þ

Introducing the following diagram representation of these branching coefficients,

ð8:26Þ

we can write (8.25) as the following diagram

ð8:27Þ

From the above formula we see that the extremal correlator vanishes if the Kronecker coefficient CðΛ1;Λ0
1;Λ00

1Þ ¼ 0.
Analogous results for extremal correlators in general quiver gauge theories are described in [64].
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IX. SUMMARY AND OUTLOOK

In this paper we investigated the effects of permutation
symmetry on the state space and dynamics of quantum
mechanical systems of N × N matrix variables. After a
brief review of the matrix harmonic oscillator and intro-
duction of notation in Sec. II, we began in Sec. III by
investigating the SN invariant Hilbert spaceHinv of generic
matrix quantum mechanics systems at large N. We found
that there is a one-to-one correspondence between SN
invariant states of degree k and elements in the sym-
metrized partition algebra SPkðNÞ. Two bases of SPkðNÞ
were discussed: the diagram basis and the representation
basis. A construction of the latter was explained in Sec. IV
in terms of diagonalizing commuting algebraic charges.
Having discussed the SN invariant state space, we moved
on to interesting invariant Hamiltonians. The general
permutation invariant harmonic matrix oscillator was
described and solved (diagonalized) in Sec. V. This was
achieved with the introduction of oscillators labeled by
representation theoretic quantities, as in (5.27). In Sec. VI
we described a set of algebraic Hamiltonians for matrix
quantum mechanics that preserve the SN invariant subspace
of the Hilbert space. These Hamiltonians, given by
Eqs. (6.38), (6.42), and (6.44) realize the three dynamical
scenarios illustrated on the left-hand side of Fig. 1(a), the
right-hand side of Figs. 1(a) and 1(b), respectively. The
representation basis introduced in Sec. III C diagonalizes
all of these algebraic Hamiltonians. We provided a lattice
interpretation of the matrix oscillators in Sec. VI F. In
Sec. VII we constructed Hamiltonians which turn the SN
invariant state space into quantum many-body scars.
Following the ideas in [85,86], we gave Hamiltonians
(7.2) of the form H þHs where H is SN invariant and Hs
annihilates states in the SN invariant subspace. We noted
that the Hamiltonians in Sec. VI are suitable candidates for
H if their energies satisfy an integrality condition. As an
example, we used the lattice interpretation to give a
modified Bose-Hubbard Hamiltonian which exhibits SN
invariant quantum many-body scars. The diagram basis is
the most efficient basis for describing inner and outer
products. As a consequence extremal correlators, defined
in (8.6), which are analogs of three-point extremal corre-
lators in N ¼ 4 SYM are simple in the diagram basis. The
extremal correlators satisfy representation theoretic selec-
tion rules, based on Kronecker coefficients, which were
derived in the representation basis. The selection rules are
based on exact expressions for extremal correlators, involv-
ing Kronecker coefficients and Littlewood-Richardson
coefficients, given in Eq. (8.25).
The representation theoretic basis QΛ1

Λ2;μν
for the SN

invariant Hilbert space Hinv constructed as linear combi-
nations of symmetrized partition algebra elements in
SPkðNÞ in Sec. III C is an eigenstate basis for the free
Hamiltonian H0 of Sec. II as well as the algebraic

Hamiltonians constructed in Sec. VI. The action of
the general permutation invariant harmonic oscillator
Hamiltonian given in (5.27) of Sec. V however causes a
nontrivial mixing of the representation labels. This mixing
was discussed briefly in Sec. V D. Diagonalizing the
general harmonic oscillator Hamiltonians in Hinv is an
interesting, unsolved problem of finding appropriate linear
combinations of the QΛ1

Λ2;μν
which are invariant, up to

scaling, under the mixing.
With the exception of the PkðNÞ orbit basis discussion in

Appendix B we have assumed N ≥ 2k, known as the stable
limit. This simplified the construction of a basis for the SN
invariant subspace Hinv, a simplification related to the
existence of a kernel free map from PkðNÞ to EndðV⊗k

N Þ.
However, it would be interesting to uncover any finite N
effects appearing in these permutation invariant quantum
mechanical matrix systems. At finite N the diagrams in
PkðNÞ provide an over complete basis of operators. That is,
there are some linear relations between operators. The
precise form of these relations can be found using the orbit
basis. The question remains of how to use this knowledge
in order to construct a representation theoretic basis for
2k < N. We leave this for future work, but note here that it
would involve a detailed study of the Artin-Wedderburn
decomposition in (3.48) below the stable limit. The detailed
study includes putting constraints on the irreducible rep-
resentations appearing in the decomposition below the
stable limit, as well as computing the dimension of the
multiplicity spaces.
In Sec. VI F we gave one interpretation of our model in

terms of bosonic excitations ða†Þji on an N-by-N lattice
with sites labeled by ði; jÞ. It is natural to ask if the SN
invariant Hamiltonians described by (6.44) interpreted in
this way can be realized in experiments. In the real world
interactions tend to be local. The demand for these
Hamiltonians to be local places restrictions on the sets
of permissible terms. In Sec. VII C we used this interpre-
tation to construct a modified Bose-Hubbard Hamiltonian
exhibiting SN invariant quantum many-body scars. More
generally, combining the lattice interpretation of matrix
oscillators with the group theoretic scheme given in
[85,86], as was done in Secs. VII A and VII B, provides
a useful framework for describing systems with many-body
scars in 2þ 1 dimensions.
A very interesting avenue towards applications of the

Hilbert spaces and Hamiltonians considered here is to find
systems where the permutation invariant sectors described
using partition algebras are naturally selected by the
physics. For example, in a Bose-Einstein condensate
composed of N identical bosons, excited by vibrational
modes between pairs of particles, oscillators ða†Þji exciting
the pair ði; jÞ of particles with i; j ∈ f1;…; Ng would
naturally be subject to the kind of SN invariance we have
considered here. This would provide links between the
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theoretical application of partition algebras as considered
here with the phenomenological modeling of Bose-Einstein
physics, e.g. along the lines of [120].
As a closing remark, we note that much of the initial

study of the representation theory of partition algebras
PkðNÞ was done with physical motivations coming from
classical statistical models (Potts models) where k is the
number of lattice sites and N is the number of classical
states for each lattice site. The transfer matrix of the
classical statistical model plays a crucial role in these
studies [72–74]. The present application of partition alge-
bras looks substantially different: we have quantum
mechanical matrix oscillators, with matrix size N possible
values and k specifies the sector of quantum states with k
oscillators acting on the vacuum. Exploring potential
dualities relating systems of the kind studied earlier and
the matrix quantum systems defined here is a fascinating
future direction.
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APPENDIX A: MATRIX UNITS AND FOURIER
INVERSION FROM INNER PRODUCTS

In this appendix we prove the results in Sec. III C on
representation bases. We review the construction of
matrix units for semisimple algebras closely following
[84]. We focus in particular on the partition algebras
PkðNÞ and the symmetrized partition algebras SPkðNÞ.
The appendix is divided into four subsections. We start
by discussing nondegenerate bilinear forms on algebras
and how they define dual elements through (A19). The
existence of dual elements allows us to prove orthogon-
ality of matrix elements of irreducible representations of
PkðNÞ, as stated in (A42). Orthogonality is essential for
the construction of matrix units of PkðNÞ using the
Fourier inversion formula (A43). Matrix units for
SPkðNÞ are constructed using branching coefficients,
as in (A54). Minor modifications to the construction in
[84], which defines a nondegenerate bilinear using the
trace in the regular representation of PkðNÞ, are neces-
sary. In this paper, the physical trace relevant to the inner
product (3.31) and two point function, is a trace in V⊗k

N .
This induces minor changes to the basic formulas. The
two traces are related in (A13), through a so-called Ω
factor.

1. Schur-Weyl duality and nondegenerate
bilinear forms

The construction of matrix units for PkðNÞ relies on the
existence of a nondegenerate bilinear form on PkðNÞ. The
bilinear form used in [84] is defined using the trace in
the regular representation of PkðNÞ. In this paper the
physical trace, associated with inner products, is a trace
in V⊗k

N including a transposition as in Eq. (3.31). The aim
of this subsection is to prove that this trace defines a
nondegenerate bilinear form as well. The outline of the
proof is as follows. The trace in the regular representation is
related to the trace on V⊗k

N by the insertion of a central
element. Given this relation, nondegeneracy of the bilinear
form defined by the trace on V⊗k

N follows by the non-
degeneracy of the bilinear form defined by the trace in the
regular representation.
Let B ¼ fb1;…; bBð2kÞg be a basis for PkðNÞ. The

regular representation of PkðNÞ is defined by the left action
of PkðNÞ on itself. The matrix representation of bi is
defined by the structure constants Ck

ij

bibj ¼
XBð2kÞ
k¼1

Ck
ijbk: ðA1Þ

Consequently, the trace in the regular representation can be
written as

trðbiÞ ¼
XBð2kÞ
j¼1

Cj
ij ¼

XBð2kÞ
j¼1

Coeffðbj; bibjÞ; ðA2Þ

where Coeffðbj; dÞ is the coefficient of bj in the expansion
of d ∈ PkðNÞ in the basis B.
For N ≥ 2k, PkðNÞ is semisimple (see Theorem 3.27 in

[75]) and therefore,

Gij ≡ trðbibjÞ ðA3Þ

is an invertible matrix. We say that the trace in the regular
representation defines a nondegenerate bilinear form on
PkðNÞ [see Eq. (5.9) in [75]]. It will be useful to use the
following equivalent definition of nondegeneracy in what
follows. A bilinear form on PkðNÞ is nondegenerate if there
exists no nonzero element d ∈ PkðNÞ such that

trðbidÞ ¼ 0 ∀ i ¼ 1;…; Bð2kÞ: ðA4Þ

The regular representation of PkðNÞ has a decomposition
(see statements in proof of Proposition 5.7 in [75])

Vreg ¼ ⨁
Λ1

VPkðNÞ
Λ1

⊗VPkðNÞ
Λ1

: ðA5Þ
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It follows that the trace of d ∈ PkðNÞ in the regular
representation can be decomposed as

trðdÞ ¼
X
Λ1

trΛ1
ðdÞtrΛ1

ð1Þ ¼
X
Λ1

DimVPkðNÞ
Λ1

χΛ1ðdÞ; ðA6Þ

where the sum is over all irreducible representations of

PkðNÞ, DimVPkðNÞ
Λ1

is the dimension of the representation
Λ1 and χΛ1 is the corresponding character.
The characters can be extracted from the trace by means

of projection operators pΛ1
∈ PkðNÞ,

trðpΛ1
dÞ ¼ DimVPkðNÞ

Λ1
χΛ1ðdÞ: ðA7Þ

This can be seen as a consequence of character orthogon-
ality (see Theorems 3.8 and 3.9 in [84])

XBð2kÞ
i;j¼1

DimVPkðNÞ
Λ1

χΛ1ðbiÞðG−1ÞijχΛ0
1ðbjÞ ¼ δΛ1Λ0

1 ; ðA8Þ

and the fact that projectors can be written as

pΛ1
¼
XBð2kÞ
i;j¼1

DimVPkðNÞ
Λ1

χΛ1ðbiÞðG−1Þijbj; ðA9Þ

where ðG−1Þij is the inverse of the matrix Gij in (A3).
Alternatively, it follows from the decomposition (A5).
We now move on to the trace in V⊗k

N . As we have
reviewed in Sec. III A, PkðNÞ ≅ EndSN ðV⊗k

N Þ when

N ≥ 2k, where EndðV⊗k
N Þ is the vector space of linear

maps V⊗k
N → V⊗k

N and EndSN ðV⊗k
N Þ is the subspace of

maps that commute with the action of SN . Note that we use
the same symbol for elements d ∈ PkðNÞ and the corre-
sponding element in d ∈ EndSN ðV⊗k

N Þ in what follows. It

will be clear from context if d is acting on V⊗k
N .

By Schur-Weyl duality (3.34), the trace in V⊗k
N decom-

poses as

TrV⊗k
N
ðdÞ ¼

X
Λ1

DimVSN
Λ1
χΛ1ðdÞ; ðA10Þ

where the sum is over the irreducible representations that
appear in Eq. (3.34). Consequently, we can relate the two
traces by substituting (A7) into each summand of (A10)

TrV⊗k
N
ðdÞ ¼

X
Λ1

DimVSN
Λ1
χΛ1ðdÞ ¼

X
Λ1

DimVSN
Λ1

DimVPkðNÞ
Λ1

trðpΛ1
dÞ:

ðA11Þ

It is convenient to define

Ω ¼
X
Λ1

DimVSN
Λ1

DimVPkðNÞ
Λ1

pΛ1
; ðA12Þ

such that Eq. (A11) becomes

TrV⊗k
N
ðdÞ ¼ trðΩdÞ: ðA13Þ

We can now prove that the bilinear form ð−;−Þ∶
PkðNÞ × PkðNÞ → C given by

ðbi; bjÞ ¼ TrV⊗k
N
ðbibjÞ ðA14Þ

is nondegenerate. We give a proof by contradiction.
Suppose there exists a nonzero d ∈ PkðNÞ such that

ðbi; dÞ ¼ 0; ∀ i ¼ 1;…; Bð2kÞ: ðA15Þ

From above, it follows that d is such that

ðbi;dÞ ¼ TrV⊗k
N
ðbidÞ ¼ trðΩbidÞ ¼ 0; ∀ i¼ 1;…;Bð2kÞ:

ðA16Þ

However, this implies that the element d0 ¼ dΩ ∈ PkðNÞ is
such that

trðbid0Þ ¼ 0; ∀ i ¼ 1;…; Bð2kÞ; ðA17Þ

which contradicts the fact that the trace in the regular
representation of PkðNÞ defines a nondegenerate bilin-
ear form.
It immediately follows (use proof by contradiction again)

that the bilinear form given by

hbi; bji ¼ TrV⊗k
N
ðbibTj Þ≡ gij; ðA18Þ

is nondegenerate and gij is invertible. The inverse matrix is
used to define elements dual to bi which we denote b�i

b�i ¼
XBð2kÞ
j¼1

ðg−1Þijbj: ðA19Þ

Dual elements satisfy

hb�i ; bji ¼ δij: ðA20Þ

The dual elements are essential for proving orthogonality of
matrix elements. The proof also uses the following property
of the bilinear form

hbi; bjbki ¼ hbibTk ; bji ¼ hbTj bi; bki: ðA21Þ
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The first step uses ðbjbkÞT ¼ bTk b
T
j and the second step

uses cyclicity of the trace.

2. Orthogonality of matrix elements

The matrix elements DΛ1

αβðbiÞ of irreducible representa-
tions of PkðNÞ are orthogonal. This is a generalization of
the corresponding orthogonality theorem for group alge-
bras (see Sec. III. 15 in [53]). As we will now prove, the
definition of dual elements given in the previous subsection
is such that

XBð2kÞ
i¼1

DΛ1

αβðbiÞD
Λ0
1

ρσ ððb�i ÞTÞ ∝ δασδβρδ
Λ1Λ0

1 : ðA22Þ

As we now prove, we can always choose irreducible
representations satisfying

DΛ1

αβðdTÞ ¼ DΛ1

βαðdÞ; for d ∈ PkðNÞ; ðA23Þ

where dT is as in (3.30). Starting from the Clebsch-Gordan
coefficients CΛ1;α

a;i1…ik
for the decomposition of V⊗k

N and
using Schur-Weyl duality, we identify the multiplicity

index α with an orthogonal basis for VPkðNÞ
Λ1

. Specifically,
define

DΛ1

αβðdÞ ¼
X
a

CΛ1;α
a;i10…ik0

CΛ1;β
a;i1…ik

ðdÞi10…ik0
i1…ik

: ðA24Þ

Here we are using the fact that Clebsch-Gordan coefficients
for SN can be chosen real (see Section 7.14 of [53]). It
follows that

DΛ1

αβðdTÞ¼
X
a

CΛ1;α
a;i10…ik0

CΛ1;β
a;i1…ik

ðdTÞi10…ik0
i1…ik

¼
X
a

CΛ1;α
a;i10…ik0

CΛ1;β
a;i1…ik

ðdÞi1…ik
i10…ik0

¼DΛ1

βαðdÞ: ðA25Þ

Because the above bilinear form (A18) includes a
transpose, the symmetrization theorem (Proposition 2.6

in [84]) is modified accordingly. Let C be a DimVPkðNÞ
Λ1

by

DimVPkðNÞ
Λ0
1

matrix, and DΛ1ðdÞ; DΛ0
1ðdÞ be two irreducible

matrix representations of PkðNÞ with dimension

DimVPkðNÞ
Λ1

;DimVPkðNÞ
Λ0
1

, respectively. We have the follow-

ing version of the symmetrization theorem. The matrix

½C� ¼
XBð2kÞ
i¼1

DΛ1ðbiÞCDΛ0
1ððb�i ÞTÞ ðA26Þ

satisfies

DΛ1ðdÞ½C� ¼ ½C�DΛ0
1ðdÞ; ðA27Þ

for all d ∈ PkðNÞ. The proof is essentially identical to the
original case,

DΛ1ðdÞ½C� ¼
X
i

DΛ1ðdbiÞCDΛ0
1ððb�i ÞTÞ

¼
X
i

DΛ1

�X
j

hb�j ; dbiibj
�
CDΛ0

1ððb�i ÞTÞ;

¼
X
j

DΛ1ðbjÞCDΛ0
1ð
X
i

ðb�i ÞThb�j ; dbiiÞ;

¼
X
j

DΛ1ðbjÞCDΛ0
1ð
X
i

ðb�i ÞThdTb�j ; biiÞ;

¼
X
j

DΛ1ðbjÞCDΛ0
1ððdTb�jÞTÞ;

¼ ½C�DΛ0
1ðdÞ; ðA28Þ

where in the third line we used the modified Frobenius
associativity in Eq. (A21).
By Schur’s lemma, [C] is proportional to the identity

matrix if and only if Λ1 ¼ Λ0
1 and zero otherwise. For some

constant cΛ1 ,

½C�ασ ¼ δΛ1Λ0
1cΛ1δασ: ðA29Þ

The lhs of Eq. (A22) is equal toX
i

ðDΛ1ðbiÞEβρDΛ0
1ððb�i ÞTÞÞασ ¼ ½Eβρ�ασ; ðA30Þ

where Eβρ is the elementary matrix with 0 everywhere
except in row β, column ρwhich has a 1. It follows from the
symmetrization theorem (A27) that

X
i

DΛ1

αβðbiÞD
Λ0
1

ρσ ððb�i ÞTÞ ¼ ½Eβρ�ασ ¼ CΛ1

βρδασδ
Λ1Λ0

1 ; ðA31Þ

where CΛ1

βρ is a constant that a priori depends on the choice
of elementary matrix. We now show that it only depends
on Λ1.
Using the property

DΛ1

αβðdTÞ ¼ DΛ1

βαðdÞ; ðA32Þ

we derive

CΛ1

βρδασδ
Λ1Λ0

1 ¼ ½Eβρ�ασ ¼
X
i

DΛ1

αβðbiÞD
Λ0
1

ρσ ððb�i ÞTÞ;

¼
X
i

DΛ1

βαðbTi ÞD
Λ0
1

σρðb�i Þ

¼
X
i

DΛ1

βαðbiÞD
Λ0
1

σρððb�i ÞTÞ;

¼ ½Eασ�βρ ¼ CΛ1
ασδβρδ

Λ1Λ0
1 : ðA33Þ
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Going from the first line to the second uses (A32). The rhs
of the second line follows by summing over bTi instead of bi
(transposition maps B to B bijectively, this is particularly
clear in the diagram basis). Comparing the lhs of the first
line to the rhs of the last line gives

CΛ1

βρ ¼ CΛ1δβρ; ðA34Þ

which proves Eq. (A22).
The normalization constant CΛ1 is important for con-

structing matrix units. We will prove that

CΛ1 ¼ 1

DimVSN
Λ1

: ðA35Þ

The normalization constant is determined by contracting all
the indices in Eq. (A22). Set Λ1 ¼ Λ0

1, then

ðDimVPkðNÞ
Λ1

Þ2CΛ1 ¼
X
α

DΛ1
ααð
X
i

biðb�i ÞTÞ; ðA36Þ

and all that remains is to compute the element
P

i biðb�i ÞT .
As we will now see,

XBð2kÞ
i¼1

biðb�i ÞT ¼ Ω−1 ¼
X
Λ1

DimVPkðNÞ
Λ1

DimVSN
Λ1

pΛ1
; ðA37Þ

where Ω−1 is the inverse of the element defined in
Eq. (A12). Using the relationship (A13) between the
two traces we have that

tr

�
d
X
i

biðb�i ÞT
�

¼ TrV⊗k
N
ðΩ−1d

X
i

biðb�i ÞTÞ;

¼
X
i

hΩ−1dbi; b�i i;

¼
X
i

Coeffðbi;Ω−1dbiÞ;

¼ trðΩ−1dÞ; ðA38Þ

holds for all d ∈ PkðNÞ, from which it follows that

tr

�
dð
X
i

biðb�i ÞT −Ω−1Þ
�

¼ 0 ðA39Þ

holds for all d ∈ PkðNÞ. Since the trace in the regular
representation is nondegenerate we must have

XBð2kÞ
i¼1

biðb�i ÞT −Ω−1 ¼ 0: ðA40Þ

Inserting this expression into Eq. (A36) gives

ðDimVPkðNÞ
Λ1

Þ2CΛ1 ¼
X
α

DΛ1
ααðΩ−1Þ

¼
X
α

X
Λ0
1
⊢N

DimVPkðNÞ
Λ0
1

DimVSN
Λ0
1

DΛ1
ααðpΛ0

1
Þ;

¼
X
Λ0
1
⊢N

DimVPkðNÞ
Λ0
1

DimVSN
Λ0
1

δΛ1Λ0
1DimVPkðNÞ

Λ1
;

¼
DimVPkðNÞ

Λ0
1

DimVSN
Λ0
1

DimVPkðNÞ
Λ0
1

; ðA41Þ

which gives Eq. (A35). To summarize, we have proven that

XBð2kÞ
i¼1

DΛ1

αβðbiÞD
Λ0
1

ρσ ððb�i ÞTÞ ¼
1

DimVSN
Λ1

δβρδασδ
Λ1Λ0

1 : ðA42Þ

3. Matrix units for PkðNÞ
In this subsection we want to use orthogonality of matrix

elements to show that

QΛ1

αβ ¼
X
i

DimðVSN
Λ1
ÞDΛ1

βαððb�i ÞTÞbi ðA43Þ

multiply like a generalized matrix algebra. That is,

QΛ1

αβQ
Λ0
1

ρσ ¼ δΛ1Λ0
1δβρQ

Λ1
ασ : ðA44Þ

This is straightforward given the results in the previous
subsections. The proof goes as follows. By definition we
have

QΛ1

αβQ
Λ0
1

ρσ ¼
X
i;j

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σρððb�jÞTÞbibj;

¼
X
i;j;k

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σρððb�jÞTÞhbibj; b�kibk; ðA45Þ

where the second equality expands the product bibj in the basis bk using Eq. (A20). Using the modified Frobenius
associativity (A21) we have
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X
i;j;k

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σρððb�jÞTÞhbibj; b�kibk

¼
X
i;j;k

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σρððb�jÞTÞhbj; bTi b�kibk;

¼
X
i;k

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σρð
X
j

ðb�jÞThbj; bTi b�kiÞbk; ðA46Þ

where in the last line we have pulled the coefficient hbj; bTi b�ki inside the matrix representation (using linearity). This
prepares us for the next step, where we use the fact thatX

j

ðb�jÞThbj; bTi b�ki ¼ ðbTi b�kÞT; ðA47Þ

which follows from (A20),X
i;k

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σρð
X
j

ðb�jÞThbj; bTi b�kiÞbk

¼
X
i;k

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σρððbTi b�kÞTÞbk;

¼
X
i;k

X
γ

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σγ ððb�kÞTÞD
Λ0
1

γρ ðbiÞbk: ðA48Þ

In the last line we can use orthogonality of matrix elements (A42) to findX
i;k

X
γ

DimðVSN
Λ1
ÞDimðVSN

Λ0
1
ÞDΛ1

βαððb�i ÞTÞD
Λ0
1

σγ ððb�kÞTÞD
Λ0
1

γρ ðbiÞbk ¼
X
k

X
γ

DimðVSN
Λ1
ÞδΛ1Λ0

1δρβδγαD
Λ0
1

σγ ððb�kÞTÞbk;

¼ δΛ1Λ0
1δβρQ

Λ1
ασ ; ðA49Þ

which concludes the proof.

Equipped with a matrix unit basis of PkðNÞ we use this
to show

dQΛ1

αβ ¼ DΛ1
ασðdTÞQΛ1

σβ : ðA50Þ

Expanding QΛ1

αβ on the rhs of this expression as per (A43)
we find

dQΛ1

αβ ¼
X
i

DimðVSN
Λ1
ÞDΛ1

βαððb�i ÞTÞdbi;

¼
X
i;k

DimðVSN
Λ1
ÞDΛ1

βαððb�i ÞTÞhdbi; bkib�k;

¼
X
i;k

DimðVSN
Λ1
ÞDΛ1

βαðhdbi; bkiðb�i ÞTÞb�k;

¼
X
i;k

DimðVSN
Λ1
ÞDΛ1

βαðhbTk d; bTi iðb�i ÞTÞb�k;

¼
X
k

DimðVSN
Λ1
ÞDΛ1

βαðbTk dÞb�k;

¼
X
k

DimðVSN
Λ1
ÞDΛ1

βσ ðbTk ÞDΛ1
σαðdÞb�k;

¼ DΛ1
ασðdTÞQΛ1

σβ : ðA51Þ

In the third line we have used (A21), and in the fourth line
we have used the following property of the bilinear form

hdbi;bki¼TrV⊗k
N
ðdbibTk Þ¼TrV⊗k

N
ðbTi ðbTk dÞTÞ¼hbTk d;bTi i:

ðA52Þ

For the sake of brevity we omit the analogous proof of the
action of d on the rhs,

QΛ1

αβd ¼ QΛ1
ασD

Λ1

σβðdTÞ: ðA53Þ

4. Matrix units for SPkðNÞ and normalization
constants

The matrix units for SPkðNÞ are constructed from QΛ1

αβ

using branching coefficients.

QΛ1

Λ2;μν
¼
X
α;β;p

QΛ1

αβB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

: ðA54Þ

Branching coefficients are understood as follows. The
partition algebra PkðNÞ has a subalgebra (isomorphic to)
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C½Sk� [for example, see Eq. (3.20)]. For any given irre-

ducible representation VPkðNÞ
Λ1

there exists a basis where the
action of C½Sk� ⊂ PkðNÞ is manifest and irreducible. That
is, we consider the decomposition

VPkðNÞ
Λ1

≅ ⨁
Λ2⊢k

VC½Sk�
Λ2

⊗VPkðNÞ→C½Sk�
Λ1Λ2

: ðA55Þ

On the lhs we have a basis

EΛ1
α ; α ∈ f1;…DimðVPkðNÞ

Λ1
Þg; ðA56Þ

where the representation of d ∈ PkðNÞ is irreducible,

dðEΛ1
α Þ ¼

X
β

DΛ1

βαðdÞEΛ1

β : ðA57Þ

The rhs has a basis

EΛ1;μ
Λ2;p

; p ∈ f1;…;DimðVC½Sk�
Λ1

Þg;
μ ∈ f1;…;DimðVPkðNÞ→C½Sk�

Λ1Λ2
Þg; ðA58Þ

where μ is a multiplicity label for VC½Sk�
Λ2

in the decom-
position. We demand that the representation of τ ∈ C½Sk� is
irreducible in this basis,

τðEΛ1;μ
Λ2;p

Þ ¼
X
q

DΛ2
qpðτÞEΛ1;μ

Λ2;q
; ðA59Þ

where DΛ2
qpðτÞ is an irreducible representation of τ ∈ C½Sk�.

The change of basis coefficients are called branching
coefficients

EΛ1;μ
Λ2;p

¼
X
α

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

EΛ1
α : ðA60Þ

The matrix unit property

QΛ1

Λ2;μν
Q

Λ0
1

Λ0
2
;μ0ν0 ¼ δΛ1Λ0

1δΛ2Λ0
2δνμ0Q

Λ1

Λ2;μν0
; ðA61Þ

of the SPkðNÞ basis follows from that of the PkðNÞ units
together with orthogonality of EΛ1;μ

Λ2;p
,

QΛ1

Λ2;μν
Q

Λ0
1

Λ0
2
;μ0ν0 ¼

X
α;β;p

α0 ;β0 ;p0

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

BPkðNÞ→C½Sk�
Λ0
1
;α0→Λ0

2
;p0;μ0B

PkðNÞ→C½Sk�
Λ0
1
;β0→Λ0

2
;p0;ν0Q

Λ1

αβQ
Λ0
1

α0β0 ;

¼
X
α;β;p

α0 ;β0 ;p0

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

BPkðNÞ→C½Sk�
Λ0
1
;α0→Λ0

2
;p0;μ0B

PkðNÞ→C½Sk�
Λ0
1
;β0→Λ0

2
;p0;ν0δ

Λ1Λ0
1δβα0Q

Λ1

αβ0 ;

¼
X
α;p
β0 ;p0

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ0
1
;β0→Λ0

2
;p0;ν0δ

Λ1Λ0
1δΛ2Λ0

2δpp0δνμ0Q
Λ1

αβ0 ;

¼
X
α;β0;p

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ0
1
;β0→Λ0

2
;p;ν0δ

Λ1Λ0
1δΛ2Λ0

2δνμ0Q
Λ1

αβ0 ;

¼ δΛ1Λ0
1δΛ2Λ0

2δνμ0Q
Λ1

Λ2;μν0
: ðA62Þ

Going from the first line to the second we used the matrix unit property ofQΛ1

αβ . Going from the second line to the third line
uses orthogonality

X
α

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;α→Λ0

2
;q;ν ¼ δΛ2Λ0

2δpqδμν: ðA63Þ

Further, we prove Eq. (3.60) for the normalization of the two-point function. The orthogonality of matrix elements
implies

χΛ
0
1ðQΛ1

αβÞ ¼
X
i

DΛ1

βαððb�i ÞTÞ
X
γ

D
Λ0
1

γγ ðbiÞ ¼ δΛ1Λ0
1δαβ: ðA64Þ

We use this fact together with Schur-Weyl duality to compute TrV⊗k
N
ðQΛ1

αβÞ

TrV⊗k
N
ðQΛ1

αβÞ ¼
X
Λ0
1
⊢N
DimVSN

Λ0
1
χΛ

0
1ðQΛ1

αβÞ ¼
X
Λ0
1
⊢N
DimVSN

Λ0
1
δαβδ

Λ1Λ0
1 ¼ DimVSN

Λ1
δαβ: ðA65Þ
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Consequently,

TrV⊗k
N
ðQΛ1

Λ2;μν
Þ ¼ P

α;β;p
BPkðNÞ→Sk
Λ1;α→Λ2;p;μ

BPkðNÞ→Sk
Λ1;β→Λ2;p;ν

TrV⊗k
N
ðQΛ1

αβÞ;

¼ P
α;β;p

BPkðNÞ→Sk
Λ1;α→Λ2;p;μ

BPkðNÞ→Sk
Λ1;β→Λ2;p;ν

δαβDimVSN
Λ1
;

¼P
p
δppδμνDimVSN

Λ1
¼ δμνDimVSN

Λ1
DimVSk

Λ2
;

ðA66Þ

where the last two equalities hold if and only if the branching coefficients are nonzero.

Finally, we check that this construction gives Sk invariant
elements:

τQΛ1

Λ2;μν
τ−1 ¼ QΛ1

Λ2;μν
for τ ∈ Sk: ðA67Þ

From the definition (A54) and (A50) we have

τQΛ1

Λ2;μν
¼
X
α;β;γ;p

DΛ1
γα ðτÞQΛ1

γβB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

: ðA68Þ

We rewrite DΛ1
γα ðτÞ by inserting the completeness relation

X
Λ0
2
;p0;μ0

BPkðNÞ→C½Sk�
Λ1;γ→Λ0

2
;p0;μ0B

PkðNÞ→C½Sk�
Λ1;γ0→Λ0

2
;p0;μ0 ¼ δγγ0 ðA69Þ

on both sides. This gives

DΛ1
γα ðτÞ ¼

X
Λ0
2
;p0;p00;μ0

BPkðNÞ→C½Sk�
Λ1;γ→Λ0

2
;p0;μ0D

Λ0
2

p0p00 ðτÞBPkðNÞ→C½Sk�
Λ1;α→Λ0

2
;p00;μ0 :

ðA70Þ

Inserting this into (A68) gives

X
α;β;γ;p

DΛ1
γα ðτÞQΛ1

γβB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

¼
X
α;β;γ;p

X
Λ0
2
;p0;p00;μ0

BPkðNÞ→C½Sk�
Λ1;γ→Λ0

2
;p0;μ0D

Λ0
2

p0p00 ðτÞBPkðNÞ→C½Sk�
Λ1;α→Λ0

2
;p00;μ0Q

Λ1

γβB
PkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

;

¼
X
β;γ;p

X
Λ0
2
;p0;p00;μ0

BPkðNÞ→C½Sk�
Λ1;γ→Λ0

2
;p0;μ0D

Λ0
2

p0p00 ðτÞδΛ2Λ0
2
δp00pδμ0μQ

Λ1

γβB
PkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

; ðA71Þ

where we used completeness in the last line. Eliminating the Kronecker deltas by carrying out the sums gives

τQΛ1

Λ2;μν
¼
X

β;γ;p;p0
BPkðNÞ→C½Sk�
Λ1;γ→Λ2;p0;μD

Λ2

p0pðτÞQΛ1

γβB
PkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

: ðA72Þ

To finish the proof we follow the same steps for the right action: using (A53) gives

QΛ1

Λ2;μν
τ ¼

X
α;β;γ;p

QΛ1
αγD

Λ1

βγ ðτÞBPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

BPkðNÞ→C½Sk�
Λ1;β→Λ2;p;ν

: ðA73Þ

Inserting (A69) and carrying out the sums yields

QΛ1

Λ2;μν
τ ¼

X
α;γ;p;p00

BPkðNÞ→C½Sk�
Λ1;α→Λ2;p;μ

DΛ2

pp00 ðτÞQΛ1
αγB

PkðNÞ→C½Sk�
Λ1;γ→Λ2;p00;ν ¼ τQΛ1

Λ2;μν
; ðA74Þ

which immediately leads to (A67).

APPENDIX B: ORBIT BASIS

In Sec. III we described two bases for the partition algebra PkðNÞ: a diagram basis and a representation basis. Here we
describe another basis, in terms of combinatorially explicit linear combination of the diagrams from Sec. III B. This basis is
called the orbit basis [73]. In this appendix we describe this basis and show that it is orthogonal for anyN and k. This makes

BARNES, PADELLARO, and RAMGOOLAM PHYS. REV. D 106, 106020 (2022)

106020-44



it a suitable basis to describe permutation invariant matrix
quantum mechanics in the N < 2k regime, a preliminary
discussion of which concludes this subsection. A possible
future direction is to use the orbit basis to describe how the
representation basis is modified in this regime.
As in the diagram basis, this basis is indexed by the set

partitions Π2k of f1;…; k; 10;…; k0g. These are partially
ordered under the relation

π ≼ π0 if every block of π is contained within a block of π0;

ðB1Þ

in this case we say that π is a refinement of π0 or
equivalently that π0 is a coarsening of π. Since we are
already familiar with the diagram basis of PkðNÞ we
express the orbit basis in terms of the diagram basis using
the above partial ordering

dπ ¼
X
π≼π0

xπ0 ; ðB2Þ

with fxπjπ ∈ Π2kg. The diagram basis element dπ is a sum
of all orbit basis elements labeled by set partitions equal to
or coarser than π, for example

ðB3Þ

We will continue to distinguish the diagram and orbit bases
by drawing diagram basis elements with black vertices and
labeling them with the letter d, and drawing orbit basis
elements with white vertices and labeling them with the
letter x. The transition matrix determined by (B2) is ζ2k and
is called the zeta matrix of the partially ordered set Π2k. It is
upper triangular, with ones on the diagonal and hence
invertible.
The inverse of ζ2k is given in [78]. It is the matrix μ2k

xπ ¼
X
π≼π0

μ2kðπ; π0Þdπ0 : ðB4Þ

If π ≼ π0 and π0 consists of l blocks such that the ith block
of π0 is the union of bi blocks of π, then

μ2kðπ; π0Þ ¼
Yl
i¼1

ð−1Þbi−1ðbi − 1Þ!: ðB5Þ

For example, this gives the following expansion of the orbit
basis element labeled by π ¼ f1j2j3j4g

ðB6Þ

The orbit basis is orthogonal with respect to the inner
product (3.31). We will prove,

hxπjxπ0 i ¼
� jGπjNðjπjÞ if ½xπ0 � ¼ ½xπ�
0 otherwise

; ðB7Þ

where π, π0 are set partitions of f1;…; k; 10;…; k0g, NðlÞ ¼
NðN − 1Þ…ðN − lþ 1Þ is the falling factorial, jπj is the
number of blocks in π, and jGπj is the order of the subgroup
of Sk that leaves xπ invariant. As was the case in the
diagram basis, we note that

j½xπ0 �i ¼ jxπ0 i ðB8Þ

and use the rhs ket labels for the sake of notational
efficiency.
First consider the simpler proposition

TrV⊗k
N
ðxπxTπ0 Þ ¼ NðjπjÞδππ0 : ðB9Þ

The proof of this follows from the definition (see Sec. 5. 2
in [78]) of xπ acting on V⊗k

N

ðxπÞi10…ik0
i1…ik

¼
�
1 if ia ¼ ib if and only if a and b are in the same block of π

0 otherwise
: ðB10Þ

The trace is equal to

TrV⊗k
N
ðxπxTπ0 Þ ¼

X
i1…ik
i
10…ik0

ðxπÞi10…ik0
i1…ik

ðxπ0 Þi10…ik0
i1…ik

: ðB11Þ

Equation (B10) implies
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ðxπÞi10…ik0
i1…ik

ðxπ0 Þi10…ik0
i1…ik

¼
�
1 if ia ¼ ib if and only if a and b are in the same block of π and the same block of π0

0 otherwise
: ðB12Þ

If π ≠ π0 two situations exist. Consider the set of all pairs
ða; bÞ for a; b ¼ 1;…; k; 10;…; k0 such that a and b are in
the same block of π. Since π ≠ π0 at least one of these pairs
are such that a and b are in different blocks of π0. The
second case is the reverse. Consider the set of all ða; bÞ
such that a and b are in the same block of π0. Then π0 ≠ π
implies that there exists at least one pair such that a and b
are not in the same block of π. In that case, there are no
choices of ia, ib which satisfy the first criteria in (B12).
For example, take a, b to be in the same block of π but

different blocks of π0. The matrix elements ðxπÞi10…ik0
i1…ik

vanish if ia ≠ ib while the matrix elements ðxπ0 Þi10…ik0
i1…ik

vanish unless ia ≠ ib. Therefore, the product identically
vanishes,

ðxπÞi10…ik0
i1…ik

ðxπ0 Þi10…ik0
i1…ik

¼ δππ0 ðxπÞi10…ik0
i1…ik

ðB13Þ

and

TrV⊗k
N
ðxπxTπ0 Þ ¼

X
i1…ik
i
10…ik0

ðxπÞi10…ik0
i1…ik

δππ0

¼ δππ0NðN − 1Þ…ðN − jπj þ 1Þ: ðB14Þ

The last equality is a consequence of (B10). For example,
consider the set partition 12j1020. The trace of x12j1020 is

TrV⊗2
N
ðx12j1020 Þ ¼

X
i1¼i2≠i3;i3¼i4

¼ NðN − 1Þ; ðB15Þ

since we have N choices of indices for i1 and (N − 1)
choices for i3 (for every choice of i1). The general case is
analogous,

TrV⊗k
N
ðxπÞ ¼ NðjπjÞ: ðB16Þ

We have N choices for the indices of the first block of π,
N − 1 choices for the indices of the second block and so on.
The inner product of two orbit basis elements of SPkðNÞ

is given by (3.31)

hxπjxπ0 i ¼
X
γ∈Sk

TrV⊗k
N
ðγxπγ−1xTπ0 Þ: ðB17Þ

We rewrite

X
γ∈Sk

γxπγ−1 ¼ jGπj
X
λ∈½π�

xλ; ðB18Þ

where the sum on the rhs is over the distinct elements in the
Sk orbit of xπ. Substituting this into the trace gives

hxπjxπ0 i ¼ jGπj
X
λ∈½π�

TrV⊗k
N
ðxλxπ0 Þ

¼ jGπj
X
λ∈½π�

NðjπjÞδλπ0

¼
� jGπjNðjπjÞ if ½xπ0 � ¼ ½xπ�
0 otherwise

; ðB19Þ

where ½xπ� denotes Sk symmetrization as in Eq. (3.24).
For the majority of this paper we assumeN ≥ 2k in order

to take advantage of the many simplifications that occur
in this limit. However, utilizing results from the partition
algebra literature we are able to say something about what
happens below this limit, in which we expect to encounter
finite N effects.
In the limit N ≥ 2k the map from the partition algebra to

EndSN ðV⊗k
N Þ is bijective. When N < 2k this map acquires a

nontrivial kernel (but remains surjective). Accordingly, we
expect a reduction in the size of the state space Hinv. This
reduction is most easily expressed in the orbit basis of
PkðNÞ. Theorem 5.17(a) in [78] states that if N ∈ Z≥1 and
fxπjπ ∈ Π2kg is the orbit basis for PkðNÞ, then for k ∈ Z≥1

the representation Φk;N∶ PkðNÞ → EndðV⊗k
N Þ has the fol-

lowing image and kernel:

imðΦk;NÞ ¼ EndSN ðV⊗k
N Þ

¼ spanCfΦk;NðxπÞjπ ∈ Π2k has ≤ N blocksg;
kerðΦk;NÞ ¼ spanCfxπjπ ∈ Π2k has > N blocksg: ðB20Þ

Due to the bosonic symmetry of our theory we are
actually interested in the map from the symmetrized
partition algebra SPkðNÞ, defined in (3.24), to
EndðV⊗k

N Þ. To this end we note that the definition of the
kernel ofΦk;N given in (B20) is Sk invariant. If one element
of an Sk orbit is in the kernel then (B20) tells us that the
entire orbit belongs to the kernel—the action of Sk does not
change the number of blocks in a partition π. The image
and kernel of this map are the following:
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imðΦk;NÞ ¼ spanC

�
½b� ¼ 1

k!

X
γ∈Sk

γbγ−1jb ¼ Φk;NðxπÞ; ∀ π ∈ Π2k with ≤ N blocks



;

kerðΦk;NÞ ¼ spanCf½xπ�jπ ∈ Π2k; π has > N blocksg: ðB21Þ

Therefore a state basis is given by j½xπ�i for π having N or
fewer blocks, this basis is orthogonal for all N, including
for N < 2k.
The original statement (B20) applies to multimatrix

theories in which observables are constructed from distinct
matrices—in this case there is no bosonic Sk symmetry to
account for. If a state in this theory is null then all states
generated by the action of Sk on this state will also be null.
The equivalent of (3.25) for the multimatrix case is

jdi ¼
X
i1 ;…;ik
i
10 ;…;ik0

ðdÞi10…ik0
i1…ik

ða†1Þi1i10…ða†kÞikik0 j0i

¼ TrV⊗k
N
½dða†1⊗…⊗a†kÞ�j0i; ðB22Þ

in which we have k distinct oscillators and each element d
in the full partition algebra PkðNÞ corresponds to a unique
state, instead of Sk equivalence classes ½d� ∈ SPkðNÞ.

We illustrate with the following examples that under the
map (B22) elements d ∈ PkðNÞ that are in the kernel of
Φk;N label zero vectors in the Hilbert space H. For k ¼ 2

and N ¼ 1 we see

ðB23Þ

in the first line we have used (B4) to express the orbit basis
element in terms of the diagram basis. Similarly, taking
k ¼ 2 and N ¼ 2 we have

ðB24Þ

We can split the first term by imposing different restrictions
on the ranges of the sumX

i;j;k

¼
X
i¼j¼k

þ
X
i¼j
j≠k

þ
X
i¼k
k≠j

þ
X
j¼k
k≠i

þ
X
i≠j≠k

: ðB25Þ

Similarly, we can split the second, third, and fourth termsX
i;j

¼
X
i¼j

þ
X
i≠j

: ðB26Þ

The terms in (B24) cancel due to the equivalence of
coarsening diagrams and restricting summation ranges—
adding edges to a diagram d ∈ PkðNÞ is equivalent to
evaluating the original diagram d over a restricted summa-
tion range. Another way of saying this is that (B2) and
(B25) encode identical expansions, in fact the five terms in
each expansion give equivalent contributions. Orbit basis
elements label states in which the oscillator indices are

summed over the restricted range i1 ≠ i2 ≠ � � � ≠ im where
m is the number of blocks in the orbit basis element. From
this perspective it is easy to see that these states must be
zero when N < m as there are not enough distinct values in
½1; N� to satisfy the inequality defining the summation
range. Contrastingly, the diagram basis produces states
corresponding to sums with unrestricted indices. Although
at finite N there is a stark difference between states in the
orbit and diagram bases, at large N the two descriptions are
equivalent.
Elements of SPkðNÞ are Sk orbits on PkðNÞ and so states

inHðkÞ
inv are linear combinations of states inH. If a state inH

is labeled by a partition algebra element in the kernel of

Φk;N , the state in HðkÞ
inv generated by the action of Sk on this

zero H state will also be zero. It is clear that if an element
d ∈ PkðNÞ produces a zero vector under (B22) then the
equivalence class ½d� ∈ SPkðNÞ containing that element d ∈
PkðNÞ also produces a zero vector under the map to HðkÞ

inv
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jdi ¼
X
i1 ;…;ik
i
10 ;…;ik0

ð½d�Þi10…ik0
i1…ik

ða†Þi1i10…ða†Þikik0 j0i ¼ TrV⊗k
N
ð½d�ða†Þ⊗kÞj0i: ðB27Þ

We can also check that for suitably low values of N the norm of the orbit basis states vanishes. For we expect

hxπ1 jxπ1ijN<4 ¼ gxπ1xπ1 jN<4 ¼ 0: ðB28Þ

Indeed, substituting (B6) into this expression gives

hxπ1 jxπ1i ¼ hdπ1 jdπ1i − hdπ1 jdπ2i − hdπ2 jdπ1i þ hdπ2 jdπ2i þ � � � − 12hdπ14 jdπ15i þ 36hdπ15 jdπ15i;
¼ NðN − 1ÞðN − 2ÞðN − 3Þ;

which is zero for N < 4.

Similarly, we consider , which we expect to vanish for N < 3. This has a diagram basis expansion

ðB29Þ

The norm of this state is

ðB30Þ

which does vanish for N < 3. For a general orbit basis state xπ we expect the norm to be some polynomial in N, which
vanishes for any N < jπj.

APPENDIX C: COMPUTING LOW DEGREE MATRIX UNITS

In this appendix we find the full set of matrix units for k ¼ 2 and the subset of multiplicity free matrix units for k ¼ 3.
These results can be reproduced using the accompanying Sage code.

1. Degree two

As discussed in Sec. IV C 2, we use the following elements of SP2ðNÞ to distinguish the full set of labels on matrix units
QΛ1

Λ2;μν
. The irreducible representation Λ1⊢N is distinguished by

ðC1Þ

while Λ2⊢k is distinguished by

ðC2Þ

and multiplicity labels μ, ν are distinguished by acting with

ðC3Þ

on the left and right. It will be useful to know that T̄ð2Þ
2;1 is related to
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ðC4Þ

since

ðC5Þ

As we will now explain, the eigenvalues of T̄ð2Þ
2;1 uniquely determine the labels μ, ν by left and right action, respectively.

For fixed Λ1, Λ2 the multiplicity labels correspond to basis elements for VP2ðNÞ→C½S2�
Λ1;Λ2

, appearing in the decomposition

VN⊗VN ≅ ðVSN
½N�⊗VS2

½2�⊗VP2ðNÞ→C½S2�
½N�;½2� Þ ⊕ ðVSN

½N−1;1�⊗VS2
½2�⊗VP2ðNÞ→C½S2�

½N−1;1�;½2� Þ
⊕ ðVSN

½N−1;1�⊗VS2
½1;1�⊗VP2ðNÞ→C½S2�

½N−1;1�;½1;1� Þ ⊕ ðVSN
½N−2;2�⊗VS2

½2�⊗VP2ðNÞ→C½S2�
½N−2;2�;½2� Þ

⊕ ðVSN
½N−2;1;1�⊗VS2

½1;1�⊗VP2ðNÞ→C½S2�
½N−2;1;1�;½1;1�Þ: ðC6Þ

On the right-hand side, T̄ð2Þ
2;1 acts on the vector spaces VP2ðNÞ→C½S2�

Λ1Λ2
with dimensions

DimVP2ðNÞ→C½S2�
½N�;½2� ¼ 2; DimVP2ðNÞ→C½S2�

½N−1;1�;½2� ¼ 2; DimVP2ðNÞ→C½S2�
½N−1;1�;½1;1� ¼ 1

DimVP2ðNÞ→C½S2�
½N−2;2�;½2� ¼ 1; DimVP2ðNÞ→C½S2�

½N−2;1;1�;½1;1� ¼ 1: ðC7Þ

We will find that T̄ð2Þ
2;1 has precisely as many distinct eigenvalues (in each subspace) as the corresponding dimension.

To confirm that this is the case, note that T̄ð2Þ
2;1 acts on V⊗2

N as

T̄ð2Þ
2;1ðei1⊗ei2Þ ¼ T̄ð1Þ

2 ei1⊗ei2 þ ei1⊗T̄ð1Þ
2 ei2 − NðN − 3Þei1⊗ei2 : ðC8Þ

It follows that the eigenvalues are directly related to the eigenvalues of T̄ð1Þ
2 defined in (4.34). These are known by the

decomposition

VN ≅ VSN
½N� ⊕ VSN

½N−1;1�; ðC9Þ

where T̄ð1Þ
2 acts on each summand by a normalized character. Using this on the left-hand side of (C6) gives

VN⊗VN ≅ ðVSN
½N�⊗VSN

½N�Þ ⊕ ðVSN
½N�⊗VSN

½N−1;1�Þ ⊕ ðVSN
½N−1;1�⊗VSN

½N�Þ ⊕ ðVSN
½N−1;1�⊗VSN

½N−1;1�Þ: ðC10Þ

Consequently, the three distinct eigenvalues of T̄ð2Þ
2;1 are (one for each summand, but the vectors in the second and third space

have the same eigenvalue)

2
χ½N�ðT2Þ
DimVSN

½N�
− NðN − 3Þ ¼ NðN − 1Þ − NðN − 3Þ ¼ 2N; ðC11Þ

2
χ½N−1;1�ðT2Þ
DimVSN

½N−1;1�
− −NðN − 3Þ ¼ NðN − 3Þ − NðN − 3Þ ¼ 0; ðC12Þ

χ½N�ðT2Þ
DimVSN

½N�
þ χ½N−1;1�ðT2Þ
DimVSN

½N−1;1�
− NðN − 3Þ ¼ 1

2
NðN − 1Þ þ 1

2
NðN − 3Þ − NðN − 3Þ ¼ N: ðC13Þ
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By decomposing (C10) into SN × Sk representations we
will see that the multiplicities in (C6) are uniquely
associated with one of the above eigenvalues. We start
by considering the multiplicities of VSN

½N�⊗VS2
½2�. The repre-

sentation VSN
½N� occurs in the decomposition (C10) as

subspaces

VSN
½N�≅VSN

½N�⊗VSN
½N� and VSN

½N�⊂VSN
½N−1;1�⊗VSN

½N−1;1�: ðC14Þ

The first subspace has eigenvalue 2N, while the second

subspace has eigenvalue 0 with respect to T̄ð2Þ
2;1. Therefore,

the two multiplicities are distinguished. Next we consider
multiple occurrences of VSN

½N−1;1�. The two spaces

ðVSN
½N�⊗VSN

½N−1;1�Þ ⊕ ðVSN
½N−1;1�⊗VSN

½N�Þ ðC15Þ

combine into representations of SN × S2 as

ðVSN
½N−1;1�⊗VS2

½2�Þ ⊕ ðVSN
½N−1;1�⊗VS2

½1;1�Þ: ðC16Þ

Both of these spaces have an eigenvalue N with respect to

T̄ð2Þ
2;1, but they are distinguished by their S2 representation

(or equivalently eigenvalue of tð2Þ2 ). The symmetric part of
VSN
½N−1;1�⊗VSN

½N−1;1� has a subspace

VSN
½N−1;1�⊗SS2½2� ⊂ VSN

½N−1;1�⊗VSN
½N−1;1�; ðC17Þ

with eigenvalue 0. We have found that the two subspaces
VSN
½N−1;1�⊗VS2

½2� are distinguished by the eigenvalues N and 0

with respect to T̄ð2Þ
2;1. The last two terms in (C6) are

multiplicity free and uniquely determined by their eigen-

value with respect to Tð2Þ
2 .

In the Sage code, we simultaneously diagonalized all the
operators by considering a linear combination

T ¼ aT̄2
ð2Þ þ btð2Þ2 þ cT̄ð2Þ;L

2;1 þ fT̄ð2Þ;R
2;1 ; ðC18Þ

with a; b; c; f ∈ R such that there is no eigenvalue degen-
eracy in T. The superscript Lmeans left action and Rmeans

right action. An eigenbasis for T will be a simultaneous

eigenbasis for fT2
ð2Þ; tð2Þ2 ; T̄ð2Þ;L

2;1 ; T̄ð2Þ;R
2;1 g, which corre-

sponds to a basis of matrix units. In the implementation,
these operators act on P2ðNÞ, as opposed to SP2ðNÞ. The
projection to SP2ðNÞ was implemented by adding a fifth
operator PSP2ðNÞ to T. The action of PSP2ðNÞ on d ∈ P2ðNÞ
is d ↦ ½d�. It commutes with all of the previous operators.
This was useful in practice, since elements in SP2ðNÞ will
have eigenvalue 1 with respect to PSP2ðNÞ (the orthogonal
complement has eigenvalue 0).
The matrix units for k ¼ 2 are given below. The

multiplicity labels have been chosen to correspond to

eigenvalues of T̄ð2Þ;L
2;1 and T̄ð2Þ;R

2;1 as follows:

1 ↔ 2N;

2 ↔ 0;

3 ↔ N: ðC19Þ

The elements below have not gone through the final step of
being normalized.

ðC20Þ

ðC21Þ

ðC22Þ

ðC23Þ

ðC24Þ
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ðC25Þ

ðC26Þ

ðC27Þ

ðC28Þ

ðC29Þ

ðC30Þ

For example,

ðQ½N�
½2� Þ11ðQ½N�

½2� Þ11 ¼ N2ðQ½N�
½2� Þ11; ðC31Þ

and the properly normalized matrix unit is given by

ðQ½N�
½2� Þ11
N2

: ðC32Þ
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2. Degree three

For degree k ¼ 3, we find the multiplicity free matrix unitsQΛ1

Λ2
, whereΛ1 ¼ ½N − 3; 3�; ½N − 3; 2; 1�; ½N − 3; 1; 1; 1�. It is

sufficient to use

ðC33Þ

which distinguishes Λ1. The square brackets denote S3 symmetrization as in (3.24).
The multiplicity free matrix units for k ¼ 3 are given below, where ðNÞm is the falling factorialNðN − 1Þ…ðN −mþ 1Þ,

ðC34Þ
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ðC35Þ

ðC36Þ

APPENDIX D: THE METRIC AND ITS INVERSE

We would like to be more explicit about the form of the metric on PkðNÞ as well as its inverse, defined by our inner
product on observables

hOd1Od2i ¼
X
γ∈Sk

TrV⊗k
N
ðd1γdT2 γ−1Þ: ðD1Þ

We note that similar results hold for the metric on SPkðNÞ. First of all we write an explicit form for the metric. It was shown
in [37] that in the large N limit the inner product on normalized PIMOs
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Ôd ¼
OdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihOdOdicon

p ; ðD2Þ

factorizes, and so the metric is given by a delta function at
leading order

ĝd1d2 ¼ hÔd1Ôd2icon ¼
�
1þOð1= ffiffiffiffi

N
p Þ if ½d1� ¼ ½d2�

0þOð1= ffiffiffiffi
N

p Þ if ½d1� ≠ ½d2�
:

ðD3Þ

Furthermore, it was shown that the 1ffiffiffi
N

p corrections are given

by the inclusion of a second term

ĝ ¼ 1þ
X
d1≠d2

Ncðd1∨d2Þ−1
2
ðcðd1Þþcðd2ÞÞEd1d2 ; ðD4Þ

with Ed1d2 the matrix consisting of a 1 in the ðd1; d2Þ
position and zeros elsewhere. Setting

X ¼
X
d1≠d2

Ncðd1∨d2Þ−1
2
ðcðd1Þþcðd2ÞÞEd1d2 ðD5Þ

we have

ĝ−1 ¼ ð1þ XÞ−1 ¼ 1 − X þ X2 − X3 þ…: ðD6Þ

We now calculate the inverse metric for P1ðNÞ explicitly.
P1ðNÞ is spanned by just two diagrams

ðD7Þ

Using our expression for off-diagonal elements of the
metric

XP1ðNÞ ¼
X
d1≠d2

Ncðd1∨d2Þ−1
2
ðcðd1Þþcðd2ÞÞEd1d2 ðD8Þ

we find the one independent element

ðD9Þ

and therefore

ĝP1ðNÞ ¼ 1þ XP1ðNÞ ¼
�
1 0

0 1

	
þ
�

0 N−1
2

N−1
2 0

	
: ðD10Þ

Substituting this into our equation for the inverse metric
(D6) we find that the inverse is given by

ĝ−1P1ðNÞ ¼
�
1 0

0 1

	
− N−1

2

�
0 1

1 0

	
þ N−1

�
1 0

0 1

	

− N−3
2

�
0 1

1 0

	
þ…;

¼
X∞
i¼0

�
N−i
�
1 0

0 1

	
− N−ðiþ1

2
Þ
�
0 1

1 0

	�
;

¼ N
N − 1

�
1 −N−1

2

−N−1
2 1

	
; ðD11Þ

as

X∞
i¼0

N−i ¼ 1

1 − 1
N

¼ N
N − 1

;

X∞
i¼0

N−ðiþ1
2
Þ ¼ N−1

2

X∞
i¼0

N−i ¼ N−1
2

1

1 − 1
N

¼ N
1
2

N − 1
: ðD12Þ

As a further example we calculate the inverse metric for
P2ðNÞ, which is spanned by 15 diagrams. We are interested
in the off-diagonal elements of our metric and so we have
15ð15−1Þ

2
¼ 105 independent elements. Using Sage we find

the metric is given by
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ĝP2ðNÞ ¼ 1þ XP2ðNÞ

¼

2
666666666666666666666666666666664

1 N−1
2 N−1

2 N−1
2 N−1

2 N−1
2 N−1

2 N−1
2 N−1 N−1 N−1 N−1 N−1 N−1 N−3

2

N−1
2 1 N−1 N−1 N−1 N−1 N−1 N−1 N−1

2 N−1
2 N−1

2 N−3
2 N−3

2 N−3
2 N−1

N−1
2 N−1 1 N−1 N−1 N−1 N−1 N−1 N−1

2 N−3
2 N−3

2 N−1
2 N−1

2 N−3
2 N−1

N−1
2 N−1 N−1 1 N−1 N−1 N−1 N−1 N−1

2 N−3
2 N−3

2 N−3
2 N−3

2 N−1
2 N−1

N−1
2 N−1 N−1 N−1 1 N−1 N−1 N−1 N−3

2 N−1
2 N−3

2 N−1
2 N−3

2 N−1
2 N−1

N−1
2 N−1 N−1 N−1 N−1 1 N−1 N−1 N−3

2 N−1
2 N−3

2 N−3
2 N−1

2 N−3
2 N−1

N−1
2 N−1 N−1 N−1 N−1 N−1 1 N−1 N−3

2 N−3
2 N−1

2 N−1
2 N−3

2 N−3
2 N−1

N−1
2 N−1 N−1 N−1 N−1 N−1 N−1 1 N−3

2 N−3
2 N−1

2 N−3
2 N−1

2 N−1
2 N−1

N−1 N−1
2 N−1

2 N−1
2 N−3

2 N−3
2 N−3

2 N−3
2 1 N−1 N−1 N−1 N−1 N−1 N−1

2

N−1 N−1
2 N−3

2 N−3
2 N−1

2 N−1
2 N−3

2 N−3
2 N−1 1 N−1 N−1 N−1 N−1 N−1

2

N−1 N−1
2 N−3

2 N−3
2 N−3

2 N−3
2 N−1

2 N−1
2 N−1 N−1 1 N−1 N−1 N−1 N−1

2

N−1 N−3
2 N−1

2 N−3
2 N−1

2 N−3
2 N−1

2 N−3
2 N−1 N−1 N−1 1 N−1 N−1 N−1

2

N−1 N−3
2 N−1

2 N−3
2 N−3

2 N−1
2 N−3

2 N−1
2 N−1 N−1 N−1 N−1 1 N−1 N−1

2

N−1 N−3
2 N−3

2 N−1
2 N−1

2 N−3
2 N−3

2 N−1
2 N−1 N−1 N−1 N−1 N−1 1 N−1

2

N−3
2 N−1 N−1 N−1 N−1 N−1 N−1 N−1 N−1

2 N−1
2 N−1

2 N−1
2 N−1

2 N−1
2 1

3
777777777777777777777777777777775

: ðD13Þ

Inverting this metric directly gives

ĝ−1 ¼ N
ðN−1ÞðN−2ÞðN−3Þ

×

2
6666666666666666666666666666666666666666666666666664

N2þN ðð−NÞ−1ÞN1
2 ðð−NÞ−1ÞN1

2 ð1−NÞN1
2 ðð−NÞ−1ÞN1

2 ð1−NÞN1
2 ð1−NÞN1

2 ðð−NÞ−1ÞN1
2 2N 2N 2N 2N 2N 2N −6N1

2

ðð−NÞ−1ÞN1
2 ðN−1Þ2 Nþ1 N−1 Nþ1 N−1 N−1 Nþ1 ð1−NÞN1

2 ð1−NÞN1
2 ð1−NÞN1

2 −2N1
2 −2N1

2 −2N1
2 2N

ðð−NÞ−1ÞN1
2 Nþ1 ðN−1Þ2 N−1 Nþ1 N−1 N−1 Nþ1 ð1−NÞN1

2 −2N1
2 −2N1

2 ð1−NÞN1
2 ð1−NÞN1

2 −2N1
2 2N

ð1−NÞN1
2 N−1 N−1 N2−3Nþ1 N−1 1 1 N−1 ð2−NÞN1

2 −N1
2 −N1

2 −N1
2 −N1

2 ð2−NÞN1
2 N

ðð−NÞ−1ÞN1
2 Nþ1 Nþ1 N−1 ðN−1Þ2 N−1 N−1 Nþ1 −2N1

2 ð1−NÞN1
2 −2N1

2 ð1−NÞN1
2 −2N1

2 ð1−NÞN1
2 2N

ð1−NÞN1
2 N−1 N−1 1 N−1 N2−3Nþ1 1 N−1 −N1

2 ð2−NÞN1
2 −N1

2 −N1
2 ð2−NÞN1

2 −N1
2 N

ð1−NÞN1
2 N−1 N−1 1 N−1 1 N2−3Nþ1 N−1 −N1

2 −N1
2 ð2−NÞN1

2 ð2−NÞN1
2 −N1

2 −N1
2 N

ðð−NÞ−1ÞN1
2 Nþ1 Nþ1 N−1 Nþ1 N−1 N−1 ðN−1Þ2 −2N1

2 −2N1
2 ð1−NÞN1

2 −2N1
2 ð1−NÞN1

2 ð1−NÞN1
2 2N

2N ð1−NÞN1
2 ð1−NÞN1

2 ð2−NÞN1
2 −2N1

2 −N1
2 −N1

2 −2N1
2 N2−2N N N N N N −N3

2

2N ð1−NÞN1
2 −2N1

2 −N1
2 ð1−NÞN1

2 ð2−NÞN1
2 −N1

2 −2N1
2 N N2−2N N N N N −N3

2

2N ð1−NÞN1
2 −2N1

2 −N1
2 −2N1

2 −N1
2 ð2−NÞN1

2 ð1−NÞN1
2 N N N2−2N N N N −N3

2

2N −2N1
2 ð1−NÞN1

2 −N1
2 ð1−NÞN1

2 −N1
2 ð2−NÞN1

2 −2N1
2 N N N N2−2N N N −N3

2

2N −2N1
2 ð1−NÞN1

2 −N1
2 −2N1

2 ð2−NÞN1
2 −N1

2 ð1−NÞN1
2 N N N N N2−2N N −N3

2

2N −2N1
2 −2N1

2 ð2−NÞN1
2 ð1−NÞN1

2 −N1
2 −N1

2 ð1−NÞN1
2 N N N N N N2−2N −N3

2

−6N1
2 2N 2N N 2N N N 2N −N3

2 −N3
2 −N3

2 −N3
2 −N3

2 −N3
2 N2

3
7777777777777777777777777777777777777777777777777775

:

ðD14Þ

1. First and second order corrections

The leading corrections to this are of order N−1
2 and occur precisely when d2 is obtained from d1 by removing a single

edge (or vice versa). We recognize this as a method of constructing the Hasse diagram for PkðNÞ. Accordingly the leading
order corrections to the metric are given precisely by the elements d1; d2 ∈ PkðNÞ that share a connection in the relevant
Hasse diagram. For example, the following is the Hasse diagram for k ¼ 2
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ðD15Þ

Indeed, every connection in this diagram corresponds to an
N

1
2 element in ĝP2ðNÞ and all N

1
2 elements of ĝP2ðNÞ are given

by a connection in the diagram. We call each row in the
Hasse diagram a level Li and index them by i—the number
of connected components in the partition diagrams on that

level. For example , , ,

and .

Ordering our basis according to the levels in the Hasse
diagram we see that the metric has block diagonal con-
tributions from within any given level of the Hasse
diagram. As the leading order corrections are generated
by d1 and d2 in different levels these occur outside of the
diagonal blocks. Everything we have said here about the
metric applies equally well to the inverse metric, as to first
order this is given by

ĝ−1 ∼ 1 − X: ðD16Þ

The N−1 corrections to the metric are again easily
described with reference to the Hasse diagram. There are
two ways in which we can get N−1 contributions:
(1) For any d1; d2 ∈ Li if d1∨d2 ∈ Li−1, then

ĝd1;d2 ¼ N−1.
(2) For and d1 ∈ Li, d2 ∈ Li−2 if d1 < d2, that is if d1 is

contained within d2, then ĝd1;d2 ¼ N−1. If d1 and d2
are incomparable then their inner product will be a
larger negative power of N as this incomparability
will only reduce the number of connected compo-
nents of the merge of d1 and d2.

More generally for d1 ∈ Li, d2 ∈ Li−2n for n ∈ Zþ and
d1 < d2 we have

ĝd1;d2 ¼ Ncðd1∨d2Þ−1
2
ðcðd1Þþcðd2ÞÞ ¼ Nði−2nÞ−1

2
ðiþi−2nÞ ¼ N−n:

ðD17Þ
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