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It has been shown that the non-Abelian solitonic vortex string supported in four-dimensional (4D)
N ¼ 2 supersymmetric QCD (SQCD) with the U(2) gauge group and Nf ¼ 4 quark flavors becomes a
critical superstring. This string propagates in the ten-dimensional space formed by a product of the flat 4D
space and an internal space given by a Calabi-Yau noncompact threefold, namely, the conifold. The
spectrum of low-lying closed string states in the associated type-IIA string theory was found and interpreted
as a spectrum of hadrons in 4DN ¼ 2 SQCD. In particular, the lowest string state appears to be a massless
BPS baryon associated with the deformation of the complex structure modulus b of the conifold. In the
previous work the deformation of the ten-dimensional background with nonzero Neveu-Schwarz 3-form
flux was considered and interpreted as a switching on a particular choice of quark masses in 4D SQCD.
This deformation was studied to leading order at small 3-form flux. In this paper we study the back reaction
of the nonzero 3-form flux on the metric and the dilaton introducing the ansatz with several warp factors
and solving the gravity equations of motion. We show that 3-form flux produces a potential for the conifold
complex structure modulus b, which leads to the runaway vacuum. At the runaway vacuum warp factors
disappear, while the conifold degenerates. In 4D SQCD we relate this to the flow to the U(1) gauge theory
upon switching on quark masses and decoupling of two flavors.
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I. INTRODUCTION

Non-Abelian vortices were first found in 4D N ¼ 2
SQCD with the gauge group UðNÞ and Nf ≥ N flavors of
quarks [1–4]. The non-Abelian vortex string is 1=2
Bogomolny-Prasad-Sommerfeld (BPS) saturated and,
therefore, has N ¼ ð2; 2Þ supersymmetry on its world
sheet. In addition to four translational moduli of the
Abrikosov-Nielsen-Olesen (ANO) strings [5], the non-
Abelian string carries orientational moduli, as well as
the size moduli if Nf > N [1–4] (see [6–9] for reviews).
It was shown in [10] that the non-Abelian solitonic vortex

string in N ¼ 2 supersymmetric QCD (SQCD) with the
UðN ¼ 2Þ gauge group and Nf ¼ 4 flavors of quark hyper-
multiplets becomes a critical superstring. The dynamics of
the internal orientational and sizemoduli of the non-Abelian
vortex string for the caseN ¼ 2,Nf ¼ 4 is described by the
so-called two-dimensional (2D) weightedCP sigma model,
which we denote as WCPðN ¼ 2; Nf − N ¼ 2Þ.

For Nf ¼ 2N this world sheet sigma model becomes
conformal. Moreover, for N ¼ 2 the number of the orienta-
tional and size moduli is six and they can be combined with
four translational moduli to form a ten-dimensional (10D)
space required for a superstring to become critical [10,11]. In
this case the target space of the world sheet sigma model on
the non-Abelian vortex string is R4 × Y6, where Y6 is a
noncompact six dimensional Calabi-Yau (CY) manifold, the
conifold [12,13]. Moreover, the theory of the critical vortex
string at hand was identified as the superstring theory of
type IIA [11]. This allows one to apply the string theory for
the calculation of the spectrum of string states and identify it
with a spectrum of hadrons in 4DN ¼ 2 SQCD [11]. Since
non-Abelian vortex strings are topologically stable and
cannot be broken (see [8] for a review) we focus on the
closed strings and consider Kaluza-Klein reduction of 10D
string theory associated with the non-Abelian vortex to 4D.
A version of the string-gauge duality for 4D SQCD was

proposed [10]: at weak coupling this theory is in the Higgs
phase and can be described in terms of quarks and Higgsed
gauge bosons, while at strong coupling hadrons of this
theory can be understood as closed string states formed by
the non-Abelian vortex string. We call this approach
“solitonic string-gauge duality”.
The first step of the above program, namely, finding

massless string states was carried out in [11,14] using
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supergravity approximation. It turns out that most of
massless modes have non-normalizable wave functions
over the non-compact conifold Y6, i.e., they are not
localized in 4D and, hence, cannot be interpreted as
dynamical states in 4D SQCD. In particular, the 4D
graviton and unwanted vector multiplet associated with
deformations of the Kähler form of the conifold are absent.
However, a single massless BPS hypermultiplet was found
at the self-dual point at strong coupling. It is associated
with deformations of a complex structure of the conifold
and was interpreted as a composite 4D baryon b.1 Later
low-lying massive non-BPS 4D states were found in
[15,16] using the little string theory approach, see [17]
for a review.
In the previous work [18] a study of possible flux

deformations of the 10D background for non-Abelian
vortex string was initiated. The goal is to look for flux
deformations of the string background which do not
destroy N ¼ 2 supersymmetry in 4D and interpret them
in terms of certain deformations in SQCD. Fluxes generi-
cally induce a potential for CY moduli lifting flat directions
(see for example, [19] for a review). It is known that for
type-IIA CY compactifications the potential for the Kähler
form moduli arise from Ramond-Ramond (RR) even-form
fluxes, while the potential for complex structure moduli is
induced by the Neveu-Schwarz (NS) 3-form flux H3

[20,21]. Since for the conifold case at hand the only
modulus associated with a physical state is the complex
structure modulus b we focus on the NS 3-form flux. It
does not break N ¼ 2 supersymmetry in 4D theory [20].
In [18] the NS 3-form flux H3 was interpreted as

switching on quark masses in 4D SQCD. The reason is
that the only scalar potential deformation, which is allowed
in SQCD by N ¼ 2 supersymmetry is the mass term
for quarks. Field theory arguments were used to find a
particular choice of nonzero quark masses associated
with H3.
The flux deformation was studied in [18] to the leading

order at small H3 which translates into small values of
quark masses. In this paper we study the back reaction of
the nonzero 3-form flux on the metric and dilaton. We
introduce the ansatz with several warp factors and solve the
gravity equations of motion for an arbitrary value of H3.
This allows us to switch on large masses for certain flavors
in 4D SQCD and consider the decoupling limit.
Note that there is one puzzling feature of the solitonic

string-gauge duality. IfN ¼ Nf=2 ≠ 2 the dimension of the
target space of the string sigma model is not equal to ten
and it is not clear how one can quantize a non-Abelian
string in these cases. The program initiated in [18] and
continued in the present paper is an attempt to resolve this
puzzle. Upon switching on quark masses and decoupling

certain quark flavors one can obtain N ¼ 2 SQCD with
different gauge groups and matter content. Studying the
string theory response to mass deformations may shed light
on the above mentioned puzzle.
We show that 3-form flux produces a potential for the

conifold complex structure modulus b, which leads to the
runaway vacuum. At the runaway vacuum warp factors
disappear, while the deformed conifold degenerates. In 4D
SQCD we relate this to the flow to U(1) gauge theory upon
switching on quark masses and the decoupling of two
flavors.
Note that we assume that the conifold complex structure

modulus b is large enough to make sure that the curvature
of the conifold is small everywhere. This justifies the
gravity approximation.
The paper is organized follows. In Sec. II we briefly

review 4D N ¼ 2 SQCD and the world sheet sigma model
on the non-Abelian string. Next we review the massless
baryon b as a deformation of the complex structure of the
conifold. In Sec. III we introduce the metric ansatz and
solve gravity equations of motion with nonzero 3-form H3

in the limit of large radial coordinate of the conifold. In
Sec. IV we solve gravity equations for the deformed
conifold and calculate the potential for the complex
structure modulus b in the large b limit. In Sec. V we
interpret H3-form in terms of quark masses in 4D SQCD.
We also discuss the degeneration of the conifold at the
runaway vacuum as a flow of 4D SQCD to N ¼ 2
supersymmetric QED (SQED) upon the decoupling of
two quark flavors. Section VI summarizes our conclusions.

II. NON-ABELIAN CRITICAL VORTEX STRING

A. Four-dimensional N = 2 SQCD

As was already mentioned, non-Abelian vortex strings
were first found in 4D N ¼ 2 SQCD with the gauge group
UðNÞ and Nf ≥ N quark flavors supplemented by the
Fayet-Iliopoulos (FI) term [22] with parameter ξ [1–4] (see
for example, [8] for a detailed review of this theory). Here,
we just mention that at weak coupling g2 ≪ 1, this theory is
in the Higgs phase in which the scalar components of the
quark multiplets (squarks) develop vacuum expectation
values (VEVs). These VEVs break the UðNÞ gauge group
Higgsing all gauge bosons. The Higgsed gauge bosons
combine with the screened quarks to form long N ¼ 2

multiplets with mass mG ∼ g
ffiffiffi
ξ

p
.

The global flavor SUðNfÞ is broken down to the so
called color-flavor locked group. The resulting global
symmetry is

SUðNÞCþF × SUðNf − NÞ × Uð1ÞB; ð2:1Þ

(see [8] for more details).
The unbroken global Uð1ÞB factor above is identified

with a baryonic symmetry. Note that what is usually
1The definition of the baryonic charge is nonstandard and will

be given below in Sec. II.
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identified as the baryonic U(1) charge is a part of our 4D
theory gauge group. “Our” Uð1ÞB is an unbroken by the
squark VEVs combination of two U(1) symmetries; the
first is a subgroup of the flavor SUðNfÞ and the second is
the global U(1) subgroup of UðNÞ gauge symmetry.
As was already noted, we consider N ¼ 2 SQCD in the

Higgs phase; N squarks condense. Therefore, non-Abelian
vortex strings confine monopoles. In the N ¼ 2 4D theory
these strings are 1=2 BPS-saturated; hence, their tension is
determined exactly by the FI parameter,

T ¼ 2πξ: ð2:2Þ

However, as we already mentioned, non-Abelian strings
cannot be broken, therefore monopoles cannot be attached
to the string end points. In fact, in the UðNÞ theories
confined monopoles are junctions of two distinct elemen-
tary non-Abelian strings [3,4,23] (see [8] for a review).
As a result, in four-dimensional N ¼ 2 SQCD we have
monopole-antimonopole mesons in which the monopole
and antimonopole are connected by two confining strings.
In addition, in the UðNÞ gauge theory we can have baryons
appearing as a closed “necklace” configurations of
N × ðintegerÞ monopoles [8]. For the U(2) gauge group
the massless BPS baryon b found from string theory in [11]
consists of four monopoles [24].
Below we focus on the particular case N ¼ 2 and

Nf ¼ 4 because, as was mentioned in the Introduction,
in this case 4D N ¼ 2 SQCD supports non-Abelian vortex
strings which behave as critical superstrings [10]. Also, for
Nf ¼ 2N the gauge coupling g2 of the 4D SQCD does not
run; the β function vanishes. However, the conformal
invariance of the 4D theory is explicitly broken by the
FI parameter ξ, which defines the VEVs of quarks. The FI
parameter is not renormalized.
Both stringy monopole-antimonopole mesons and

monopole baryons with spins J ∼ 1 have masses deter-
mined by the string tension (∼

ffiffiffi
ξ

p
) and are heavier at weak

coupling g2 ≪ 1 than perturbative states with masses
mG ∼ g

ffiffiffi
ξ

p
. Thus, they can decay into perturbative states,2

and in fact at weak coupling we do not expect them to
appear as stable states.
Only in the strong coupling domain g2 ∼ 1 we expect

that (at least some of) stringy mesons and baryons become
stable. These expectations were confirmed in [11,15] where
low-lying string states in the string theory for the critical
non-Abelian vortex were found at the self-dual point at
strong coupling.
In this paper we introduce quark masses mA, A ¼ 1;…4

assuming that two first squark flavors with masses m1 and
m2 develop VEVs.

B. World sheet sigma model

The presence of the color-flavor locked group
SUðNÞCþF is the reason for the formation of non-
Abelian vortex strings [1–4]. The most important feature
of these vortices is the presence of the orientational zero
modes. As was already mentioned, in N ¼ 2 SQCD these
strings are 1=2 BPS saturated and preserve N ¼ ð2; 2Þ
supersymmetry on the world sheet.
Let us briefly review the model emerging on the world

sheet of the non-Abelian string [8].
The translational moduli fields are described by the

Nambu-Goto action and decouple from all other moduli.
Below we focus on internal moduli.
If Nf ¼ N, the dynamics of the orientational zero modes

of the non-Abelian vortex, which become orientational
moduli fields on the world sheet, are described by the
2D N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ model.
If one adds additional quark flavors, the non-Abelian

vortices become semilocal—they acquire size moduli [25].
In particular, for the non-Abelian semilocal vortex in U(2)
N ¼ 2 SQCD with four flavors, in addition to the complex
orientational moduli nP (here P ¼ 1, 2), we must add two
complex size moduli ρK (where K ¼ 3, 4), see [1,4,25–28].
The effective theory on the string world sheet is a

two-dimensional N ¼ ð2; 2Þ supersymmetric WCPð2; 2Þ
model (see review [8] for details). This model can be
defined as a low-energy limit of the U(1) gauge theory [29].
The fields nP and ρK have charges þ1 and −1 with respect
to the U(1) gauge field. The target space of the WCPð2; 2Þ
model is defined by the D-term condition

jnPj2 − jρKj2 ¼ Reβ; P ¼ 1; 2; K ¼ 3; 4: ð2:3Þ

The number of real bosonic degrees of freedom in the
model WCPð2; 2Þ is 8 − 1 − 1 ¼ 6. Here 8 is the number
of real degrees of freedom of nP and ρK fields and we
subtracted one real constraint imposed by the D term
condition in (2.3) and one gauge phase eaten by the Higgs
mechanism. As we already mentioned, these six internal
degrees of freedom in the massless limit can be combined
with four translational moduli to form a 10D space needed
for a superstring to be critical.
The global symmetry of the world sheet WCPð2; 2Þ

model is

SUð2Þ × SUð2Þ × Uð1ÞB; ð2:4Þ

i.e., exactly the same as the unbroken global group in the
4D theory at N ¼ 2 and Nf ¼ 4. The fields n and ρ
transform in the following representations,

n∶
�
2; 1;

1

2

�
; ρ∶

�
1; 2;

1

2

�
: ð2:5Þ2Their quantum numbers with respect to the global group (2.1)

allows these decays, see [8].
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Here the global “baryonic” Uð1ÞB group rotates n and ρ
fields with the same phase (see [11] for details).
Twisted masses of nP and ρK fields coincide with quark

masses of 4D SQCD and are given respectively by mP and
mK , P ¼ 1, 2 and K ¼ 3, 4, see [8]. Nonzero twisted
masses mA break each of the SU(2) factors in (2.4) down
to U(1).
The 2D coupling constant Reβ can be naturally com-

plexified to the complex coupling constant β if we include
the θ term in the action [29]. At the quantum level, the
coupling β does not run in this theory. Thus, theWCPð2; 2Þ
model is superconformal at zero masses mA ¼ 0.
Therefore, its target space is Ricci flat and [being Kähler
due to N ¼ ð2; 2Þ supersymmetry] represents a noncom-
pact Calabi-Yau manifold, namely the conifold Y6 (see [13]
for a review).
TheWCPð2; 2Þ model with mA ¼ 0 was used in [10,11]

to define the critical string theory for the non-Abelian
vortex at hand.
Typically, solitonic strings are “thick” and the effective

world sheet theory has a series of unknown high-derivative
corrections in powers of ∂=mG. The string transverse size is
given by 1=mG, where mG ∼ g

ffiffiffi
ξ

p
is a mass scale of the

gauge bosons and quarks forming the string. The string
cannot be thin in a weakly coupled 4D SQCD because at
weak coupling mG ∼ g

ffiffiffiffi
T

p
and m2

G is always small in the
units of the string tension T, see (2.2).
A conjecture was put forward in [10] that at strong

coupling in the vicinity of a critical value g2c ∼ 1 the non-
Abelian string in the theory at handbecomes thin, and higher-
derivative corrections in the world sheet theory are absent.
This is possible because the low energy WCPð2; 2Þ model
already describes a critical string and higher-derivative
corrections are not required to improve its ultraviolet
behavior (see [30] for the discussion of this problem). The
above conjecture implies that mGðg2Þ → ∞ at g2 → g2c. As
expected the thin string produces linear Regge trajectories
even for small spins [16].
It was also conjectured in [11] that gc corresponds to the

value of the 2D coupling constant β ¼ 0. The motivation
for this conjecture is that this value is a self-dual point for
the WCPð2; 2Þ model. Also β ¼ 0 is a natural choice
because at this point we have a regime change in the
WCPð2; 2Þ model. The resolved conifold defined by the D
term condition (2.3) develops a conical singularity at this
point. The point β ¼ 0 corresponds to τSW ¼ 1 in the 4D
SQCD, where τSW is the complexified inverse coupling,
τSW ¼ i 8πg2 þ θ4D

π , where θ4D is the 4D θ angle [24].

The above conjecture cannot be proven at the moment
because we deal with a strong coupling regime. However, it
passes very general important tests [11]. In particular, 4D
gravitons are absent after “compactification” due to the non-
normalizability of its wave function over the noncompact
conifold. This result matches our expectations since we
started withN ¼ 2 SQCD in the flat four-dimensional space

without gravity.Also, the fact that non-Abelianvortex strings
in UðNÞ theories are closed strings leads to type-II string
theory. Upon compactification on 6D CY space this ensures
required N ¼ 2 supersymmetry in 4D SQCD.
Moreover, in [24] we showed the presence of the

massless BPS baryon b in 4D SQCD at strong coupling
at β ¼ 0 using purely field theory arguments in the agree-
ment with the result found from the string theory [11].
These successful tests strongly support the string theory on
the conifold as a dual theory for our 4D SQCD.
As we already mentioned in the Introduction a solitonic

string-gauge duality proposed in [10,11] for 4D SQCD
implies that at weak coupling this theory is in the Higgs
phase and can be described in terms of quarks and Higgsed
gauge bosons, while at strong coupling hadrons of this
theory can be understood as closed string states in the string
theory on R4 × Y6.
Nonzero twisted masses mA ≠ 0 define a mass defor-

mation of the superconformal CY theory on the conifold.
Generically, quark masses break the world sheet conformal
invariance. TheWCPð2; 2Þ model with nonzero mA can no
longer be used to define a string theory for the non-Abelian
vortex in the massive 4D SQCD.

C. Massless 4D baryon

In this section we briefly review the only 4D massless
state found in the string theory of the critical non-Abelian
vortex in the massless limit [11]. It is associated with the
deformation of the conifold complex structure. As was
already mentioned, all other massless string modes have
non-normalizable wave functions over the conifold. In
particular, 4D graviton associated with a constant wave
function over the conifold Y6 is absent as expected [11].
We can construct the U(1) gauge-invariant “mesonic”

variables

wPK ¼ nPρK: ð2:6Þ

These variables are subject to the constraint

detwPK ¼ 0: ð2:7Þ

Equation (2.7) defines the conifold Y6. It has the Kähler
Ricci-flat metric and represents a noncompact Calabi-Yau
manifold [12,13,29]. It is a cone which can be parametrized
by the noncompact radial coordinate

r̃2 ¼ Trw̄w ð2:8Þ

and five angles (see [12]). Its section at fixed r̃ is S2 × S3.
At β ¼ 0 the conifold develops a conical singularity, so

both spheres S2 and S3 can shrink to zero. The conifold
singularity can be smoothed out in two distinct ways; by
deforming the Kähler form or by deforming the complex
structure. The first option is called the resolved conifold
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and amounts to keeping a nonzero value of β in (2.3). This
resolution preserves the Kähler structure and Ricci-flatness
of the metric. If we put ρK ¼ 0 in (2.3) we get the CPð1Þ
model with the sphere S2 as a target space (with the radiusffiffiffi
β

p
). The resolved conifold has no normalizable zero

modes. In particular, the modulus β which becomes a
scalar field in four dimensions has a non-normalizable
wave function over the Y6 and therefore is not dy-
namical [11].
If β ¼ 0 another option exists, namely a deformation of

the complex structure [13]. It preserves the Kähler structure
and Ricci-flatness of the conifold and is usually referred to
as the deformed conifold. It is defined by the deformation
of Eq. (2.7); namely,

detwPK ¼ b; ð2:9Þ

where b is a complex parameter. Now the sphere S3 cannot
shrink to zero, its minimal size is determined by b.
The modulus b becomes a 4D complex scalar field. The

effective action for this field was calculated in [11] using
the explicit metric on the deformed conifold [12,31,32],

SkinðbÞ ¼ T
Z

d4xj∂μbj2 log
R̃2
IR

jbj ; ð2:10Þ

where R̃IR is the maximal value of the radial coordinate r̃
introduced as an infrared regularization of the logarithmi-
cally divergent b-field norm. Here the logarithmic integral
at small r̃ is cut off by the minimal size of S3, which is
equal to jbj.
To avoid confusion we note that in AdS=CFT corre-

spondence the radial coordinate of internal dimensions has
an interpretation of energy. The large values of this
coordinate correspond to the ultraviolet region. In our
approach it is vice versa. The radial coordinate r̃ measures
absolute values of products nPρK and since ρ’s are vortex
string size moduli [25] r̃ has a 4D interpretation as a
distance from the string axis. In particular, large r̃ corre-
sponds to the infrared region.
We see that the norm of the modulus b turns out to be

logarithmically divergent in the infrared. The modes with
the logarithmically divergent norm are at the borderline
between normalizable and non-normalizable modes.
Usually such states are considered as “localized” in 4D.
We follow this rule. This scalar mode is localized near the
conifold singularity in the same sense as the orientational
and size zero modes are localized on the vortex string
solution (see [28]).
The field b being massless can develop a VEV. Thus, we

have a new Higgs branch in 4D N ¼ 2 SQCD which is
developed only for the critical value of the 4D coupling
constant τSW ¼ 1 associated with β ¼ 0.
In [11] the massless state bwas interpreted as a baryon of

4DN ¼ 2 QCD. Let us explain this. From Eq. (2.9) we see

that the complex parameter b (which is promoted to a 4D
scalar field) is a singlet with respect to both SU(2) factors
in (2.4), i.e., the global world sheet group.3 What about its
baryonic charge? From (2.5) and (2.9) we see that the b
state transforms as

ð1; 1; 2Þ: ð2:11Þ

In particular it has the baryon charge QBðbÞ ¼ 2.
In type-IIA superstring compactifications the complex

scalar associated with deformations of the complex struc-
ture of the Calabi-Yau space enters as a 4D N ¼ 2 BPS
hypermultiplet (see [19] for a review).
On the field theory side we know that if we switch on

generic quark masses in 4D SQCD the b-baryon becomes
massive. Since it is a BPS state its mass is dictated by its
baryonic charge [24],

mb ¼ jm1 þm2 −m3 −m4j: ð2:12Þ

To conclude this section let us present the explicit metric
of the singular conifold (with both β and b equal to zero),
which will be used in the next section. It has the form [12]

ds26 ¼ dr2 þ r2

6
ðe2θ1 þ e2φ1

þ e2θ2 þ e2φ2
Þ þ r2

9
e2ψ ; ð2:13Þ

where

eθ1 ¼ dθ1; eφ1
¼ sin θ1dφ1;

eθ2 ¼ dθ2; eφ2
¼ sin θ2dφ2;

eψ ¼ dψ þ cos θ1dφ1 þ cos θ2dφ2: ð2:14Þ

Here r is another radial coordinate on the cone while the
angles above are defined at 0 ≤ θ1;2 < π, 0 ≤ φ1;2 < 2π,
and 0 ≤ ψ < 4π.
The volume integral associated with this metric is

ðVolÞY6
¼ 1

108

Z
r5dr dψdθ1 sin θ1dφ1dθ2 sin θ2dφ2:

ð2:15Þ

The radial coordinate, r̃ defined in terms of matrix wPK ,
[see (2.8)] is related to r in (2.13) via [12]

r2 ¼ 3

2
r̃4=3: ð2:16Þ

3This is isomorphic to the 4D global group (2.1) for N ¼ 2,
Nf ¼ 4.
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III. GRAVITY EQUATIONS IN THE
LARGE r LIMIT

Below we switch on NS 3-form flux H3 and study its
backreaction on the metric and the dilaton solving the
gravity equations of motion. As we already mentioned in
the Introduction H3 flux produces a potential lifting the flat
direction associated with the conifold complex structure
modulus b. We confirm the result obtained in [18] for this
potential.
In this section we start with the large r limit and show

that the geometry is smooth and that metric warp factors do
not develop singularities at r → ∞. Large r limit means
that r ≫ jbj1=3 [see (2.16)] so for H3 ¼ 0 we can use the
metric of the singular conifold (2.13).

A. The setup

The bosonic part of the action of the type-IIA super-
gravity in the Einstein frame is given by

S10D ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
R −

1

2
GMN

∂MΦ∂NΦ

−
e−Φ

12
HMNLHMNL

�
; ð3:1Þ

where GMN and Φ are 10D metric and dilaton, the string
coupling gs ¼ eΦ. We also keep only NS 2-form B2 with
the field strength H3 ¼ dB2. We do not consider RR forms
here, in particular, the RR 3-form potentialC3. For compact
CYs the mass term for complex structure moduli can be
generated via topological term

R
1
2
H3 ∧ C3 ∧ dC3 in the

action [20]. However, it was shown in [18] that for the
noncompact case of the conifold this mechanism does not
work due to the non-normalizability of the 4D part of C3.
Einstein’s equations of motion following from the action

(3.1) have the form

RMN ¼ 1

2
∂MΦ∂NΦþe−Φ

4
HMABHAB

N −
e−Φ

48
GMNH2

3; ð3:2Þ

while the equation for the dilaton reads

GMNDMDNΦþ e−Φ

12
H2

3 ¼ 0: ð3:3Þ

Finally the equation for the NS 3-form is

dðe−Φ �H3Þ ¼ 0; ð3:4Þ

where � denotes the Hodge star.
We will see below that we need to introduce four warp

factors to solve the Einstein equations. Our ansatz for the
metric is

ds210 ¼ Th−1=24 ðrÞημνdxμdxν þ gmndxmdxn; ð3:5Þ

where μ; ν ¼ 0;…; 3 are indices of the 4D space and ημν is
the flat Minkowski metric with signature ð−1; 1; 1; 1Þ,
while m; n ¼ 5;…10 are indices of the 6D internal space.
Here, internal coordinates xm are defined to be dimension-
less to match the dimension of scalar fields in the world
sheet WCPð2; 2Þ model. We also introduced the string
tension T [see (2.2)] in (3.5) to fix dimensions.
The internal space has a conifold metric deformed by

three warp factors

gmndxmdxn ¼ h1=26 ðrÞ
�
aðrÞdr2þ r2

6
ðe2θ1 þe2φ1

þ e2θ2 þe2φ2
Þ

þ r2

9
ωðrÞe2ψ

�
; ð3:6Þ

[see (2.13)] and we assume that warp factors h4, h6, a, and
ω depend only on the radial coordinate r. If H3 ¼ 0 all
warp factors are equal to unity and the 10D space has the
structure R4 × Y6.

B. NS 3-form at large r

We will see below that the solution of the gravity
equations of motion in the large r limit can be expanded
in powers of μ2=r4, where μ parametrizes the H3 flux. To
find its behavior we can use a perturbation theory in powers
of the above parameter. At the first step we solve equations
of motion for H3 form using the undeformed conifold
metric. This was done in [18].
Let us define two real 3-forms on Y6,

α3 ≡ dr
r
∧ ðeθ1 ∧ eφ1

− eθ2 ∧ eφ2
Þ ð3:7Þ

and

β3 ≡ eψ ∧ ðeθ1 ∧ eφ1
− eθ2 ∧ eφ2

Þ: ð3:8Þ
They are both closed [33,34],

dα3 ¼ 0; dβ3 ¼ 0; ð3:9Þ
Moreover, using the conifold metric (2.13) to the leading
order one can check that their 10D duals are given by

�α3 ≈ −
T2

3
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ β3;

�β3 ≈ 3T2dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ α3: ð3:10Þ
The above relations ensure that both 10D dual forms are

also closed.

d � α3 ¼ 0; d � β3 ¼ 0: ð3:11Þ
Two solutions for H3 form found in [18] are

H3 ≈ μ1α3 þ
μ2
3
β3; ð3:12Þ

A. YUNG PHYS. REV. D 106, 106019 (2022)

106019-6



where μ1 and μ2 are two independent real parameters,
while the factor 1

3
is introduced for convenience. This H3

form satisfy both the Bianchi identity and the equations of
motion (3.4), where the dilaton is considered as a constant
to the leading order in μ2=r4.
3-Forms (3.7) and (3.8) form a basis similar to the

simplectic basis of harmonic α and β3-forms for compact
CYs (see for example review [19]). In particular,

Z
Y6

α3 ∧ α3 ¼
Z
Y6

β3 ∧ β3 ¼ 0; ð3:13Þ

while

Z
Y6

α3 ∧ β3 ∼ −
Z

dr
r
∼ − log

R3
IR

jbj : ð3:14Þ

Here RIR is the maximal value of the radial coordinate r
introduced to regularize the infrared logarithmic diver-
gence, while at small r the integral is cut off by the minimal
size of S3 which is equal to jbj. Note that this logarithm is
similar to the one, which determines the metric for the
b-baryon in (2.10).4

C. Warp factors at large r

For Minkowski indices μ, ν ¼ 0, 1, 2, 3 the Einstein’s
equations (3.2) read

Rμν ¼ −
ημν
48

e−Φ

h1=24

H2
3; ð3:15Þ

where the Ricci components for the ansatz (3.5), (3.6) can
be calculated using results of [35]

Rμν ¼
ημν

4ah1=24 h1=26

�
1

h4
Δh4 þ

h06h
0
4

h6h4
− 2

ðh04Þ2
h24

−
1

2

a0h04
ah4

þ 1

2

ω0h04
ωh4

�
: ð3:16Þ

Here, prime denotes the derivativewith respect to r andΔ is
the Laplacian calculated using the conifold metric (2.13).
Using expression in (3.16) we can compare Einstein’s

equations for Minkowski indices (3.15) with the dilaton
equation (3.3). Rewriting the latter one as

ΔΦþ
�
h06
h6

−
h04
h4

−
1

2

a0

a
þ1

2

ω0

ω

�
Φ0 ¼−

e−Φ

12
ah1=26 H2

3 ð3:17Þ

it is easy to see that it is identical to Eq. (3.15) upon
substitution

Φ ¼ Φ0 þ ln h4; ð3:18Þ

where Φ0 is a constant value of the dilaton present
at H3 ¼ 0.
Let us now continue studying Eq. (3.15). At the first

nontrivial order in the parameter μ2=r4 all nonlinearities in
the expression in (3.16) can be neglected and it reduces
simply to

Rμν ≈
ημν
4

Δh4: ð3:19Þ

This gives (for the Minkowski part of Einstein’s equations)

Δh4 ≈ −
e−Φ0

12
H2

3; ð3:20Þ

where H2
3 can be calculated using the conifold metric and

we used only the constant part of the dilaton Φ0 at this
order. We have

e−Φ0H2
3 ¼ 3!72

μ21 þ μ22
gs

1

r6
¼ 2433

μ21 þ μ22
gs

1

r6
ð3:21Þ

where gs ¼ eΦ0 , while 72=r4 say, for the first solution for
H3 [proportional to μ1 in (3.12)] comes from gθ1θ1gφ1φ1

and gθ2θ2gφ2φ2 .
Then Eq. (3.20) gives

h4 ¼ 1þ 9

gs

μ21 þ μ22
r4

log
r

jbj1=3 þOðμ4=r8Þ; ð3:22Þ

up to a nonlogarithmic term proportional to μ2=r4 which we
set to zero.
Consider now Einstein’s equations with internal indices.

Let index α (β) denote differentials eθ1 ; eφ1
; eθ2 ; eφ2

.
Then we can calculate Christoffel symbols with r indices,
namely

Γr
αβ ¼−

gðcÞαβ

a

�
1

r
þ1

4

h06
h6

�
; Γr

ψψ ¼−
gðcÞψψ

a

�
1

r
þ1

4

h06
h6

þ1

2
ω0
�
;

Γβ
rα ¼Γβ

αr¼ δβα

�
1

r
þ1

4

h06
h6

�
; Γψ

rψ ¼Γψ
ψr ¼ 1

r
þ1

4

h06
h6

þ1

2
ω0;

Γr
rr ¼

1

2

a0

a
þ1

4

h06
h6

; Γn
rr ¼Γr

rn ¼Γr
nr¼ 0; n≠ r; ð3:23Þ

where gðcÞαβ and gðcÞψψ denote the conifold metric (2.13).
Using these formulas we find nonzero Ricci components

at the leading order in μ2=r4. We have4Note that R3
IR ∼ R̃2

IR [see (2.16)].
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Rαβ≈gðcÞαβ

�
4

r2
ða−1Þ−1

4
Δh6−

1

r
h06þ

1

r
h04þ

1

2r
a0−

1

2r
ω0
�
;

Rψψ ≈gðcÞψψ

�
4

r2
ða−1Þ−1

4
Δh6−

1

r
h06þ

1

r
h04

þ 1

2r
a0−

2

r
ω0−

1

2
ω00

�
;

Rrr≈−
1

4
Δh6−h006þh004þ

5

2r
a0−

1

r
ω0−

1

2
ω00: ð3:24Þ

Here we used that Ricci tensor is zero if all warp factors are
equal to unity and the dependence on h4 can be found using
formulas in [35].
Now calculating rhs for Einstein’s equations (3.2) we get

for the first solution proportional to μ1 in (3.12)

Rαβ ¼
1

48
gðcÞαβ e

−Φ0ðHð1Þ
3 Þ2;

Rψψ ¼ −
gðcÞψψ

48
e−Φ0ðHð1Þ

3 Þ2;

Rrr ¼
1

16
e−Φ0ðHð1Þ

3 Þ2; ð3:25Þ

where ðHð1Þ
3 Þ2 is given by (3.21) with μ2 ¼ 0.

For the second solution in (3.12) (proportional to μ2)
we have

Rαβ ¼
1

48
gðcÞαβ e

−Φ0ðHð2Þ
3 Þ2;

Rψψ ¼ gðcÞψψ

16
e−Φ0ðHð2Þ

3 Þ2;

Rrr ¼ −
1

48
e−Φ0ðHð2Þ

3 Þ2; ð3:26Þ

where ðHð2Þ
3 Þ2 is given by (3.21) with μ1 ¼ 0.

The above equations together with expressions (3.24)
and solution for h4 (3.22) determine three warp factors h6,
a, and ω at the leading order. For the first solution for H3

we have

hð1Þ6 ¼ 1þ 9

gs

μ21
r4

log
r

jbj1=3 −
9

5

1

gs

μ21
r4

þ � � � ;

að1Þ ¼ 1 −
9

10

1

gs

μ21
r4

þ � � � ;

ωð1Þ ¼ 1þ 9

2

1

gs

μ21
r4

þ � � � ; ð3:27Þ

where dots stand for subleading terms of order of μ4=r8.
Warp factors for the second solution for H3 have the form

hð2Þ6 ¼ 1þ 9

gs

μ22
r4

log
r

jbj1=3 þ
9

5

1

gs

μ22
r4

þ � � � ;

að2Þ ¼ 1þ 9

10

1

gs

μ22
r4

þ � � � ;

ωð2Þ ¼ 1 −
9

2

1

gs

μ22
r4

þ � � � : ð3:28Þ

Finally, solutions (3.18) and (3.22) give for the dilaton

eðΦ−Φ0Þ ¼ 1þ 9

gs

μ21 þ μ22
r4

log
r

jbj1=3 þ � � � : ð3:29Þ

We see that warp factors and the dilaton have smooth
behavior at large r and can be found order by order in the
parameter μ2=r4 using perturbation theory in the gravity
equations. The region of validity of the above solutions is

r ≫ jbj1=3 ≫ μ1=2: ð3:30Þ

To conclude this section we would like to comment on a
subtlety in solving Eqs. (3.25) and (3.26). In fact, these
equations do not determine coefficients in nonlogarithmic
terms proportional to 1=r4 for h6 and a separately.
Denoting these coefficients χ and A respectively we find
that the first and the third equations in (3.25) and (3.26)
give the same conditions for them, namely

χð1Þ þ Að1Þ

2
¼ −

9

4

μ21
gs

; χð2Þ þ Að2Þ

2
¼ 9

4

μ22
gs

; ð3:31Þ

for (3.25) and (3.26), respectively. The resolution of this
puzzle is related to the possibility of redefinition of the
conifold radial coordinate r. Let us put H3 ¼ 0 so the
metric is reduced to the conifold one in (2.13). However,
we can redefine r at the relevant order,

r ¼ fðr0Þ ¼ r0
�
1þ α

r04

�
; ð3:32Þ

where α is a constant. This gives

r2 ≈ r02
�
1þ 2α

r04

�
; dr2 ≈ dr02

�
1 −

6α

r04

�
; ð3:33Þ

which in terms of the new coordinate r0 imply nontrivial
warp factors

h6 ¼ 1þ 4α

r04
; a ¼ 1 −

8α

r04
; ð3:34Þ

or nonzero coefficients
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χ ¼ 4α; A ¼ −8α: ð3:35Þ

Now we see that the combination which enters
Eqs. (3.31) is zero on this solution,

χ þ A
2
¼ 0: ð3:36Þ

Thus, nontrivial solutions of the above equation are related
to the possibility of r redefinition.
To fix the definition of r we require that the combination

orthogonal to the one which enters (3.36) should be zero,
namely

χ

2
− A ¼ 0: ð3:37Þ

This condition together with Eq. (3.31) gives coefficients

χð1Þ ¼ −
9

5

μ21
gs

; Að1Þ ¼ −
9

10

μ21
gs

;

χð2Þ ¼ 9

5

μ22
gs

; Að2Þ ¼ 9

10

μ22
gs

; ð3:38Þ

for two solutions for H3 respectively, which we presented
in (3.27) and (3.28).

D. The scalar potential

To find the scalar potential induced by 3-form flux H3

we substitute the solution of the gravity equations found
above into the 10D action (3.1). The trace of the Einstein’s
equations (3.2) reads

R −
1

2
GMN

∂MΦ∂NΦ −
e−Φ

12
H2

3 ¼ 0: ð3:39Þ

Substituting this into Eq. (3.1) we get the action calculated
on the solution,

S10D ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
−
e−Φ

24
H2

3

�
; ð3:40Þ

where 2κ2 ¼ ð2πÞ3g2s in our convention.
This leads to the potential for the b-baryon (complex

structure modulus b of the conifold) in 4D SQCD,

VðbÞ ¼ T2

ð2πÞ3g2s

Z
d6x

ffiffiffiffiffi
g6

p e−Φ

24
H2

3; ð3:41Þ

where the string tensionT appears due to our normalizationof
theMinkowski part of themetric [see (3.5)]. Here the integral
is taken over the internal 6Dspace andg6 is the determinant of
the 6D metric. To the leading order we can neglect warp
factors and calculate the above integral using the conifold
metric (2.13). Using Eqs. (2.15) and (3.21) we get

VðbÞ ¼ 4

3

T2

g3s
ðμ21 þ μ22Þ

Z
dr
r

¼ 4

9

T2

g3s
ðμ21 þ μ22Þ log

R3
IR

jbj ; ð3:42Þ

where RIR is the infrared cutoff for the radial coordinate r,
while modulus b plays the role of the ultraviolet cutoff at
small r, cf. (3.14). This potential was calculated in [18]. Note,
that the same infrared logarithm determines the metric (2.10)
for the b-baryon. If we take into account warp factors in the
integrand in (3.41) this would give finite corrections to the
potential of order of

T2
μ4

jbj4=3 ; ð3:43Þ

which are negligible compared to the logarithmic term.
We see that the Higgs branch for b is lifted by H3 flux

deformation and we have a runaway vacuum with VEV

hjbji → R3
IR → ∞: ð3:44Þ

However, our solution of gravity equations is found in this
section using the metric of the singular conifold and
therefore is valid at r ≫ jbj1=3. Thus, the potential (3.42)
cannot be trusted at jbj ∼ R3

IR where the logarithm becomes
small. In the next section we consider the region of r ∼
jbj1=3 and confirm our conclusion in (3.44) that the VEVof
the baryon b tends to infinity.

IV. GRAVITY EQUATIONS FOR THE
DEFORMED CONIFOLD

The result for the potential (3.42) suggests that we have a
runaway vacuum and VEV of b becomes infinitely large.
To confirm this, in this section we study gravity equations
with nonzero H3-flux on the deformed conifold assuming
that the radial coordinate r ∼ jbj1=3. Anticipating the run-
away behavior (3.44) we still keep the second condition
in (3.30),

μ ≪ jbj2=3: ð4:1Þ

A. Metric of the deformed conifold

In this section we briefly review the metric of the
deformed conifold. It has the form [12,31,32]

ds26 ¼
1

2
jbj2=3KðτÞ

�
1

3K3ðτÞ ðdτ
2 þ e2ψÞ þ cosh2

τ

2
ðg23 þ g24Þ

þ sinh2
τ

2
ðg21 þ g22Þ

�
; ð4:2Þ

where the angle differentials are defined as
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g1 ¼ −
1ffiffiffi
2

p ðeϕ1
þ e3Þ; g2 ¼

1ffiffiffi
2

p ðeθ1 − e4Þ;

g3 ¼ −
1ffiffiffi
2

p ðeϕ1
− e3Þ; g4 ¼

1ffiffiffi
2

p ðeθ1 þ e4Þ; ð4:3Þ

while

e3 ¼ cosψ sin θ2dφ2 − sinψdθ2;

e4 ¼ sinψ sin θ2dφ2 þ cosψdθ2; ð4:4Þ

—see also (2.14).
Here

KðτÞ ¼ ðsinh 2τ − 2τÞ1=3
21=3 sinh τ

ð4:5Þ

and the new radial coordinate τ is defined as

r̃2 ¼ jbj cosh τ ¼
�
2

3

�3
2

r3: ð4:6Þ

In the limit of large τ the metric (4.2) reduces to the metric
(2.13) of the singular conifold.
Results of the previous section show that we have a

runaway vacuum with jbj ∼ R3
IR so we are interested in the

metric (4.2) in the limit of small τ, τ ≪ 1. In this limit the
metric of the deformed conifold takes the form

ds26jτ→0 ¼
1

2
jbj2=3

�
2

3

�1
3

�
1

2
dτ2 þ 1

2
e2ψ þ g23 þ g24

þ τ2

4
ðg21 þ g22Þ

�
: ð4:7Þ

The last term here corresponds to the collapsing sphere S2,
while the sphere S3 associated with three angular terms in
the first line has a fixed radius in the limit τ → 0 [12,32].
The radial coordinate r approaches its minimal value with

r3jmin ¼
�
3

2

�3
2jbj ð4:8Þ

at τ ¼ 0.
The square root of the determinant of the metric

ffiffiffiffiffi
g6

p
∼ jbj2 cosh2 τ

2
sinh2

τ

2

����
τ→0

∼ jbj2τ2 ð4:9Þ

vanishes at τ ¼ 0, which shows the degeneration of the
conifold metric.

B. NS 3-form at small τ

Wewill see below that leading nontrivial contributions to
warp factors are proportional to μ2τ2=jbj4=3. At the first step

of the perturbation theory we can neglect them and look for
solutions for H3 flux using the metric of the deformed
conifold (summarized in the previous section) and a
constant dilaton, Φ ≈Φ0.
One solution was found in [18] using the ansatz

suggested in [32] for the type-IIB flux compactification
on the deformed conifold. The ansatz reads

H3 ¼ p0dτ ∧ g1 ∧ g2 þ k0dτ ∧ g3 ∧ g4

−
1

2
ðp − kÞeψ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ; ð4:10Þ

where p and k are functions of the radial coordinate τ. Here
primes denote derivatives with respect to τ. The 3-form
above is closed so the Bianchi identity is satisfied.
At large τp0 ≈ k0 → μ1=3 and using the identity [32]

eθ1 ∧ eφ1
− eθ2 ∧ eφ2

¼ g1 ∧ g2 þ g3 ∧ g4; ð4:11Þ

it is easy to show that this solution tends to the first solution
for H3 (proportional to μ1) in (3.12).
For small τ equation of motion (3.4) for H3 was solved

in [18] at leading order using the metric of the deformed
conifold and a constant dilaton. The result is k ≈ μ1τ and
p ≈ −μ1τ5=80 so the solution takes the form

Hð1Þ
3 ≈ μ1γ3 ð4:12Þ

up to an overall constant, where we introduced a 3-form

γ3 ¼ dτ ∧ g3 ∧ g4 −
τ4

16
dτ ∧ g1 ∧ g2

þ τ

2
eψ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ: ð4:13Þ

Now let us find another solution which at large τ tends to
the second solution in (3.12) (proportional to μ2). To do so
we use the ansatz,

H3 ¼ lðτÞeψ ∧ g1 ∧ g2 þ nðτÞeψ ∧ g3 ∧ g4

þ qðτÞdτ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ; ð4:14Þ

where l, n, and q are functions of τ. Using identity (4.11)
and [32]

dðg1 ∧ g3 þ g2 ∧ g4Þ ¼ eψ ∧ ðg1 ∧ g2 − g3 ∧ g4Þ ð4:15Þ

we calculate

dH3 ¼ l0dτ ∧ eψ ∧ g1 ∧ g2 þ n0dτ ∧ eψ ∧ g3 ∧ g4

− qðτÞdτ ∧ eψ ∧ ðg1 ∧ g2 − g3 ∧ g4Þ: ð4:16Þ

Now Bianchi identity dH3 ¼ 0 leads to
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l0 − q ¼ 0; n0 þ q ¼ 0: ð4:17Þ

A solution to these equations with q ¼ 0, l ¼ n ¼ μ2=3
corresponds to the second solution in (3.12) at large τ. Let
us find the extrapolation of this solution to small τ. For
nonzero q we have l0 ¼ −n0 and setting the integration
constant to zero we get l ¼ −n. The ansatz for H3 acquires
the form

H3 ¼ lðeψ ∧ g1 ∧ g2 − eψ ∧ g3 ∧ g4Þ
þ l0dτ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ: ð4:18Þ

Calculating the 10D dual of (4.18) using metric in (4.7)
we get

�H3 ¼ −T2dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧
�
4l
τ2
dτ ∧ g3 ∧ g4

−
lτ2

4
dτ ∧ g1 ∧ g2 þ l0eψ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ

�
:

ð4:19Þ

Then the equation of motion (3.4) reads

d�H3¼T2dx0∧dx1∧dx2∧dx3

∧
�
−
�
2l
τ2
þ lτ2

8
− l00

�
dτ∧ eψ ∧ ðg1∧ g3þg2∧ g4Þ

�
¼0; ð4:20Þ

where we used the identity [32]

dðg1 ∧ g2−g3 ∧ g4Þ¼−eψ ∧ ðg1 ∧ g3þg2 ∧ g4Þ: ð4:21Þ

Equation (4.20) gives

l00 −
2l
τ2

¼ 0; ð4:22Þ

where we neglect the τ2 term at small τ.
Eq. (4.22) gives l ≈ μ2τ

2=4 up to a constant and we write
down the second solution for H3 in the form

Hð2Þ
3 ≈ μ2δ3; ð4:23Þ

where

δ3 ¼
τ2

4
eψ ∧ ðg1 ∧ g2 − g3 ∧ g4Þ

þ τ

2
dτ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ: ð4:24Þ

Both 3-forms γ3 and δ3 are closed. Moreover, their 10D
duals are given by [see [18] and (4.19)]

�γ3 ≈ T2dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ δ3;

�δ3 ≈ −T2dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ γ3: ð4:25Þ

The above relations ensure that both 10D dual forms are
also closed,

d � γ3 ¼ 0; d � δ3 ¼ 0: ð4:26Þ

Much in the same way as forms (3.7) and (3.8) 3-forms
(4.13) and (4.24) satisfy relations

Z
Y6

γ3 ∧ γ3 ¼
Z
Y6

δ3 ∧ δ3 ¼ 0; ð4:27Þ

while

Z
Y6

γ3 ∧ δ3 ∼
Z

dττ2 ð4:28Þ

at small τ.
To conclude this section, we note that at τ ¼ 0 the first

solution (4.12) tends to a constant

Hð1Þ
3 ðτ ¼ 0Þ ¼ μ1dτ ∧ g3 ∧ g4; ð4:29Þ

which we impose as boundary conditions at S3, which does
not shrinks at τ ¼ 0. These boundary conditions ensure a

nonzero solution for Hð1Þ
3 .

Similarly for the second solution (4.23) we fix its
derivative with respect to τ as boundary conditions at S3
at τ ¼ 0,

∂

∂τ
Hð2Þ

3 ðτ ¼ 0Þ ¼ μ2
2
dτ ∧ ðg1 ∧ g3 þ g2 ∧ g4Þ: ð4:30Þ

C. Warp factors at small τ

In this section we study the backreaction of the two
solutions forH3 flux found above on the metric and dilaton
to the leading order in μ2τ2=jbj4=3. Our ansatz for the metric
is given by (3.5) where h4 now is a function of τ, while

gmndxmdxn ¼
1

2
jbj2=3

�
2

3

�1
3

�
h1=21 ðτÞ

×

�
1

2
aðτÞdτ2 þ 1

2
e2ψ þ g23 þ g24

�

þ h1=22 ðτÞ τ
2

4
ðg21 þ g22Þ

�
; ð4:31Þ

where the metric of the deformed conifold (4.7) is further
deformed with another three warp factors h1, h2, and a,
which are assumed to be functions of τ. Here we also
assume the limit of small τ, τ ≪ 1.
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For Minkowski indices μ, ν ¼ 0, 1, 2, 3 Einstein’s
equations (3.2) has the form (3.15), where using results
from [35] we calculate

Rμν ¼
ημνgττc

4ah1=24 h1=21

�
1

h4
Δh4 þ

1

2

h01h
0
4

h1h4
þ 1

2

h02h
0
4

h2h4

− 2
ðh04Þ2
h24

−
1

2

a0h04
ah4

�
; ð4:32Þ

where Δ is the Laplacian calculated using metric (4.7).
Here and below gmn

c , gcmn denote the deformed conifold
metric (4.7), for example

gττc ≈
25=331=3

jbj2=3 : ð4:33Þ

At first order all nonlinearities in (4.32) can be neglected
and Einstein’s equations (3.15) reduce to

Δh4 ≈ −
e−Φ0gcττ
12

H2
3; ð4:34Þ

where H2
3 can be calculated using the deformed conifold

metric and we used only the constant part of the dilaton Φ0

at this order. We have

e−Φ0H2
3 ≈ 2433

μ21 þ μ22
gs

1

jbj2 ½1þOðτ2Þ�; ð4:35Þ

where, say, for the first solution for H3 in (4.12) only first
and the last terms in γ3 contribute at the leading order in τ.
Then Eq. (4.34) gives

h4 ¼ 1 −
32=3

22=3
μ21 þ μ22

gs

τ2

jbj4=3 ½1þOðτ2Þ�: ð4:36Þ

Much in the same way as in the large r limit it is easy to
see that the dilaton equation reduces to the Eq. (3.15) on the
solution (3.18).
Consider now Einstein’s equations with internal indices.

Let index a (b) denote differentials eψ ; g3; g4, while index
i (j) denote g1, g2. Then we can calculate leading
contributions to Christoffel symbols with τ indices at small
τ, namely

Γτ
ij ¼−gðcÞij

gττc h
1=2
2

ah1=21

�
1

τ
þ1

4

h02
h2

�
; Γτ

ab ¼−gðcÞab
gττc
a
1

4

h01
h1

;

Γj
τi ¼Γj

iτ ¼ δji

�
1

τ
þ1

4

h02
h2

�
; Γb

τa ¼Γb
aτ ¼ δba

1

4

h01
h1

;

Γτ
ττ ¼

1

2

a0

a
þ1

4

h01
h1

; Γn
ττ ¼Γτ

τn ¼Γτ
nτ ¼ 0; n≠ r: ð4:37Þ

Then nonzero components of the Ricci tensor to the
leading order in τ take the form

Rij ≈ gðcÞij g
ττ
c

�
1

τ2

�
ah1=21

h1=22

− 1

�
−
1

4
Δh2 −

1

2τ
h02

−
1

2τ
h01 þ

1

τ
h04 þ

1

2τ
a0
�
;

Rab ≈ gðcÞab g
ττ
c

�
−
1

4
Δh1

�
;

Rττ ≈ −
1

2
Δh2 þ

1

4
Δh1 − h001 þ h004 þ

1

τ
a0: ð4:38Þ

Here again we used that Ricci tensor is zero if all warp
factors are equal to unity and the dependence on h4 is found
using formulas in [35].
For the first solution in (4.12) rhs of Einstein’s equa-

tions (3.2) take the form

Rij ¼
1

2432
gðcÞij e

−Φ0ðHð1Þ
3 Þ2;

Rab ¼
5

2432
gðcÞab e

−Φ0ðHð1Þ
3 Þ2;

Rττ ¼
1

2432
gðcÞττ e−Φ0ðHð1Þ

3 Þ2; ð4:39Þ

where ðHð1Þ
3 Þ2 is given by (4.35) with μ2 ¼ 0.

Solutions to these equations are given by

hð1Þ1 ¼ 1 −
5

22=331=3
μ21
gs

τ2

jbj4=3 þ � � � ;

hð1Þ2 ¼ 1 −
5

13

32=3

22=3
μ21
gs

τ2

jbj4=3 þ � � � ;

að1Þ ¼ 1þ 5

13

21=3

31=3
μ21
gs

τ2

jbj4=3 þ � � � ; ð4:40Þ

where dots stand for corrections in powers of τ and powers
of μ2=jbj4=3.
For the second solution (4.23) the rhs of Einstein’s

equations (3.2) has the form

Rij ¼
5

2432
gðcÞij e

−Φ0ðHð2Þ
3 Þ2;

Rab ¼
1

2432
gðcÞab e

−Φ0ðHð2Þ
3 Þ2;

Rττ ¼
5

2432
gðcÞττ e−Φ0ðHð2Þ

3 Þ2; ð4:41Þ

where ðHð2Þ
3 Þ2 is given by (4.35) with μ1 ¼ 0.
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For this case solutions take the form

hð2Þ1 ¼ 1 −
1

22=331=3
μ22
gs

τ2

jbj4=3 þ � � � ;

hð2Þ2 ¼ 1 −
32=3

22=3
μ22
gs

τ2

jbj4=3 þ � � � ;

að2Þ ¼ 1þ 21=3

31=3
μ22
gs

τ2

jbj4=3 þ � � � : ð4:42Þ

Note that much in the sameway as for the large r case the
first and the third Einstein’s equations in (4.39) and (4.41)
coincides and give rise to conditions for the same combi-
nation ð3c2 − 2ÃÞ, where c2 and Ã are coefficients in front
of τ2 for h2 and a. As we explained before this is due to the
possibility of redefinition of the radial coordinate (τ in the
present case)—see Sec. III C. To fix the definition of τ we
require that the orthogonal combination to the one above is
zero, ð2c2 þ 3ÃÞ ¼ 0. This gives warp factors h2 and a
presented in (4.40) and (4.40).
We see that warp factors in (4.40) and (4.42) as well as

h4 (4.36) and the dilaton (3.18) have smooth behavior at
small τ and do not develop singularities provided
μ2 ≪ jbj4=3. They can be found order by order at μ2 ≪
jbj4=3 using perturbation theory in gravity equations.

D. The scalar potential at large jbj
To find the scalar potential for the complex structure

modulus b we substitute solutions found above in this
section into Eq. (3.41). At the leading order in μ2=jbj4=3 we
can neglect warp factors and use the metric of the deformed
conifold together with the leading-order expression (4.35).
Using (4.9) at small τ we get

VðbÞ ¼ constðμ21 þ μ22Þ
T2

g3s
τ3max; ð4:43Þ

where τmax is the infrared cutoff with respect to the radial
coordinate τ related to RIR as follows:

jbj coshðτmaxÞ ¼
�
2

3

�3
2

R3
IR; ð4:44Þ

[see (4.6)]. This potential was obtained in [18] for the first
solution for H3 proportional to μ1.
As we already explained, we expect that in our runaway

vacuum b is large, close to RIR, therefore τmax is small.
Expanding cosh τ at small τ we get

τmax ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2
3
Þ32R3

IR − jbj
jbj

s
: ð4:45Þ

This gives the potential for the baryon b at large jbj

VðbÞ ¼ constðμ21 þ μ22Þ
T2

g3s

�ð2
3
Þ32R3

IR − jbj
jbj

	3
2

: ð4:46Þ

We see that to minimize the potential above jbj becomes
large and approaches the infrared cutoff,

hjbji ¼
�
2

3

�3
2

R3
IR → ∞: ð4:47Þ

As we expected earlier in Sec. III D, we get a runaway
vacuum.
The corrections to the potential (4.46) arise from taking

into account higher powers of τ in the deformed conifold
metric as well as from warp factors and go in powers of τmax

and in powers of μ2=jbj4=3, respectively. Both type of
corrections disappear at the runaway vacuum (4.47).
In fact, τ3max which enters (4.43) is the volume of the

three-dimensional cone bounded by the sphere S2 of the
conifold with maximum radius τmax. It shrinks to zero as b
tends to its VEV (4.47). To avoid singularities we can
regularize the size of S2 introducing small nonzero β, which
makes the conifold “slightly resolved” [see (2.3)]. We take
the limit β → 0 at the last step. Then the value of the
potential and all its derivatives vanish in the vacuum (4.47)
at jbj ¼ hjbji, for example

VðbÞjjbj¼hjbji ¼ constðμ21 þ μ22Þ
T2

g3s

β3

R9=2
IR

→ 0: ð4:48Þ

In particular, the mass term for b is zero.
Absence of warp factors and the vanishing of the

potential VðbÞ together with all its derivatives at the
runaway vacuum confirms that N ¼ 2 supersymmetry is
not broken in 4D SQCD.
To summarize, the H3-form flux produces following

effects:
(i) The Higgs branch of the baryon b in 4D SQCD is

lifted.
(ii) The vacuum is of the runaway type hjbji → ∞.
(iii) At the runaway vacuum warp factors tend to unity

and the geometry becomes that of the deformed
conifold.

(iv) At the runaway vacuum the radial coordinate τ and
the sphere S2 of the conifold degenerates, while the
radius of the sphere S3 tends to infinity.

We will interpret this degeneration in terms of N ¼ 2
SQCD in the next section.

V. INTERPRETATION IN TERMS OF 4D SQCD

A. 3-form flux in terms of quark masses

As we already mentioned in the Introduction, H3-form
flux was interpreted in terms of 4D SQCD in [18] as
switching on quark masses. The motivation is that the only
scalar potential deformation allowed in 4D SQCD by
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N ¼ 2 supersymmetry is the mass term for quarks. Field
theory arguments were used in [18] to find a particular
choice of nonzero quark masses associated with H3. In this
section we briefly review this interpretation. ForNf ¼ 4we
have four complex mass parameters. However, a shift of the
complex scalar a, a superpartner of the U(1) gauge field,
produces an overall shift of quark masses. Thus, in fact we
have three independent complex mass parameters in our 4D
SQCD. For example, we can choose three mass differences

m1 −m2; m3 −m4; m1 −m3; ð5:1Þ

as independent parameters.
On the string theory side our solution (3.12) for the

3-form H3 is parametrized by two real parameters μ1 and
μ2. Thus, we expect that nonzeroH3-flux can be interpreted
in terms of a particular choice of quark masses, subject to
two complex constraints.
One constraint follows from (2.12). We have seen in the

previous subsection that H3 does not produces a mass term
for the b-baryon. This ensures that

m1 þm2 −m3 −m4 ¼ 0: ð5:2Þ

Another constraint is

m1m2 −m3m4 ¼ 0; ð5:3Þ

which is imposed to avoid infinite VEV of σ (a scalar
superpartner of the U(1) gauge field), which would costs an
infinite energy in the world sheetWCPð2; 2Þmodel at large
b, see [18] for details.
Solving two constraints above leads to two options for

the choice of the quark masses

m3 ¼ m1; m4 ¼ m2; ð5:4Þ

and

m3 ¼ m2; m4 ¼ m1: ð5:5Þ

These two options are essentially the same, up to permu-
tation of quarks q3 and q4. Let us choose the first option
in (5.4).
The arguments above lead to the conclusion that the

H3-flux can be interpreted in terms of the single mass
difference ðm1 −m2Þ. We define a complex parameter μ
and identify [18]

μ≡ μ1 þ iμ2 ¼ const

ffiffiffiffiffi
g3s
T

r
ðm1 −m2Þ;

m3 ¼ m1; m4 ¼ m2: ð5:6Þ

The potential (3.42) calculated at large r, r ≫ jbj1=3 takes
the form

VðbÞ ¼ constTjm1 −m2j2 log
R3
IR

jbj : ð5:7Þ

Similar substitution can be done for the large-b poten-
tial (4.46).

B. Degeneration of the conifold and flow to SQED

Since our solution to the gravity equations is valid at

jμj2
jbj4=3 ∼

jm1 −m2j2
Tjbj4=3 ≪ 1 ð5:8Þ

and VEV of b goes to infinity [see (4.47)] we can use our
solution at arbitrary large fixed values of ðm1 −m2Þ. In
particular, if we take jm1 −m2j ≫

ffiffiffi
ξ

p
in 4D SQCD

keeping the constraint (5.4) non-Abelian degrees of free-
dom decouple and U(2) gauge theory flows to N ¼ 2
supersymmetric QED with the gauge group U(1) and
Nf ¼ 2 quark flavors. Off-diagonal gauge fields together
with two quark flavors acquire large masses ∼jm1 −m2j5
and decouple.
What happens to the non-Abelian vortex string upon this

decoupling? The string survives, but transforms into an
Abelian string. To see this note, that if we say, increase
masses m2 ¼ m4 keeping m1 ¼ m3 ¼ 0 fields n2 and ρ4

decouple in the world sheetWCPð2; 2Þmodel on the string
and it flows into WCPð1; 1Þ model. The D-term condition
(2.3) now reads

jn1j2 − jρ3j2 ¼ Reβ: ð5:9Þ

The number of real degrees of freedom in WCPð1; 1Þ
model is 4 − 1 − 1 ¼ 2 where 4 is the number of real
degrees of freedom of n1 and ρ3 and we subtract 2 due to
the D-term constraint (5.9) and the U(1) phase eaten by the
Higgs mechanism.
PhysicallyWCPð1; 1Þ model describes an Abelian semi-

local vortex string supported inN ¼ 2 supersymmetric U(1)
gauge theory with Nf ¼ 2 quark flavors. This vortex has no
orientationalmoduli, but it has one complex sizemodulus ρ3,
see [25–27]. Thus, we see that upon switching on ðm1 −m2Þ
a non-Abelian string flows to an Abelian one.
The low-energy WCPð1; 1Þ model is also conformal.

Moreover, it was shown in [36] that in the nonlinear sigma
model formulation it flows to a free theory on R2 in the
infrared. Thus, in fact, switching on ðm1 −m2Þ with
constraint (5.4) does not break the conformal invariance
on the world sheet. It just reduces the number of degrees of
freedom transforming a non-Abelian string into an Abelian
one. The string theory which one would associate with the
WCPð1; 1Þ model is noncritical.

5In addition to massesmG ∼ g
ffiffiffi
ξ

p
due to the Higgs mechanism,

see [8] for a review.
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The field theory physics described above supports our
interpretation of the H3-form flux on the conifold in terms
of quark masses. On the string theory side switching on
ðm1 −m2Þ is reflected in the degeneration of the conifold,
which effectively reduces its dimension. Also, in the limit
jbj → ∞ the radius of the sphere S3 of the conifold
becomes infinite and it tends to a flat three-dimensional
space. This matches the field theory result [36] that
WCPð1; 1Þ model flows to a free theory in the infrared.
It would be tempting to interpret the extra coordinate of the
sphere S3 of the conifold in the limit jbj → ∞ as a Liouville
coordinate for a noncritical string associated with the
WCPð1; 1Þ model. This is left for future work.
We also note that Eq. (2.10) suggests that massless

stringy baryon b acquires infinitely strong interactions at
the runaway vacuum (4.47) and the associated physics is no
longer under analytic control.

VI. CONCLUSIONS

In this paper we considered a deformation of the string
theory for the critical non-Abelian vortex supported in
N ¼ 2 SQCD with gauge group U(2) and Nf ¼ 4 quark
flavors with NS 3-form flux building on the results of our
previous paper [18]. Using the supergravity approach we
found a solution for the 3-form H3 and its backreaction on
the conifold metric and the dilaton at the first nontrivial
order in the parameter μ2=jbj4=3. The nonzero 3-form H3

generates a potential for the complex structure modulus b
of the conifold, which is interpreted as a massless BPS

baryonic hypermultiplet in 4D SQCD at strong coupling.
This potential lifts the Higgs branch formed by VEVs of b
and leads to a runaway vacuum for b, hjbji → ∞. The warp
factors disappear at this runaway vacuum.
Following [18] we interpret the 3-form H3 as a quark

mass deformation of 4D SQCD. Field theory arguments are
used to relate the 3-form H3 to the quark mass difference
ðm1 −m2Þ, subject to the constraint (5.4) [see (5.6)].
At the runaway vacuum the conifold degenerates to

lower dimensions. This qualitatively matches with a flow to
the WCPð1; 1Þ model on the string world sheet, which is
expected if one switches on the mass difference ðm1 −m2Þ
and decouples one n-field and one ρ-field. In 4D SQCD this
corresponds to a flow toN ¼ 2 supersymmetric QED with
two charged flavors.
As one of the directions of a future work one can look for

a physically observable effect of decoupling of certain
massive hadron states in 4D SQCD upon increasing
ðm1 −m2Þ. These hadrons on the string theory side should
be visible as massive string states and it would be
interesting to study their decoupling as hjbji → ∞.
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