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We consider the analytic continuation of (pþ q)-dimensional Minkowski space (with p and q even) to
ðp; qÞ signature, and study the conformal boundary of the resulting “Klein space.” Unlike the familiar
ð−þþþ � � �Þ signature, now the null infinity I has only one connected component. The spatial and timelike
infinities (i0 and i0) are quotients of generalizations of AdS spaces to nonstandard signature. Together, I , i0,
and i0 combine to produce the topological boundary Spþq−1 as an Sp−1 × Sq−1 fibration over a null segment.
The highest weight states (the L-primaries) and descendants of SOðp; qÞ with integral weights give rise to
natural scattering states. One can also define H-primaries which are highest weight with respect to a
signature-mixing version of the Cartan-Weyl generators that leave a point on the celestial Sp−1 × Sq−1

fixed. These correspond to massless particles that emerge at that point and are Mellin transforms of plane
wave states.
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I. INTRODUCTION

Analytic continuation in momentum space has proven to
be a powerful tool for understanding scattering amplitudes
(see [1] for a historical reference), so it is natural to suspect
that generalizations of the S-matrix from 3þ 1 Minkowski
space to other signatures may also provide further insights
on scattering. A key reason to suspect this is that the on-
shell structure of scattering amplitudes is largely controlled
by the 3-point amplitude (see, e.g., [2]), but the 3-point
amplitude identically vanishes in 3þ 1 (or, for that matter,
Euclidean) signature due to kinematics. Considering the
fact that on-shell methods have been powerful tools in the
last decade or so in developing scattering amplitude
technology, this is a natural motivation to consider sig-
nature with some “fluidity.”
An interesting step in this direction was recently taken in

[3], where analytic continuation of Minkowski space to
(2,2) signature was considered. It was found that, unlike in
the (3,1) signature case, the conformal boundary has the
form of a celestial torus, and suitable scattering states
associated with an “S-vector” (as opposed to an S-matrix)
were constructed. This work is in the broader context of
celestial holography; see [4] for points of entry into the
recent literature. In this paper, we will generalize the results

of [3] to pþ q dimensions, with signature ðp; qÞ where p
and q are even.
While our general motivations for considering higher

dimensions should be obvious to string theorists, let us take
a moment to note a few points which may be less obvious.
Firstly, the argument made above about the on-shell 3-point
amplitude is a kinematic restriction. Signature fluidity is
more crucial for kinematics than the demand that it
necessarily be (2,2). So in higher dimensions, it makes
sense to consider ðp; qÞ signature. A second argument
arises from holography. The conformal boundary of
Euclidean flat space is a point, but as we will demonstrate
in any ðp; qÞ signature, the boundary has more structure. So
we would like to avoid being tied to split signature. Yet
another thing to note is that (2,2) signature is closely
connected to self-duality conditions, which is a dynamical
restriction. We wish to leave the door open for questions
that are likely to be more generic.
One of the technical features of four dimensions is that

the Lorentz group has simplifying features. This allows us
to exploit those simplifications, and treat four dimensions
using special methods. In quantum field theory classes, this
manifests itself in the observation that we can work with
left-handed and right-handed Weyl spinors instead of Dirac
spinors in four dimensions. A morally similar phenomenon
occurs in (2,2) signature, where the isometry group is
SOð2; 2Þ. Because of its connections to the global con-
formal group SLð2; RÞ × SLð2; RÞ in two dimensions, this
resulted in a discussion [3] that was somewhat special. In
particular, the scattering states were associated with
SLð2; RÞ highest weight states. In higher dimensions, we
do not have the benefit of such accidental Lie algebra
isomorphisms or factorization of the algebra.
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Despite this, in this paper wewill show that the discussion
of [3] is, in fact, much more general and that both the
geometry and the group theory generalize very naturally to
arbitrary even dimensions. We do this by taking advantage
of the Cartan-Weyl form of the Lie algebra in higher
dimensions. We consider general (pþ q)-dimensional
Minkowski space with p and q even, and its analytic
continuation to ðp; qÞ signature. Following the terminology
of [3], we will call these spaces Klein spaces. Instead of the
celestial sphere, at the conformal boundary, we find a
celestial Sp−1 × Sq−1 space. Even though we are in higher
dimensions, we find that we can construct suitable scattering
states (the L-primaries) associated with the highest weight
states, which we explicitly construct starting with the
Cartan-Weyl-like form of the SOðp; qÞ algebra and a
suitable foliation of the Klein space. We can also construct
a similar class of states (theH-primaries) which are defined
via Cartan generators that mix the signatures, in such a way
that the transformations fix a point on the celestial
Sp−1 × Sq−1. These states can be written as Mellin trans-
forms of planewaves. The higher dimensional picturemakes
it clear that the two classes of primaries are naturally thought
of as rotationlike and boostlike.
The paper is structured as follows. In the Sec. II, we

discuss the geometric structure of pseudo-Euclidean spaces
with SOðp; qÞ isometry, which we call Klein spaces Kp;q.
We also define the coordinates and notation that we use for
the rest of the paper. In Sec. III, we describe the algebraic
structure of the SOðp; qÞ group and write down the Cartan-
Weyl form (“raising-lowering form”) of the algebra. We
also write down the generators as differential operators in
Klein space coordinates. Because of the somewhat elabo-
rate nature of the index structures involved, a summary of
index notation is provided. We write down the Casimir of
the group and discuss the representations of the group in
terms of the associated eigenfunctions. In Sec. IV, we
explicitly solve the wave equation in the Klein space (we
call these L-primaries) and derive the solutions that
correspond to specific weights (highest/lowest/mixed) with
respect to the Casimir. In Sec. V, we consider a different set
of raising-lowering operators (a different basis) where some
of the Cartan generators are boost type. The states corre-
sponding to this choice are particles that emerge at some
point on the celestial Sp−1 × Sq−1. We repeat the same
procedure as before for the states corresponding to various
weights in this basis (calledH-primaries). Finally, we relate
the H- and L-primaries (and their descendants) by dem-
onstrating that one can be written as an integral transform of
the other. We also note that the H-primary states can be
written as Mellin transforms of plane waves [3]. The
concluding section of the main text contains a comparison
between our notations and those of [3], establishing the
precise match when p ¼ q ¼ 2. In Appendices A–C we
explicitly write down all generators in terms of the
coordinates in the Klein space and show the steps involved

in solving for the primaries. In Appendix D, we briefly
review some facts about the quadratic Casimir.
Our paper should be viewed as an extension of the results

in [3]. So while we have made an effort to be technically
self-contained, we encourage the reader to consult [3] and
references therein, for more background and motivations.

II. KLEIN SPACES

A. Defining coordinates

We will consider pseudo-Euclidean spaces with an
SOðp; qÞ isometry, where p ¼ 2n and q ¼ 2m and n
and m are positive, nonzero integers. We will call such a
ð2n; 2mÞ signature “space-time,” a flat Klein space K2n;2m.
Some of our discussions, in fact, apply more generally to
the case when the even-ness condition on p and q is
relaxed. The main reason that we will not discuss the odd
case is that the so-called H-primaries, which we will
construct in a later section, are simpler in even dimensions.
This is because the Cartans of the H-primary are con-
structed purely in terms of “boost-type” generators, as we
will see. The extra dimension prevents this structure.
Nonetheless, it may be possible to get an interesting
structure even in odd dimensions with some appropriate
generalization—we will not comment on it further here.
Our motivations for the even choice (as outlined above) are
purely algebraic, but let us also note that the dynamics of
radiative modes have distinctions between even and odd
dimensions. It is possible that these observations are related
to the fractional power of radial coordinate r in the radiative
modes in odd dimensions (we thank the referee for
emphasizing this) in conventional Lorentzian signature.
We believe these observations are all ultimately related to
the usual distinction between solutions of wave equations
in even and odd dimensions (starting with the distinction in
Huygens’s principle).
In any event, the Klein metric of such a space is

ds2 ¼ −
X2n
a¼1

dx2a þ
X2m
ã¼1

dy2ã: ð1Þ

We introduce complex coordinates

zi ¼ x2i−1 þ ix2i; ð2Þ

wĩ ¼ y2ĩ−1 þ iy2ĩ; ð3Þ

z̄i ¼ x2i−1 − ix2i; ð4Þ

w̄ĩ ¼ y2ĩ−1 − iy2ĩ; ð5Þ

where i goes from 1 to n and ĩ goes from 1 to m. Note that
the indices in (9) a, ã run over double the range of the i, ĩ
coordinates. We have the following expression for the
metric in terms of the complex coordinates:
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ds2 ¼
Xm
j̃¼1

dwj̃dw̄j̃ −
Xn
j¼1

dzjdz̄j: ð6Þ

With future use in mind, let us also parametrize these
complex variables as

zi ¼ rieiθi ; wĩ ¼ tĩe
iϕĩ ð7Þ

and we have

ds2 ¼ −
Xn
i¼1

ðdr2i þ r2i dθ
2
i Þ þ

Xm
ĩ¼1

ðdt2
ĩ
þ t2

ĩ
dϕ2

ĩ
Þ: ð8Þ

This last parametrization will turn out to be very useful for
our purposes. These coordinates were not needed in [3],
because one could exploit the connection between SOð2; 2Þ
and SLð2; RÞ × SLð2; RÞ instead.

B. Null, spacelike, and timelike infinity

We will conformally compactify the Kp;q space and
determine the geometry of null infinity I, spatial infinity i0.
and timelike infinity i0. Writing the line element as

ds2 ¼ −
Xp
a¼1

dx2a þ
Xq
ã¼1

dy2ã ð9Þ

and introducing spherical polar coordinates with radii r and
t for xa and yã, we get

ds2 ¼ −dr2 − r2dΩ2
p−1 þ dt2 þ t2dΩ̃2

q−1: ð10Þ

We can now shift to a “light-cone” coordinate system via

r − t ¼ tanU; rþ t ¼ tanV: ð11Þ

Making this substitution in Eq. (10), we get

ds2 ¼ 1

cosU2 cosV2

�
−dUdV −

1

4
sin2ðV þ UÞdΩ2

p−1

þ 1

4
sin2ðV −UÞdΩ̃2

q−1

�
: ð12Þ

Null infinity I is at V ¼ π
2
where the factor out front

blows up. Spacelike (timelike) infinity i0 (i0) is the
boundary at U ¼ − π

2
(U ¼ π

2
). The surface at I is given

by − π
2
< U < π

2
. We take the limit V → π

2
and scale out the

cos2 V term. Then we get

ds2I ¼ −dΩ2
p−1 þ dΩ̃2

q−1 ð13Þ

where the angles in Ω and Ω̃ have the periodicities and
ranges of the corresponding spheres. The spacelike sphere
degenerates along the timelike line U ¼ V and the timelike

sphere degenerates along the spacelike line U ¼ −V.
Neither sphere degenerates at the null infinity I.
The topological boundary of Kp;q is Spþq−1 and we can

view it as an Sp−1 × Sq−1 fibration over a segment. To
establish that I together with i0 and i0 has this topology, we
need to show that each of the ends i0 and i0 have the topology
of a ball times a sphere (of appropriate dimensions).
To see this, let us foliate the Klein space using the

following slicing:

Xq
ã¼1

y2ã −
Xp
a¼1

x2a ¼ �τ2: ð14Þ

The two regions corresponding to the � sign of τ2 can be
denoted by Kp;q�. Note that it is the region Kp;q−, which
contains the timelike infinity. So we start by considering the
−τ2 case. The goal is to then take τ → ∞ to end up at the
“upper half” of I . We can parametrize x and y in spherical
coordinates, as Eq. (10), but with

r ¼ τ cosh ρ; ð15Þ

t ¼ τ sinh ρ: ð16Þ

This gives us

ds2 ¼ −dτ2 þ τ2ds21; ð17Þ

ds21 ¼ dρ2 − cosh2ρdΩ2
p−1 þ sinh2ρdΩ̃2

q−1: ð18Þ

The metric (18) is known as AdSq;p−1, see e.g., [5]. It
contains p − 1 timelike coordinates and q spacelike coor-
dinates. From (17), one notes that we are foliating the
generalized Minkowski spaceMq;p using these generalized
AdS spaces.
From this metric, we can look at the geometry of i0 by

taking the limit of ρ → 0. One can see this by noting that
going to i0 means that we need to shrink the “spacelike
radius t” to a small value. This leads to a metric of the form

ds21 ∼ dρ2 þ ρ2dΩ̃2
q−1 − dΩ2

p−1: ð19Þ
There is a clear factorization in this geometry, which leads
us to observe that the space-time becomes a topological
product of the q-ball Sq and the (p − 1)-sphere Sp−1. This
is the higher dimensional generalization of the topological
product of a circle and a disk that is obtained as the
geometry of i0 in the K2;2− case [3].
A similar construction holds for the case of þτ̃2. Here,

the τ̃ → ∞ leads us to the lower half of the null infinity I.
In this case, we use the alternative parametrization

r ¼ τ̃ sinh ρ̃; ð20Þ

t ¼ τ̃ cosh ρ̃; ð21Þ
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which gives us

ds2 ¼ dτ̃2 − τ̃2ds21; ð22Þ
ds21 ¼ dρ̃2 − cosh2ρ̃dΩ̃2

q−1 þ sinh2ρ̃dΩ2
p−1: ð23Þ

This metric is the one known as AdSp;q−1. We can take the
ρ̃ → 0 limit to reach the spacelike infinity i0, which
corresponds to taking the “timelike radial coordinate r”
to a very small value. In this limit, the metric (24) again
factorizes into the following simple form:

ds21 ∼ dρ̃2 þ ρ̃2dΩ2
p−1 − dΩ̃2

q−1: ð24Þ
This leads us to observe that the geometry at i0 is a
topological product of a p-ball Sp and a (q − 1)-sphere
Sq−1. Therefore, we conclude that the geometry of I along
with i0 and i0 can be viewed as an Spþq−1, where Sp−1 ×
Sq−1 is fibered over a line segment.
One point to note about our generalized AdS foliation is

that it is impossible to “unwrap” the timelike directions on
these AdS spaces. This is possible only in AdS metrics that
arise from an embedding space with only two timelike
coordinates. In the present case, we have a sphere-worth of
timelike coordinates instead of a circle.

III. KLEIN, CARTAN-WEYL, AND CASIMIR

Highest weight states will play an important role in our
discussion of the scattering states, and to discuss them, it is
useful towork with the Cartan-Weyl basis of SOð2n; 2mÞ. In
the Cartan-Weyl basis, all the generators can be written in
terms of the commutators of the Cartan generators, which
form anAbelian subalgebra, and the ladder operators. Since
we are interested in only the even-dimensional cases, wewill
work with the complex Lie algebraDN , which has N Cartan
generators. The basis is conveniently spanned by the eigen-
vectors of the Cartan generators. The ladder operators then
raise or lower the eigenvalues for these states and enable us to
conveniently define the highest weight states.
To orient ourselves, let us start by writing down the

general complex Lie algebra in the Cartan-Weyl basis. We
have the Cartan generators Hi and the raising and lowering
operators corresponding to the roots α of the algebra given
by E�α. The commutation relations that they must satisfy
are the following:

½Hi;Hj� ¼ 0; ð25Þ

½Hi; Eα� ¼ αiEα; ð26Þ

½Eα; Eβ� ¼ NαþβEαþβ αþ β ∈ root

¼ 2

jαj2 α:H α ¼ −β

¼ 0 αþ β ∉ root: ð27Þ

The rest of the generators are encoded indirectly in these
generators, and we will not need them. The above form
corresponds to the complex Lie algebra, where one
assumes that the vector space spanned by these generators
is defined over the complex number field. A complex Lie
algebra has many real forms. If one simply dictates that the
field over which the above algebra is defined is the real
numbers as opposed to the complex numbers, what one gets
is called the split real form which in the case of DN
corresponds to SOðN;NÞ. There is also a unique compact
real form which in the case ofDN is to be viewed as the Lie
algebra of SOð2NÞ. We will be interested in the general
noncompact real forms SOðp; qÞ of the complex Lie
algebra DðpþqÞ=2.
We are interested in viewing scattering states as highest

weight states, and it is for this reason that we will be
interested in the Cartan-Weyl form of SOðp; qÞ. But the
differential operator realization is most conveniently iden-
tified in the coordinates that manifest the Klein space
isometries. Defining and relating these two realizations of
the algebra will be the goal of this section.

A. Klein space generators

We first write down the algebra of the SOðp; qÞ group as
the isometry algebra of the underlying Klein space.
Denoting generators by JAB, the commutation relation that
they satisfy is

½JAB;JCD�¼ iðηADJBCþηBCJAD−ηACJBD−ηBDJACÞ ð28Þ

where ηAB is the flat Klein space metric with the compo-
nents ð−1p; 1qÞ. The standard Hermitian matrix form for
the generators can now be written as

½JAB�μν ¼ iðδμAηνB − δμBηνAÞ: ð29Þ

The index placement (upper or lower) of μ and ν are not
distinguished here, and they should be summed when
repeated.
We wish to give a differential operator realization of

these generators using the underlying Klein space coor-
dinates,

Xμ ≡ ffxag; fyãgg ¼ fx1;…; xp; y1;…; yqg; ð30Þ

ð∂XÞν ≡ ff∂xag; f∂yãgg ¼ f∂x1 ;…; ∂xp ; ∂y1 ;…; ∂yqg; ð31Þ

where we have used the abbreviated notation ∂z ≡ ∂

∂z, for
any variable z. The x coordinates are taken to be the ones
corresponding to −1 signature and y coordinates are taken
to correspond to þ1 signature, and follows the notation
of Sec. II.
Using these, we can write explicit differential operator

expressions for JAB in terms of the coordinates as follows
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(we denote it byMAB to distinguish it from the matrix form
½JAB�μν of the generators)

MAB ≡X
μ;ν

Xμ½JAB�μνð∂XÞν: ð32Þ

Evaluating this expression gives us the following results:

Mab ¼ −iðxa∂xb − xb∂xaÞ; ð33Þ

Mã b̃ ¼ iðyã∂yb̃ − yb̃∂yãÞ; ð34Þ

Maã ¼ iðxa∂yã þ yã∂xaÞ: ð35Þ

Here, the notation is as it was in Sec. II,

a; b ∈ 1;…; p;

ã; b̃ ∈ 1;…; q

with the untilded small case letters from the early part of the
Latin alphabet going with the x coordinates and the tilded
ones with the y coordinates. By noting that ηab ¼ −δab,
ηã b̃ ¼ δã b̃, and ηaã ¼ 0, we can explicitly demonstrate that
(33)–(35) exactly satisfies (28).

B. Klein to Cartan-Weyl

We now want to write down a Cartan-Weyl-like basis for
the group SOð2n; 2mÞ and relate it to the differential
generators of the last subsection. This will be useful in
interpreting the Casimir as a Laplace-like operator and the
raising/lowering/highest-weight/lowest-weight conditions
in terms of differential operators.
We will adapt the construction of our Cartan-Weyl form

from the complex Lie algebra Dnþm, whose roots are
explicitly given in terms of a Euclidean coordinate basis in
[6] (see Secs. 19.1 and 21.11). For the complex Dnþm, the
roots of the algebra can be written in the form
αJ;K ≡ ξeJ þ ξ0eK, where we have introduced new indices
J; K ∈ f1;……; nþmg and ξ; ξ0 can take the values �1.
See [6] for the definition of eJ; we will not need them
explicitly. The positive roots, which will be important for
us in defining the highest weight states, are defined with
ξ ¼ 1, ξ0 ¼ �1, andK > J. In the rest of the text, whenever
we use αJ;K , we will mean the positive roots only (and will
therefore have K > J). We will introduce explicit negative
signs when we need the negative roots. We will write the
Cartan-Weyl form of the algebra in a form that splits the
ladder operators in terms of positive and negative roots.
To construct the complex form of the Lie algebra in the

Cartan-Weyl form, one takes [6] the Cartan generators to be

HJ ¼ M2J−1;2J ð36Þ

and the ladder operators corresponding to any root
ξeJ þ ξ0eK to be

EξeJþξ0eK ¼ 1

2
ðM2J−1;2K−1 þ iξM2J;2K−1 þ iξ0M2J−1;2K

− ξξ0M2J;2KÞ: ð37Þ

Here M are taken to be the Euclidean generators of the
compact real form of the algebra.
In order to come up with a useful Cartan-Weyl form for

SOð2n; 2mÞ, we will use the same expressions above, but
now the M generators will be viewed as those in the
previous subsection—those that capture the Klein space
isometry. This way, we will be able to relate the notion of a
highest weight state, which is manifest in the Cartan-Weyl
form, to the derivative operators that capture the Klein
space isometry. In an appendix, we will show that the
highest weight states that follow from our definition match
precisely with the SLð2; RÞ × SLð2; RÞ construction of [3]
when p ¼ q ¼ 2.
The specific expressions for the Cartan generators and

the ladder operators can then be taken as follows. The
Cartan generators are

HJ ¼ M2J−1;2J: ð38Þ

The ladder operators corresponding to the positive roots are

EeJþeK ¼ 1

2
fM2J−1;2K−1 þ iM2J;2K−1

þ iðM2J−1;2K þ iM2J;2KÞg; ð39Þ

EeJ−eK ¼ 1

2
fM2J−1;2K−1 þ iM2J;2K−1

− iðM2J−1;2K þ iM2J;2KÞg; ð40Þ

which we will collectively call EαJ;K and those correspond-
ing to the negative roots are

FeJþeK ¼ 1

2
fM2J−1;2K−1 − iM2J;2K−1

− iðM2J−1;2K − iM2J;2KÞg; ð41Þ

FeJ−eK ¼ 1

2
fM2J−1;2K−1 − iM2J;2K−1

þ iðM2J−1;2K − iM2J;2KÞg; ð42Þ

which we will collectively call E−αJ;K . The commutation
relations satisfied by these operators are as follows:

1The discussion in Sec. 21.1 of [6] is for Bn algebras, but it is
easy enough to adapt to the present discussion.
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½HI;HJ� ¼ 0; ð43Þ

½HI; EeJþeK � ¼ −ðη2I;2J þ η2I;2KÞEeJþeK ; ð44Þ

½HI; EeJ−eK � ¼ −ðη2I;2J − η2I;2KÞEeJ−eK ; ð45Þ

½HI; E−ðeJþeKÞ�≡ ½HI; FeJþeK �
¼ ðη2I;2J þ η2I;2KÞFeJþeK ; ð46Þ

½HI; E−ðeJ−eKÞ�≡ ½HI; FeJ−eK �
¼ ðη2I;2J − η2I;2KÞFeJ−eK ; ð47Þ

½EeJþeK ; FeJþeK � ¼ −ðη2K;2KM2J−1;2J þ η2J;2JM2K−1;2KÞ
¼ −ðη2K2KHJ þ η2J2JHKÞ; ð48Þ

½EeJ−eK ; FeJ−eK � ¼ −ðη2K;2KM2J−1;2J − η2J;2JM2K−1;2KÞ
¼ −ðη2K2KHJ − η2J2JHKÞ: ð49Þ

We also note that the remaining commutation relations can
be summarized as

½EξeJþξ0eK ; EδeMþδ0eN � ¼ −iη2J;2Mð1 − ξδÞEξ0eKþδ0eN

− iη2K;2Nð1 − ξ0δ0ÞEξeJþδeM

þ iη2J;2Nð1 − ξδ0ÞEξ0eKþδeM

þ iη2K;2Nð1 − ξ0δÞEξeJþδ0eN : ð50Þ

Note that the coefficients of the roots ξ, ξ0, δ, δ0 can take
values �1. Moreover, the lowering operator Fα is given as
Fα ¼ E−α, where α is some root. In writing these relations,
we have used the fact that

η2I;2J ¼ η2I−1;2J−1: ð51Þ

Incidentally, (50) can be viewed to implicitly contain
(43)–(49) as well, via a slight notational reinterpretation.
This is accomplished when J ¼ M and K ¼ N, with the
understanding that EeJ−eJ is to be replaced with −iHJ. In
any event, we now have a Cartan-Weyl-like form associated
to the SOð2n; 2mÞ algebra that can be transparently used
for discussing highest weight states.
One further comment worth making here is that in the

SOð2; 2Þ case, the algebra presented in (43)–(49) is the
complete algebra. The rest of the commutators in (50)
become trivial.

C. Index summary

We have had to introduce a few different kinds of indices
in the discussions so far. To avoid confusion and for quick
reference, let us summarize our notation here.
Recall that we are working with SOð2n; 2mÞ. The

uppercase Latin indices A and B go over the full range

of coordinates of the Klein space, 1;…; 2nþ 2m. These
show up in (28). These are further subdivided via the
lowercase un-tilded Latin indices a, b (which span the coor-
dinates denoted by x, with signature −1) and the lowercase
tilded Latin indices ã, b̃ (which span the coordinates
denoted by y, with signature þ1). One can relate these
indices to the uppercase Latin indices as follows:

A ¼ a ∀A ∈ 1;…; 2n; ð52Þ

A ¼ 2nþ ã ∀A ∈ 2nþ 1;…; 2nþ 2m: ð53Þ

Now, we turn to the uppercase Latin indices I, J, and K
of the previous subsection. These go over half the range of
coordinates, i.e., I; J; K ∈ 1;…; nþm. The full range of
Klein space coordinates is then covered by 2J and 2J − 1
together (and similarly for K). These are further subdivided
via the lowercase untilded Latin indices j, k (which span
half of the coordinates x and therefore label the coordinates
z, z̄, r and θ from Sec. II A) and the lowercase tilded Latin
indices j̃, k̃ (which span half of the coordinates y, and label
w, w̄, t, and ϕ from Sec. II A). The full range of the x
coordinates is spanned by 2j and 2j − 1 together (and
similarly for k). Likewise, y is spanned by 2j̃ and 2j̃ − 1

and by 2k̃ and 2k̃ − 1. One can relate the uppercase and
lowercase Latin indices in this case as follows:

J ¼ j ∀ J ∈ 1;…; n; ð54Þ

J ¼ nþ j̃ ∀ J ∈ nþ 1;…; nþm: ð55Þ

The uppercase J, K indices and their translation to the
lowercase j, k and j̃, k̃ indices will be repeatedly used in
what follows.
Finally, for completeness, we make a small comment on

the Latin indices μ, ν, used in (32). These are simply the
matrix indices on the matrix form of the generators JAB of
SOð2n; 2mÞ. The matrices are 2ðnþmÞ × 2ðnþmÞ
dimensional in this representation, so the indices are
μ; ν ∈ 1;…; 2nþ 2m. We will not need these indices
again.

D. Quadratic Casimir and the “wave” equation

The quadratic Casimir for SOðp; qÞ group can be taken
as (see Appendix D for a discussion)

c2 ¼ MABMAB ð56Þ

where MAB is defined as (32), and the raising/lowering of
indices is executed via the Klein space metric tensor ηAB. In
terms of the generators of SOðp; qÞ in the Cartan-Weyl-like
basis we introduced, one can express the quadratic Casimir
as follows:
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c2 ¼
Xpþq

2

I¼1

HIHI þ
X
J;K>J

EeJþeKF
eJþeK þ FeJþeKE

eJþeK

þ
X
J;K>J

EeJ−eKF
eJ−eK þ FeJ−eKE

eJþeK : ð57Þ

Here, we use the ηAB to raise indices on the right-hand sides
of the definitions (38)–(42) to define the upper index
objects HI, EαJ;K , and E−αJ;K . For example,

HI ¼ M2I−1;2I; ð58Þ

EeJ�eK ¼ 1

2
fM2J−1;2K−1 þ iM2J;2K−1

� iðM2J−1;2K þ iM2J;2KÞg; ð59Þ

FeJ�eK ¼ 1

2
fM2J−1;2K−1 − iM2J;2K−1

∓ iðM2J−1;2K − iM2J;2KÞg: ð60Þ

It can be seen by using these in (57), that we get (56).
The above expressions are useful because using them,

we can write the Casimir in terms of the differential
operators from the previous sections that capture the
Klein space isometries. This Casimir plays an important
role in the Klein space wave equation. To illustrate this we
work, for the rest of this and the following section, with the
Kp;q− foliation from Sec. II. The Kp;qþ case follows in a
similar fashion.
The wave equation in the AdS-foliating coordinates is as

follows [using (17)–(19)]:

□Φ ¼ ∂
2
τΦþ pþ q − 1

τ
∂τΦ −

1

τ2
∇pþq−1Φ ð61Þ

where we have

∇pþq−1Φ ¼
�
∂
2
ρΦþ ððp− 1Þ tanh ρþ ðq− 1Þ coth ρÞ∂ρΦ

−
1

cosh2ρ
∇2

Ω;p−1Φþ 1

sinh2ρ
∇2

Ω̃q−1Φ
�
: ð62Þ

This allows us to separate the solution Φ ¼
Φ1ðτÞΦ2ðρ;Ω; Ω̃Þ, which gives us the following set of
differential equations:

1

τpþq−3 ∂ττ
pþq−1

∂τΦ1 ¼ KΦ1; ð63Þ

∇pþq−1Φ2 ¼ KΦ2: ð64Þ

A key point is that Casimir c2 is the same as ∇pþq−1. This
can be explicitly checked, and this fact will be crucial as we
proceed.

E. Action of Casimir on highest weight states

Let us consider states that are annihilated by the raising
operators (denoted by EαJ;K or EeJ�eK ). Wewill denote them
by Φþþ; these are the highest weight states. The discussion
for lowest weight and mixed weight states will follow
similarly.
To turn (57) into a useful form, it is convenient to first

write

EeJ�eK ¼ η2J;2Jη2K;2KEeJ�eK ð65Þ

where there is no summation in I or J. This is a simple
consequence of the fact that raising and lowering of the full
MAB is carried out by the Klein space metric ηAB, which has
the property (51). Let us illustrate this for EeJ�eK. This will
serve as a representative for the standard manipulations in
these subsections. We note that

EeJ�eK ≡ 1

2
fM2J−1;2K−1 þ iM2J;2K−1

� iðM2J−1;2K þ iM2J;2KÞg

¼ 1

2
fη2J−1;Aη2K−1;BMA;B þ iη2J;Aη2K−1;BMA;B

� iðη2J−1;Aη2K;BMA;B þ iη2J;Aη2K;BMA;BÞg: ð66Þ

Because ηAB is diagonal, we can write this as

EeJ�eK ¼ 1

2
fη2J−1;2J−1η2K−1;2K−1M2J−1;2K−1

þ iη2J;2Jη2K−1;2K−1M2J;2K−1

� iðη2J−1;2J−1η2K;2KM2J−1;2K

þ iη2J;2Jη2K;2KM2J;2KÞg: ð67Þ

From the structure of ηAB, given as ð−12n; 12mÞ, and
recalling that J; K ∈ 1;…; nþm, one can note that
η2J−1;2J−1 ¼ η2J;2J, and similarly for K. From this, what
we wanted to show immediately follows:

EeJ�eK ¼ 1

2
η2J;2Jη2K;2KfM2J−1;2K−1 þ iM2J;2K−1

� iðM2J−1;2K þ iM2J;2KÞg
¼ η2J;2Jη2K;2KEαJ;K : ð68Þ

Using this gives us the following result for the Casimir:

c2¼
X
I

HIHI

þ
X
J;K>J

η2J;2Jη2K;2KðFeJþeKEeJþeK þEeJþeKFeJþeK Þ

þ
X
J;K>J

η2J;2Jη2K;2KðFeJ−eKEeJ−eK þEeJ−eKFeJ−eK Þ: ð69Þ
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Utilizing commutation relations like (48) we can now place the raising operators to the right (and thus directly act on the
field Φþþ)

c2 ¼
X
I

HIHI þ
X
J;K>J

η2J;2Jη2K;2Kð2FeJþeKEeJþeK þ ½EeJþeK ; FeJþeK �Þ

þ
X
J;K>J

η2J;2Jη2K;2Kð2FeJ−eKEeJ−eK þ ½EeJ−eK ; FeJ−eK �Þ: ð70Þ

When c2 acts onΦþþ the EeJ�eK terms annihilate it. We can again use commutation relations like (48) to write down c2Φþþ
only in terms of the Cartan generators HI as

c2Φþþ ¼
X
J

H2
JΦþþ −

X
J;K>J

η2J;2Jη2K;2Kðη2K;2KHJ þ η2J;2JHKÞΦþþ −
X
J;K>J

η2J;2Jη2K;2Kðη2K2KHJ − η2J;2JHKÞΦþþ

¼
X
J

H2
JΦþþ − 2

X
J;K>J

η2J;2JHJΦþþ

¼
Xnþm

J¼1

H2
JΦþþ þ 2

Xn;nþm

J¼1;K>J

HJΦþþ − 2
Xnþm;nþm

J¼nþ1;K>J

HJΦþþ

⇒ c2Φþþ ¼
Xnþm

J¼1

ðH2
J − 2η2J;2Jðnþm − JÞHJÞΦþþ: ð71Þ

This is the action of the quadratic Casimir of SOð2n; 2mÞ
on the heighest weight state.
Similarly, one can see that the action of c2 on the lowest

weight state Φ−− (annihilated by the lowering operators) is

c2Φ−− ¼
Xnþm

J¼1

ðH2
J þ 2η2J;2Jðnþm − JÞHIÞΦ−−: ð72Þ

In fact, it is easy to see that there exists a huge class of such
states one can define by considering states annihilated by
various combinations of raising and lowering operators. In
fact, there exists 2r such choices, where r ¼ ðnþmÞðnþ
m − 1Þ is the number of positive roots of SOð2n; 2mÞ—the
idea being that we need to impose r annihilation conditions,
and we can make the choice of either the positive root itself,
or the corresponding negative root.2 Of these, the highest
weight and lowest weight states constitute just two. We will
present the action of c2 on two examples of such “mixed”
weight states and leave the rest as an exercise for the reader.
The first kind Φþ− (annihilated by raising operators
corresponding to roots of the form eJ þ eK and by lowering
operators corresponding to roots of the form eJ − eK) yield

c2Φþ− ¼
Xnþm

J¼1

ðH2
J − 2η2J;2JðJ − 1ÞHJÞΦþ−: ð73Þ

And finally, we write down the action of c2 on a second
kind of mixed weight state Φ−þ (annihilated by raising

operators corresponding to roots of the form eJ − eK and by
lowering operators corresponding to roots of the form
eJ þ eK):

c2Φ−þ ¼
Xnþm

J¼1

ðH2
J þ 2η2J;2JðJ − 1ÞHJÞΦ−þ: ð74Þ

IV. L-PRIMARY SCALARS

In this section, we will give a solution to the set of
equations (63)–(64). Equation (63) can be trivially solved,
and we can write Φ1ðτÞ exactly, up to the constant K. We
will be interested in specific solutions for Φ2. These
solutions will be obtained by imposing additional demands
on Φ2, related to the highest/lowest/mixed weight con-
ditions. These are natural [3], in view of the fact that
∇pþq−1 in (64) is the Casimir c2 (57).
Separating variables in the “wave” equation we can

easily solve

τ2

τpþq−1 ∂ττ
pþq−1

∂τΦ1 ¼ KΦ1; ð75Þ

and we find

Φ1ðτÞ ¼ τ
−ðpþq−2

2
Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kþðpþq−2Þ2

4

q
: ð76Þ

Solving for Φ2 requires more work. We begin by writing
the expressions for the raising and lowering operators in

2Note that this reduces to the four kinds of states found in [3]
when we work with n ¼ m ¼ 1.
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terms of the coordinates given in (2)–(7) (see Appendix A
for some related formulas and notation):

Ex;x
ej�ek

¼ −
i
2
eiðθj�θkÞ

�
ðrj∂rk − rk∂rjÞ � i

rj
rk
∂θk − i

rk
rj
∂θj

�
;

ð77Þ

Fx;x
ej�ek

¼ i
2
e−iðθj�θkÞ

�
ðrj∂rk − rk∂rjÞ ∓ i

rj
rk
∂θk þ i

rk
rj
∂θj

�
;

ð78Þ

Ey;y
ej̃�ek̃

¼ i
2
eiðϕj̃�ϕk̃Þ

�
ðtj̃∂tk̃ − tk̃∂tj̃Þ � i

tj̃
tk̃
∂ϕk̃

− i
tk̃
tj̃
∂ϕj̃

�
;

ð79Þ

Fy;y
ej̃�ek̃

¼ −
i
2
e−iðϕj̃�ϕk̃Þ

�
ðtj̃∂tk̃ − tk̃∂tj̃Þ∓ i

tj̃
tk̃
∂ϕk̃

þ i
tk̃
tj̃
∂ϕj̃

�
;

ð80Þ

Ex;y
ej�ej̃

¼ i
2
eiðθj�ϕj̃Þ

�
ðrj∂tj̃ þ tj̃∂rjÞ � i

rj
tj̃
∂ϕj̃

þ i
tj̃
rj
∂θj

�
;

ð81Þ

Fx;y
ej�ej̃

¼ −
i
2
e−iðθj�ϕj̃Þ

�
ðrj∂tj̃ þ tj̃∂rjÞ∓ i

rj
tj̃
∂ϕj̃

− i
tj̃
rj
∂θj

�
;

ð82Þ
where Ex;x, Fx;x are the raising and lowering operators
respectively for the case where the root lies among the x
coordinates, i.e., J ¼ j and K ¼ k. Similarly for Ey;y, Fy;y,
where the root lies among the y coordinates, i.e., J ¼ j̃ and
K ¼ k̃. The rasing and lowering operators Ex;y and Fx;y

correspond to the roots where one of the indices J and K
[the smaller one according to our arrangement of coor-
dinates (30)] lies among the x coordinates and the other lies
among the y coordinates. This means that J ¼ j and K ¼ j̃.
We will call states satisfying the following conditions

L-primaries,Φþþ.
3 By a slight abuse of terminology, wewill

also sometimes refer to them simply as highest weight states,

HjΦþþ ¼ λiΦþþ; ð83Þ

Hj̃Φþþ ¼ λ̃j̃Φþþ; ð84Þ

Ex;x
ej�ek

Φþþ ¼ Ey;y
ej̃�ek̃

Φþþ ¼ 0; ð85Þ

Ex;y
ej�ej̃

Φþþ ¼ 0: ð86Þ

It can be shown (Appendix B) that these equations
reduce to the following set of differential equations
satisfied by Φþþ:

1

rk
∂rkΦþþ ¼ 1

r1
∂r1Φþþ −

h
r21
Φþþ ∀ k ≠ 1; ð87Þ

−
1

tj̃
∂tj̃Φþþ ¼ 1

r1
∂r1Φþþ −

h
r21
Φþþ ∀ j̃; ð88Þ

1

rk
∂rkΦþþ ¼ 1

rj
∂rjΦþþ ∀ k; j ≠ 1; ð89Þ

1

tj̃
∂tj̃Φþþ ¼ 1

tk̃
∂tk̃

Φþþ ∀ j̃; k̃; ð90Þ

1

rk
∂rkΦþþ ¼ −

1

tj̃
∂tj̃Φþþ ∀ j̃; and k ≠ 1: ð91Þ

It follows from imposing the annihilation conditions and
following the calculations in Appendix A and B, that (71)
gives us the following value of K as defined in (64),

K ¼ h2 þ 2ðnþm − 1Þh ð92Þ

where we have renamed λ1 ¼ h (see Appendix B). Note
that this is consistent with the usual form of the Laplacian
eigenvalue on the sphere in higher dimensions. But we
found it here via systematically working through our
highest weight conditions.
The above set of equations can be solved by para-

metrizing these coordinates in the generalized-AdS-foli-
ation in which we have written the metric in (17)–(18). This
is done in Appendix C, and up to an overall normalization,
the solution we obtain is

Φþþ ¼
�
r1
τ

�
h
eihθ1 : ð93Þ

Single valuedness forces h to be integral. Our choice of
coordinates and generators are adapted to make this
expression simple.
For the lowest and mixed weight states, the structure of

the differential equations we need to solve is similar: The
weight conditions force all except one of the Cartan
eigenvalues to be zero, and this weight fixes K via the
Casimir equations we presented in Sec. III E. The results
can be summarized as follows:

(i) For the lowest weight state Φ−−

K ¼ λ21 − 2ðnþm − 1Þλ1; ð94Þ

Φ−− ¼
�
r1
τ

�
λ1
e−iλ1θ1 : ð95Þ

3We will call states that arise by analogous lowest weight and
mixed weight conditions also as L-primaries—this should not
cause any confusion.
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(ii) For the mixed weight state of the first kind Φþ−

K ¼ λ̃2m − 2ðnþm − 1Þλ̃m; ð96Þ

Φþ− ¼
�
tm
τ

�
λ̃m
eiλ̃mϕm: ð97Þ

(iii) For the mixed weight state of the second kind Φ−þ

K ¼ λ̃2m þ 2ðnþm − 1Þλ̃m; ð98Þ

Φ−þ ¼
�
tm
τ

�
λ̃m
e−iλ̃mϕm: ð99Þ

The solutions (93), (95), (97), and (99) were obtained by
solving the appropriate differential equations given in
Appendix B. The key simplification as we noted is that
all except one of the Cartans vanish. This Cartan lies among
the x coordinates for the first two and among the y
coordinates for the last two. The method for solving these
equations is sketched out in Appendix C. Note that the rm=τ
and tm=τ factors can be made completely explicit, if we
choose coordinates on the underlying foliation (these
coordinates are presented in Appendix C).
By acting with the ladder operators on the primaries

defined above, we can straightforwardly construct descend-
ant states as well. These span the full representation. We
will write down examples in the first descendant level,
starting with the highest weight state (93). The descendant
states are constructed by the action of the lowering
operators [as defined in (41)–(42)] on Φþþ.
One can explicitly check [from the expressions in (A2),

(A4), and (A6)], that the only nonvanishing descendant
states of the first level are given by Fx;x

e1�ek
Φþþ ∀ k ∈

2;…; n and Fx;y
e1�ej̃

Φþþ ∀ j̃ ∈ 1;…; m. Their explicit
expressions take the form

Fx;x
e1�ek

Φþþ ¼ −ih
rk
r1
e−iðθ1�θkÞΦþþ; ð100Þ

Fx;y
e1�ej̃

Φþþ ¼ −ih
tj̃
r1
e−iðθ1�ϕj̃ÞΦþþ: ð101Þ

Higher descendants can also be constructed. Similarly one
can construct (higher) descendant levels for Φþþ, and
likewise forΦ−−,Φþ− andΦ−þ. Note that if one starts with
Φþ− (97), then the nonvanishing first-level descendant
states would be given by the action of (A4) and (A6), while
(A2) would annihilate Φþ−.

V. H-PRIMARY SCALARS

In this section, we construct states which are annihilated
by the raising operators in a basis in which some of the
Cartan generators are boost type. This will correspond to

particles that emerge at some point on the celestial
Sp−1 × Sq−1. We will make the choice of the generators
adapted to the location of this point.
Wewill choose the point where the particle exits to be the

in the x1 − x2 plane of the “minus” signature coordinates
and the y1 − y2 plane of the “plus” signature coordinates.
This can always be done by choosing our coordinates
appropriately without loss of generality. The x coordinate
location where the particle emerges can therefore be
captured by an angle in the x1 − x2 plane:

Rxðfθ̂igÞ ¼

0
BBBBBBBBBBBB@

cos θ̂1 sin θ̂1 0 0 … 0 0

− sin θ̂1 cos θ̂1 0 0 … 0 0

0 0 1 0 … 0 0

0 0 0 1 … 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 … 0 1 0

0 0 0 … 0 0 1

1
CCCCCCCCCCCCA

: ð102Þ

Similarly, we will have a rotation matrix for the y
coordinates, with θ̂1 replaced by ϕ̂1. Once the rotations
are done, the x1, x2, y1, y2 coordinates should really be
viewed as primed coordinates. But while constructing
generators in the next subsection, we will suppress the
primes. The use of the rotations is simply to clarify the
angles of the momenta as we will see in Sec. V C–if we do
not include these rotations, the particle will emerge along
the x1 direction and y1 direction, which makes the notation
a bit too slim to be transparent. But the key physics is
happening in the choice of Cartan generators that mix the
signatures that we will present in Sec. VA.
Aswewill seewhenwe discuss the planewave solutions in

an upcoming subsection, the Cartans corresponding to the
generators thatmix thex1 − x2 andy1 − y2 planes are the only
ones thatplayan important role in thediscussion. In thepresent
section, for the most part, we will treat the rest of the Cartan
generators to be rotation generators in the two signatures
separately. Our main observations remain unchanged even if
we consider signature-mixing among the remaining gener-
ators. In a later subsection, we will also discuss such an
alternate choice for the remaining Cartan generators.

A. Explicit H generators

To write down the Cartan generators in these new
coordinates, we split the coordinates in the following
arrangement4:

X ¼ fx1; y1; x2; y2; x3;…; x2n; y3;…y2mg: ð103Þ

4As mentioned, we are suppressing the primes on the four
rotated coordinates.
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We will have six different types of ladder operators,
depending on which group the coordinates belong to—
both coordinates belonging to x1;…; y2 [(108) and (114)],
one from x1;…; y2 and one from x3;…; x2n [(110) and
(116)], one from x1;…; y2 and one from y3;…; y2m [(109)
and (115)], both from x3;…; x2n [(111) and (117)], both
from y3;…; y2m [(112) and (118)], and finally, one from
x3;…; x2n and one from y3;…; y2m [(113) and (119)]. The
Cartans are picked by choosing coordinates, either in
x1;…; y2 [(104) and (105)] or x3;…; x2n [(106)], or in
y3;…; y2m [(107)]. We emphasize that the ugliness in our
listing below is purely notational—the idea is simple and as
we outlined in the introduction to this section. Wewill show
a more presentable set of generators in a later subsection by
doing some (conceptually unnecessary) rotations/boosts.
In any event, we list the generators below for complete-

ness. The new Cartan generators are

H̃1 ¼ iM11̃; ð104Þ

H̃2 ¼ iM22̃; ð105Þ

H̃j ¼ M2j−1;2j ∀ j ∈ 2;…; n ð106Þ

H̃j̃ ¼ −M2j̃−1;2j̃ ∀ j̃ ∈ 2;…; m: ð107Þ

The key point here is that unlike before, now two of our
Cartans are boostlike. The raising operators are

Ẽð1Þ
eJ�eK ¼ 1

2
fðMJK �MJ̃;K̃Þ þ ðMKJ̃ ∓ MJK̃Þg;

J ¼ 1 & K ¼ 2; ð108Þ

Ẽð2Þ
eJ�ej̃

¼ −
i
2
fðMJ;2j̃−1 −MJ̃;2j̃−1Þ ∓ iðMJ;2j̃ −MJ̃;2j̃Þg

∀ J ∈ 1; 2 & j̃ ∈ 2;…; m; ð109Þ

Ẽð3Þ
eJ�ej ¼

1

2
fðMJ;2j−1 þM2j−1;J̃Þ � iðMJ;2j þM2j;J̃Þg

∀ J ∈ 1; 2 & j̃ ∈ 2;…; n; ð110Þ

Ẽð4Þ
ej�ek

¼1

2
fðM2j−1;2k−1þiM2j;2k−1Þ�iðM2j−1;2kþiM2j;2kÞg

∀k>j∈2;…;n; ð111Þ

Ẽð5Þ
ej̃�ek̃

¼−
1

2
fðM2j̃−1;2k̃−1− iM2j̃;2k̃−1Þ

∓ iðM2j̃−1;2k̃− iM2j̃;2k̃Þg ∀ k̃> j̃∈2;…;m; ð112Þ

Ẽð6Þ
ej�ej̃

¼1

2
fðM2j−1;2j̃−1þiM2j;2j̃−1Þ∓ iðM2j−1;2j̃þiM2j;2j̃Þg

∀j∈2;…;n& j̃∈2;…;m: ð113Þ

The corresponding lowering operators are

F̃ð1Þ
eJ�eK ¼ 1

2
fðMJK �MJ̃;K̃Þ − ðMKJ̃ ∓ MJK̃Þg;

J ¼ 1 & K ¼ 2; ð114Þ

F̃ð2Þ
eJ�ej̃

¼ i
2
fðMJ;2j̃−1 þMJ̃;2j̃−1Þ � iðMJ;2j̃ þMJ̃;2j̃Þg

∀ J ∈ 1; 2 & j̃ ∈ 2;…; m; ð115Þ

F̃ð3Þ
eJ�ej ¼

1

2
fðMJ;2j−1 −M2j−1;J̃Þ ∓ iðMJ;2j −M2j;J̃Þg

∀ J ∈ 1; 2 & j̃ ∈ 2;…; n; ð116Þ

F̃ð4Þ
ej�ek

¼1

2
fðM2j−1;2k−1−iM2j;2k−1Þ∓ iðM2j−1;2k−iM2j;2kÞg

∀k>j∈2;…;n; ð117Þ

F̃ð5Þ
ej̃�ek̃

¼1

2
fðM2j̃−1;2k̃−1þiM2j̃;2k̃−1Þ�iðM2j̃−1;2k̃þiM2j̃;2k̃Þg

∀k̃> j̃∈2;…;m; ð118Þ

F̃ð6Þ
ej�ej̃

¼ 1

2
fðM2j−1;2j̃−1− iM2j;2j̃−1Þ� iðM2j−1;2j̃− iM2j;2j̃Þg

∀j∈ 2;…;n& j̃∈ 2;…;m: ð119Þ

As a simple check, one can count the total number
of generators in (104)–(119). It turns out to be
ðmþ nÞð2ðmþ nÞ − 1Þ, as required.
We note the commutation relations satisfied by these

operators below. For Ẽð1Þ and F̃ð1Þ

½H̃I; Ẽ
ð1Þ
eJ�eK � ¼ −ðηIJ � ηIKÞẼð1Þ

eJ�eK ; ð120Þ

½H̃I; F̃
ð1Þ
eJ�eK � ¼ ðηIJ � ηIKÞF̃ð1Þ

eJ�eK ; ð121Þ

½Ẽð1Þ
eJ�eK ; F̃

ð1Þ
eJ�eK � ¼ −ðηKKH̃J � ηJJH̃KÞ: ð122Þ

For Ẽð2Þ and F̃ð2Þ

½H̃I; Ẽ
ð2Þ
eJ�ej̃

� ¼ −ηIJẼ
ð2Þ
eJ�ej̃

; ð123Þ

½H̃k̃; Ẽ
ð2Þ
eJ�ej̃

� ¼ ∓η2j̃;2k̃Ẽ
ð2Þ
eJ�ej̃

; ð124Þ

½H̃I; F̃
ð2Þ
eJ�ej̃

� ¼ ηIJF̃
ð2Þ
eJ�ej̃

; ð125Þ

½H̃k̃; F̃
ð2Þ
eJ�ej̃

� ¼ �η2j̃;2k̃F̃
ð2Þ
eJ�ej̃

; ð126Þ

½Ẽð2Þ
eJ�ej̃

; F̃ð2Þ
eJ�ej̃

� ¼ −ðη2j̃;2j̃H̃J � ηJ;JH̃j̃Þ: ð127Þ

For Ẽð3Þ and F̃ð3Þ
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½H̃I; Ẽ
ð3Þ
eJ�ej � ¼ −ηIJẼ

ð3Þ
eJ�ej ; ð128Þ

½H̃k̃; Ẽ
ð3Þ
eJ�ej � ¼∓ η2j;2kẼ

ð3Þ
eJ�ej ; ð129Þ

½H̃I; F̃
ð3Þ
eJ�ej � ¼ ηIJF̃

ð3Þ
eJ�ej ; ð130Þ

½H̃k̃; F̃
ð3Þ
eJ�ej � ¼ �η2j;2kF̃

ð3Þ
eJ�ej ; ð131Þ

½Ẽð3Þ
eJ�ej ; F̃

ð3Þ
eJ�ej � ¼ −ðη2j;2jH̃J � ηJ;JH̃jÞ: ð132Þ

For Ẽð4Þ and F̃ð4Þ

½H̃i; Ẽ
ð4Þ
ej̃�ek̃

� ¼ −ðη2i;2j � η2i;2kÞẼð4Þ
ej�ek

; ð133Þ

½H̃i; F̃
ð4Þ
ej�ek

� ¼ ðη2i;2j � η2i;2kÞF̃ð4Þ
ej�ek

; ð134Þ

½Ẽð4Þ
ej�ek

; F̃ð4Þ
ej�ek

� ¼ −ðη2k;2kH̃j � η2j;2jH̃kÞ: ð135Þ

For Ẽð5Þ and F̃ð5Þ

½H̃ĩ; Ẽ
ð5Þ
ej̃�ek̃

� ¼ −ðη2ĩ;2j̃ � η2ĩ;2k̃ÞẼð5Þ
ej̃�ek̃

; ð136Þ

½H̃ĩ; F̃
ð5Þ
ej̃�ek̃

� ¼ ðη2ĩ;2j̃ � η2ĩ;2k̃ÞF̃ð5Þ
ej̃�ek̃

; ð137Þ

½Ẽð5Þ
ej̃�ek̃

; F̃ð5Þ
ej̃�ek̃

� ¼ −ðη2k̃;2k̃H̃j̃ � η2j̃;2j̃H̃k̃Þ: ð138Þ

For Ẽð6Þ and F̃ð6Þ

½H̃i; Ẽ
ð6Þ
ej�ej̃

� ¼ −η2i2jẼ
ð6Þ
ej�ej̃

; ð139Þ

½H̃k̃; Ẽ
ð6Þ
ej�ej � ¼∓ η2k̃;2j̃Ẽ

ð6Þ
ej�ej̃

; ð140Þ

½H̃i; F̃
ð6Þ
ej�ej̃

� ¼ η2i2jF̃
ð6Þ
ej�ej̃

; ð141Þ

½H̃k̃; F̃
ð6Þ
ej�ej̃

� ¼ �η2k̃;2j̃F̃
ð6Þ
ej�ej̃

; ð142Þ

½Ẽð6Þ
ej�ej̃

; F̃ð6Þ
ej�ej̃

� ¼ −ðη2j̃;2j̃H̃j � η2j;2jH̃j̃Þ: ð143Þ

With these commutation relations at hand, we can proceed
to solve the Casimir equation and obtain the highest
weight state.

B. Highest weight state

The highest weight state is defined as follows:

H̃1Φh ¼ h1Φh; ð144Þ

H̃2Φh ¼ h2Φh; ð145Þ

H̃jΦh ¼ h̃jΦh ∀ j ∈ 2;…; n; ð146Þ

H̃j̃Φh ¼ h̃j̃Φh ∀ j̃ ∈ 2;…; m; ð147Þ

Ẽð1Þ
eJ�eK Φh ¼ 0; J ¼ 1 & K ¼ 2; ð148Þ

Ẽð2Þ
eJ�ej̃

Φh ¼ 0 ∀ J ∈ 1; 2 & j̃ ∈ 2;…; m; ð149Þ

Ẽð3Þ
eJ�ejΦh ¼ 0 ∀ J ∈ 1; 2 & j ∈ 2;…; n; ð150Þ

Ẽð4Þ
ej�ek

Φh ¼ 0 ∀ k > j ∈ 2;…; n; ð151Þ

Ẽð5Þ
ej̃�ek̃

Φh ¼ 0 ∀ k̃ > j̃ ∈ 2;…; m ð152Þ

Ẽð6Þ
ej�ej̃

Φh ¼ 0 ∀ j ∈ 2;…; n& j̃ ∈ 2;…; m: ð153Þ

After translating these into differential equations satisfied
by Φh we find the following: From (148)

1

x2

∂Φh

∂x2
¼ −

1

y2

∂Φh

∂y2
¼ 1

ðx1 − y1Þ
�

∂

∂x1
þ ∂

∂y1

�
Φh: ð154Þ

From (149)

−
1

y2j̃−1

∂Φh

∂y2j̃−1
¼ −

1

y2j̃

∂Φh

∂y2j̃
¼ 1

xJ − yJ̃

�
∂

∂xJ
þ ∂

∂yJ̃

�
Φh

∀ J ¼ 1; 2 & j̃ ∈ 2;…; m: ð155Þ

From (150)

1

x2j−1

∂Φh

∂x2j−1
¼ 1

x2j

∂Φh

∂x2j
¼ 1

xJ − yJ̃

�
∂

∂xJ
þ ∂

∂yJ̃

�
Φh

∀ J ¼ 1; 2 & j ∈ 2;…; n: ð156Þ

From (151)

1

x2k−1

∂Φh

∂x2k−1
¼ 1

x2k

∂Φh

∂x2k
¼ 1

ðx2j− ix2j−1Þ
�

∂

∂x2j
− i

∂

∂x2j−1

�
Φh

∀k> j∈ 2;…;n: ð157Þ

From (152)

1

y2k̃−1

∂Φh

∂y2k̃−1
¼ 1

y2k̃

∂Φh

∂y2k̃
¼ 1

ðy2j̃þ iy2j̃−1Þ
�

∂

∂y2j̃
þ i

∂

∂y2j̃−1

�
Φh

∀ k̃ > j̃∈ 2;…;m: ð158Þ
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From (153)

−
1

y2j̃−1

∂Φh

∂y2j̃−1
¼ −

1

y2j̃

∂Φh

∂y2j̃

¼ 1

ðx2j − ix2j−1Þ
�

∂

∂x2j
− i

∂

∂x2j−1

�
Φh

∀ j̃ ∈ 2;…; m& j ∈ 2;…; n: ð159Þ

The expressions (154)–(159) imply that

H̃1Φh ¼ hΦh; ð160Þ

H̃2Φh ¼ 0; ð161Þ

H̃jΦh ¼ 0 ∀ j ∈ 2;…; n; ð162Þ

H̃j̃Φh ¼ 0 ∀ j̃ ∈ 2;…; m: ð163Þ

Together, (154)–(163) imply that Φh is dependent only on
x1, x2, y1, y2. The equation satisfied by Φh reduces to the
following:

∂θ1
Φh ¼ −

hr1 sin θ̄1
r1 cos θ̄1 − t1 cos ϕ̄1

; ð164Þ

∂ϕ̄1
Φh ¼

ht1 sin ϕ̄1

r1 cos θ̄1 − t1 cos ϕ̄1

; ð165Þ

wherewe have used the notation θ1− θ̂1≡ θ̄1,ϕ1 − ϕ̂1 ≡ ϕ̄1.
It is easy to see that the solution of (164)–(165) is

Φh ¼ CðhÞðt1 cosðϕ̂1 − ϕ1Þ − r1 cosðθ̂1 − θ1ÞÞh: ð166Þ

In terms of

z ¼ t1 cosðϕ̂1 − ϕ1Þ − r1 cosðθ̂1 − θ1Þ ð167Þ

we can write Φh as a Mellin transform

Φh ≡
Z

∞

0

dωω−h−1eiωz ¼ Γð−hÞeiπh2 zh ð168Þ

where we have also chosen a normalization. This represen-
tation will be useful in the next section.

C. Connection with particle momentum

The above Mellin transform makes a connection
between our primary states and ordinary plane wave states
in the Klein space. Consider (as in Sec. III) a coordinate
system ðfxag; fyãgÞ. Let us also note that a massless
particle’s momentum fixes a unique point on the celestial
sphere. Since it is a massless solution, we require that
the norm of the momentum be 0. Without any loss of

generality, we can orient our coordinate axes in such a way
that the momentum vector p⃗ lies on only two out of the
nþm Cartan planes, with its projection on any other plane
being 0. Hence, we can choose the momentum vector to be

p⃗¼ðp1eiθ̂1 ;p1e−iθ̂1 ;0;…;0;q1eiϕ̂1 ;q1e−iϕ̂1 ;0;…;0Þ: ð169Þ

The null constraint on this vector is as follows:

p⃗2 ¼
Xn
i¼1

−p2
i þ

Xm
ĩ¼1

q2
ĩ
¼ 0: ð170Þ

It forces p1 ¼ q1 ≡ ω. Hence the momentum vector is

p⃗ ¼ ωðeiθ̂1 ; e−iθ̂1 ; 0;…; 0; eiϕ̂1 ; e−iϕ̂1 ; 0;…; 0Þ: ð171Þ

Now, in this coordinate system, a general point in the Klein
space is given by

X⃗ ¼ ðr1eiθ1 ; r1e−iθ1 ;…; rneiθn ; rne−iθn ; t1eiϕi ;

t1e−iϕi ;…; tneiϕn ; tme−iϕmÞ: ð172Þ

We can evaluate p⃗:X⃗ to be

p⃗:X⃗ ¼ −r1 cosðθ1 − θ̂1Þ þ t1 cosðϕ1 − ϕ̂1Þ: ð173Þ

Note that this is exactly the expression z, Eq. (167). So we
can understand our primary states from the last section as
Mellin transforms of plane wave states:

Φh ¼
Z

∞

0

dωω−h−1eiωp⃗:X⃗: ð174Þ

Because p⃗:X⃗ is a scalar, this expression is more transparent.
Therefore what we have done geometrically in defining

our H-primaries earlier in this section is to align the
coordinate system suitably with the particle momentum.
The Cartan-Weyl basis is chosen to reflect this. We rotated
our coordinates to θ̂ and ϕ̂ earlier, simply to ensure that the
momenta are not aligned with the axes.

D. Relating L- and H-primaries

We can relate the L-primaries and their descendants to
H-primaries and their descendants.5 In this subsection we
will simply show how the primaries in both languages are
related. We start by defining a transform

5In light of our observations in this paper, a more natural
nomenclature for L- (and H-)primaries is rotationlike (and
boostlike) primaries. But we will stick to the nomenclature
introduced in [3] to avoid confusion.
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Φfmþ;m−g ¼
Z

2π

0

Z
2π

0

dχþdχ−e−imþχþ−im−χ−Φh ð175Þ

where χ� ¼ θ̂1 � ϕ̂1. Each of angles θ̂1 and ϕ̂1 have a
periodicity of 2π, so χ� have the periodicity

ðχþ; χ−Þ ∼ ðχþ � 2π; χ− � 2πÞ ∼ ðχþ � 2π; χ− ∓ 2πÞ:

We require our mode functions to be single valued on the
celestial sphere, so

mþ �m− ∈ Z: ð176Þ

We claim that we can choose mþ and m− so that (175)
relates a highest weight H-primary to a highest weight
L-primary. To demonstrate this, it is useful to first observe
the action of the following generators:

ðH1 ∓ H1̃ÞΦfmþ;m−g ¼ −2m�Φfmþ;m−g; ð177Þ

HjΦfmþ;m−g ¼Hj̃Φfmþ;m−g ¼ 0 ∀j> 1& j̃ > 1: ð178Þ

These follow from direct calculation using the explicit
forms of the generators (as given in Secs. III and IV)
on (175).
With this in place, we can relate the two highest weight

states. We act with the Casimir on (175). Since the Φh on
the right-hand side is highest weight, we have6

∇Φfmþ;m−g ¼ ðh2 þ 2ðnþm − 1ÞhÞΦfmþ;m−g: ð179Þ

To find that particular mode that corresponds to the
L-primary highest weight state, we demand that (for the
particular choice of m’s) it is annihilated by the raising
operators in the Cartan basis in Sec. IV. We denote that
particular mode by Φfmhþ;mh−g. The equation satisfied by
Φfmhþ;mh−g then shall be given by (71)

∇Φfmhþ;mh−g¼
Xnþm

J¼1

ðH2
J−2η2J;2Jðnþm−JÞHJÞΦfmhþ;mh−g:

ð180Þ

Now using (177)–(178), we see by explicit calculation that

∇Φfmhþ;mh−g ¼ CΦfmhþ;mh−g; ð181Þ

where

C¼ ðmþ
h þm−

h Þ2þðmþ
h −m−

h Þ2− 2ðnþm− 1Þðmþ
h þm−

h Þ
− 2ðm− 1Þðmþ

h −m−
h Þ:

Together with the fact that the L-primaries depend on only
the θ’s or ϕ’s but not both,7 this leads us to the following
relation, by comparision with (179):

mþ
h ¼ m−

h ¼ −
h
2
: ð182Þ

This corresponds to the highest weight state in the basis of
Secs. III and IV.
In fact performing the integral (175)8 explicitly, we can

show that (93) emerges:

Φf−h
2
;−h

2
g ¼

Z
2π

0

dχþdχ−e−im
þ
h χ

þ−im−
h χ

− Φh

¼ 2−h4π2eihθ1Γð−hÞeiΠh2 rh1
∝ eihθ1rh1 ¼ Φ0: ð183Þ

Similarly, one can perform the integration by making
appropriate choices for m� to obtain the lowest weight
and mixed weight states obtained in (95), (97), and (99).

E. A different choice

So far in this section, we only focused on the Cartan
planes related to the momentum direction of the particle on
the celestial Sp−1 × Sq−1. The rest of the Cartans we viewed
as rotation generators that do not mix the signatures
because what we did with those directions did not affect
our understanding of the Mellin transform.
However, it turns out that the choice of our generators

can be made a bit more elegant if the Abelian subset
comprising the Cartan generators is chosen in such a way
that it consists of the maximum number of boost-type
generators. This number is 2 × minðm; nÞ. The rest of the
generators, which are jm − nj in number, have to neces-
sarily be of rotation type. We will present some details of
this choice in this subsection, even though the choices in
the rest of the directions do not affect the general features of
our discussion. In particular, we have checked that
things like Mellin transform, the relation between L- and
H-primaries, etc., lead to parallel expressions, so we will
not present those.
We arrange the coordinates as

X ¼ fx1; y1; x2; y2:…; x2n; y2n; y2nþ1;…; y2mg ð184Þ
6Using (160)–(163), the explicit form of the H-Casimir is

presented in (D9). To write the Casimir in terms of the Cartan
generators and ladder operators, we need to turn to (104)–(119),
and identify the correct generators with raised indices, keeping
track of signs. This is done explicitly in Appendix F. But the
result (179) follows from general principles.

7We have chosen them to depend only on θ’s by convention
throughout this paper.

8This can be done via a minor variation of the calculation
presented in Appendix A of [3] explicitly, so we will skip the
details.
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and write the Cartan generators and ladder operators by
picking coordinates from the two coordinate ranges
x1; y1; x2; y2:…; x2n; y2n and y2nþ1;…; y2m. This way we
have two types of Cartan generators and three types of
raising and lowering operators. Specifically, picking both
coordinates from x1; y1; x2; y2:…; x2n; y2n give us the
Cartan generator (185) and the ladder operators (187)
and (190). Picking both coordinates from y2nþ1;…; y2m
give the Cartan generators (186) and the ladder operators
(189) and (192). Lastly, picking one coordinate from
x1; y1; x2; y2:…; x2n; y2n and another from y2nþ1;…; y2m
give us the ladder operators (188) and (191). Since Cartan
generators are picked by pairing adjacent coordinates, there
are no Cartan generators consisting of coordinates from
x1; y1; x2; y2:…; x2n; y2n and y2nþ1;…; y2m both.
We write the explicit Cartan generators as

H̃I ¼ iMIĨ ∀ I ∈ 1;…; 2n; ð185Þ

H̃j̃ ¼ −M2j̃−1;2j̃ ∀ j̃ ∈ nþ 1;…; m: ð186Þ

Corresponding to these Cartan generators, we have the
raising operators

Ẽð1Þ
eJ�eK ¼ 1

2
fðMJK �MJ̃;K̃Þ þ ðMKJ̃ ∓ MJK̃Þg

∀K > J ∈ 1;…; 2n; ð187Þ

Ẽð2Þ
eJ�ej̃

¼ −
i
2
fðMJ;2j̃−1 −MJ̃;2j̃−1Þ ∓ iðMJ;2j̃ −MJ̃;2j̃Þg

∀ J ∈ 1;…; 2n& j̃ ∈ nþ 1;…; m; ð188Þ

Ẽð3Þ
ej̃�ek̃

¼ −
1

2
fðM2j̃−1;2k̃−1 − iM2j̃;2k̃−1Þ

∓ iðM2j̃−1;2k̃ − iM2j̃;2k̃Þg
∀ k̃ > j̃ ∈ nþ 1;…; m; ð189Þ

and the lowering operators

F̃ð1Þ
eJ�eK ¼ 1

2
fðMJK �MJ̃;K̃Þ − ðMKJ̃ ∓ MJK̃Þg

∀K > J ∈ 1;…; 2n; ð190Þ

F̃ð2Þ
eJ�ej̃

¼ i
2
fðMJ;2j̃−1 þMJ̃;2j̃−1Þ � iðMJ;2j̃ þMJ̃;2j̃Þg

∀ J ∈ 1;…; 2n& j̃ ∈ nþ 1;…; m; ð191Þ

F̃ð3Þ
ej̃�ek̃

¼1

2
fðM2j̃−1;2k̃−1þiM2j̃;2k̃−1Þ�iðM2j̃−1;2k̃þiM2j̃;2k̃Þg

∀k̃> j̃∈nþ1;…;m: ð192Þ

A simple counting of the total number of generators (Cartan
generators and the ladder operators) gives the expected
value of ðnþmÞð2ðnþmÞ − 1Þ.
The relevant set of commutation relations satisfied by

(185)–(192) are as follows:

½H̃I; Ẽ
ð1Þ
eJ�eK � ¼ −ðηIJ � ηIKÞẼð1Þ

eJ�eK ; ð193Þ

½H̃I; F̃
ð1Þ
eJ�eK � ¼ ðηIJ � ηIKÞF̃ð1Þ

eJ�eK ; ð194Þ

½Ẽð1Þ
eJ�eK ; F̃

ð1Þ
eJ�eK � ¼ −ðηKKH̃J � ηJJH̃KÞ; ð195Þ

½H̃I; Ẽ
ð2Þ
eJ�ej̃

� ¼ −ηIJẼ
ð2Þ
eJ�ej̃

; ð196Þ

½H̃k̃; Ẽ
ð2Þ
eJ�ej̃

� ¼∓ η2j̃;2k̃Ẽ
ð2Þ
eJ�ej̃

; ð197Þ

½H̃I; F̃
ð2Þ
eJ�ej̃

� ¼ ηIJF̃
ð2Þ
eJ�ej̃

; ð198Þ

½H̃k̃; F̃
ð2Þ
eJ�ej̃

� ¼ �η2j̃;2k̃F̃
ð2Þ
eJ�ej̃

; ð199Þ

½Ẽð2Þ
eJ�ej̃

; F̃ð2Þ
eJ�ej̃

� ¼ −ðη2j̃;2j̃H̃J � ηJ;JH̃j̃Þ; ð200Þ

½H̃ĩ; Ẽ
ð3Þ
ej̃�ek̃

� ¼ −ðη2ĩ;2j̃ � η2ĩ;2k̃ÞẼð3Þ
ej̃�ek̃

; ð201Þ

½H̃ĩ; F̃
ð3Þ
ej̃�ek̃

� ¼ ðη2ĩ;2j̃ � η2ĩ;2k̃ÞF̃ð3Þ
ej̃�ek̃

; ð202Þ

½Ẽð3Þ
ej̃�ek̃

; F̃ð3Þ
ej̃�ek̃

� ¼ −ðη2k̃;2k̃H̃j̃ � η2j̃;2j̃H̃k̃Þ: ð203Þ

Clearly the generators and algebra can be written more
compactly, with these choices than in the previous sub-
sections. With these commutation relations, we can proceed
with solving for the highest weight state Φh. It is given by
the solution of the following differential equations:

H̃IΦh ¼ h̃IΦh; ð204Þ

H̃j̃Φh ¼ h̃j̃Φh; ð205Þ

Ẽð1Þ
eJ�eKΦh ¼ 0; ð206Þ

Ẽð2Þ
eJ�ej̃

Φh ¼ 0; ð207Þ

Ẽð3Þ
ej̃�ek̃

Φh ¼ 0: ð208Þ

From this point on the discussion proceeds quite parallelly
with the previous subsections, as long as sufficient attention
is paid to the various indices and their ranges.
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VI. THE SOð2;2Þ COMPARISON

Wewill compare our explicit expressions in Secs. IVand
V, specialized to the SOð2; 2Þ case, with the results in [3]
where the results are presented in the SLð2; RÞ × SLð2; RÞ
language. The possibility of translating SOð2; 2Þ to
SLð2; RÞ × SLð2; RÞ is an accidental isomorphism at the
level of the Lie algebras and is not available in higher
dimensions. So it behooves us to check that the results
match. We will find that the expressions match exactly.
In our language the coordinates in SOð2; 2Þ are

arranged as

X ¼ fx1; x2; y1; y2g: ð209Þ

And they are paramtrized as follows [according to (7)]:

x1 ¼ r cos θ; ð210Þ

x2 ¼ r sin θ; ð211Þ

y1 ¼ t cos ϕ; ð212Þ

y2 ¼ t sin ϕ: ð213Þ

The L-primary generators (38)–(42) reduce to the following
generators when we restrict to n ¼ m ¼ 1 in SOð2n; 2mÞ:

H1 ¼ M12 ¼ −i∂θ; ð214Þ

H1̃ ¼ M1̃ 2̃ ¼ i∂ϕ; ð215Þ

Ee1�e1̃ ¼
i
2
eiðθ�ϕÞ

�
ðr∂t þ t∂rÞ � i

r
t
∂ϕ þ i

t
r
∂θ

�
; ð216Þ

Fe1�e1̃ ¼−
i
2
e−iðθ�ϕÞ

�
ðr∂tþ t∂rÞ∓ i

r
t
∂ϕ− i

t
r
∂θ

�
: ð217Þ

Since the constraint on the coordinates is the same as (B19),
we have the further parametrization of the r, t coordinates as

r ¼ τ cosh ρ; ð218Þ

t ¼ τ sinh ρ: ð219Þ

This casts the generators in the following form:

H1 ¼ M12 ¼ −i∂θ; ð220Þ

H1̃ ¼ M1̃ 2̃ ¼ i∂ϕ; ð221Þ

Ee1�e1̃ ¼
i
2
eiðθ�ϕÞf∂ρ � i coth ρ∂ϕ þ i tanh ρ∂θg; ð222Þ

Fe1�e1̃ ¼−
i
2
e−iðθ�ϕÞf∂ρ ∓ i coth ρ∂ϕ− i tanh ρ∂θg: ð223Þ

According to the notation in Eq. 3.2 of [3], we then have the
following relations:

L1 ¼ iFe1þe1̃ ; ð224Þ

L0 ¼
1

2
ðH1 −H1̃Þ; ð225Þ

L−1 ¼ iEe1þe1̃ ; ð226Þ

L̄1 ¼ iFe1−e1̃ ; ð227Þ

L̄0 ¼
1

2
ðH1 þH1̃Þ; ð228Þ

L̄−1 ¼ iEe1−e1̃ : ð229Þ

The left-hand sides are variables defined in [3], and the right-
hand sides follow our notation. Note that our coordinates
map to the coordinates used in Eq. (3.2) of [3] through

ϕthis paper→ϕ½3�; ρthis paper→ρ½3�; θthis paper→ψ ½3�: ð230Þ

We now compare the H-primary generators in [3] with
the H-primary generators we write for SOðp; qÞ, restricted
to p ¼ q ¼ 2. From (104)–(114), we can write the
SOð2; 2Þ case as follows:

H̃1 ¼ iM11̃; ð231Þ

H̃2 ¼ iM22̃: ð232Þ

The ladder operators are the following:

Ẽð1Þ
e1�e2

¼ 1

2
fðM12 �M1̃;2̃Þ þ ðM21̃ ∓ M12̃Þg; ð233Þ

F̃ð1Þ
e1�e2 ¼

1

2
fðM12 �M1̃;2̃Þ − ðM21̃ ∓ M12̃Þg: ð234Þ

To relate these to Eq. (5.2) of [3], we need to note that a
choice in the ordering of coordinates has been made when
deciding which boost generators we are picking. It turns out
that this choice maps in the following way from our paper
to [3]:

fx1; y1; x2; y2gHere ≡ fx2; y1; x1; y2gThere: ð235Þ

One sees that a precise map exists under the following
identification of the Cartans:

Hx̂
0 ¼

1

2
ðH̃1 þ H̃1̃Þ; ð236Þ

H̄x̂
0 ¼

1

2
ðH̃1 − H̃1̃Þ; ð237Þ
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and the ladder operators

Hx̂
þ1 ¼ −iF̃ð1Þ

e1þe2
; ð238Þ

Hx̂
−1 ¼ −iẼð1Þ

e1þe2 ; ð239Þ

H̄x̂
þ1 ¼ −iF̃ð1Þ

e1−e2 ; ð240Þ

H̄x̂
þ1 ¼ −iẼð1Þ

e1−e2 : ð241Þ

Again the left-hand sides are variables defined in [3], and
the right-hand sides follow our notation.
The ladder operators that we use and the ones used in [3]

have a relative “i” between them, but the Cartan generators
are (essentially) the same. This can be traced to the fact that
our definition (37) follows9 that of [6], while the ones used
in [3] effectively have an extra i relative to those in [6]. Let
us be a bit more explicit about this. The relative “i” in [3]
simply exchanges the raising and lowering operators in our
definition vs theirs. This can be seen, e.g., from the
SLð2; RÞ algebra (3.5) in [3]. Our definition adds an i to
L1 and to L−1, while there is no i in L0. This results in an
extra sign in the ½L1; L−1� commutator, while the other two
commutators remain intact. Therefore, because our raising
and lowering operators are exchanged with respect to those
in [3], the sign is precisely taken care of.
Note also that the ladder operator pieces in the quadratic

Casimir in [3] have an extra negative sign relative to ours to
accommodate for this. So the final results match exactly.
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APPENDIX A: USEFUL FORMS
FOR THE GENERATORS

By using the parametrization of the coordinates given by
(2)–(7), and the expression for the generators [(33)–(35)],
we have the following explicit forms for the generators. The
indices are j; k ∈ 1;…; n ∀ j < k,

M2j−1;2k−1 ¼ −i
�
cos θj cos θkðrj∂rk − rk∂rjÞ

−
rj
rk
cos θj sin θk∂θk þ

rk
rj
cos θk sin θj∂θj

�
;

M2j−1;2k ¼ −i
�
cos θj sin θkðrj∂rk − rk∂rjÞ

þ rj
rk
cos θj cos θk∂θk þ

rk
rj
sin θk sin θj∂θj

�
;

M2j;2k−1 ¼ −i
�
sin θj cos θkðrj∂rk − rk∂rjÞ

−
rj
rk
sin θj sin θk∂θk −

rk
rj
cos θk cos θj∂θj

�
;

M2j;2k ¼ −i
�
sin θj sin θkðrj∂rk − rk∂rjÞ

þ rj
rk
sin θj cos θk∂θk −

rk
rj
sin θk cos θj∂θj

�
:

From these expressions, we can write down the explicit
forms for the raising operators as follows (the superscript
“x, x” is there to indicate that both j and k belong to the x
coordinates):

Ex;x
ej�ek

¼ −
i
2
eiðθj�θkÞ

�
ðrj∂rk − rk∂rjÞ � i

rj
rk
∂θk − i

rk
rj
∂θj

�
:

ðA1Þ

The lowering operators are

Fx;x
ej�ek

¼ i
2
e−iðθj�θkÞ

�
ðrj∂rk − rk∂rjÞ ∓ i

rj
rk
∂θk þ i

rk
rj
∂θj

�
:

ðA2Þ

Similarly, for the case where nþ j̃; nþ k̃ ∈ nþ 1;…;
nþm ∀ j̃ < k̃, we have

M2j̃−1;2k̃−1¼ i
�
cos ϕj̃ cos ϕk̃ðtj̃∂tk̃ − tk̃∂tj̃Þ

−
tj̃
tk̃
cos ϕj̃ sin ϕk̃∂ϕk̃

þ tk̃
tj̃
cos ϕk̃ sin ϕj̃∂ϕj̃

�
;

M2j̃−1;2k̃ ¼ i
�
cosϕj̃ sin ϕk̃ðtj̃∂tk̃ − tk̃∂tj̃Þ

þ tj̃
tk̃
cos ϕj̃ cosϕk̃∂ϕk̃

þ tk̃
tj̃
sin ϕk̃ sin ϕj̃∂ϕj̃

�
;

M2j̃;2k̃−1¼ i
�
sin ϕj̃ cosϕk̃ðtj̃∂tk̃ − tk̃∂tj̃Þ

−
tj̃
tk̃
sin ϕj̃ sin ϕk̃∂ϕk̃

−
tk̃
tj̃
cos ϕk̃ cosϕj̃∂ϕj̃

�
;

M2j̃;2k̃ ¼ i
�
sin ϕj̃ sinϕk̃ðtj̃∂tk̃ − tk̃∂tj̃Þ

þ tj̃
tk̃
sin ϕj̃ cos ϕk̃∂ϕk̃

−
tk̃
tj̃
sin ϕk̃ cos ϕj̃∂ϕj̃

�
:

9Note that our definition of the ladder operators in terms of
MIJ are identical to that in [6], but our MIJ satisfy the Klenian
signature algebra instead of the Euclidean algebra. So our Cartan-
Weyl form (43)–(50) is of course different from that of the
Euclidean soðpþ qÞ algebra considered in [6].
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Likewise, in this case we have the following raising
operators

Ey;y
ej̃�ek̃

¼ i
2
eiðϕj̃�ϕk̃Þ

�
ðtj̃∂tk̃ − tk̃∂tj̃Þ � i

tj̃
tk̃
∂ϕk̃

− i
tk̃
tj̃
∂ϕj̃

�

ðA3Þ

and lowering operators

Fy;y
ej̃�ek̃

¼ −
i
2
e−iðϕj̃�ϕk̃Þ

�
ðtj̃∂tk̃ − tk̃∂tj̃Þ∓ i

tj̃
tk̃
∂ϕk̃

þ i
tk̃
tj̃
∂ϕj̃

�
:

ðA4Þ

Finally, we look at the case where j ∈ 1;…; n; j̃þ n ∈
nþ 1;…; nþm:

M2j−1;2j̃−1 ¼ i
�
cos θj cos ϕj̃ðrj∂tj̃ þ tj̃∂rjÞ

−
rj
tj̃
sin ϕj̃ cos θj∂ϕj̃

−
tj̃
rj
cos ϕj̃ sin θj∂θj

�
;

M2j−1;2j̃ ¼ i
�
cos θj sinϕj̃ðrj∂tj̃ þ tj̃∂rjÞ

þ rj
tj̃
cosϕj̃ cos θj∂ϕj̃

−
tj̃
rj
sin ϕj̃ sin θj∂θj

�
;

M2j;2j̃−1 ¼ i
�
sin θj cos ϕj̃ðrj∂tj̃ þ tj̃∂rjÞ

−
rj
tj̃
sin ϕj̃ sin θj∂ϕj̃

þ tj̃
rj
cos ϕj̃ cos θj∂θj

�
;

M2j;2j̃ ¼ i
�
sin θj sinϕj̃ðrj∂tj̃ þ tj̃∂rjÞ

þ rj
tj̃
cos ϕj̃ sin θj∂ϕj̃

þ tj̃
rj
sin ϕj̃ cos θj∂θj

�
:

Here the raising operators take the form

Ex;y
ej�ej̃

¼ i
2
eiðθj�ϕj̃Þ

�
ðrj∂tj̃ þ tj̃∂rjÞ � i

rj
tj̃
∂ϕj̃

þ i
tj̃
rj
∂θj

�

ðA5Þ

and the lowering operators

Fx;y
ej�ej̃

¼−
i
2
e−iðθj�ϕj̃Þ

�
ðrj∂tj̃ þ tj̃∂rjÞ∓ i

rj
tj̃
∂ϕj̃

− i
tj̃
rj
∂θj

�
:

ðA6Þ

Now, we turn to the Cartan generators. These can be
written as

Hj ¼ M2j−1;2j ¼ −i∂θj ; ðA7Þ

Hj̃ ¼ M2j̃−1;2j̃ ¼ i∂ϕj̃
: ðA8Þ

APPENDIX B: SIMPLIFYING
THE WEIGHT CONDITIONS

1. Highest weight

We can write the set of equations that must be satisfied
by the highest weight state Φh. These are as follows:

HjΦþþ ¼ λiΦþþ ∀ j; ðB1Þ

Hj̃Φþþ ¼ λ̃j̃Φþþ ∀ j̃; ðB2Þ

Ex;x
ej�ek

Φþþ ¼ Ey;y
ej̃�ek̃

Φþþ ¼ 0 ∀ k > j& k̃ > j̃; ðB3Þ

Ex;y
ej�ej̃

Φþþ ¼ 0 ∀ j; j̃: ðB4Þ

A simple sanity check before we begin is to note that the
conditions on the last two lines add up to nðn − 1Þ þ
mðm − 1Þ þ 2nm which are ðnþmÞðnþm − 1Þ condi-
tions. This is half the total number of roots of SOð2n; 2mÞ.
The other half of the roots are covered by the lowering
operators. We can unpack these equations one by one to
arrive at the final set of equations satisfied by Φþþ. Let us
start with

Ex;x
ej�ek

Φþþ ¼ 0

⇒ ðrj∂rk − rk∂rjÞΦþþ∓ rj
rk
λkΦþþþ rk

rj
λjΦþþ ¼ 0: ðB5Þ

Adding and subtracting the two equations in (B5) gives

ðrj∂rk − rk∂rjÞΦþþ þ rk
rj
λjΦþþ ¼ 0; ðB6Þ

rj
rk
λkΦþþ ¼ 0: ðB7Þ

From the second equation above, we can conclude that
λk ¼ 0 ∀ k > 1. The k > 1 condition arises because k > j.
We effectively have the following expressions (which need
to be explicitly solved)

ðr1∂rk − rk∂r1ÞΦþþ þ rk
r1
λ1Φþþ ¼ 0 ∀ k > 1; ðB8Þ

ðrj∂rk − rk∂rjÞΦþþ ¼ 0 ∀ j; k > 1 and k > j: ðB9Þ

Similarly, the action of the Ey;y raising operators can be cast
into the following form:

ðt1∂tk̃ − tk̃∂t1ÞΦþþ −
tk̃
t1
λ̃1Φþþ ¼ 0 ∀ k̃ > 1; ðB10Þ

ðtj̃∂tk̃ − tk̃∂tj̃ÞΦþþ ¼ 0 ∀ j̃; k̃ > 1 and k̃ > j̃; ðB11Þ

where all λ̃k̃ ¼ 0 ∀ k̃ > 1.
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Finally, we turn to the expressions we obtain from the
Ex;y type raising operators. Following the same steps as
before, one can arrive at the conclusion that λ̃j̃ ¼ 0 ∀ j̃.
The equations (arising in this case) satisfied by Φþþ are
given as follows:

ðr1∂tj̃ þ tj̃∂r1ÞΦþþ −
tj̃
r1
λ1Φþþ ¼ 0 ∀ j̃; ðB12Þ

ðrj∂tj̃ þ tj̃∂rjÞΦþþ ¼ 0 ∀ j̃ and j > 1: ðB13Þ

Note that since we have λ̃1 ¼ 0, (B10) reduces to (B11).
Therefore, the final set of equations satisfied by Φþþ are as
follows:

1

rk
∂rkΦþþ ¼ 1

r1
∂r1Φþþ −

λ1
r21

Φþþ ∀ k ≠ 1; ðB14Þ

−
1

tj̃
∂tj̃Φþþ ¼ 1

r1
∂r1Φþþ −

λ1
r21

Φþþ ∀ j̃; ðB15Þ

1

rk
∂rkΦþþ ¼ 1

rj
∂rjΦþþ ∀ k; j ≠ 1; ðB16Þ

1

tj̃
∂tj̃Φþþ ¼ 1

tk̃
∂tk̃

Φþþ ∀ j̃; k̃; ðB17Þ

1

rk
∂rkΦþþ ¼ −

1

tj̃
∂tj̃Φþþ ∀ j̃; and k ≠ 1: ðB18Þ

The expressions (B16)–(B18) can be also obtained from
(B14) and (B15). In further discussions, we will only
mention the equations similar to (B14) and (B15). We will
later solve for Φþþ (or the state that we are considering),
subject to the following constraint:

Xn
k̃¼1

t2
k̃
−
Xm
j¼1

r2j ¼ −τ2: ðB19Þ

2. Lowest weight and mixed weight

The annihilation condition satisfied by the lowest weight
state Φ−− are as follows:

Fx;x
ej�ek

Φ−− ¼ Fy;y
ej̃�ek̃

Φ−−

¼ Fx;y
ej�ej̃

Φ−− ¼ 0 ∀ k > j& k̃ > j̃: ðB20Þ

The eigenvalue equations are given by (B1) and (B2),
with Φþþ replaced by Φ−−. These along with the annihi-
lation conditions (B20) can be evaluated to give

1

rk
∂rkΦ−− ¼ 1

r1
∂r1Φ−− þ λ1

r21
Φ−− ∀ k ≠ 1; ðB21Þ

−
1

tj̃
∂tj̃Φ−− ¼ 1

r1
∂r1Φ−− þ λ1

r21
Φ−− ∀ j̃: ðB22Þ

The analog of (B16)–(B18) for Φ−− follows from (B21)
and (B22).
The mixed weight state of the first kindΦþ− corresponds

to the following annihilation conditions along with the
eigenvalue equations (B1)–(B2) for Φþ−:

Ex;x
ejþek

Φþ−¼Ey;y
ej̃þek̃

Φþ− ¼Ex;y
ejþej̃

Φþ−¼ 0 ∀k> j& k̃ > j̃;

ðB23Þ

Fx;x
ej−ekΦþ− ¼Fy;y

ej̃−ek̃
Φþ−¼Fx;y

ej−ej̃
Φþ− ¼ 0 ∀k> j& k̃ > j̃:

ðB24Þ
These can again be solved to give the following set of

differential equations satisfied by Φþ−

−
1

rj
∂rjΦþ− ¼ 1

tm
∂tmΦþ− þ λ̃m

t2m
Φþ− ∀ j; ðB25Þ

1

tj̃
∂tj̃Φþ− ¼ 1

tm
∂tmΦþ− þ λ̃m

t2m
Φþ− ∀ j̃ < m: ðB26Þ

Lastly, the mixed weight state of the second kind Φ−þ
corresponds to the following annihilation conditions along
with the eigenvalue equations (B1) and (B2) for Φþ−:

Ex;x
ej−ekΦ−þ ¼Ey;y

ej̃−ek̃
Φ−þ ¼Ex;y

ej−ej̃
Φ−þ ¼ 0 ∀k> j& k̃ > j̃;

ðB27Þ

Fx;x
ejþek

Φ−þ ¼Fy;y
ej̃þek̃

Φ−þ ¼Fx;y
ejþej̃

Φ−þ ¼ 0 ∀k> j& k̃ > j̃:

ðB28Þ
These yield

−
1

rj
∂rjΦ−þ ¼ 1

tm
∂tmΦ−þ −

λ̃m
t2m

Φþ− ∀ j; ðB29Þ

1

tj̃
∂tj̃Φ−þ ¼ 1

tm
∂tmΦ−þ −

λ̃m
t2m

Φ−þ ∀ j̃ < m: ðB30Þ

APPENDIX C: PRIMARY STATE SOLUTION

We will work with highest weight states in this section.
The other weight cases are solved similarly. The equations
we wish to solve are the following:

1

rk
∂kΦþþ ¼ 1

r1
∂1Φþþ −

h
r21
Φþþ ∀ k ≠ 1; ðC1Þ

−
1

tj̃
∂j̃Φþþ ¼ 1

r1
∂1Φþþ −

h
r21
Φþþ ∀ j̃: ðC2Þ
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We will use the following parametrization10:

r1 ¼ τ cosh ρ cos θ1;

r2 ¼ τ cosh ρ sin θ1 cos θ2;

..

.

rn−1 ¼ τ cosh ρ sin θ1 � � � sin θn−2 cos θn−1;

rn ¼ τ cosh ρ sin θ1 � � � sin θn−2 sin θn−1; ðC3Þ

t1 ¼ τ sinh ρ cos ϕ1;

t2 ¼ τ sinh ρ sin ϕ1 cos ϕ2;

..

.

tm−1 ¼ τ sinh ρ sin ϕ1 � � � sin ϕm−2 cos ϕm−1;

tm ¼ τ sinh ρ sin ϕ1 � � � sin ϕm−2 sin ϕm−1: ðC4Þ

Now, one can evaluate the equality 1
rn
∂rnΦþþ¼ 1

rn−1
∂rn−1Φþþ,

and see what result we get. Using the relations given in (C3)
to (C4),we canwrite the following expressions forρ andθ;ϕ.
These turn out to be

tanh ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22 þ � � � þ t2m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ � � � þ r2n

p ;

cot θi ¼
riffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
j¼iþ1 r

2
j

q ;

cot ϕj̃ ¼
tj̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
k̃¼j̃þ1

t2j
q :

From this one can evaluate 1
rn
∂rnΦþþ and 1

rn−1
∂rn−1Φþþ:

1

rn
∂rnΦþþ ¼−

tanhρ
τ2

∂ρΦþþþ
Xn−2
i¼1

cos2 θi cot θi
r2i

∂θiΦþþ

þ cot θn−1
τ2 cosh2ρsin2 θ1 � � �sin2 θn−2

∂θn−1Φþþ; ðC5Þ

1

rn−1
∂rn−1Φþþ ¼−

tanhρ
τ2

∂ρΦþþ þ
Xn−2
i¼1

cos2 θi cot θi
r2i

∂θiΦþþ

−
tanθn−1

τ2 cosh2 ρsin2 θ1 � � � sin2 θn−2
∂θn−1Φþþ:

ðC6Þ

We can equate these two quantities because the right-hand
side of (C1) is the same for all allowed values of k including
n − 1 and n. We get

∂θn−1Φþþ ¼ 0: ðC7Þ

Now, we can apply (C7) to (C6) to get

1

rn−1
∂rn−1Φþþ ¼ −

tanh ρ

τ2
∂ρΦþþ

þ
Xn−2
i¼1

cos2 θi cot θi
r2i

∂θiΦþþ: ðC8Þ

We can equate this to 1
rn−2

∂rn−2Φþþ. For that we need to
evaluate it first, and from that we get

1

rn−2
∂rn−2Φþþ ¼−

tanhρ
τ2

∂ρΦþþþ
Xn−3
i¼1

cos2 θi cot θi
r2i

∂θiΦþþ

−
sin2 θn−2 cot θn−2

r2n−2
∂θn−2Φþþ: ðC9Þ

Comparing it to (C8) and noting that the only different term

as compared to (C9) is the cos2 θn−2 cot θn−2
r2n−2

∂θn−2Φþþ term, and

thus equating (C8) and (C9), we get

∂θn−2Φþþ ¼ 0: ðC10Þ

Following in the same way, we can get the results (by doing
the same procedure for 1

tj̃
∂tj̃Φþþ as well)

∂θiΦþþ ¼ 0 ∀ i ≠ 1; ðC11Þ

∂ϕj̃
Φþþ ¼ 0 ∀ j̃: ðC12Þ

These then allow us to simply consider the following
equations:

1

rk
∂rkΦþþ ¼ −

tanh ρ

τ2
∂ρΦþþ þ cot θ1

τ2 cosh2 ρ
∂θ1 Φþþ

¼ 1

r1
∂1Φþþ −

h
r21
Φþþ

¼ −
tanh ρ

τ2
∂ρΦþþ −

tan θ1
τ2 cosh2 ρ

∂θ1Φþþ

−
h

τ2 cosh2 ρ cos2 θ1
Φþþ: ðC13Þ

The first equality follows from explicit calculation together
with the fact that all θ-derivatives vanish. The second equality
is just the right-hand side of (C1), and the third equality again
follows by direct calculation. Similarly, we also find the
following equation:

10Let us emphasize that the θ’s and ϕ’s that we are introducing
here should not be confused with the θ’s and ϕ’s introduced in
Sec. II A. There are only so many letters in the alphabet that can
be intuitively used—the θ’s and ϕ’s we use in this appendix stay
entirely within this appendix. The reader if they wish can just take
the final result, the second expression in (C21) from this
appendix, which is all that is needed in the main text.
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−
1

tj̃
∂tj̃Φþþ ¼ −

coth ρ

τ2
∂ρΦþþ ¼ 1

r1
∂1Φþþ −

h
r21
Φþþ

¼ −
tanh ρ

τ2
∂ρΦþþ −

tan θ1
τ2 cosh2 ρ

∂θ1Φþþ

−
h

τ2 cosh2 ρ cos2 θ1
Φþþ: ðC14Þ

Writing compactly, we have

cot θ1
τ2 cosh2 ρ

∂θ1Φþþ ¼ −
tan θ1

τ2 cosh2 ρ
∂θ1Φþþ

−
h

τ2 cosh2ρ cos2 θ1
Φþþ; ðC15Þ

−
coth ρ

τ2
∂ρΦþþ ¼ −

tanh ρ

τ2
∂ρΦþþ −

tan θ1
τ2 cosh2 ρ

∂θ1Φþþ

−
h

τ2 cosh2ρ cos2 θ1
Φþþ: ðC16Þ

These equations can be further combined to give the
following:

∂θ1 Φþþ ¼ −h tan θ1 Φþþ; ðC17Þ

∂ρΦþþ ¼ h tanh ρΦþþ: ðC18Þ

Now, one can solve (C17) and (C18) to get the result by
noting that the general solutions from these two equations are
respectively given as

Φþþðρ;θ1Þ¼ f1ðρÞðcosθ1Þhþf2ðρÞ ½integratingðC17Þ�;
ðC19Þ

Φþþðρ;θ1Þ¼ g1ðθ1Þðcosh ρÞhþg2ðθ1Þ ½integratingðC18Þ�;
ðC20Þ

where f1ðρÞ, f2ðρÞ, g1ðθ1Þ, and g2ðθ1Þ are arbitrary func-
tions of ρ and θ1. Further, f1ðρÞ and g1ðθ1Þ cannot be
identically 0 over the full range of ρ and θ1 respectively.
By equating (C19) and (C20), we get the following

result:

Φþþ ∝ ðcosh ρ cos θ1Þh ¼
�
r1
τ

�
h
: ðC21Þ

The reason for using the ∝ here is because we have not
included the part of the solution that arises from solving the
equations coming from the action of the Cartan generators
on Φ2. With the solution to those equations included, we
have the result (93).

Similarly, the relevant equations can be solved for the
other cases to obtain the results (95), (97), and (99).

APPENDIX D: QUADRATIC CASIMIR
IN THE H-PRIMARY BASIS

We start by briefly reviewing the well-known facts about
the quadratic Casimir in a language that does not restrict
itself to the compact form of the algebra. The Casimir is
defined as

c2 ¼ gabtatb ðD1Þ

where ta, tb are the generators of the algebra, and gab is
defined via the structure constants

½ta; tb� ¼ Cc
abtc ðD2Þ

through

gab ≡ Ce
adC

d
bc: ðD3Þ

In our case, we have the following coefficients from the
commutator of the generators JAB:

CEF
AB;CD ¼ iðηADδEBδFC þ ηBCδ

E
Aδ

F
D − ηACδ

E
Bδ

F
D − ηBDδ

E
Aδ

F
CÞ:
ðD4Þ

Using this expression, we have

gABCD ¼ CEF
AB;MNC

MN
CD;EF

¼ −ðηANδEBδFM þ ηBMδ
E
Aδ

F
N − ηAMδ

E
Bδ

F
N − ηBNδ

E
Aδ

F
MÞ

× ðηCFδMD δNE þ ηDEδ
M
C δ

N
F − ηCEδ

M
D δ

N
F − ηBFδ

M
C δ

N
E Þ:
ðD5Þ

From this, one can see that the quadratic Casimir, up to
multiplicative constants, is

c2 ¼ ηACηBDJABJCD ≡ JABJAB: ðD6Þ

One can of course also check that this is indeed the Casimir,
by observing that

ηABηBD½JABJCD;JMN � ¼ 0 ∀M;N ∈ 1;…;2mþ2n: ðD7Þ
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In the H-primary basis, the Casimir takes the form

∇ ¼
X2
I¼1

H̃IH̃I þ
Xn
j¼2

H̃j H̃j þ
Xm
j̃¼2

H̃j̃H̃
j̃ þ Eð1Þ

e1þe2
Fe1þe2
ð1Þ þ Fð1Þ

e1þe2
Ee1þe2
ð1Þ þ Eð1Þ

e1−e2F
e1−e2
ð1Þ þ Fð1Þ

e1−e2E
e1−e2
ð1Þ

−
X2;m

J¼1;j̃¼2

Eð2Þ
eJþej̃

FeJþej̃
ð2Þ þ Fð2Þ

eJþej̃
EeJþej̃
ð2Þ −

X2;m
J¼1;j̃¼2

Eð2Þ
eJ−ej̃

FeJ−ej̃
ð2Þ þ Fð2Þ

eJ−ej̃
EeJ−ej̃
ð2Þ þ

X2;n
J¼1;j¼2

Eð3Þ
eJþejF

eJþej
ð3Þ þ Fð3Þ

eJþejE
eJþej
ð3Þ

þ
X2;n

J¼1;j̃¼2

Eð3Þ
eJ−ejF

eJ−ej
ð3Þ þ Fð3Þ

eJ−ejE
eJ−ej
ð3Þ þ

Xn
j<k¼2

Eð4Þ
ejþek

Fejþek
ð4Þ þ Fð4Þ

ejþek
Eejþek
ð5Þ þ

Xn
j<k¼2

Eð4Þ
ej−ekF

ej−ek
ð4Þ þ Fð4Þ

ej−ekE
ej−ek
ð4Þ

−
Xm
j̃<k̃¼2

Eð5Þ
ej̃þek̃

Fej̃þek̃
ð5Þ þ Fð5Þ

ej̃þek̃
Eej̃þek̃
ð5Þ −

Xm
j̃<k̃¼2

Eð5Þ
ej̃−ek̃

Fej̃−ek̃
ð5Þ þ Fð5Þ

ej̃−ek̃
Eej̃−ek̃
ð5Þ þ

Xn;m
j;j̃¼2

Eð6Þ
ejþej̃

Fejþej̃
ð6Þ þ Fð6Þ

ejþej̃
Eejþej̃
ð6Þ

þ
Xn;m
j;j̃¼2

Eð6Þ
ej−ej̃

Fej−ej̃
ð6Þ þ Fð6Þ

ej−ej̃
Eej−ej̃
ð6Þ

¼ MABMAB ∀A;B ∈ 1;…; 2nþ 2m: ðD8Þ

From here, we can lower the indices, and then use the commutation relations as well as the annihilation condition of Φh to
write the action of the Casimir as

∇Φh ¼
�X2

I¼1

H̃2
I þ

Xn
j¼2

H̃2
j þ

Xm
j̃¼2

H̃2
j̃
þ
X
�
ðH̃1 � H̃2Þ −

X
�

X2;m
J¼1;j̃¼2

ð−H̃J � H̃j̃Þ þ
X
�

X2;n
J¼1;j¼2

ðH̃J � H̃jÞ

þ
X
�

Xn
k>j¼2

ðH̃j � H̃kÞ þ
X
�

Xm
j̃<k̃¼2

ðH̃j̃ � H̃k̃Þ −
X
�

Xn;m
j;j̃¼2

ðH̃j ∓ H̃j̃Þ
�
Φh: ðD9Þ
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