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We consider the analytic continuation of (p + ¢g)-dimensional Minkowski space (with p and ¢ even) to
(p,q) signature, and study the conformal boundary of the resulting “Klein space.” Unlike the familiar
(—+-++ - - ) signature, now the null infinity Z has only one connected component. The spatial and timelike
infinities (i° and i") are quotients of generalizations of AdS spaces to nonstandard signature. Together, Z, i%,

and i combine to produce the topological boundary SP+4~! as an SP~! x §7~! fibration over a null segment.
The highest weight states (the L-primaries) and descendants of SO(p, ¢) with integral weights give rise to
natural scattering states. One can also define H-primaries which are highest weight with respect to a
signature-mixing version of the Cartan-Weyl generators that leave a point on the celestial S7~! x §7-!
fixed. These correspond to massless particles that emerge at that point and are Mellin transforms of plane

wave states.
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I. INTRODUCTION

Analytic continuation in momentum space has proven to
be a powerful tool for understanding scattering amplitudes
(see [1] for a historical reference), so it is natural to suspect
that generalizations of the S-matrix from 3 4 1 Minkowski
space to other signatures may also provide further insights
on scattering. A key reason to suspect this is that the on-
shell structure of scattering amplitudes is largely controlled
by the 3-point amplitude (see, e.g., [2]), but the 3-point
amplitude identically vanishes in 3 4 1 (or, for that matter,
Euclidean) signature due to kinematics. Considering the
fact that on-shell methods have been powerful tools in the
last decade or so in developing scattering amplitude
technology, this is a natural motivation to consider sig-
nature with some “fluidity.”

An interesting step in this direction was recently taken in
[3], where analytic continuation of Minkowski space to
(2,2) signature was considered. It was found that, unlike in
the (3,1) signature case, the conformal boundary has the
form of a celestial torus, and suitable scattering states
associated with an “S-vector” (as opposed to an S-matrix)
were constructed. This work is in the broader context of
celestial holography; see [4] for points of entry into the
recent literature. In this paper, we will generalize the results
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of [3] to p + ¢ dimensions, with signature (p, g) where p
and ¢ are even.

While our general motivations for considering higher
dimensions should be obvious to string theorists, let us take
a moment to note a few points which may be less obvious.
Firstly, the argument made above about the on-shell 3-point
amplitude is a kinematic restriction. Signature fluidity is
more crucial for kinematics than the demand that it
necessarily be (2,2). So in higher dimensions, it makes
sense to consider (p,q) signature. A second argument
arises from holography. The conformal boundary of
Euclidean flat space is a point, but as we will demonstrate
in any (p, q) signature, the boundary has more structure. So
we would like to avoid being tied to split signature. Yet
another thing to note is that (2,2) signature is closely
connected to self-duality conditions, which is a dynamical
restriction. We wish to leave the door open for questions
that are likely to be more generic.

One of the technical features of four dimensions is that
the Lorentz group has simplifying features. This allows us
to exploit those simplifications, and treat four dimensions
using special methods. In quantum field theory classes, this
manifests itself in the observation that we can work with
left-handed and right-handed Wey] spinors instead of Dirac
spinors in four dimensions. A morally similar phenomenon
occurs in (2,2) signature, where the isometry group is
SO(2,2). Because of its connections to the global con-
formal group SL(2,R) x SL(2, R) in two dimensions, this
resulted in a discussion [3] that was somewhat special. In
particular, the scattering states were associated with
SL(2, R) highest weight states. In higher dimensions, we
do not have the benefit of such accidental Lie algebra
isomorphisms or factorization of the algebra.
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Despite this, in this paper we will show that the discussion
of [3] is, in fact, much more general and that both the
geometry and the group theory generalize very naturally to
arbitrary even dimensions. We do this by taking advantage
of the Cartan-Weyl form of the Lie algebra in higher
dimensions. We consider general (p -+ ¢)-dimensional
Minkowski space with p and ¢ even, and its analytic
continuation to (p, g) signature. Following the terminology
of [3], we will call these spaces Klein spaces. Instead of the
celestial sphere, at the conformal boundary, we find a
celestial SP~! x §9~! space. Even though we are in higher
dimensions, we find that we can construct suitable scattering
states (the L-primaries) associated with the highest weight
states, which we explicitly construct starting with the
Cartan-Weyl-like form of the SO(p,q) algebra and a
suitable foliation of the Klein space. We can also construct
a similar class of states (the H-primaries) which are defined
via Cartan generators that mix the signatures, in such a way
that the transformations fix a point on the celestial
§P=1 x 8§91, These states can be written as Mellin trans-
forms of plane waves. The higher dimensional picture makes
it clear that the two classes of primaries are naturally thought
of as rotationlike and boostlike.

The paper is structured as follows. In the Sec. II, we
discuss the geometric structure of pseudo-Euclidean spaces
with SO(p, q) isometry, which we call Klein spaces K?9.
We also define the coordinates and notation that we use for
the rest of the paper. In Sec. III, we describe the algebraic
structure of the SO(p, ¢) group and write down the Cartan-
Weyl form (“raising-lowering form”) of the algebra. We
also write down the generators as differential operators in
Klein space coordinates. Because of the somewhat elabo-
rate nature of the index structures involved, a summary of
index notation is provided. We write down the Casimir of
the group and discuss the representations of the group in
terms of the associated eigenfunctions. In Sec. IV, we
explicitly solve the wave equation in the Klein space (we
call these L-primaries) and derive the solutions that
correspond to specific weights (highest/lowest/mixed) with
respect to the Casimir. In Sec. V, we consider a different set
of raising-lowering operators (a different basis) where some
of the Cartan generators are boost type. The states corre-
sponding to this choice are particles that emerge at some
point on the celestial SP~! x S9!, We repeat the same
procedure as before for the states corresponding to various
weights in this basis (called H-primaries). Finally, we relate
the H- and L-primaries (and their descendants) by dem-
onstrating that one can be written as an integral transform of
the other. We also note that the H-primary states can be
written as Mellin transforms of plane waves [3]. The
concluding section of the main text contains a comparison
between our notations and those of [3], establishing the
precise match when p = g = 2. In Appendices A-C we
explicitly write down all generators in terms of the
coordinates in the Klein space and show the steps involved

in solving for the primaries. In Appendix D, we briefly
review some facts about the quadratic Casimir.

Our paper should be viewed as an extension of the results
in [3]. So while we have made an effort to be technically
self-contained, we encourage the reader to consult [3] and
references therein, for more background and motivations.

II. KLEIN SPACES

A. Defining coordinates

We will consider pseudo-Euclidean spaces with an
SO(p,q) isometry, where p =2n and g =2m and n
and m are positive, nonzero integers. We will call such a
(2n,2m) signature “space-time,” a flat Klein space K",
Some of our discussions, in fact, apply more generally to
the case when the even-ness condition on p and ¢ is
relaxed. The main reason that we will not discuss the odd
case is that the so-called H-primaries, which we will
construct in a later section, are simpler in even dimensions.
This is because the Cartans of the H-primary are con-
structed purely in terms of “boost-type” generators, as we
will see. The extra dimension prevents this structure.
Nonetheless, it may be possible to get an interesting
structure even in odd dimensions with some appropriate
generalization—we will not comment on it further here.
Our motivations for the even choice (as outlined above) are
purely algebraic, but let us also note that the dynamics of
radiative modes have distinctions between even and odd
dimensions. It is possible that these observations are related
to the fractional power of radial coordinate 7 in the radiative
modes in odd dimensions (we thank the referee for
emphasizing this) in conventional Lorentzian signature.
We believe these observations are all ultimately related to
the usual distinction between solutions of wave equations
in even and odd dimensions (starting with the distinction in
Huygens’s principle).

In any event, the Klein metric of such a space is

2n 2m
ds* == dx2+) " dyl. (1)
a=1 a=1

We introduce complex coordinates

% = Xpj-1 + Xy, (2)
Wi = Yoi_y + 1Ya5s (3)
T = Xogig — Xy, (4)
Wi = Yaio1 — 1Yois <5)

where i goes from 1 to 7 and i goes from 1 to m. Note that
the indices in (9) a, @ run over double the range of the i, i
coordinates. We have the following expression for the
metric in terms of the complex coordinates:
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ds® = i dwsdw; — Zdzjdzj (6)

With future use in mind, let us also parametrize these
complex variables as

z; = r;e', ws = el (7)
and we have

ds? == (dr} + r2d6?) + > _(d2 + £2dg?). (8)
i=1

i=1

This last parametrization will turn out to be very useful for
our purposes. These coordinates were not needed in [3],
because one could exploit the connection between SO(2, 2)
and SL(2,R) x SL(2, R) instead.

B. Null, spacelike, and timelike infinity

We will conformally compactify the K79 space and
determine the geometry of null infinity Z, spatial infinity i°.
and timelike infinity /. Writing the line element as

C Y Y a2 ©)
a=1 a=1

and introducing spherical polar coordinates with radii r and
t for x, and y;, we get

ds? = —dr* = P2dQ% | +d* +7dQ; . (10)

We can now shift to a “light-cone” coordinate system via

r—t=tanU, r+t=tanV. (11)

Making this substitution in Eq. (10), we get

1

1
= [ =dUdV — —sin?(V + U)dQ?
cos U? cos V? ( 4> (V4 U)de,,

1 -
+Zsin2(V— U)deH). (12)

Null infinity 7 is at V =7 where the factor out front
blows up. Spacelike (tlmehke) infinity i, (i) is the
boundary at U = —7% (U =7). The surface at 7 is given
by -7 < U <% We take the limit V' — 7 and scale out the
cos? V term. Then we get

dsy = —dQ3_| +dQ} (13)
where the angles in Q and Q have the periodicities and

ranges of the corresponding spheres. The spacelike sphere
degenerates along the timelike line U = V and the timelike

sphere degenerates along the spacelike line U = —V.
Neither sphere degenerates at the null infinity 7.

The topological boundary of K”¢ is §?7¢~! and we can
view it as an SP~! x S97! fibration over a segment. To
establish that Z together with i, and i’ has this topology, we
need to show that each of the ends i, and i’ have the topology
of a ball times a sphere (of appropriate dimensions).

To see this, let us foliate the Klein space using the
following slicing:

SIS

q P
Zy —inz:l:rz. (14)
a=1 a=1

The two regions corresponding to the + sign of 7> can be
denoted by K%, Note that it is the region K?-9~, which
contains the timelike infinity. So we start by considering the
—172 case. The goal is to then take 7 — oo to end up at the
“upper half” of Z. We can parametrize x and y in spherical

coordinates, as Eq. (10), but with

r = tcoshp, (15)
t = zsinhp. (16)

This gives us
ds* = —di® + 72ds?, (17)

ds} = dp* — cosh®pdQ2 | + sinh?pdQ} . (18)
The metric (18) is known as AdS, ,_;, see e.g., [5]. It
contains p — 1 timelike coordinates and g spacelike coor-
dinates. From (17), one notes that we are foliating the
generalized Minkowski space M, , using these generalized
AdS spaces.

From this metric, we can look at the geometry of i’ by
taking the limit of p — 0. One can see this by noting that
going to i’ means that we need to shrink the “spacelike
radius #” to a small value. This leads to a metric of the form

ds} ~ dp* + p*dQ; | — dQ? . (19)
There is a clear factorization in this geometry, which leads
us to observe that the space-time becomes a topological
product of the g-ball S¢ and the (p — 1)-sphere SP~!. This
is the higher dimensional generalization of the topological
product of a circle and a disk that is obtained as the
geometry of i’ in the K*2~ case [3].

A similar construction holds for the case of +%2. Here,
the 7 — oo leads us to the lower half of the null infinity Z.
In this case, we use the alternative parametrization

r = 7sinhp, (20)

t =Zcoshp, (21)
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which gives us
dS2 = d’fz — %st%, (22)
ds? = dp* — cosh?pdQ; | + sinh*pdQ> ;. (23)

This metric is the one known as AdS, ,_;. We can take the

p — 0 limit to reach the spacelike infinity i°, which

corresponds to taking the “timelike radial coordinate r”
to a very small value. In this limit, the metric (24) again
factorizes into the following simple form:

ds} ~dp* + p*dQ3_| —dQ; ;. (24)
This leads us to observe that the geometry at i® is a
topological product of a p-ball S? and a (¢ — 1)-sphere
§7-1. Therefore, we conclude that the geometry of Z along
with ¢ and % can be viewed as an SPT97!, where SP~! x
S9! is fibered over a line segment.

One point to note about our generalized AdS foliation is
that it is impossible to “unwrap” the timelike directions on
these AdS spaces. This is possible only in AdS metrics that
arise from an embedding space with only two timelike
coordinates. In the present case, we have a sphere-worth of
timelike coordinates instead of a circle.

III. KLEIN, CARTAN-WEYL, AND CASIMIR

Highest weight states will play an important role in our
discussion of the scattering states, and to discuss them, it is
useful to work with the Cartan-Weyl basis of SO(2n, 2m). In
the Cartan-Weyl basis, all the generators can be written in
terms of the commutators of the Cartan generators, which
form an Abelian subalgebra, and the ladder operators. Since
we are interested in only the even-dimensional cases, we will
work with the complex Lie algebra Dy, which has N Cartan
generators. The basis is conveniently spanned by the eigen-
vectors of the Cartan generators. The ladder operators then
raise or lower the eigenvalues for these states and enable us to
conveniently define the highest weight states.

To orient ourselves, let us start by writing down the
general complex Lie algebra in the Cartan-Weyl basis. We
have the Cartan generators H; and the raising and lowering
operators corresponding to the roots a of the algebra given
by E., The commutation relations that they must satisfy
are the following:

[H;, H;] =0, (25)
[Hiv Ea} = aiEa’ (26)
[Ea’ Eﬁ] = Na+ﬁEa+ﬁ o +ﬂ € root
2
= WGH a = —ﬂ
=0 a+ f & root. (27)

The rest of the generators are encoded indirectly in these
generators, and we will not need them. The above form
corresponds to the complex Lie algebra, where one
assumes that the vector space spanned by these generators
is defined over the complex number field. A complex Lie
algebra has many real forms. If one simply dictates that the
field over which the above algebra is defined is the real
numbers as opposed to the complex numbers, what one gets
is called the split real form which in the case of Dy
corresponds to SO(N, N). There is also a unique compact
real form which in the case of Dy is to be viewed as the Lie
algebra of SO(2N). We will be interested in the general
noncompact real forms SO(p,q) of the complex Lie
algebra D, ,)/2-

We are interested in viewing scattering states as highest
weight states, and it is for this reason that we will be
interested in the Cartan-Weyl form of SO(p, ¢). But the
differential operator realization is most conveniently iden-
tified in the coordinates that manifest the Klein space
isometries. Defining and relating these two realizations of
the algebra will be the goal of this section.

A. Klein space generators

We first write down the algebra of the SO(p, g) group as
the isometry algebra of the underlying Klein space.
Denoting generators by J 45, the commutation relation that
they satisfy is

[JABsJCD] = i(ﬂADJBc +1scdap —NacdBp — ﬂBDJAc) (28)

where 7,5 is the flat Klein space metric with the compo-
nents (—1,,1,). The standard Hermitian matrix form for
the generators can now be written as

agle = i(8yn.p — 5gtua). (29)

The index placement (upper or lower) of x4 and v are not
distinguished here, and they should be summed when
repeated.

We wish to give a differential operator realization of
these generators using the underlying Klein space coor-
dinates,

Xy ={xab vat} = {x oy ygd - (30)

(0x)" ={{0y,}. {9y, }} = {0y, ...

where we have used the abbreviated notation d, = a%, for
any variable z. The x coordinates are taken to be the ones
corresponding to —1 signature and y coordinates are taken
to correspond to +1 signature, and follows the notation
of Sec. IL

Using these, we can write explicit differential operator
expressions for J,p in terms of the coordinates as follows

0y .0y .ndy ). (31)
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(we denote it by M 4 to distinguish it from the matrix form
[J4]y of the generators)

Myp = qu[JAB]IPJl(aX)D‘ (32)

Evaluating this expression gives us the following results:

Mtlb = —i(xaaxb - )Cbaxn), (33)
Mg = i(yaay,; - )’iaay&)’ (34)
Maa - i(xa()ya + yaaxa). (35)

Here, the notation is as it was in Sec. II,

with the untilded small case letters from the early part of the
Latin alphabet going with the x coordinates and the tilded
ones with the y coordinates. By noting that #,, = —d,,
Na5 = 055, and 17,z = 0, we can explicitly demonstrate that
(33)—(35) exactly satisfies (28).

B. Klein to Cartan-Weyl

We now want to write down a Cartan-Weyl-like basis for
the group SO(2n,2m) and relate it to the differential
generators of the last subsection. This will be useful in
interpreting the Casimir as a Laplace-like operator and the
raising/lowering/highest-weight/lowest-weight conditions
in terms of differential operators.

We will adapt the construction of our Cartan-Weyl form
from the complex Lie algebra D,,,, whose roots are
explicitly given in terms of a Euclidean coordinate basis in
[6] (see Secs. 19.1 and 21.1"). For the complex D, ,,, the
roots of the algebra can be written in the form
a; x = Ee’ + & eX, where we have introduced new indices
J,Ke{l,...... ,n+m} and & & can take the values +1.
See [6] for the definition of ¢’; we will not need them
explicitly. The positive roots, which will be important for
us in defining the highest weight states, are defined with
E=1,8 = £1,and K > J. In the rest of the text, whenever
we use @ g, we will mean the positive roots only (and will
therefore have K > J). We will introduce explicit negative
signs when we need the negative roots. We will write the
Cartan-Weyl form of the algebra in a form that splits the
ladder operators in terms of positive and negative roots.

To construct the complex form of the Lie algebra in the
Cartan-Weyl form, one takes [6] the Cartan generators to be

"The discussion in Sec. 21.1 of [6] is for B, algebras, but it is
easy enough to adapt to the present discussion.

H.I = M2!—1,2J (36)

and the ladder operators corresponding to any root
Eel + EeK to be

1

Egorigex = 5 (Moy_1 ok + 1Moy ok + 18 Moy 2k

— &My k). (37)

Here M are taken to be the Euclidean generators of the
compact real form of the algebra.

In order to come up with a useful Cartan-Weyl form for
SO(2n,2m), we will use the same expressions above, but
now the M generators will be viewed as those in the
previous subsection—those that capture the Klein space
isometry. This way, we will be able to relate the notion of a
highest weight state, which is manifest in the Cartan-Weyl
form, to the derivative operators that capture the Klein
space isometry. In an appendix, we will show that the
highest weight states that follow from our definition match
precisely with the SL(2, R) x SL(2, R) construction of [3]
when p =g = 2.

The specific expressions for the Cartan generators and
the ladder operators can then be taken as follows. The
Cartan generators are

Hy =M. (38)

The ladder operators corresponding to the positive roots are

1 )
Ep ok = E{sz—l,zk—l + iMyy k-1

+i(Myy_12k + iMook} (39)
1 .

Ey_ox = 3 {Myy_y k1 + iMook
—i(Myy_y 2k +iMyyok)}, (40)

which we will collectively call £, and those correspond-
ing to the negative roots are

1 .
Foyox = 5 {M2/—1,21<—1 — My k-1

—i(Myy_12x — iMyy k) }, (41)
1 .

Fo_xx = 3 {Myy 1 ok—1 — iMook
+i(Myy_y 6 — iM3y k) } (42)

which we will collectively call E_, . The commutation
relations satisfied by these operators are as follows:
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[HI’HJ} :O7 (43)
(Hp Epiok] = =217 + 212k ) E et 4o (44)
[Hh Ee’—e’(] = _(7]21,2.1 - nZ[.ZK)Ee/—eK’ (45)
{HlﬁE—(e’JreK)] = [HI’FejJreK]
= (Na127 + Marak)For yox, (46)
[HlvE—(e’—eK)] = [HlvFeJ—eK]
= (’721,21 - 7721,21<)F e/ —eX> (47)

[Ee’+e’<s Fef+e’<] = —(772K,2KM21—1.21 + '721.21M2K—1,2K)

= —(mxaxHy + nay2yHg). (48)
[Ee"—e’(’ F e"—eK] = —(’IzK,zKM 2-127 — NayogM 2K—1,2K>

= —(7721<21<HJ - '72J2JHK>- (49)

We also note that the remaining commutation relations can
be summarized as

[Ecergers Esengov] = —inayom(1 = E0)Eppr y v
- i’12K,2N(1 - 5/5/)E§e1+5eM
+ inpyan (1 = E8')Eg i i som
+ ik on(1 = E6)Egpr i gon. (50)

Note that the coefficients of the roots &, &, 5, § can take
values +1. Moreover, the lowering operator F,, is given as
F, = E_,, where a is some root. In writing these relations,
we have used the fact that

Mar2s = M2r-127-1- (51)

Incidentally, (50) can be viewed to implicitly contain
(43)—(49) as well, via a slight notational reinterpretation.
This is accomplished when J = M and K = N, with the
understanding that E,/_,s is to be replaced with —iH ;. In
any event, we now have a Cartan-Weyl-like form associated
to the SO(2n,2m) algebra that can be transparently used
for discussing highest weight states.

One further comment worth making here is that in the
SO(2,2) case, the algebra presented in (43)—(49) is the
complete algebra. The rest of the commutators in (50)
become trivial.

C. Index summary

We have had to introduce a few different kinds of indices
in the discussions so far. To avoid confusion and for quick
reference, let us summarize our notation here.

Recall that we are working with SO(2n,2m). The
uppercase Latin indices A and B go over the full range

of coordinates of the Klein space, 1,...,2n + 2m. These
show up in (28). These are further subdivided via the
lowercase un-tilded Latin indices a, b (which span the coor-
dinates denoted by x, with signature —1) and the lowercase
tilded Latin indices @, b (which span the coordinates
denoted by y, with signature +1). One can relate these
indices to the uppercase Latin indices as follows:

A=a VA€l .. n, (52)

A=2n+a VYAe2n+1,...2n+2m. (53)

Now, we turn to the uppercase Latin indices /, J, and K
of the previous subsection. These go over half the range of
coordinates, i.e., I,J,K € 1,...,n + m. The full range of
Klein space coordinates is then covered by 2J and 2J — 1
together (and similarly for K). These are further subdivided
via the lowercase untilded Latin indices j, k (which span
half of the coordinates x and therefore label the coordinates
z, Z, r and @ from Sec. I A) and the lowercase tilded Latin
indices j, k (which span half of the coordinates y, and label
w, w, t, and ¢ from Sec. I A). The full range of the x
coordinates is spanned by 2j and 2j— 1 together (and
similarly for k). Likewise, y is spanned by 2j and 2j — 1
and by 2k and 2k — 1. One can relate the uppercase and
lowercase Latin indices in this case as follows:

J=j VYJel, ..n, (54)

J=n+j] VYJen+1,...n+m. (55)
The uppercase J, K indices and their translation to the
lowercase j, k and J, k indices will be repeatedly used in
what follows.

Finally, for completeness, we make a small comment on
the Latin indices y, v, used in (32). These are simply the
matrix indices on the matrix form of the generators J,5 of
SO(2n,2m). The matrices are 2(n+ m) X 2(n+ m)
dimensional in this representation, so the indices are
w,vel,....,2n+2m. We will not need these indices
again.

D. Quadratic Casimir and the ‘“wave” equation

The quadratic Casimir for SO(p, g) group can be taken
as (see Appendix D for a discussion)

Cyr = MABMAB (56)

where M ,p is defined as (32), and the raising/lowering of
indices is executed via the Klein space metric tensor #745. In
terms of the generators of SO(p, g) in the Cartan-Weyl-like
basis we introduced, one can express the quadratic Casimir
as follows:
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ptq
2
= HH'+ Y E  wF " £ F cE+"
I=1 J.K>J
=+ Z Eej_eKFeJ_eK =+ FeJ_eKEelJreK. (57)
J,K>J

Here, we use the nAB to raise indices on the right-hand sides
of the definitions (38)—(42) to define the upper index
objects H', E%x_ and E~%x. For example,

H! = p21-120 (58)

FeEe — %{MZJ—I,ZK—I 4 M2 2K-1
+ i(MP12K 4 22K (59)

FelEek _ %{MZJ—I,ZK—I — M2k
T i(M12K 22K Y (60)

It can be seen by using these in (57), that we get (56).

The above expressions are useful because using them,
we can write the Casimir in terms of the differential
operators from the previous sections that capture the
Klein space isometries. This Casimir plays an important
role in the Klein space wave equation. To illustrate this we
work, for the rest of this and the following section, with the
[KP-9~ foliation from Sec. II. The K”9* case follows in a
similar fashion.

The wave equation in the AdS-foliating coordinates is as
follows [using (17)—(19)]:

p+qg-—1 1
—0,® —T—Vﬁq_,d) (61)

O® = 920 + -

T

where we have

Vg1 ® = <0,2,q> + ((p = 1) tanh p + (¢ — 1) coth p)a,®

1

- V2 L V2
cosh?p

\ +Sinh2p Qq_1d>>. (62)
This allows wus to separate the solution & =
@, (7)D,(p, Q,Q), which gives us the following set of
differential equations:

1
— 0,771, 0) = KDy, (63)
g

v[th_lq)z — K(I)z (64)
A key point is that Casimir ¢, is the same as V ,, ,_;. This
can be explicitly checked, and this fact will be crucial as we

proceed.

E. Action of Casimir on highest weight states

Let us consider states that are annihilated by the raising
operators (denoted by E,,,  or E,s «). We will denote them
by @, . ; these are the highest weight states. The discussion
for lowest weight and mixed weight states will follow
similarly.

To turn (57) into a useful form, it is convenient to first
write

J 1K
E¢ +et _ H2J.2Jn2K,2KEeJieK (65)

where there is no summation in / or J. This is a simple
consequence of the fact that raising and lowering of the full
M 4 is carried out by the Klein space metric 748, which has
the property (51). Let us illustrate this for E,s, x. This will
serve as a representative for the standard manipulations in
these subsections. We note that

1
Ee’:i:eK =_
2
+ i(M2J—1.2K + l'MZJ,2K)}
1 . -
— E{”ZJ_LA’/IZK_LBMA,B + ”,IZJ,A’,]2K LBMA,B

IO AP M PP M ). (66)

{MZJ—LZK—I + iMZJVZK—l

Because 748 is diagonal, we can write this as

1
el ek 2J-12J-1,2K—12K—1
E = 5 {'7 | n M21—1,21<—1

. 2020, 2K—12K~1
+ 'y Myjok-

0 2J-12J-1,2K2K
+ 1(77 n My 2k

+ i P2 M k) ) (67)

From the structure of #*5, given as (-1,,,1,,), and
recalling that J,K € 1,...,n+m, one can note that
=11 = 2.2 - and similarly for K. From this, what
we wanted to show immediately follows:

1

Ee'Eet — Eny’z’r]ZK’zK{My_],zK_l + iMook
+ i(Myy_y ok + iMay2k)}
— P PKKE, (68)

Using this gives us the following result for the Casimir:

CQZZH[H[
1

+ Z 772]'21’721('2]((Fej+eKEej+eK +Ee’+eKFej+eK)
J.K>J

—+ Z 772]’2JI’]2K’2K(F€J_€K Eel_eK +EL,J_€K Fej_el(). (69)
J.K>J
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Utilizing commutation relations like (48) we can now place the raising operators to the right (and thus directly act on the

field @, )

Cyr = ZH[H] +
1 J.K>J

+ Y PR (QF y_kE,

J.K>J

oK+ [Eej—eK’Fe/—eK])'

Z T]ZJ’ZJT]ZK'zK (2Fej+eKEeJ+eK + [Eej_,'_el(, Fej_,'_el(])

(70)

When ¢, acts on @, the E,s .« terms annihilate it. We can again use commutation relations like (48) to write down ¢, @,

only in terms of the Cartan generators H; as

P, = ZH3®++
J

J.K>J
— 2 2J.,2J
= E Hj®,, -2 E N H @y
J JK>J
n+m n,n+m n+m,n+m

=> H®,, +2
J=1

= J=1,K>J J=n+1,K>J
n+m
= 00, = Z(H% =27 (n+m—J)H;)®, .
J=1

This is the action of the quadratic Casimir of SO(2n,2m)
on the heighest weight state.

Similarly, one can see that the action of ¢, on the lowest
weight state ®__ (annihilated by the lowering operators) is

n+m
@ =Y (H3+ 2% (n+m—J)H)®__.
J=1

(72)

In fact, it is easy to see that there exists a huge class of such
states one can define by considering states annihilated by
various combinations of raising and lowering operators. In
fact, there exists 2" such choices, where r = (n + m)(n +
m — 1) is the number of positive roots of SO(2n, 2m)—the
idea being that we need to impose r annihilation conditions,
and we can make the choice of either the positive root itself,
or the corresponding negative root.” Of these, the highest
weight and lowest weight states constitute just two. We will
present the action of ¢, on two examples of such “mixed”
weight states and leave the rest as an exercise for the reader.
The first kind @®,_ (annihilated by raising operators
corresponding to roots of the form e’ + X and by lowering
operators corresponding to roots of the form e/ — eX) yield

n—+m
@, =Y (H} =2 (] - 1)H)®,_. (73)
J=1

And finally, we write down the action of ¢, on a second
kind of mixed weight state ®_, (annihilated by raising

Note that this reduces to the four kinds of states found in [3]
when we work with n =m = 1.

- Z 22K (g ok Hy + Moy Hg)®yy — Z ! K2 (oo Hy = 12y 20 H )@y

J.K>J

Z Hy®,, -2 Z H;®,

(71)

operators corresponding to roots of the form e/ — X and by

lowering operators corresponding to roots of the form
el + ey

n—+m
@ =Y (H}+ 2 (I - 1)H))®_,. (74)
J=1

IV. L-PRIMARY SCALARS

In this section, we will give a solution to the set of
equations (63)—(64). Equation (63) can be trivially solved,
and we can write @ (z) exactly, up to the constant K. We
will be interested in specific solutions for @®,. These
solutions will be obtained by imposing additional demands
on @,, related to the highest/lowest/mixed weight con-
ditions. These are natural [3], in view of the fact that
V141 in (64) is the Casimir ¢, (57).

Separating variables in the “wave” equation we can
easily solve

2

ST 000 = K, (75)
and we find
_(Pta=2 (r+q-2)%
D (r) =7 VKT (76)

Solving for @, requires more work. We begin by writing
the expressions for the raising and lowering operators in
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terms of the coordinates given in (2)—(7) (see Appendix A
for some related formulas and notation):

T T
E)ecf):ctgl‘ = _Ee(eiek){(rja}\ _rkarj) :l:lr_iagk - lr_jagj},

(77)

ij;:ekzze i(0;£61) {(}’ 0” rkar/.):Fl—agk'f'l—ag}

(78)

) [~ ZN
EZLJ' = 2 (¢ i¢k){( Ja lka ) +i a(/, d,, }

(79)

P2 =590 { (0, - 10,) %

I~ 1
iLo, +i—’<a¢_},
Iy, l‘]- J

(80)

Yy L i0se ey 1
Exv‘ . _Eel(/ ¢1){(}’jat}_+t}-0rj):|:lt—ja¢;+lr—agj .

eltel .
J
(81)

I s T I
Fz}yie} = _Ee l<9/i¢,/){<rjat7 + t}ar,) :F lt—j6¢} —_ l—ag }
J

(82)

where E**, F** are the raising and lowering operators
respectively for the case where the root lies among the x
coordinates, i.e., J = j and K = k. Similarly for E>, F*Y,
where the root lies among the y coordinates, i.e., J = ] and
K = k. The rasing and lowering operators E and F*Y
correspond to the roots where one of the indices J and K
[the smaller one according to our arrangement of coor-
dinates (30)] lies among the x coordinates and the other lies
among the y coordinates. This means that J = jand K = J.

We will call states satisfying the following conditions
L-primaries, @ | N By aslight abuse of terminology, we will
also sometimes refer to them simply as highest weight states,

H®, =P, (83)
H;®, , = ;1}'(1)++» (84)
E} @y =E7 @, =0, (85)
e/ie/d>++ =0. (86)

*We will call states that arise by analogous lowest weight and
mixed weight conditions also as L-primaries—this should not
cause any confusion.

It can be shown (Appendix B) that these equations
reduce to the following set of differential equations
satisfied by @_ _:

1 1 h
—0,®,  =—0, 0, -~ VEk#1, (87)
Vk ry rl
1 1 h ~
——0, P, =—0, @y — 5D V), (88)
t} / ry r
1 1 ,
—0, Py =—0, P Vkj#I (89)
Tk ri
1 1 ~
;az;‘b++ = ;at,;(DJrJr vk, (90)
j k

1 1 ~
r_kark®++ = _tfar;q)++ Vi

J

and k#1. (91)

It follows from imposing the annihilation conditions and
following the calculations in Appendix A and B, that (71)
gives us the following value of K as defined in (64),

K=n+2n+m-1)h (92)

where we have renamed A; = & (see Appendix B). Note
that this is consistent with the usual form of the Laplacian
eigenvalue on the sphere in higher dimensions. But we
found it here via systematically working through our
highest weight conditions.

The above set of equations can be solved by para-
metrizing these coordinates in the generalized-AdS-foli-
ation in which we have written the metric in (17)—(18). This
is done in Appendix C, and up to an overall normalization,
the solution we obtain is

h
O, = (%) e, (93)

Single valuedness forces % to be integral. Our choice of
coordinates and generators are adapted to make this
expression simple.

For the lowest and mixed weight states, the structure of
the differential equations we need to solve is similar: The
weight conditions force all except one of the Cartan
eigenvalues to be zero, and this weight fixes K via the
Casimir equations we presented in Sec. III E. The results
can be summarized as follows:

(i) For the lowest weight state ®__

K=2-2(n+m-1)A, (94)

A )
o= <ﬁ> et (95)
T
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(ii) For the mixed weight state of the first kind @, _

K=72%-2(n+m=-1),, (96)
£t N\
D, = (—m> ePntn, (97)
T
(iii) For the mixed weight state of the second kind ®_
K=2+2n+m=1)1,. (98)
£\
®_+ — <_m> e_Mmqsm' (99)
T

The solutions (93), (95), (97), and (99) were obtained by
solving the appropriate differential equations given in
Appendix B. The key simplification as we noted is that
all except one of the Cartans vanish. This Cartan lies among
the x coordinates for the first two and among the y
coordinates for the last two. The method for solving these
equations is sketched out in Appendix C. Note that the r,,/7
and 1,,/7 factors can be made completely explicit, if we
choose coordinates on the underlying foliation (these
coordinates are presented in Appendix C).

By acting with the ladder operators on the primaries
defined above, we can straightforwardly construct descend-
ant states as well. These span the full representation. We
will write down examples in the first descendant level,
starting with the highest weight state (93). The descendant
states are constructed by the action of the lowering
operators [as defined in (41)—(42)] on @, ..

One can explicitly check [from the expressions in (A2),
(A4), and (A6)], that the only nonvanishing descendant
states of the firft level are given by F @, Vke
2,...,n and Fe;ie7d>++ Vj€l,...,m. Their explicit
expressions take the form

Xox T

Felj:ekq)++ = _lhr_le l(eli9k>q)++v (100)
i v .

F @, = —ihLe @, (101)

e'+el r

Higher descendants can also be constructed. Similarly one
can construct (higher) descendant levels for ®,,, and
likewise for @__, @, _ and ®_, . Note that if one starts with
@, _ (97), then the nonvanishing first-level descendant
states would be given by the action of (A4) and (A6), while
(A2) would annihilate ®_ _.

V. H-PRIMARY SCALARS

In this section, we construct states which are annihilated
by the raising operators in a basis in which some of the
Cartan generators are boost type. This will correspond to

particles that emerge at some point on the celestial
§P=1 x §9=!. We will make the choice of the generators
adapted to the location of this point.

We will choose the point where the particle exits to be the
in the x; — x, plane of the “minus” signature coordinates
and the y; — y, plane of the “plus” signature coordinates.
This can always be done by choosing our coordinates
appropriately without loss of generality. The x coordinate
location where the particle emerges can therefore be
captured by an angle in the x; — x, plane:

cos@l sin@l 00 ... 00O
—sinf; cosd, 0 0 ... 00
0 0O 1 0 ...00O0
Rx({éi}): 0 0 0 1 .00 (102)
0 0O O0.. 010
0 0O 0 .. 0 01

Similarly, we will have a rotation matrix for the y
coordinates, with 91 replaced by (;51. Once the rotations
are done, the x;, x,, y;, y, coordinates should really be
viewed as primed coordinates. But while constructing
generators in the next subsection, we will suppress the
primes. The use of the rotations is simply to clarify the
angles of the momenta as we will see in Sec. V C—if we do
not include these rotations, the particle will emerge along
the x; direction and y; direction, which makes the notation
a bit too slim to be transparent. But the key physics is
happening in the choice of Cartan generators that mix the
signatures that we will present in Sec. VA.

As we will see when we discuss the plane wave solutions in
an upcoming subsection, the Cartans corresponding to the
generators that mix the x; — x, and y; — y, planes are the only
ones that play animportantrole in the discussion. In the present
section, for the most part, we will treat the rest of the Cartan
generators to be rotation generators in the two signatures
separately. Our main observations remain unchanged even if
we consider signature-mixing among the remaining gener-
ators. In a later subsection, we will also discuss such an
alternate choice for the remaining Cartan generators.

A. Explicit H generators

To write down the Cartan generators in these new
coordinates, we split the coordinates in the following
arrangement™:

X= {xl’yl,x%}’z’xa < X205 Y35 ---)’2m}- (103)

*As mentioned, we are suppressing the primes on the four
rotated coordinates.

106018-10



CELESTIAL KLEIN SPACES

PHYS. REV. D 106, 106018 (2022)

We will have six different types of ladder operators,
depending on which group the coordinates belong to—
both coordinates belonging to xi, ..., y, [(108) and (114)],
one from xi,...,y, and one from xs,...,x;, [(110) and
(116)], one from xy, ..., y, and one from ys, ..., y,,, [(109)
and (115)], both from x3, ..., x5, [(111) and (117)], both
from yjs, ..., 5, [(112) and (118)], and finally, one from
X3, ..., Xp, and one from ys, ..., y5,, [(113) and (119)]. The
Cartans are picked by choosing coordinates, either in
Xi, ...,y [(104) and (105)] or x3,...,xp, [(106)], or in
V3, +.-, Yo L(107)]. We emphasize that the ugliness in our
listing below is purely notational—the idea is simple and as
we outlined in the introduction to this section. We will show
a more presentable set of generators in a later subsection by
doing some (conceptually unnecessary) rotations/boosts.

In any event, we list the generators below for complete-
ness. The new Cartan generators are

Hy =iM, (104)

Hy = iMy, (105)
Hj=Mj 15 Vj€2 ...n (106)
Hy=-My_ 155 Vj€2..m (107)

The key point here is that unlike before, now two of our
Cartans are boostlike. The raising operators are

(] 1
EUL o = 3 A (M My ) + (M F M)

J=1&K=2, (108)

e i .
Ei/)ﬂ; = _E{(MJ,Z}—I - M].z}'—l) + Z(Mj,zj - M],z}')}

VIiel,2&j€2,...m, (109)

=(3 1 .
Ei.rie/ = 5{(MJ,2]‘—1 + My 7) £i(Myo+My;5)}

VIiel2&j€2, ...n, (110)

~(4 1 . . .
EY AMyj g opey FiMoj o) Fi(Mojy o +iMyjo4) }

e-/j:ekzz
Vk>je2....n, (111)

~ (5 1 :
Ei;ie; Y {(My;5_1 251 = iMj001)

Fi(My;_ 05— iMy;50)} Vi>je2,...m, (112)

=(6 1 . ) .
ijle}' :E{(MZ/‘—IQ}—I +iMy;051) Fi(Myj_y 25+iMy;57) }
Vj€2,...n&j€E2,....m. (113)

The corresponding lowering operators are

= (1) 1

Foyoe =5 1My £ Mjx) = (Myz F Myg)}s
J

—1&K=2, (114)

" i .
F(e/)ie; =3 1M o5y + Mjo5-0) (M5 + Mj5)}

VIieEl2&j€2,....m, (115)

- 1
3 .
FUlo =5 M i = Moy 5) F (M) = My 5)}

Viel2&je2, ...n (116)

(4 1 . . .
Fij)iek :E{(M2j—l,2k—1 —lej,zk—l ) + l(sz-l,zk— lej.zk)}

Vk>je2,...,n, (117)
= (5 1 . : .
Fi;)ie; :E{(sz—l,zlé—1 + ’sz,zl'c—l) + l(M2]—1,27c + ’sz,zl})}
Vk>je2,...,m, (118)

~ (6 1 . . .
F(ej)ie; = {(Myj_y 551 = iMaj5-1) £ i(My;_y 55— iM)55)}

2
Vi€2,...n&jE2,...,m. (119)
As a simple check, one can count the total number
of generators in (104)—(119). It turns out to be
(m+n)(2(m+ n) — 1), as required.
We note the commutation relations satisfied by these
operators below. For E(V) and F(!

[ B ] = =y £ i) ES. e (120)
[1:11, Fii)ig’(] = (s = WIK)FSLK, (121)
EY L FU = —(nkxH,y £y, H 122
[ o ek ejieK] = —(nkxH; £nHg). (122)
For E? and F©®

[, ES) ] =-nyES) . (123)

5 =(2 =(2
[H/E’Eij)ﬂf] = 1’72},212152116;’ (124)

5 =2 =2

i, FO =y FY, (125)

5 (2 (2
[ch’ Fif)j;e]l = iﬂZ},ZI}FiJ)ie]" (126)
[Eif)id’ Fij)iej] = —(nyj5H; £, ,H;).  (127)

For E®) and F®
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7(3)

[Hlv E(,)ie,} =-nyE, . (128)
[le E(J)j:e!] =+ ﬂzj,zkES)ﬂjv (129)
[HI’ F(/)ﬂj] = n]JF(/):te/7 (130)
[Hk’F<')i = i’lz,sz(/le/» (131)
Qo FOL = =OnjosHy £y ). (132)
For E® and F¥
[I:Ii’ ESLE/}] = —(’72i.2j + nZi.Zk)EEj)iek’ (133)
[Hu Fif)i = (’72i.2j * ﬂzi.zk)F(j)ﬂk’ (134)
B, o F, ) =~y £ oy Hy). (135)
For E®) and F©)
;. NSLek] = —(ny; £ ﬂz?,z;%)Ei?iew (136)
;. FS) ) = (g i) PG (137)
ES) FS ) = =iy £y oy). (138)
For E©) and F(©
[FI"’ESLJ] = _WZiZjEiZ:e;, (139)
[Hk’ Ei/)ie/] =+ M 2/E(?)ﬂi’ (140)
[ﬁi’FS)ﬂ;} = ﬂzisz(e,)ie;, (141)
(A FD ) = tmigiF (142)
[Efiew FS;;] = —(’72}',231:11‘ + ﬂzj,sz}')- (143)

With these commutation relations at hand, we can proceed
to solve the Casimir equation and obtain the highest
weight state.

B. Highest weight state
The highest weight state is defined as follows:

H®, =h®, (144)

H,®, = h,®,,, (145)

H®,=h®, Vje2 ..n, (146)

H;®), = hy®, Vje€2..m, (147)

EY) (@,=0, J=1&K=2 (148)

ES @,=0 Viel2&je2 . .m (149
EY @©,=0 VJ/el.2&j€2...n,  (150)
EY ,®,=0 VYk>je€2..n (151

EY @,=0 Vk>je2..m (152

ES @,=0 Vje2..n&je2 ..m (153)

After translating these into differential equations satisfied
by @, we find the following: From (148)

1 0® 1 0® 1 d 0
Sl N 7<—+ )(I)h (154)
Xy 0x) Y20y, (X —y1) \0x; 9y,
From (149)
1 0® 1 0® 1 0 0
_ o 10% <_+_>q)h
Y2j-1 9Y25-1 Y230y X;—y3 \0x; dy;
VI=12&j€2, ....m (155)
From (150)
1 00 1 0D 1 0 d
SEEE A
Xpj_1 OXpj1  Xp;0Xy; Xy — Yy \0x; 0y;
Vi=12&j€2,...,n (156)
From (151)
1 09, 1 00, 1 < Jd . 0 >
= = - ——1 o,
Xoj—1 OXop—y X OXop (x2j_lx2j—l) 0x2j ax2j—1
Vk>j€2,...,n (157)
From (152)
1 0® 1 0® 1 0 0
ho— h— - <—+i >¢’h
Voic1Ooto1 YaiOVar (Vo5 Tivaj—1) \Ova;  9vai-

Vk>je2,...m (158)
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From (153)
Loow, 1o,
Y2j-1 a)’z;'—l Yoj a)’z}
1 < o . 0 ><I>
(xzj' - lx2j—l) aij aij—l "
Vie2,..m&j€?2, ...,n. (159)
The expressions (154)—(159) imply that
H,®), = hd,, (160)
H,®, =0, (161)
H®,=0 Vj€2 ...n, (162)
H;®,=0 Vje2, ..m (163)

Together, (154)—(163) imply that @, is dependent only on
X1, X2, ¥1, y2- The equation satisfied by ®;, reduces to the
following:

hry sin@
35 ) = — e B (164)
! ry cos@; —t; cos ¢
ht, sin ¢
9, P = ! : (165)

ry cos @, —t, cos ¢,

where we have used the notation 8, — 91 =0,,¢, — (}51 = ¢,.
It is easy to see that the solution of (164)—(165) is

@), = C(h)(t; cos(py — py) — rycos(B, —0,))".  (166)
In terms of
= tl COS((?)] - ¢1) —r COS(él - 91) (167)

we can write ®@; as a Mellin transform

o, = /oo do @™ 1eic = T(=h)eTz"  (168)
0

where we have also chosen a normalization. This represen-
tation will be useful in the next section.

C. Connection with particle momentum

The above Mellin transform makes a connection
between our primary states and ordinary plane wave states
in the Klein space. Consider (as in Sec. III) a coordinate
system ({x,},{ys}). Let us also note that a massless
particle’s momentum fixes a unique point on the celestial
sphere. Since it is a massless solution, we require that
the norm of the momentum be 0. Without any loss of

generality, we can orient our coordinate axes in such a way
that the momentum vector p lies on only two out of the
n + m Cartan planes, with its projection on any other plane
being 0. Hence, we can choose the momentum vector to be

F=(p1e® pie=®.0,....0,q,e" qe71.0,....0). (169)
The null constraint on this vector is as follows:
n m
P=Y -pitYy ¢=0 (170)

It forces p; = q; = w. Hence the momentum vector is

B =awe®, em0,0,...,0,¢h, 71,0, ...,0). (171)

Now, in this coordinate system, a general point in the Klein
space is given by

-

X = (rie®, rie, ... r,en r e 1 e,
te i, t,elPn t,eiPn). (172)
We can evaluate j.X to be
ﬁ}? = -1 cos(91 — 91) + tl COS(¢1 - &1) (173)

Note that this is exactly the expression z, Eq. (167). So we
can understand our primary states from the last section as
Mellin transforms of plane wave states:

@), = /oo dww™1¢ioPX. (174)
0

Because ﬁ.)? is a scalar, this expression is more transparent.

Therefore what we have done geometrically in defining
our H-primaries earlier in this section is to align the
coordinate system suitably with the particle momentum.
The Cartan-Weyl basis is chosen to reflect this. We rotated

our coordinates to & and (27 earlier, simply to ensure that the
momenta are not aligned with the axes.

D. Relating L- and H-primaries

We can relate the L-primaries and their descendants to
H-primaries and their descendants.” In this subsection we
will simply show how the primaries in both languages are
related. We start by defining a transform

°In light of our observations in this paper, a more natural
nomenclature for L- (and H-)primaries is rotationlike (and
boostlike) primaries. But we will stick to the nomenclature
introduced in [3] to avoid confusion.
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2r (27 - Lo
D@y m-) :/o /o dytdy—e= 2 i @, (175)

where y* = 91 :l:c}ﬁl. Each of angles 91 and &51 have a
periodicity of 27, so y* have the periodicity

rox )~ (" 27, £27) ~ (¢ £ 27,y F 2n).

We require our mode functions to be single valued on the
celestial sphere, so
mttm” €Z. (176)
We claim that we can choose m™* and m~ so that (175)
relates a highest weight H-primary to a highest weight
L-primary. To demonstrate this, it is useful to first observe
the action of the following generators:

(H ¥ Hf)q){er,m—} = _zmiq){er,m—}’ (177)

Hi® oy =Hi®py oy =0 Vj>1&j>1.  (178)
These follow from direct calculation using the explicit
forms of the generators (as given in Secs. Il and 1V)
on (175).

With this in place, we can relate the two highest weight
states. We act with the Casimir on (175). Since the ®;, on
the right-hand side is highest weight, we have®

v(I){m-‘r,m—} = <h2 + 2(” +m— l)h)q){mfm—}‘ (179)
To find that particular mode that corresponds to the
L-primary highest weight state, we demand that (for the
particular choice of m’s) it is annihilated by the raising
operators in the Cartan basis in Sec. IV. We denote that
particular mode by @y, . ,,,_}- The equation satisfied by
D), +.m,—) then shall be given by (71)

n+m

vq){m,ﬁ,m,,—} = Z(Hg_2’721'”(7’[+m—J)H])(D{mh+’mh_}.
J=1

(180)
Now using (177)—(178), we see by explicit calculation that

vq){m,,+.ln;,—} = Cq){thr,m,,—}a (181)

where

6Using (160)—(163), the explicit form of the H-Casimir is
presented in (D9). To write the Casimir in terms of the Cartan
generators and ladder operators, we need to turn to (104)—(119),
and identify the correct generators with raised indices, keeping
track of signs. This is done explicitly in Appendix F. But the
result (179) follows from general principles.

C = (mj +my)* 4 (mf —my)* =2(n+m—=1)(my +mj)

—2(m—=1)(m} —mj).

Together with the fact that the L-primaries depend on only
the s or ¢’s but not both,7 this leads us to the following
relation, by comparision with (179):

h
m;:m;:—z. (182)

This corresponds to the highest weight state in the basis of
Secs. III and IV.

In fact performing the integral (175) explicitly, we can
show that (93) emerges:

b + = p—im) x T =im ™
<I>{_%__/2_,} = ; dy dy=—e " W Dy
= 2_h47r26"h911“(—h)e"% r}f

o et = @ (183)
Similarly, one can perform the integration by making
appropriate choices for m* to obtain the lowest weight
and mixed weight states obtained in (95), (97), and (99).

E. A different choice

So far in this section, we only focused on the Cartan
planes related to the momentum direction of the particle on
the celestial SP~! x $9~!. The rest of the Cartans we viewed
as rotation generators that do not mix the signatures
because what we did with those directions did not affect
our understanding of the Mellin transform.

However, it turns out that the choice of our generators
can be made a bit more elegant if the Abelian subset
comprising the Cartan generators is chosen in such a way
that it consists of the maximum number of boost-type
generators. This number is 2 x min(m, n). The rest of the
generators, which are |m — n| in number, have to neces-
sarily be of rotation type. We will present some details of
this choice in this subsection, even though the choices in
the rest of the directions do not affect the general features of
our discussion. In particular, we have checked that
things like Mellin transform, the relation between L- and
H-primaries, etc., lead to parallel expressions, so we will
not present those.

We arrange the coordinates as

X= {Xl,)’hxz’}’z----’xzmY2n7)’2n+1’ ---sz} (184)

"We have chosen them to depend only on &’s by convention
throughout this paper.

This can be done via a minor variation of the calculation
presented in Appendix A of [3] explicitly, so we will skip the
details.
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and write the Cartan generators and ladder operators by
picking coordinates from the two coordinate ranges
X15VY1:X2, Y2003 X255 Yo and VYonstseoes Yom- This way we
have two types of Cartan generators and three types of
raising and lowering operators. Specifically, picking both
coordinates from Xxi,yq,X2,V3....,X2,, V2, give us the
Cartan generator (185) and the ladder operators (187)
and (190). Picking both coordinates from y,,., ..., Y2,
give the Cartan generators (186) and the ladder operators
(189) and (192). Lastly, picking one coordinate from
X1s Y1, X2, Y2ee-s X2, Y2, and another from yp, .y, ..., Yo,
give us the ladder operators (188) and (191). Since Cartan
generators are picked by pairing adjacent coordinates, there
are no Cartan generators consisting of coordinates from

X1, Y15 X2, Y2.0 05 Xon, Yo @0 Y41, ..o, ¥ap Dot
We write the explicit Cartan generators as

H =iM; VIe€L,... 2n, (185)

H}:_MZ}—],Z; V]GnJrl,,m (186)

Corresponding to these Cartan generators, we have the
raising operators

- 1
Eii)ﬂx = 5{(MJK = Mj )+ Mgy F Myg)}

VK>J€ELl, .. 2n, (187)

0 i .
Ei.l)iej' = _5{(MJ,2}—1 - M],z}—1) + I(Mj,zj - M],z}')}

viel,..2n&jen+1,....,m, (188)
(3) 1 ,
ES = —5{(sz—1.21}—1 — iMy;55-1)
+ i(MZ}'—l,ch - isz,zic)}
Vi>jen+1,....m, (189)
and the lowering operators
-0 1
Fy = > WMy £ My ) = (Mys F Myg)}
VK>Jel,.. 2n, (190)

" i .
F® = 5{(MJ,2]—1 +Mjaiy) £i(M;;+Mja3)}

el tel
Viel,. . 2n&jen+1,...m, (191)

= (3 1 . . .
Fi}ie;zi{(sz—l.zi{—l+1M2},21}—1)i’(sz—l.zic+lM2},2/})}

Vik>jen+1,...,m. (192)

A simple counting of the total number of generators (Cartan
generators and the ladder operators) gives the expected
value of (n+m)(2(n+m) —1).

The relevant set of commutation relations satisfied by
(185)—(192) are as follows:

[ ES) ) = (g i) By (193)
[HI’ Fil/)iek] = (ny £ ”IK)FSL:eK’ (194)
B FW ) =~y £y, H 195
[ o ek ejieK] = —(nkxH;£n;Hg), (195)
[I:II, Eg)iej] = _’YIJEii)ie;a (196)

S =2 =(2
[ B, ) =F nyEY) (197)
A, Fg)ie;] = WIJFSL;’ (198)

S =2 =(2
[ FD, ) =m0 FD, (199)

~ 2 ~ 2 ~ ~
[Eif)iei’ Fij)iej] = —(nyj05H; £ n,,H;),  (200)
[H;. ED ] = —(y127 + 13500 EZ) (201)
i ik T ’721,2] 772i,2k eidek’

7 203 =(3
;. B ) = Oy =it PG (202)

~ 3 ~ 3 ~ ~
[Ei;ie;» Fi,lek] = =ity £ Myj.25H).-

(203)
Clearly the generators and algebra can be written more
compactly, with these choices than in the previous sub-
sections. With these commutation relations, we can proceed
with solving for the highest weight state @,,. It is given by
the solution of the following differential equations:

H[(Dh = il[q)h, (204)

H}q)h = }Nlj@h, (205)

EYD @, =0 (206)
el ek =h —

ES @, =0, (207)
~(3

EY @, =0. (208)

From this point on the discussion proceeds quite parallelly
with the previous subsections, as long as sufficient attention
is paid to the various indices and their ranges.
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VI. THE SO(2,2) COMPARISON

We will compare our explicit expressions in Secs. IV and
V, specialized to the SO(2,2) case, with the results in [3]
where the results are presented in the SL(2, R) x SL(2, R)
language. The possibility of translating SO(2,2) to
SL(2,R) x SL(2,R) is an accidental isomorphism at the
level of the Lie algebras and is not available in higher
dimensions. So it behooves us to check that the results
match. We will find that the expressions match exactly.

In our language the coordinates in SO(2,2) are
arranged as

X = {xhxz’h’h}- (209)

And they are paramtrized as follows [according to (7)]:

X, =rcos 6, (210)
Xy =rsin 6, (211)
Y| =t cos ¢, (212)
y, =t sin ¢. (213)

The L-primary generators (38)—(42) reduce to the following
generators when we restrict to n = m = 1 in SO(2n,2m):

Hl — M12 - —iag, (214)
Hy = Mys = id, (215)
£ =L T 1
ool —58 (rd,—|—t0,)j:z;d¢+l;dg s (216)
F. = i —i(0+¢) . N
ol el ——Ee (r6,+t0,)¢z;0¢—1;69 . (217)

Since the constraint on the coordinates is the same as (B19),
we have the further parametrization of the r, t coordinates as

r =7 cosh p, (218)
t =7 sinh p. (219)

This casts the generators in the following form:
Hl - M12 = —iag, (220)
Hi = M5 = idy, (221)

i .
E, . i= 5el<9if/’>{a,, + i coth pd, + i tanh pdy}, (222)
i . .

Fo = —Ee-*ﬁf/’){a,, Ficothpdy —itanhpdy}. (223)

According to the notation in Eq. 3.2 of [3], we then have the
following relations:

Ly =iF, . (224)

1
LOZE(HI_HT)7 (225)
L =iE,,,i;, (226)
Li=iF, ;. (227)

_ 1
LOZE(HI""HI)? (228)
L, =iE, , (229)

The left-hand sides are variables defined in [3], and the right-
hand sides follow our notation. Note that our coordinates
map to the coordinates used in Eq. (3.2) of [3] through
Dinis paper ¢[3] s Pthispaper > P[3]» Orhis paper —> ¥/[3]- (230)

We now compare the H-primary generators in [3] with
the H-primary generators we write for SO(p, q), restricted
to p=gqg=2. From (104)—(114), we can write the
SO(2,2) case as follows:

H, =iM, (231)
Hy = iM,5. (232)
The ladder operators are the following:
-1 1
Eil)ﬂz = 5{(M12 + M)+ (My; F My5)} (233)
-1 1
Fillez = 5{(M12 T Miz)— My ¥ M5)} (234)

To relate these to Eq. (5.2) of [3], we need to note that a
choice in the ordering of coordinates has been made when
deciding which boost generators we are picking. It turns out
that this choice maps in the following way from our paper
to [3]:

{02122, V2 tiere = X020 V15 %1 Y2 brpere: - (235)
One sees that a precise map exists under the following
identification of the Cartans:

(236)

(237)
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and the ladder operators

HY, = =iF), . (238)
e (239
B = —iF (240)
at, = —iE!) (241)

Again the left-hand sides are variables defined in [3], and
the right-hand sides follow our notation.

The ladder operators that we use and the ones used in [3]
have a relative “i” between them, but the Cartan generators
are (essentially) the same. This can be traced to the fact that
our definition (37) follows’ that of [6], while the ones used
in [3] effectively have an extra i relative to those in [6]. Let
us be a bit more explicit about this. The relative “i” in [3]
simply exchanges the raising and lowering operators in our
definition vs theirs. This can be seen, e.g., from the
SL(2,R) algebra (3.5) in [3]. Our definition adds an i to
L, and to L_;, while there is no i in L. This results in an
extra sign in the [L;, L_;] commutator, while the other two
commutators remain intact. Therefore, because our raising
and lowering operators are exchanged with respect to those
in [3], the sign is precisely taken care of.

Note also that the ladder operator pieces in the quadratic
Casimir in [3] have an extra negative sign relative to ours to
accommodate for this. So the final results match exactly.
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APPENDIX A: USEFUL FORMS
FOR THE GENERATORS

By using the parametrization of the coordinates given by
(2)—(7), and the expression for the generators [(33)—(35)],
we have the following explicit forms for the generators. The
indices are j,ke 1,....,.nV j <k,

Note that our definition of the ladder operators in terms of
M, are identical to that in [6], but our M, satisfy the Klenian
signature algebra instead of the Euclidean algebra. So our Cartan-
Weyl form (43)—(50) is of course different from that of the
Euclidean so(p + g) algebra considered in [6].

My i o1 = —i(cos 0; cos 0(r;0,, —ri9,)

L cos 0; sin 6,0y, + K cos Oy sin 6,0y )

rk j

M2j—1,2k = —i<COS 9 sin Qk(r»dr - rkarj)

+ ! cos 0; cos 0,0y, —|— K sin 0y sin 6,0, )
rk ]

My = —i(sin 0; cos Oy (r;0,, — rkar,)

rj . .
——Lsin 6; sin 6,0y,

Tk
——cos 0, cos deg),
r r !
k

J

M2j.2k = —i(sin (9j sin Gk(rjark - rkarj)

ry . e .
+—Lsin 6; cos 0,0, ——=sin 0, cos 0,9, ).
- Jj kY0, r k JjY0;
k J

From these expressions, we can write down the explicit
forms for the raising operators as follows (the superscript
“x, X is there to indicate that both j and k belong to the x
coordinates):

EY = —Ee i(0; ﬂ’w{(rjak —rdy,) + ziag - 1—09 }
(A1)

The lowering operators are

FX)C _l

eltek T 2

e‘i(gfigk){(rjark —1o,,) F 1—0& + 1—69 }
(A2)

Similarly, for the case where n—Q—}',n—i—fcen—ﬁ—l,...,
n+mV}'<l~c, we have

MZ}—1,21~<—1 = i(COS gb} cos ¢,~((t}5,k - l‘,;at7)

I . I .
- t—fcos ¢; sin oy, + t—kcos ¢ sin ¢}6¢]) ,
k j

My = i(cos¢- sin ¢z (10, — tl?a’;)

+ cos¢ CoS 0y, —|— ksin ¢y sin ¢ 04, )
]

My;oi1 = i(sin $; cos i (150, — 1z0;.)
5 - 23
— gs1n ¢; sin ¢r0y, — t—jcos ¢z cos ¢;a(,,;> ,
Mo = i(sin ¢y sindoy (10, — 70,

t Iy
t—sm ¢; cos ¢y, — Ksin ;. cos ¢ 04, ) .
k f
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Likewise, in this case we have the following raising
operators

Vs _ + k
B = 2 e ¢"){(50 ~1i0;) £ %" 5¢}

(A3)
and lowering operators
Py =Ll (o — o) 5 id0, +i%a

J

(A4)
Finally, we look at the case where j € 1, n] +ne
n+1,....n+m:
My 15y = i(cos 0; cos ¢;(rj0,7 +1;0,,)

r; 13

J i - _ ) -~ qi .
- sin ¢; cos 9]-0,/)]_ _cos @5 sin 6.,691_),

J J

My 55 = i(cos 0; sin ¢;(r_,-a,; + tja,j)

r .
+ t—’ cos ¢; cos 0,0y,

1~
—Lsin ¢ sin 6’,-69.),
J Fj ‘ o

My = i(sin 6; cos gbj(rjat}_ +1;0,,)
"I sin &- sin@.0 j - cos 6,0,
—[—}sm ¢; sin6;0,, +r—jcos ¢; cos0; aj),

M2j»2}' = i(sin 6’4 sinq')ﬁ(r.at_‘ 4 t_'ar‘)

+[—fcos¢ sin 0;0,), + sm¢ coseae).
J

Here the raising operators take the form

el tel

. r; 3
EY . = ée’(gji’/’]){(rjat7 + t;@,/_) + i—]@¢7 + i—Jag/}
(A5)

and the lowering operators

X [ b t
e}yﬂ},:—ie i(0;+47) {(ra + 150, )ZFt—d(/) —1—69}
(A6)

Now, we turn to the Cartan generators. These can be
written as
H;=M;_1,5; = —idy,, (A7)

APPENDIX B: SIMPLIFYING
THE WEIGHT CONDITIONS

1. Highest weight

We can write the set of equations that must be satisfied
by the highest weight state ®,. These are as follows:

qu)++ =4P VY (Bl)
H;®, = Z;CI)++ v, (B2)
ES @ = E (1)++—0 Vk>j&k>]j,  (B3)
E} ;@ =0 Vjj (B4)

eltel

A simple sanity check before we begin is to note that the
conditions on the last two lines add up to n(n—1)+
m(m — 1) + 2nm which are (n+m)(n+m—1) condi-
tions. This is half the total number of roots of SO(2n,2m).
The other half of the roots are covered by the lowering
operators. We can unpack these equations one by one to
arrive at the final set of equations satisfied by @ .. Let us
start with

EY @, =0

el tek

ri r
= (rj0,, =10, )@, F r—iﬂk‘b++ +r_k/1jq>++ =0. (B5)

J
Adding and subtracting the two equations in (B5) gives
r
(0, — 10, )@y + r—’f,qu>+ L =0, (B6)
J

r.
—’AkCIDJr+ =0. (B7)
Tk

From the second equation above, we can conclude that
A =0 Vk > 1. The k > 1 condition arises because k > j.
We effectively have the following expressions (which need
to be explicitly solved)

(r10,, — 10, )@, +?/11<1>++ -0 Vk>1, (BS)
1

(rj0,, =140, )®,, =0 Yjk>1 and k>j. (BY)

J

Similarly, the action of the E” raising operators can be cast
into the following form:

t: ~ -
(zla,%—t,;atl)q>++—f/11q>++:o Vk>1, (B10)

(550, = 130,)®,, =0 Vjk>1 and k>Jj, (Bll)

where all 2; =0 V&> 1.
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Finally, we turn to the expressions we obtain from the
E*Y type raising operators. Following the same steps as
before, one can arrive at the conclusion that Z; =0 V.
The equations (arising in this case) satisfied by @, are
given as follows:

1~ ~
(110, + 10, @,y — TJIMDH =0 Vj  (BI2)

(rjo,, +1;0,)®,, =0 Vj and j>1. (BI3)
Note that since we have 4, = 0, (B10) reduces to (B11).
Therefore, the final set of equations satisfied by @ , are as
follows:

1 1 A
—0, @, =—0, @, —2®,, VYk#1, (Bl4)
i ry rl
1 1 A .
—;ar;q)++:*ar.¢’++—%(b++ v (B15)
b ry rl
1 1 :
—0,®, =—0,®,, Vk j#1, (BI6)
Ty ri
1 1 .
S0,0, =00, Vik  (BI7
j k
1 1 .
—6rk¢++:—t—6,,q)++ Vj, and k#1. (BI13)
rk ~

J

The expressions (B16)-(B18) can be also obtained from
(B14) and (B15). In further discussions, we will only
mention the equations similar to (B14) and (B15). We will
later solve for @, , (or the state that we are considering),
subject to the following constraint:

n m

Iy

k=1 J=1

(B19)

2. Lowest weight and mixed weight

The annihilation condition satisfied by the lowest weight
state d__ are as follows:

P @ = Y

eltek T — ol ek

=F & _=0 Vk>j&k>].

T ekl (BZO)

The eigenvalue equations are given by (B1) and (B2),
with @, , replaced by ®__. These along with the annihi-
lation conditions (B20) can be evaluated to give

1 1
—0d, ®

)
—0, 0, d__+5®__ Vk#1, (B2l)
k r

—_ "

1 1 p -
——0,®__=—0,®0__+50®__ V)  (B22)
t] J rl rl

The analog of (B16)—(B18) for ®__ follows from (B21)
and (B22).

The mixed weight state of the first kind @, _ corresponds
to the following annihilation conditions along with the
eigenvalue equations (B1)—-(B2) for @, _:

ES @ =E7 @, =E} ® =0 Yk>j& k>3],
(B23)
Fil @, =F7" @& =F] & _=0 Vk>j&k>].
(B24)

These can again be solved to give the following set of
differential equations satisfied by @, _

1 1 A

-—0,®, =—09, ®, _+2D,  Vj  (B25)
rj / tm " tm
1 1 o -
—0,®, =—0, ®, _+2D,  Vji<m (B26)
tj J t, " t

Lastly, the mixed weight state of the second kind ®__
corresponds to the following annihilation conditions along
with the eigenvalue equations (B1) and (B2) for @, _:

ES @ =E7 @ =E @& =0 Vk>j&k>],

ei—

(B27)
Fil @ =F7 @  =F7 &, =0 Yk>j&k>].
(B28)
These yield
1()(13 —1a<1> Z’"CI) Vj (B29)
r rp -+ = . by =+ 2 +- Js
! 1 Ao .
—0,®_  =—0, ®_, —5D_, Vj<m (B30)
t}' ! tw " I

APPENDIX C: PRIMARY STATE SOLUTION

We will work with highest weight states in this section.
The other weight cases are solved similarly. The equations
we wish to solve are the following:

1 1 h
— 0P, =—0 P —5D,., Vk#I1, (Cl)
Ty ry ri
1 1 h ~
=00, =—00, — 5Dy, V. (C2)
ji ry rl
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We will use the following parametrizationlo:

r; = 7 cosh p cos 6,

r, = 7 cosh p sin 6; cos 6,,

ry—y =t cosh p sin@; ---sin 8,_, cos 0,_;,

r, =7 cosh p sin @, ---sin 0,_, sin §,_,, (C3)
t, = t sinh p cos ¢y,
t, = 7 sinh p sin ¢ cos ¢,
t,,—1 = 7 sinh p sin ¢, - - -sin ¢p,,_, cOS ¢P,,_1,
t,, = 7 sinh p sin ¢, - - - sin ¢,,_, sin ¢,,_;. (C4)

Now, one can evaluate the equality ;-9, @, =;1-9, @, |,
n n— -

and see what result we get. Using the relations given in (C3)
to (C4), we can write the following expressions for p and 8, ¢.
These turn out to be

VOE+E++ 1

tanh p = ,
Vritntootn
r.
cot 6, :—’2,
n
\/ =i T
1~
cot ¢p; = J

m 2.
\/ 2i=js1 b

From this one can evaluate ;-9, @, and -9, @, :

1 tanhp =2 cos26; cot ),

0, 0, =) & o8 0i cOtli 5

p Tt 7 Pt ; 2 o, P+
cotf,_,

9y, Py, (C5
72cosh? psin® @, ---sin’6,,_, 0, Pivr (C5)
L tanhp =2 cos2 0, cot 0,

Pt Or, Pt = _T—zapq’++ Z%%}DMF
" =1 ;

tan@,_,

aen—l ®++ :

~ 22cosh?psin6, ---sin?6,_,
(Co6)

Let us emphasize that the 6’s and ¢’s that we are introducing
here should not be confused with the 0’s and ¢’s introduced in
Sec. I A. There are only so many letters in the alphabet that can
be intuitively used—the ’s and ¢’s we use in this appendix stay
entirely within this appendix. The reader if they wish can just take
the final result, the second expression in (C21) from this
appendix, which is all that is needed in the main text.

We can equate these two quantities because the right-hand
side of (C1) is the same for all allowed values of k including
n— 1 and n. We get

9y, D4 =0. (C7)
Now, we can apply (C7) to (C6) to get
1 tanh p
PR SRt s = 2 0Dy
n—2 2
cos” 8; cot 0;
+ 3 0p, D1 (C8)

We can equate this to %arn_zdl .. For that we need to

-2

evaluate it first, and from that we get

n—3

1

cos? 0, cot 6
e ) 09i¢++
Tn—2

tanhp
s @t = _Tapq)++ + '
i=1 i

sin’6,_, cot6,_,

2

; 9y D .
n-2

(©9)

Comparing it to (C8) and noting that the only different term

c0s>0,_, cot 0,_, 9
r 0

as compared to (C9) is the @, term, and

Py n=2

thus equating (C8) and (C9), we get

9y D, =0. (C10)

n=2

Following in the same way, we can get the results (by doing
the same procedure for ﬁa,;q>++ as well)
J

0@, =0 Vi#l, (C11)

0p @iy =0 V. (C12)

These then allow us to simply consider the following
equations:

1 tanh p cot 6,
0, @ = 72 0,P 22 cosh? p dg, D
1 h
=—0,0 o
P 2 ++
tanh p tan 6,
=- 0 ——5——50yp D
2 P T P2coshzp T
h
D . (C13)

72 cosh? p cos? 4,

The first equality follows from explicit calculation together
with the fact that all -derivatives vanish. The second equality
is just the right-hand side of (C1), and the third equality again
follows by direct calculation. Similarly, we also find the
following equation:
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1 coth p 1 h
—t—;at;q)++ = _T—zapq)++ = r_lalq)++ - r_%q)++
tanh p tan 6,
TP 9@+ 2cosh?p Tt
h
D, .. (C14)

72 cosh? p cos? 6,

Writing compactly, we have

cot 0, B tan 6,
cosh?p Ot T ZcoshZp
h
- d, ., Cl15
2 cosh®pcos? @, F (C13)
coth p tanh p tan 6,
T 0% =T 0%~ g 90 P
h
o, (C16)

72 cosh?p cos? 6,

These equations can be further combined to give the
following:

691 q)++ = —h tan 91 (I)++, (C17)

0,0, =htanh p®, .. (C18)
Now, one can solve (C17) and (C18) to get the result by
noting that the general solutions from these two equations are
respectively given as

@, (p.01)=f1(p)(cos0)" + fo(p) lintegrating (C17)],
(C19)

@, (p,6)=g1(6)(coshp)" +g,(6,) [integrating (C18)],
(C20)

where f(p), f2(p), 91(6,), and g,(6,) are arbitrary func-
tions of p and 6,. Further, f,(p) and g,(0,) cannot be

identically O over the full range of p and 6, respectively.
By equating (C19) and (C20), we get the following
result:

h
®,,  (cosh p cos 0))" = (ﬂ> . (C21)

T

The reason for using the « here is because we have not
included the part of the solution that arises from solving the
equations coming from the action of the Cartan generators
on ®,. With the solution to those equations included, we
have the result (93).

Similarly, the relevant equations can be solved for the
other cases to obtain the results (95), (97), and (99).

APPENDIX D: QUADRATIC CASIMIR
IN THE H-PRIMARY BASIS

We start by briefly reviewing the well-known facts about
the quadratic Casimir in a language that does not restrict
itself to the compact form of the algebra. The Casimir is
defined as

¢y = g"1,1, (D1)

where 1, t, are the generators of the algebra, and ¢* is
defined via the structure constants

[tav tb] = Cghtc (DZ)
through
Gap = C,C4 . (D3)

In our case, we have the following coefficients from the
commutator of the generators J,p:

ChE.cp = i(MapOESE + Npcdio) — Nacd565 — nppd4se).

(D4)
Using this expression, we have

9gaBcp = Cﬁg,MNCZggEF
= —(1an0583 + NBMOAON — NamS5N — NenGxO)
X (ncpbp 8y + NpEdE 8% — nceby oy — nproy 5y).

(D5)

From this, one can see that the quadratic Casimir, up to
multiplicative constants, is

Cr = WACUBDJABJCD = JABJAB- (D6)

One can of course also check that this is indeed the Casimir,
by observing that

i’]ABl’[BD[JABJCD,JMN]:O VM,NEI,,2m+2n (D7)
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In the H-primary basis, the Casimir takes the form

2 n m
o F 7 f .77 4 g g+ () e+ ) pel-e | p()  pel-e
IZHH 2HjH+Z T+ g PO + Pl B + Bl oF7e + Pl GGy
=1 j:2
2,m
(2) e/ 4ol (2) e’ +el (2) —e 2 ) —el e’ +el (3) e’ +-el
Ee +e/F +F’+e/E - Z E’ Fe ‘ +F Ef c+ Z Ee +efF() +F’+efE()
J=1,j=2 J=1,j=2 J=1,j=2
2.n
3) I el 3) —el J ek (4) I+e i (4 ) ek
+ Ee’—efFf?a) ‘ +Fe Ee “+ Z Ee/+e F?) +Fe/+e Ee + z Ee/ —ek FE )e +F Ef4)e
J=1j=2 J<k=2 Jj<k=2
m
_ (5) el ek Q) e/+e ef ek Q) e/—e el el (6) el el
~Z Eef+e F( 5) + Fe/+e Z E T Fef—e E T Z E elte JF( 6) + Fef+efE<6)
J<k=2 j<k=2 =2
+ - E() Fef—ef —|—F() Ee’—e’
- ei—el” (6) el—ei™(6)
JJ=2
= MzM* YA Bel, .. 2n+2m. (D8)

From here, we can lower the indices, and then use the commutation relations as well as the annihilation condition of @/, to

write the action of the Casimir as

2.m 2.n
(=H, £ Hy) + ) (H,+H))
+ J=1,j=2 + J=1,j=2
(i1, ﬁ;))cbh. (D9)
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