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For a given entanglement entropy of quantum field theory, we investigate how to reconstruct its dual
geometry by applying the Ryu-Takayanagi formula and the deep learning method. In the holographic setup,
the radial coordinate is identified with the energy scale of the dual quantum field theory. Therefore, the
holographic dual geometry can describe how physical properties of a quantum field theory change along
the renormalization group flow. Intriguingly, we show that the reconstructed geometry only from the
entanglement entropy data can give us more information about other physical properties like thermo-
dynamic quantities in the infrared region.
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I. INTRODUCTION

Recently, the AdS=CFT correspondence [1–5], which
maps a d-dimensional conformal field theory (CFT) to a
(dþ 1)-dimensional anti–de Sitter (AdS) space, has been
widely investigated to understand the strongly coupled
quantum field theory (QFT). Furthermore, its generalization
called the gauge/gravity duality has been applied to the study
of renormalization group (RG) flow by deforming a CFT
[6–14]. In this holographic study, a local operator deforming
the field theory is realized by a bulk field modifying the
backgroundAdSspace. For theOferAharony,OrenBergman,
Daniel Jafferis, and Juan Maldacena (ABJM) theory [15,16],
for instance, amass deformationmakes aUVCFTchange into
another IR CFT along the RG flow. The authors of Ref. [17]
figured out the holographic RG flow connecting two fixed
points by using the solution of the BPS equations.
The authors of Ref. [18] constructed the field equation of

an AdS space as a neural network (NN) and showed the
duality between the deep learning (DL) and the AdS space.
For the conventional DL, the deep layers are usually con-
sidered as a black box we cannot understand. However,
knowing the black box is important to understand the
underlying structure of the system. Reconstructing the dual

gravity following theAdS=CFT correspondencemay give us
a hint to understand the black box. In Ref. [18–22], the
authors utilized deep layers satisfying a specific recursion
relation and determines the dual bulk geometry.
The holography or AdS=CFT correspondence claims

that a (dþ 1)-dimensional classical gravity is dual to a
d-dimensional QFT. In this case, the radial or extra
dimension of the gravity is identified with the energy scale
of the dual QFT. To construct the gravity from the QFT
data, therefore, the QFT data must contain the information
about the energy scale dependence. The entanglement
entropy is one of the important quantities representing
quantum nature of QFTs like quantum correlation. Another
important feature of the entanglement entropy is that it can
describe the real space RG flow of QFTs. Therefore, the
entanglement entropy is useful to reconstruct the dual
gravity from the QFT’s data [23–26]. In the holographic
study, the entanglement entropy is realized by a minimal
surface extending from the boundary to the bulk [27–32].
The minimal surface defined in a three-dimensional

black hole-type geometry describes the RG flow of a
thermal two-dimensional QFT. In this case, the three-
dimensional bulk metric has the following general form

ds2 ¼ R2

u2

�
−fðuÞdt2 þ du2

fðuÞ þ dx2
�
: ð1Þ

Then, the entanglement entropy of the dual QFT is given by
the area of the minimal surface living in this geometry. For
a three-dimensional geometry, the area of the minimal
surface reduces to a geodesic length. Even in this case, it is
hard to predict the details of the geometry, fðuÞ, from the
known entanglement entropy data. This is because the
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entanglement entropy is usually given by an integral form
of the bulk metric. Thus, we cannot directly figure out the
geometry from the entropy function even if the entangle-
ment entropy has a simple form. In general, perturbation is
very useful to analyze complicated mathematical structures
in some regions. When the geometry is deformed by a
relevant operator [33–36], we can compute the entangle-
ment entropy perturbatively in the asymptotic AdS space
which corresponds to the conformal perturbation on the
dual QFT side. Inversely, reconstructing the perturbative
geometry from entanglement entropy data is also possible.
However, this perturbative reconstruction is valid only in
the UV regime. To know the dual geometry in the entire
range, we must go beyond the perturbative reconstruction.
The goal of this work is to find nonperturbatively a

function f reproducing the known entanglement entropy
data. To do so, we exploit the DL method [18,19]. After
introducing the deep layers, we make the general recurrence
relation of the subsystem size l and the entanglement entropy
SE. By optimizing the function f after defining a loss function
appropriately, we can finally reconstruct the nonperturbative
dual geometry from given entanglement entropy data. We
show that the holographic entanglement entropy in this
nonperturbative geometry reproduces the original entangle-
ment entropy data, as it should do. Knowing the dual
geometry is equivalent to knowing the underlying theoretical
structure of the dual QFT, as previously mentioned.
Intriguingly, this underlying structure allows us to get more
information of the system. For example, if thermalization
scale is much higher than other scales of a system, the
entanglement entropy is reduced to the thermal entropy in the
IR region. In this case, the reconstructed dual geometry can
determine all other thermodynamic quantities, like temper-
ature, internal energy, and pressure. These quantities are
nonperturbative results appearing in IR region of the RG flow.

II. THERMODYNAMICS OF
SCHWARZSCHILD-TYPE BLACK HOLES

Holographic principle is one of the fascinating tools to
understand strongly interacting systems.Recently, there have
been many attempts to figure out various nonperturbative
features of QFT in a gravity theory of one higher dimension.
Unfortunately, the exact holographic relation was known
only for maximally supersymmetric and conformal field
theories, like N ¼ 4 super Yang-Mills and ABJM theories.
To overcome this limitation, it would be important to clarify
dual gravity theories of nonconformal systems. In the present
work, we study how to reconstruct the dual geometry of QFT
from the entanglement entropy data. The reconstructed dual
geometry allows us to understand other physical properties,
as we will see later.
Before studying the reconstruction of the dual geometry,

let us first discuss how one can relate the dual geometry to
the entanglement entropy in the holographic setup. We first
assume a two-dimensional thermal system which has no

other scale except temperature. Then, its holographic dual
can be described by the following three-dimensional metric

ds2 ¼ R2

u2

�
−fðuÞdt2 þ du2

fðuÞ þ dx2
�
: ð2Þ

This is one of the metric ansatz representing an asymptotic
AdS space whose dual two-dimensional QFT has a UV
fixed point. To have an asymptotic AdS space, the
unknown metric function fðuÞ should be one at u ¼ 0.
For a pure AdS space, the metric factor fðuÞ is given
by fðuÞ ¼ 1.
Another example allowing the same metric ansatz is a

black hole in the Einstein frame. For the Schwarzschild
black hole, a blackening factor is given by

fðuÞ ¼ 1 −
u2

u2h
: ð3Þ

The blackening factor allows a simple root uh called the
horizon. In the outside of a black hole (0 ≤ u < uh), the
blackening factor is always positive. Intriguingly, it was
known that the quantities characterizing a black hole satisfy
the thermodynamics law. From the holography point of view,
the black hole thermodynamics corresponds to that of the
dual QFT. It was also known that a p-brane gas uniformly
distributed in an AdS space admits a Schwarzschild-type
black hole with the following blackening factor

fðuÞ ¼ 1 −
u2−p

u2−ph

; ð4Þ

where the horizon uh crucially relies on the energy density of
a p-brane gas [37,38].
Due to the existence of a horizon for a Schwarzschild-

type black hole solution, a blackening factor can be
reexpressed as

fðuÞ ¼
�
1 −

u
uh

�
gðuÞ; ð5Þ

where gðuÞ is a function of a dimensionless variable, u=uh,
and always positive outside the horizon. When a black hole
is characterized by only one parameter like a black hole
mass. the blackening factor of a Schwarzschild-type black
hole has a fixed value at the horizon which is independent
of the horizon’s position. In this case, all thermodynamic
quantities of the black hole are determined by the Hawking
temperature and Bekenstein-Hawking (or thermal) entropy.
For a Schwarzschild-type black hole, the Hawking temper-
ature T and Bekenstein-Hawking entropy S are given by

T ¼ gðuhÞ
4πuh

; ð6Þ
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S ¼ RL
4Guh

; ð7Þ

where L corresponds to an appropriately regularized one-
dimensional volume. The temperature and entropy together
with the thermodynamics law determine an internal energy
of the thermal system [39,40]

E ¼
Z

T dS ¼ d − 1

d
TS: ð8Þ

These thermodynamic quantities can further fix other
physical properties. The above thermodynamic quantities
determine a free energy and pressure as the following form

F ¼ E − TS ¼ −
RL
32πG

gðuhÞ
u2h

; ð9Þ

P ¼ −
∂F
∂L

¼ R
32πG

gðuhÞ
u2h

; ð10Þ

where L indicates the system size. Then, the equation of
state parameter of this system reads

w ¼ L
∂P
∂E

¼ 1: ð11Þ

This corresponds to that of massless field or radiation for a
two-dimensional QFT. Lastly, a heat capacity becomes

cV ¼ RL
4G

1

uh
> 0: ð12Þ

The positivity of the heat capacity indicates that the thermal
system considered here is thermodynamically stable.
If we take into account a black hole with more hairs like

charged or rotating black holes, the value of gðuÞ at the
horizon usually depends on the hairs. To determine
thermodynamics of this system, we need to know further
the parameter dependence of gðuÞ. Hereafter, we concen-
trate on a Schwarzschild-type black hole for simplicity,
though the technique studied in this work is also applied to
a black holes with multiple hairs.

III. THERMODYNAMICS FROM THE
ENTANGLEMENT ENTROPY

In the previous section, we discussed how to understand
various thermodynamic properties from black hole geom-
etries. Such thermodynamic quantities are also understood
from the entanglement entropy. Since the entanglement
entropy explains a real space RG flow, the thermal entropy
discussed before appears as IR physics of the entanglement
entropy [40–42]. In general, the entanglement entropy
suffers from a UV divergence which satisfies the area
law. After removing the UV divergences by an appropriate

renormalization scheme, the renormalized entanglement
entropy becomes finite and proportional to the volume in
the IR limit. This is because the leading contribution to the IR
entanglement entropy comes from the thermal entropywhich
follows the volume law [40]. As a result, the IR behavior of
the renormalized entanglement entropy gives us information
about the thermal entropy. When a black hole geometry is
known, one can easily calculate the entanglement entropy
following the Ryu-Takayanagi (RT) proposal. According to
the AdS=CFT correspondence, the entanglement entropy
and its dual geometry must have a one-to-one correspon-
dence [23–32]. Therefore, it must be possible to reconstruct a
dual geometry from the given entanglement entropy [43–46].
In this section, we first discuss how to evaluate the entangle-
ment entropy of the given geometry. By considering the
inverse procedure of the RT formula in the next sections, we
will investigate how to reconstruct the dual geometry of the
given entanglement entropy.
To calculate the holographic entanglement entropy, we

consider the following three-dimensional asymptotic AdS
space

ds2 ¼ R2

u2

�
−fðuÞdt2 þ du2

fðuÞ þ dx2
�
: ð13Þ

and divide its boundary into two parts, a subsystem and its
complement. Parametrizing the subsystem size as −l=2 ≤
x ≤ l=2 at u ¼ 0, the entanglement entropy is given by the
area of a minimal surface extending to the dual geometry.
Following this conjecture, the metric in (2) yields the
following holographic entanglement entropy

SE ¼ 1

4G

Z
l=2

−l=2
dx

R
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðuÞ þ u02

p
fðuÞ ; ð14Þ

where the prime means a derivative with respect to x. Here,
we focus on a minimal surface to describe the entanglement
entropy depending on the subsystem size. In this case, the
translation symmetry in the x-direction gives rise to a
conserved quantity

H ¼ −
R
u

ffiffiffi
f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ u02

p : ð15Þ

Denoting a turning point as u0, u0 becomes zero at u ¼ u0
and the turning point provides amaximumvalue towhich the
minimal surface can extend. In other words, the minimal
surface extends to only the range of 0 ≤ u ≤ u0. At the
turning point, the conserved quantity reduces to

H ¼ −
R
u0

: ð16Þ

Using this relation, we can represent the subsystem size and
the entanglement entropy in terms of the turning point
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l ¼
Z

u0

0

du
2uffiffiffi

f
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u20 − u2
p ; ð17Þ

SE ¼ R
2G

Z
u0

ϵUV

du
u0

u
ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 − u2

p ; ð18Þ

where a UV cutoff ϵUV is introduced to regularize a UV
divergence.
For a pure AdS case with fðuÞ ¼ 1, the holographic

entanglement entropy becomes

SAdS ¼ c
3
log

�
l

ϵUV

�
; ð19Þ

where c ¼ 3R=2G means a central charge of the dual CFT.
This is the entanglement entropy of a two-dimensional CFT
with a UV divergence. In order to discuss finite contribu-
tion, we define a renormalized entanglement entropy with
removing the UV divergence

SðreÞE ¼ SE þ c
3
log

ϵUV
R

: ð20Þ

Then, the renormalized one is UV divergence-free. For a
Schwarzschild-type AdS black hole, since the blackening
factor fðuÞ approaches one at the boundary, the leading
contribution to the renormalized entanglement entropy in
the UV region is given by SE ∼ c log l=3 with small
corrections. This logarithmic behavior universally occurs
near the UV fixed point. In the IR regime, however, the
renormalized entanglement entropy of a black hole shows
different behavior. For a Máximo Bañados, Claudio
Teitelboim, and Jorge Zanelli (BTZ) black hole geometry,
the leading term of the renormalized entanglement entropy
in an IR limit (l → ∞) is given by [40]

SðreÞE ¼ Rl
4Guh

þ R
2G

log
uh
R

þ R
2G

e−l=uh þ � � � ; ð21Þ

where the ellipsis indicates small quantum corrections.
Recalling that l corresponds to the volume of the spatially
one-dimensional subsystem, we can see that the leading
contribution to the IR renormalized entanglement entropy
equals to the thermal entropy (6) stored in the subsystem.
Since a thermal entropy is an extensive quantity, the finite
part of the IR entanglement entropy is proportional to the
subsystem’s volume. It was shown that this volume
dependence universally appears in the black hole case.
This volume dependence was called the volume law of the
IR entanglement entropy [40]. This result shows that we
can determine the horizon position and thermal entropy
from the IR entanglement entropy. In the next sections, we
further discuss how to determine the other thermodynamic
quantities from the entanglement entropy data.

IV. HOW TO RECONSTRUCT DUAL
GEOMETRIES VIA MACHINE LEARNING

To reconstruct the dual geometry of entanglement
entropy, let us first discuss a perturbative method for later
comparison with a nonperturbative construction. The per-
turbation approach is one of the good methods analyzing a
complicated mathematical structure. However, a perturba-
tive solution has an issue on the convergence range in
which we can trust the perturbative solution [33–36]. Due
to the convergence, the perturbative method usually pro-
hibits us from looking into a deep interior of a dual
geometry. This indicates that we need a new nonperturba-
tive method to obtain the dual geometry valid in the entire
region. Despite this fact, a perturbative method is useful to
see the connection between the entanglement entropy and
its dual geometry at least in the UV region.
Now, we evaluate the entanglement entropy by applying

perturbative method. For an asymptotic AdS space includ-
ing a Schwarzschild black hole, the metric function allows
the following perturbative expansion in the asymptotic
region (u → 0)

fðuÞ ¼ 1þ
X
i

ciui: ð22Þ

If the analytic form of a metric is known, the coefficients ci
are uniquely fixed. Applying the previous holographic
technique in (17), the subsystem size and its entanglement
entropy are determined by the turning point

lðu0Þ ¼ 2u0 þ
πc1
4

u20 þ
�
c21
2
−
2c2
3

�
u30

þ
�
15πc31
128

−
9πc1c2
32

þ 3πc3
16

�
u40 þ � � � ; ð23Þ

SEðu0Þ ¼ SAdSðu0Þþ
c
3

�
−
πc1
4

u0 þ
�
3c21
8

−
c2
2

�
u20þ � � �

�
;

ð24Þ

where SAdS is the entanglement entropy of a pure AdS with
ci ¼ 0. Combining these result, the entanglement entropy
can be reexpressed as a function of the subsystem size
instead of the turning point

SEðlÞ¼SAdSðlÞþ
c
3

�
−
3πc1
16

lþ
�
c21
32

þ7π2c21
512

−
c2
24

�
l2þ���

�
:

ð25Þ

This result shows that a given geometry determines the
entanglement entropy.
When we take into account an inverse procedure, can we

reconstruct the dual geometry from a given entanglement
entropy? Since known entanglement entropy fixes all
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coefficients in (25) uniquely, it is also possible to recon-
struct the dual geometry of a given entanglement entropy.
However, the above reconstruction is perturbative, so that
the obtained geometry is valid only in the UV region (or
small subsystems size). To go beyond the perturbation, we
need to reconstruct a dual geometry nonperturbatively, This
nonperturbative reconstruction is important to understand
IR physics of a dual QFT and, moreover, can give us
information about other physical properties. To do so, we
exploit the DL technique. The DL method was also used to
understand classical systems governed by position- and
velocity-dependent forces [19].
Now, we assume that an entanglement entropy is given

as the function of a subsystem size l, and that the
renormalized one follows the volume law in the large
subsystem size limit. From now on, we call the given
entanglement entropy a true data, StrueðlÞ, for convenience.
In this case, since the volume law comes from the thermal
entropy, we expect that the dual geometry is given by a
black hole type geometry. Keeping this fact in mind, we try
to reconstruct the exact dual geometry from the given
entanglement entropy data. To perform the above integrals
numerically, we replace the integral range by N small
intervals. Here, we take N ¼ 2000. Then, the integrations
in (17) are represented as recurrence relations between
(k − 1)th and kth layers for k ≤ N. From now on, we follow
the convention in Ref. [19]. For the numerical analysis, the
discretization in the u-direction inevitably leads to numeri-
cal error and make mismatch between the holographic
result and true data. If there is no numerical error, the

holographic result satisfies SðNÞ
E ðlðNÞÞ¼StrueðlðNÞÞ. Anyway,

we try to reduce the numerical error by taking a large grid
number N and by using an improved integration technique,
the fourth-order Runge-Kutta method. Even in this case,
small numerical error is unavoidable. As a result, it is hard

to find f satisfying SðNÞ
E ðlðNÞÞ ¼ StrueðlðNÞÞ exactly in the

entire range of u. Due to this reason, in the present work we
exploit the DL method where we try to find an optimized f
having only small error.
Applying the fourth-order Runge-Kutta method, the

recurrence relations are written as

lðkÞ ≈ lðk−1Þ þ 1

6

�
δlðuðk−1ÞÞ þ 4δl

�
uðk−1Þ þ Δu

2

�

þ δlðuðk−1Þ þ ΔuÞ
�
; ð26Þ

SðkÞE ≈ Sðk−1ÞE þ 1

6

�
δSEðuðk−1ÞÞ þ 4δSE

�
uðk−1Þ þ Δu

2

�

þ δSEðuðk−1Þ þ ΔuÞ
�
; ð27Þ

with

δlðuðkÞÞ ¼ 2uðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðuðkÞÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 − ðuðkÞÞ2

q and

δSEðuðkÞÞ ¼
R
2G

u0

uðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðuðkÞÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 − ðuðkÞÞ2

q ; ð28Þ

where uðkÞ ¼ uð0Þ þ kΔu with Δu ¼ ðu0 − uð0ÞÞ=N indi-
cates the position of the kth layer in the u direction. Here
uð0Þ ¼ 10−2 corresponds to the position of the zeroth layer
which plays a role of a UV cutoff. Under this para-
metrization, the turning point appears at the Nth layer,
u0 ¼ uðNÞ. When the blackening factor is given, the
subsystem size and entanglement entropy are determined
in terms of the turning point. After the performing the
integration, in other words, the subsystem size and entan-
glement entropy are determined as functions of the turning

point, lðNÞðuðNÞÞ and SðNÞ
E ðuðNÞÞ, in the holographic setup.

In order to describe the given true data holographically, we
have to find the function fðuÞ for the dual geometry of the
true data. To do so, we first identify the holographic
subsystem size with that of the true data, lðNÞðuðNÞÞ ¼ l.
In this case, if a testing function for fðuÞ is really the one of
the dual geometry, the holographic entanglement entropy

must be equal to the true data,SðNÞ
E ðuðNÞÞ ¼ StrueðlðNÞðuðNÞÞÞ.

If we choose a wrong testing function, SðNÞ
E ðuðNÞÞ ¼

StrueðlðNÞðuðNÞÞÞ is not satisfied. As a consequence, we can
find fðuÞ of the dual geometry by checking whether a test

function satisfies SðNÞ
E ðuðNÞÞ ¼ StrueðlðNÞðuðNÞÞÞ.

For a nonextremal black hole, the blackening factor fðuÞ
is generally factorized into ð1 − u=uhÞgðuÞ, where gðuÞ is
regular in the outside of the horizon. Using this fact, we
define the following simple loss function

Loss¼
XM
a¼1

jSðNÞ
E ðuðNÞ

a Þ−StrueðlðNÞðuðNÞ
a ÞÞj

þCreg

XN
k¼1

½gðuðkÞÞ− gðuðk−1ÞÞ�2þCbdy½gðuð0ÞÞ−1�2:

ð29Þ

Here, uðNÞ
a indicates the ath turning point when we consider

M turning points. From now on, we take M ¼ 10 and

uðNÞ
a ¼ a=1.01 with an integer a ≤ M where the denom-

inator 1.01 was introduced to satisfy the constraint uðNÞ
a <

uh ¼ 10 for all a. This implies that we pick up ten
subsystems with different sizes which are characterized

by lðNÞðuðNÞ
a Þ. When the turning points are fixed, we can

find gðuÞ satisfying SðNÞ
E ðuðNÞ

a Þ ¼ StrueðlðNÞðuðNÞ
a ÞÞ for all a

simultaneously by varying gðuÞ. In this case, the resulting
gðuÞ specifies the dual geometry of the true entanglement
entropy data. If M increases, we may obtain more accurate
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results. Above Creg and Cbdy are two appropriate constants,
which were introduced to satisfy some conditions. At the
early stage, we assumed that the asymptote of the dual
geometry is an AdS space, which requires gð0Þ ¼ 1. This is
automatically satisfied by minimizing the last term of the
loss function. On the other hand, the second term is needed
to make gðuÞ smooth. In this work, we optimize the
above loss function by applying the Adam method with
Creg ¼ 0.03 and Cbdy ¼ 1 [47].

V. DUAL GEOMETRY OF ENTANGLEMENT
ENTROPY

Applying the DL technique discussed in the previous
section, in this section we explicitly reconstruct the dual
geometries when the entanglement entropy data are given.
In the first two cases, the dual geometries are known and in
the last case the dual geometry is unknown.

A. BTZ black hole

First, we take into account the entanglement entropy of
a known geometry in order to check the validity of the
nonperturbative reconstruction. The BTZ black hole and its
holographic entanglement entropy are analytically well
known. The blackening factor of the BTZ black hole
fðuÞ is given by

f ¼ 1 −
�
u
uh

�
2

; ð30Þ

where uh is the black hole horizon. Applying the RT
formula, one can easily calculate the entanglement entropy
as the following form

SBTZðlÞ ¼
c
3
log

�
2uh
ϵUV

sinh

�
l

2uh

��
; ð31Þ

where ϵUV means a UV cutoff. In Fig. 1, we plot the
entanglement entropy of the known black hole geometries,
BTZ black hole and string cloud geometry which is
equivalent to the p-brane gas geometry for p ¼ 1.
Now, we assume that we have the entanglement entropy

data in (31) without knowing its dual geometry. Then can we
reconstruct its dual geometry? If one can reconstruct its dual
geometry, the holographic map of the obtained geometry
intriguingly gives us more information about this system. In
the IR region (l → ∞), the entanglement entropy (31) up to
UV divergence reduces to the thermal entropy stored in the
subsystem, which is proportional to the volume, l

SthðlÞ ≈
R
4G

l
uh

: ð32Þ

Recalling that l corresponds to the spatial volume of the
dual QFT, the volume law of the IR entanglement entropy

indicates that the dual geometry must be a black hole type
geometry, as mentioned before. Together with the ansatz
in (5), the DL method determines the dual geometry, gðuÞ,
numerically as shown in Fig. 2. The result of Fig. 2(a) is
almost linear with some numerical error. This becomes more
manifest whenwe calculate g00ðuÞ numerically. The resulting
g00ðuÞ in Fig. 2(b) is zero with small oscillating error. This
indicates that gðuÞmust be a linear function of u. Due to this
reason, the resulting numerical data is well fitted by the
following blackening factor

fðuÞ ¼
�
1 −

u
uh

��
1.0036þ 0.9978

u
uh

�
: ð33Þ

This DL result is consistent with the blackening factor of
the BTZ black hole up to small numerical error. The
numerically obtained geometry reproduces the starting
entanglement entropy in (31).
From the numerical metric, we can determine other

physical quantities of the system. For example, the obtained
metric determines gðuhÞ ¼ 2.0014. Using this value, we see
that the temperature of the system is given by

T ¼ 0.1593
uh

: ð34Þ

Moreover, we see that the system has the following internal
energy densities

ρE ≡ E
l
¼ 0.0199R

G
1

u2h
: ð35Þ

These results are consistent with the results derived from
the BTZ black hole.

B. String cloud geometry

In addition to the BTZ black hole, there exists another
black hole solution called the string cloud geometry
[37,38,48–52]. When open strings are uniformly distrib-
uted in an AdS space, one obtains the string cloud geometry

FIG. 1. The entanglement entropy of two black holes, BTZ
black hole (red dashed curve) and string cloud geometry (blue
solid curve). We take ϵUV ¼ 10−2, R ¼ 1, uh ¼ 10 and c ¼ 1.
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characterized by (4). The string cloud geometry corre-
sponds to the specific case of the previous p-brane gas
geometry with p ¼ 1. The string cloud geometry has the
following blackening factor

fðuÞ ¼ 1 −
u
uh

: ð36Þ

Computing the entanglement entropy following the RT
formula, we can determine it only numerically as shown in
Fig. 1, because the analytic solution is not known. Even in
this case, it is still possible to reconstruct the dual geometry
from the numerical data.
In the IR region of Fig. 1, the entanglement entropy of

the string cloud geometry has a linear slope. This linearity
indicates the volume law for the two-dimensional QFT, so
that the dual geometry becomes a black hole. Recalling that
the IR entanglement entropy reduces to the thermal entropy
in this case, the slope in the IR region is associated with the
horizon’s position

dSE
dl

¼ R
4G

1

uh
: ð37Þ

When the central charge is given by c ¼ 3R=2G ¼ 1, the
slope of the IR entanglement entropy in Fig. 1 determines
the horizon’s position to be uh ¼ 10.
Applying the DL method to the entanglement entropy

data (the entanglement entropy of the string cloud geometry
in Fig. 1), we finally determine the dual geometry numeri-
cally, as shown in Fig. 3 where gðuÞ is given by a constant
up to small numerical error. This geometry reproduces the
entanglement entropy of the string cloud geometry. The
numerical data is further well fitted by the following
function

fðuÞ ¼ gðuÞ
�
1 −

u
uh

�
: ð38Þ

with

gðuÞ ¼ 0.9953: ð39Þ

This is the metric expected from the entanglement entropy
and consistent with the known metric of the string cloud
geometry.
Using the two quantities, uh and gðuhÞ, obtained by the

DL method, we also determine the thermodynamic quan-
tities. The system described by the above entanglement
entropy has the temperature

T ¼ 0.0079; ð40Þ

and its internal energy density is given by

ρE ¼ 0.0001R
G

: ð41Þ

The other quantities like free energy, pressure, and specific
heat can be also determined from theses quantities by

FIG. 2. We plot (a) gðuÞ and (b) g00ðuÞ (black-dashed curve) which is the numerical result obtained by the DL method. In (a), we also
plot gðuÞ ¼ 1þ u=uh (orange-solid curve) for comparison where we take uh ¼ 10.

FIG. 3. For the string cloud geometry, we depict the numerical
DL result of g (black-dashed curve) where we used uh ¼ 10. The
result is consistent with g ¼ 1 up to small numerical error.
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applying the thermodynamic relations studied in the
previous section.

C. Unknown dual geometry of entanglement entropy

In the previous sections, we took into account the known
geometries and their entanglement entropy data. Now, we
look into the case having only the entanglement entropy
data and reconstruct its unknown dual geometry. Let us
suppose that the system has the following entanglement
entropy

SEðlÞ ¼
c
3
log

�
FðlÞ
ϵUV

�
; ð42Þ

where FðlÞ is an arbitrary function satisfying two boundary
conditions, FðlÞ → l at l → 0 and FðlÞ → el=a with an
arbitrary constant a at l → ∞. Here, the first condition
requires the existence of a UV fixed point. On the other
hand, the second condition was imposed to obtain the
volume law in the IR limit. Theses two boundary con-
ditions restrict the dual geometry to a black hole.
Now, we take into account the following simple example

SEðlÞ ¼
c
3
log

�
a
ϵUV

�
exp

�
l
a

�
− 1

��
; ð43Þ

which satisfies the required boundary conditions. If we
ignore the UV divergence part, the leading term of the IR
entanglement entropy is given by

SðreÞE ≈
c
3

l
a
: ð44Þ

Here, the volume law of this IR entanglement entropy is
caused by the thermal entropy. Recalling the following
relation c ¼ 3R=ð2GÞ, we see that the horizon in the dual
geometry appears at uh ¼ a=2.

Applying the perturbative method, the perturbative
expansion of the entanglement entropy in the UV region
determines the metric as the following series

fðuÞ ¼ 1 −
4

3π

u
uh

þ
�
1

3
þ 4

3π2

�
u2

u2h

−
�
146

567π
þ 32

27π3

�
u3

u3h
þ � � � ð45Þ

¼
�
1 −

u
uh

��
1þ 0.575587u

uh
þ 1.04402u2

u2h

þ 0.923828u3

u3h
þ � � �

�
: ð46Þ

This perturbative result is valid only in the UV region
(u=uh ≪ 1), so that it does not give us information about
the IR physics. Due to this reason, the perturbative
calculation cannot determine the black hole geometry
correctly. To overcome this problem and to know IR
physics, we have to exploit a nonperturbative method.
Applying the nonperturbative DL technique, we obtain

the following dual geometry

fðuÞ ¼
�
1 −

u
uh

�
gðuÞ; ð47Þ

with a numerical function gðuÞ in Fig. 4(a). The value of
gðuÞ at the horizon is given by gðuhÞ ¼ 0.471 for a ¼ 20.
This value together with the horizon determines the
temperature and internal energy of the considered system

T ¼ 0.471
2π

1

uh
; ð48Þ

E ¼ 0.471c
24π

l
u2h

: ð49Þ

FIG. 4. We plot the numerical DL results of (a) the regular part of the blackening factor g (black-dashed curve) and (b) its derivative
dg=du. They are derived from the entanglement entropy data whose dual gravity is not known. The orange curve in (a) indicates a
nonperturbative approximation fitting the DL result up to u4 order.

PARK, HWANG, CHO, and KIM PHYS. REV. D 106, 106017 (2022)

106017-8



These results show that the internal energy is proportional
to the degrees of freedom, as expected and that the system
considered here follows the Stefan-Boltzmann law.
From the numerical metric, intriguingly, it is also

possible to find a nonperturbative approximation valid in
the outside of the black hole. For example, the numerical
data, as shown in Fig. 4(a), is well fitted by the following
polynomial

gðuÞ ¼ 0.975þ 0.186
u
uh

− 1.805
u2

u2h
þ 1.611

u3

u3h
: ð50Þ

This analytic function reproduces the starting entanglement
entropy (43) up to a small numerical error. The numerical
and analytic results give rise to the almost the same metric
and entanglement entropy, as shown in Fig. 5. Moreover,
the thermodynamic quantities derived from the analytic
function leads to the almost same result as (48)

T ¼ 0.484
2π

1

uh
; ð51Þ

E ¼ 0.484c
24π

l
u2h

: ð52Þ

These results intriguingly show that the dual geometry
reconstructed from the entanglement entropy data gives us
more physical information on the considered system.

VI. DISCUSSION

We studied how to reconstruct the dual geometry of
entanglement entropy data via the deep learning method.
After making a neural network structure of the Ryu-
Takayanagi formula, we find the dual geometry reproduc-
ing given entanglement entropy data. In this work, we

focused on specific entanglement entropy which is linearly
proportional to the subsystem’s volume in the large size
limit. This IR feature generally occurs when the entangle-
ment entropy flows to a thermal entropy in the IR region. In
this case, the dual geometry must be a black hole-type
geometry. By applying the deep learning method studied
here, we reconstructed the known black hole solutions,
BTZ black hole and string cloud geometry, from the
analytic and numerical entanglement entropy data. We
also took into account arbitrary entanglement entropy
whose holographic dual is not known. Even in this case,
we successfully reconstructed the dual geometry which
reproduces the starting entropy data.
Reconstructing the dual geometry from entanglement

entropy data is important to understand other physical
properties of the same system. Since the dual geometry can
provide more information about the underlying structure
of the dual QFT, it allows us to figure out other physical
quantities beyond reproducing the original entanglement
entropy. From the dual geometry of the entanglement
entropy, we extracted information about thermodynamic
variables like temperature and internal energy which
characterize thermal properties of the system in the IR limit.
In the present work, we concentrated on black hole

geometries because the entanglement entropies of their dual
QFT’s have an universal feature in the IR region. However,
the entanglement entropyRG flow of a generalQFT does not
always admit thermodynamics in the IR region. In this case,
can we reconstruct its dual geometry from the entanglement
entropy data? In general, a nontrivial RG flow of the
entanglement entropy is crucially related to the change of
couplings. Therefore, if we know the entanglement entropy
as well as the β-functions of system’s couplings, these RG
data may enable us to reconstruct the dual geometry beyond
the black hole geometries studied here. We hope to report
more results on this issue in future works.

FIG. 5. (a) We plot the blackening factors evaluated by the perturbation method (orange solid curve) and the DL method (black dashed
curve). (b) We depict the holographic entanglement entropies derived from the original one (orange solid curve), DL result (black dashed
curve), and perturbative result (blue dotted curve). The DL result reproduces the original entanglement entropy, while the perturbative
result is valid only in the small l region, as mentioned before.
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