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Any approach to pure quantum gravity must eventually face the question of coupling quantum matter to
the theory. In the past, several ways of coupling matter to spin foam quantum gravity have been proposed,
but the dynamics of the coupled matter-gravity system is challenging to explore. To take first steps toward
uncovering the influence quantum matter has on spin foam models, we couple free, massive scalar lattice
field theory to a restricted, semiclassical 4D spin foam model, called quantum cuboids. This model can be
understood as a superposition of hypercuboidal (and, thus, irregular) lattices. Both theories are coupled by
defining scalar lattice field theory on irregular lattices via discrete exterior calculus and then superimposing
these theories by summing over spin foam configurations. We compute expectation values of geometric and
matter observables using Markov chain Monte Carlo techniques. From the observables, we identify a
regime in parameter space, in which the spin foam possesses a finite total volume and looks on average like
a regular lattice with an emergent lattice spacing dependent on the mass of the scalar field. We also measure
the two-point correlation function and correlation length of the scalar field in relation to the geodesic
distance encoded in the spin foam. Our results are consistent with the correlation function of ordinary scalar
lattice field theory defined on a fixed regular lattice with the emergent lattice spacing and the same mass.
We conclude that, in this regime of the model, the scalar field is not sensitive to the fluctuations of the spin
foam and effectively behaves as if it is defined on a fixed regular lattice.
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I. INTRODUCTION

The definition of a consistent framework of gravity and
quantum matter is one of the strongest reasons to search for
a theory of quantum gravity. Indeed, at the classical level,
the dynamics of gravity and matter are deeply intertwined,
and it is expected that the same holds in the quantum
regime of both theories. Therefore, all approaches to
quantum gravity must eventually face the question how
to include quantum matter in their approach, in particular,
those that describe pure quantum gravity. The purpose of
this article is to make progress in this direction in spin foam
quantum gravity and present for the first time expectation
values of geometric and matter observables in a restricted
setting.
Spin foam quantum gravity [1,2] is a background-

independent approach to quantum gravity, frequently
referred to as the covariant or path integral formulation
of loop quantum gravity [3]. The starting point is
Plebanski’s formulation of general relativity [4], as a
constrained topological quantum field theory, where we
first discretize topological BF theory on a combinatorial

2-complex [5] and then impose the constraints. This theory
decorates the discretization with group-theoretic, algebraic
data encoding quantum geometric quantities, e.g., areas of
triangles and (fuzzy) shapes of tetrahedra. In the path
integral, one then sums over these data to describe a sum
over geometries. One of the most widely used and explored
modern spin foam models for 4D gravity is the Engle-
Pereira-Rovelli-Livine / Freidel-Krasnov (EPRLFK) model
[6–8], which has the particular advantage of connecting on
its boundary to the kinematical loop quantum gravity
Hilbert space.
Different scenarios on how to include matter have been

explored in loop quantum gravity and spin foams, e.g.,
unification scenarios in which a large symmetry group
encodes both gravity and matter [9] or scenarios in which
matter degrees of freedom are used to deparametrize the
system [10–13]. In many cases, also in this work, one
considers adding matter “on top” of the pure quantum
gravity theory, here the spin foam. The idea is to use the
geometry encoded in a spin foam as the (fluctuating) space-
time on which matter degrees of freedom and their
interactions are defined. These works include gauge fields
[14–17] and fermions [18,19]. Moreover, a spin foam
model coupled to a massless scalar field exists [20], which*sebastian.steinhaus@uni-jena.de
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was derived from loop quantum gravity coupled to a scalar
field following similar works in loop quantum cosmology
[21,22]. Defining such coupled systems is vital to inves-
tigate how quantum matter and gravity mutually affect each
other and has given rise to interesting questions in other
approaches to quantum gravity. One example is the ques-
tion whether there are (unexpected) constraints from
quantum gravity on the possible matter content of the
Universe or whether quantum gravity effects significantly
influence the matter theory, e.g., the mass of elementary
particles. Both effects have, e.g., been seen in asymptotic
safety [23]; see, e.g., [24–26]. In discrete approaches,
studying such systems is challenging but possible; e.g.,
recently in causal dynamical triangulations [27] a scalar
field was coupled to the gravitational theory, and the
authors observed a matter-driven change of space-time
topology [28,29]. In spin foams the dynamics of such
coupled systems, in particular, in the deep quantum geo-
metric regime, is barely known, yet more humble goals
might be within reach. Indeed, such matter-gravity systems
should possess a regime in which one recovers an effective
theory that can be understood as a quantum field theory
defined on a fixed (emergent) background space-time. Such
a result would be a key consistency check for the theory.
However, the dynamics of matter coupled to spin foams is

challenging to explore for different reasons. One of them is
the complexity of spin foam quantum gravity itself, e.g., the
computation of its fundamental amplitudes. Fortunately, in
recent years, significant progress has beenmade to overcome
this challenge through numerical means, e.g., by developing
an algorithm to explicitly compute the vertex amplitude [30–
33], the invention of effective spin foams, which utilize the
semiclassical approximation of spin foam amplitudes [34–
37], the usage of Lefschetz thimbles making Monte Carlo
algorithms applicable to oscillatory spin foam path integrals
[38] and the contributions from complex critical points in
spin foams with multiple simplices [39]. Despite these
advances, performing pure spin foam calculations beyond
small triangulations is challenging, not to mention adding
matter dynamics on top. Instead, we opt for a restricted,
semiclassical spin foam model, called quantum cuboids
defined in Ref. [40], which is accessible for numerical
simulations and whose amplitudes are derived from the
EPRLFK model defined on a hypercubic 2-complex [41].
Essentially, one can understand this model as a superposition
of flat, hypercuboidal (and, thus, irregular) lattices weighted
by spin foam amplitudes. In the past few years, this model
gave the first chance to study important questions in spin
foam quantum gravity, e.g., renormalization [42–44] and the
spectral dimension [45]: InRefs. [46,47], the renormalization
group flow of cuboid spin foams was computed, which
showed indications of a UV attractive fixed point and a
second-order phase transition. These results were later
generalized to frusta [48,49], generalizations of cuboids to
a cosmological setting allowing for nonvanishing curvature,

which confirmed these findings in a more general context
[50]. Moreover, in Ref. [51], the spectral dimension, an
effective dimension measure derived from a diffusion proc-
ess, for quantum cuboids was computed, which can be lower
than four due to the superposition and scaling of cuboid
geometries of different size. Thus, while quantum cuboids
are no realistic model of quantum space-time, they pertain
features of spin foam models and provide an ideal test
scenario to define and study suitable observables. In this
work, we will, e.g., define an observable, the two-point
correlation of the scalar field in a relational manner [52–54],
wherewemeasure both the scalar field correlations aswell as
their distance encoded in the spin foam state.
As a matter system, we consider a free, massive scalar

field defined as a lattice field theory on the cuboid spin
foam. To do so, we interpret a spin foam configuration as an
irregular lattice on which we define scalar lattice field theory
via discrete exterior calculus [55,56]. Then, by superimpos-
ing spin foam states, we also superimpose lattice field
theories defined on these configurations. At the level of the
amplitudes, the spin foam is unaffected by the addition of
the scalar field, while the latter is sensitive to the spin foam
only via the geometry of the spin foam state it is defined on.
We consider this a “minimal coupling,” but it is certainly not
free of ambiguities. Because of the nonoscillatory nature of
quantum cuboid amplitudes, which even persists into the
deep quantum regime [57], we can study the whole system
with a Markov chain Monte Carlo algorithm and compute
expectation values of observables. Thus, this model gives us
the first chance to study the dynamics of a matter theory
coupled to a 4D spin foam model and learn valuable first
lessons about such systems.
This article is organized as follows: We open in Sec. II

with a brief review of free scalar field theory defined on a
regular lattice. In Sec. III, we generalize this field theory to
irregular lattices using discrete exterior calculus. Section IV
briefly introduces spin foam models and the cuboid
restriction. We define the coupled system, scalar lattice
field theory on quantum cuboids, in Sec. Vand describe the
Monte Carlo algorithm to compute its expectation values in
Sec. V C. The results are detailed in Sec. VI, and we close
with a summary and discussion in Sec. VII.

II. SCALAR FIELD THEORY
ON A REGULAR LATTICE

As an introduction to lattice field theory, we start by
briefly discussing the free, massive scalar field defined on a
regular, hypercubic lattice. We start from the continuum
(Euclidean, Wick-rotated) action:

S½ϕ� ≔
Z

d4x

�
1

2
ð∂μϕÞð∂μϕÞ þ

M2

2
ϕ2

�
; ð1Þ

and define the partition function as
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Z ≔
Z

D½ϕ�e−S½ϕ�: ð2Þ

To make this expression well defined, we regularize it by
introducing a discretization, a regular lattice with lattice
constant a. On the lattice, the continuum scalar field ϕðxÞ is
replaced by the field ϕx located at the coordinates x of the
vertices of the regular lattice. We discretize the derivatives
by approximating them by difference quotients of fields
sharing the same edge, but this definition is not unique and
different choices differ by lattice artifacts of OðaÞ. Instead,
we consider the lattice Laplacian (by performing an
integration by parts and dropping boundary terms due to
periodic boundary conditions):

∂
2ϕ →

X
�μ

ϕðxþ eμÞ þ ϕðx − eμaÞ − 2ϕðxÞ
a2

; ð3Þ

where eμ denotes a unit vector in the μ direction and �μ
denotes that we are summing over positive and negative
directions for each direction μ.
The integral over all points in the continuum is replaced by

a sum over all vertices:
R
d4xϕðxÞ → a4

P
x ϕx, where a4 is

the 4-volume of a lattice hypercube. Here, x denotes the
coordinates of the vertices of the lattice and ϕx ≔ ϕðxÞ. The
functional integral in this discrete setting is defined as a
product of regular integrals:

R
D½ϕ�→Q

x

R
dϕx. Combining

all these ingredients, we find the discrete lattice action:

SðdÞ½ϕ� ¼ −
a2

2

X
x;μ

ϕxϕxþμ þ
a2

2
ð8þ a2M2Þ

X
x

ϕ2
x; ð4Þ

wherewe have used the periodicity of the lattice to rewrite the
kinetic part of the action.
This action can be brought into a simpler form, by

enumerating the vertices of the lattice and writing the field
configuration as a single N-dimensional vector ϕ⃗, where N
is the number of lattice vertices. Then, we express the scalar
field action as the contraction of a matrix K by two vectors
of field configurations:

SðdÞ½ϕ� ¼ 1

2
ϕnKnmϕm; ð5Þ

Knm ¼−a2
X
μ

ðδnþeμ;mþδn−eμ;m−2δnmÞþa4M2δnm: ð6Þ

Given this representation, computing observables such
as the two-point correlation function hϕnϕmi is straight-
forward and given by the inverse of K, K−1

nm. The
correlations of scalar fields at different vertices drops
off exponentially with the distance dðn;mÞ between them,

i.e., hϕnϕmi ∼ e−
dðn;mÞ

ξ , where ξ denotes the correlation
length. For the massive scalar field, this correlation length

is inversely proportional to the mass M of the scalar field,
ξ ¼ M−1; i.e., the larger the mass, the faster the correla-
tions die off as we increase the distance. Conversely, we
can estimate the mass of the scalar field from the
exponential decay of its correlations.

A. Taking the continuum limit

In lattice field theory, the lattice plays the role of a
regulator, and particular care is necessary to make sure that
the results are independent of this regularization. To this
end, one investigates whether a continuum limit can be
taken, i.e., the regulator can be removed. Naively, this limit
corresponds to taking a → 0, but it can be taken only on a
second-order phase transition in the phase diagram of the
theory. Only on such a transition scale is invariance
guaranteed and the limit a → 0 well defined. Note, how-
ever, that such a phase transition is not possible for finite
volume. The specifics of this procedure go beyond the
scope of this article, and we refer to the literature of lattice
field theory.
For the free, massive scalar field, the continuum limit can

be readily taken. Note that the lattice spacing a also
determines the dimension of analytic operations; i.e.,
dimensionful quantities can be rescaled by (powers of) a
to turn both fields and coupling constants into dimension-
less quantities. In 4D, we define dimensionless fields
φ ¼ ϕ

a, and the scalar field action is written in terms of a
new matrix K̃:

SðdÞ½φ� ¼ 1

2
φnK̃nmφm; ð7Þ

K̃nm ¼ −
X
μ

ðδnþeμ;m þ δn−eμ;m − 2δnmÞ þ M̃2δnm; ð8Þ

where we have defined the lattice mass M̃ðaÞ ¼ aM. Thus,
the scalar field action contains no dependence on the lattice
scale besides the lattice mass M̃. Taking the continuum
limit corresponds to taking the lattice mass M̃ → 0 while
keeping M ¼ M̃

a constant. This leads indeed to a second-
order phase transition, since the correlation length M̃−1,
i.e., the physical correlation length expressed in lattice
units, diverges. While this is a trivial example of taking the
continuum limit, it demonstrates that free, massive scalar
field theory has only one free parameter, the massM of the
scalar field. Hence, it should also be a suitable test case for
coupling matter to a discrete approach to quantum gravity.

III. SCALAR MATTER ON AN
IRREGULAR DISCRETIZATION

In order to couple scalar lattice field theory to spin
foams, we generalize its definition to irregular lattices,
which includes both their geometry and combinatorics.
Therefore, the construction we present is applicable, e.g., to
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triangulations. To do so, we use discrete exterior calculus
[55,56,58]: The idea is to discretize a continuum action
expressed in terms of differential forms by smearingp-forms
[their duals (d − p)-forms] over p-simplices [dual (d − p)-
simplices], respectively.
On a manifold M, a real scalar field ϕ with mass M is a

0-form [ϕ ∈ Ω0ðMÞ] with the action

S ¼ 1

2

Z
M

dϕ ∧ �dϕþM2ϕ � ϕ; ð9Þ

where dϕ is the exterior derivative of ϕ and � denotes the
Hodge dual.
Let us now consider a simplicial discretization K of M.

In this discrete setting, the role of a p-manifold is played by
p-chains, i.e., formal linear combinations of p-simplices
(σp) in K generating the vector space of p-chains
c ∈ CpðKÞ. We write an element of CpðKÞ as

jci ¼
X
σp∈Kp

hσpjcijσpi: ð10Þ

Similarly, linear forms on K are represented by p-cochains
c̃ ∈ CpðKÞ written as

hc̃j ¼
X
σp∈Kp

hc̃jσpihσpj: ð11Þ

This identification between the continuum linear forms and
the discrete p-cochains assumes that the discretization
process involves an integration ofp-forms over p-simplices,
and in the discrete setting integration is replaced by the
evaluation of a cochain on a chain (hc̃jci). Thus, a p-form
smeared on a single p-simplex may be written as

ωðσpÞ ¼ hωjσpi ¼ Vσpωσp ¼
Z
σp

ω: ð12Þ

Here, hωjσpi is the integrated value of thep-formω onσp and
contains information about the volume of σp, whereas the
coefficients ωσp are the discrete components of the p-form.
Therefore, the scalar field can be discretized by smearing

on 0-simplices (σ0) as

ϕðσ0Þ ¼ hϕjσ0i ¼ ϕσ0 ; ð13Þ

where the vertex volumes are assumed to be trivial in the
last equality and the coefficients ϕσ0 are the discrete
components of the field.
In order to write down the action for this discrete scalar

field, we need to define the concept of a discrete Hodge
dual. Let us then consider the complex �K that is dual to K.
The complex �K consists of (d − p) cells ⋆σp dual to the
primal cells σp with orientation and cellular structure
induced from the orientation and adjacency matrix of K.

The duality between the primal and dual simplicial com-
plexes induces a duality between the chains of the primal
[c ∈ CpðKÞ] and dual complexes [⋆c ∈ Cpð⋆KÞ] (as well
as the cochains of primal and dual complexes). That is,

jci ¼
X
σp∈K

cσp jσpi ↔ h⋆cj ¼ X
σp∈K

c�σph⋆σpj: ð14Þ

Along with the identification between p-forms and
cochains on K, this allows the definition of the discrete
Hodge dual of a p-form as

�ω ¼ ⋆ω ∈ �ΩpðMÞ ∼Ωd−pð⋆KÞ ∼ Cd−pð⋆KÞ: ð15Þ

At the level of coefficients, the duality reads

ϕσp↦
⋆ ð⋆ϕÞ⋆σp ¼ ϕ�

σp : ð16Þ

For the smeared p-forms, this implies

⋆
�hωjσpi

Vσp

�
¼ h⋆σpjωi

V⋆σp
: ð17Þ

With these definitions, we can define a pairing of the p-
chains on K and its dual on ⋆K as hσpj⋆σp0 i ¼ δp;p0 and a
completeness relation

P
p∈K jσpih⋆σpj ¼ id [58].

In order to define an action for the discrete field, we need
the definition of the discrete exterior derivative. The
discrete exterior derivative is defined in order to satisfy
a discrete version of the Stokes’ theorem hdωjci ¼ hωjδci,
such that the exterior derivative d is the natural dual of the
boundary operator δ as in the continuum. The boundary
operator is defined by its action on a p-simplex with
vertices ½v1…vp�:

δσp¼
Xp
i

ð−1Þi½v1…ðviÞ…vp� ¼
X

σp−1∈σp

sgnðσp−1;σpÞσp−1;

ð18Þ

where the first equality is the alternating sum over all
(p − 1)-simplices obtained by dropping a vertex in σp (the
parenthesis denotes the vertex that has been dropped) and
the second equality is just a compact rewrite.
Thus, we can write the discrete analog of the exterior

derivative of a p-form ω as

dωðσpþ1Þ ¼
Z
σpþ1

dω ¼
Z
δσpþ1

ω ¼ ωðδσpþ1Þ

¼
X

σp∈σpþ1

sgnðσp; σpþ1ÞωðσpÞ: ð19Þ

We now have all the ingredients to write the discrete
action for the scalar field. It takes the form
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SD¼1

2
ðhdϕjdϕiþM2hϕjϕiÞ¼1

2
ðh⋆d⋆dϕjϕiþM2hϕjϕiÞ;

ð20Þ

where the second equality arises after integration by parts and setting the boundary term to zero, e.g., when using periodic
boundary conditions. Interested readers will find further details in Refs. [55,58].
Using Eqs. (12), (16), and (19) repeatedly,1 the discrete action can be written as

SD ¼
X
σ0

ϕðσ0Þ
X
σ1⊃σ0

V⋆σ1
Vσ1

sgnð⋆σ1;⋆σ0Þ
X
σ0
0
⊂σ1

sgnðσ00; σ1Þϕðσ00Þ þ
M2

2

X
σ0

V⋆σ0ϕðσ0Þ2: ð21Þ

In 4D, the case we are interested in, Vσ1 is the length of the edge σ1, whereas V⋆σ1 is the volume associated to its dual 3-cell.
V⋆σ0 denotes the 4-volume of the 4-cell dual to a vertex. After a little rearranging, we can write this is in the form

SD ¼ 1
2

P
σi
0
;σj

0
ϕðσi0ÞKijϕðσj0Þ, where

Kij ¼

8>><
>>:

P
σ1⊃σi0

V⋆σ1
Vσ1

sgnð⋆σ1;⋆σ0Þsgnðσ0; σ1Þ þM2V⋆σ0 i ¼ j;

V⋆σ1
Vσ1

sgnð⋆σ1;⋆σi0Þsgnðσj0; σ1Þ i ≠ j and σi0; σ
j
0 ⊂ σ1:

ð22Þ

Note that the different components of Kij associated to the
Laplacian and the potential have the same scaling behavior
in terms of lengths as the scalar field theory action
discretized on a regular lattice in Sec. II.2 Indeed,
Eq. (22) simplifies to Eq. (6) if defined on a regular lattice,
where the dual lattice is simply given by the same (shifted)
lattice.
The definition of the scalar field action (22) can be used

for general cellular complexes, but its definition is not
unique; e.g., it is a priori not clear whether to smear the
scalar field over vertices of the complex or over vertices of
the dual complex. Additionally, there is freedom in con-
structing the dual lattice and, thus, defining the dual
volumes.
In the next section, we briefly introduce spin foam

models and the restricted model we will couple with scalar
lattice field theory.

IV. RESTRICTED SPIN FOAM MODELS

Coupling a lattice field theory to spin foam models and
examining this system numerically in full generality is a
daunting task. Thus, in order to get a first insight into such
spin foam–matter systems and to determine which methods

are suitable to investigate such models, we will study a spin
foam path integral restricted to so-called “quantum
cuboids” [40]. In this section, we give a brief introduction
to spin foam quantum gravity [2] and define this
restricted model.
Similar to lattice field theories, spin foam models are

defined on a discretization, more precisely a 2-complex,
which is a collection of vertices v, edges e, and faces f.
Frequently, this 2-complex is chosen dual to a triangulation,
but it can be more general [41]; here, we choose it to be dual
to a (hyper)cubulation. The discrete geometry of the spin
foam is then encoded in group theoretic data assigned to the
2-complex. To each face we assign an irreducible represen-
tation of the underlying symmetry group, whilewe assign an
invariant tensor, called an intertwiner, to each edge.
Let us explain these concepts for the concrete case of

SU(2) BF theory [5]: An edge e in the 2-complex is shared
by several faces f ⊃ e. Each face f carries an irreducible
representation jf, where we assign to the edge e a vector
space Vjf ⊗ V�

jf
for each f ⊃ e. Thus, each edge e is

endowed with a tensor product of representation spaces
from the faces by which it is shared, where we assign the
various representation spaces and their duals to the source
and target vertex of the edge.3 However, not the entire
vector space is permitted: To each edge, we assign a
projector onto the subspace invariant under the action of
SU(2), called the Haar projector:

1For example, the potential term follows from hϕjϕi ¼P
σ0
hϕjσ0ih⋆σ0jϕi ¼ P

σ0
ϕσ0ðV⋆σ0ϕσ0Þ.

2Careful readers might notice differences to the Laplacian
defined in previous work by one of the authors [51]. There, it is
defined on the dual complex, and only the action of the Laplacian
on a test field is considered, not the action integrated over the
entire complex.

3The details depend on the fiducial orientations of edges and
faces but do not affect the results and are not relevant for the
calculations and simulations in this article.
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Pj1;…;jn
m1;…;mn;n1;…;nn ≔

Z
SUð2Þ

dgDj1
m1n1ðgÞ…Djn

mnnnðgÞ; ð23Þ

where Dj denote Wigner matrices in representation j and
magnetic indices m, n with −j ≤ m; n ≤ j. These projec-
tors can be expressed as a (finite) sum over orthonormal
intertwiners ιd:

Pj1;…;jn
m1;…;mn;n1;…;nn ¼

X
d

jιdihιdj: ð24Þ

As an example, if the edge is 4-valent as in a 4D
triangulation, the intertwiner basis elements are labeled
by an additional SU(2) spin arising from expanding the
4-valent intertwiner into two 3-valent ones using recou-
pling theory. Given this projector property and the fact that
an edge connects two vertices, we associate one intertwiner
to each vertex of the edge. Then, at the vertex the
intertwiners get contracted according to the combinatorics
of the vertex. This spin network evaluation defines the
vertex amplitude.
Additionally, spins and intertwiners permit a quantum

geometric interpretation: We think of an edge to be dual to a
polyhedron, with as many faces as the valency of the edge.
The areas of the faces are given by the spins associated to
them, while the intertwiner encodes the shape. For a
tetrahedron, an intertwiner in the orthonormal basis is
given by five parameters, four areas and one intertwiner
label. The last label corresponds to the area of a parallelo-
gram inside the tetrahedron according to the recoupling
scheme. This does not uniquely determine the shape of the
tetrahedron, which would require six parameters, e.g., six
edge lengths. Thus, this is often referred to as a quantum
tetrahedron [59], and similar arguments also apply to more
general polyhedra.
Modern 4D spin foammodels like theEuclideanEPRLFK

model [7,8]we are considering in this article useBF theory as
their starting point. In order to break the topological nature of
BF theory and arrive at a gravitational theory, simplicity
constraints are imposed. To each polyhedron we assign a
timelike normal,4 such that—as seen from 4D Minkowski
space—the polyhedron is entirely spacelike. This normal
singles out a subgroup of the full symmetry group [Spin(4) in
Euclidean and SLð2;CÞ in the Lorentzian signature], which
stabilizes the normal. This subgroup is isomorphic to SU(2),
and we construct states of the 4D spin foam model by
embedding SU(2) states into states of the 4D symmetry
group. This leads to restrictions on the representation labels
depending on the Barbero-Immirzi parameter γ compared to

4DBF theory. Furthermore, on the boundary we can connect
to the kinematical Hilbert space of loop quantum gravity via
projected spin network states [61,62].
For the Euclidean EPRL model for γ < 1, the symmetry

group Spinð4Þ ≅ SUð2Þ × SUð2Þ and its representations
ðjþ; j−Þ are labeled by two SU(2) representations j� ∈ N

2
.

They are related to the same SU(2) representation as
follows:

j� ¼ j
2
ð1� γÞ; ð25Þ

where j ∈ N
2
. This immediately requires γ ∈ Q for this map

to be nontrivial and is considered a pathology of the
Riemannian model, which is absent in the Lorentzian
theory.
To implement this construction for the intertwiners, we

define a boost map Yγ consisting of two parts. For an SU(2)
intertwiner ι, we isometrically embed each vector space Vj

into the unique component appearing in the Clebsch-
Gordan decomposition of Vjþ;j− ≃ Vjþ ⊗ Vj− . We call this
map βγj, as it explicitly depends on γ. Note that the resulting
tensor is not necessarily a SUð2Þ × SUð2Þ intertwiner; we,
thus, act with the Haar projector P. For an N-valent
intertwiner, Yγ reads

Yγ∶ InvðVj1 ⊗ � � � ⊗ VjN Þ → InvðVjþ
1
;j−
1
⊗ � � � ⊗ VjþN;j

−
N
Þ

Yγ ≔ P∘ðβγj1 ⊗ � � � ⊗ βγjN Þ: ð26Þ

Eventually, the vertex amplitude Av is defined as the
contraction of intertwiners associated with the vertex v,
also called the vertex trace:

Av ≔ Tre⊃vðYγðιeÞÞ: ð27Þ

To complete the definition of the model, we must assign
amplitudes to the edges e and faces f. The edge amplitude
Ae is given by the norm of the associated intertwiner ιe:

AeðιeÞ ¼
1

kYγðιeÞk2
: ð28Þ

To the faces, we assign the dimension of the representations
jþ; j− up to an exponent α:

Afðjf; αÞ ≔ ðð2jþf þ 1Þð2j−f þ 1ÞÞα: ð29Þ

We introduce this parameterα byhand to reflect an ambiguity
in defining the face amplitude of the model. Common
choices are either the SU(2) representation 2jf þ 1 or the
SUð2Þ × SUð2Þ representation ð2jþf þ 1Þð2j−f þ 1Þ. The
former choice has the advantage of being invariant under
face and edge subdivisions [63]. Therefore, we understand
the parameter α as a modification of the path integral

4We enforce simplicity constraints by demanding that all
bivectors in a polyhedron are orthogonal to a common 4D vector.
Then each bivector is simple, i.e., a wedge product of vectors.
Note that we refer here to the intrinsic Minkowski metric (not a
global one). We refer to Ref. [60] for a more detailed discussion
and explanation of this construction.
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measure. In the quantum cuboid model we introduce below,
these face amplitudes can be rewritten as the volume of 4D
hypercuboids to a power of a multiple of α. This is similar to
path integral measure choices proposed in quantum Regge
calculus [64]. The choice of α has a profound impact on the
scalingbehavior of the amplitudes andplayed a crucial role in
the coarse graining [46,47] and the spectral dimension [51] of
restricted 4D spin foammodels. Wewill also see that it has a
significant impact on the coupled matter spin foam system.
Finally, the spin foam partition function is defined as

Z ¼
X
jf;ιe

Y
f

Af

Y
e

Ae

Y
v

Av; ð30Þ

where we sum over all spin foam states given by assign-
ments of representations and intertwiners.

A. Cuboid spin foams

Spin foam amplitudes are well defined, yet the complex-
ity of the theory makes actual calculations demanding. This
is due to the sheer number of configurations one has to
consider even for small 2-complexes as well as the
challenge to compute its fundamental amplitude beyond
asymptotic methods. To at least explore a subset of the full
spin foam path integral, restricted semiclassical models
were introduced in Refs. [40,48,65] and simplify the theory
in different ways.

(i) Hypercubic combinatorics.—We choose the 2-
complex to be dual to a 4D cubulation. This has
the advantage that the combinatorics is regular; e.g.,
each face is bounded by four edges and each edge is 6-
valent, etc. The initial motivation for this choice in
Ref. [40] was to simplify renormalization and coarse
graining [46,47,50], but here it will be helpful to relate
our model to lattice field theory.

(ii) Intertwiner restriction.—Spin foam models with
hypercubic combinatorics are generically more com-
plicated than their counterparts defined on (dual)
triangulations. This is due to the fact that more data
are required to specify the building blocks; e.g., a
hypercubic vertex has eight edges and 24 faces
compared to the five edges and ten faces of a vertex
dual to a 4-simplex. This is counteracted by allowing
only specific coherent intertwiners that are peaked
on a cuboid [40] or a frustum shape [48]. These
choices also restrict the representations, reducing the
complexity of the model further.

(iii) Semiclassical amplitude.—The first numerical com-
putation of the vertex amplitude for hypercubic
combinatorics has only recently been achieved
beyond smallest spins [57], however at great numeri-
cal costs. Thus, it is currently out of reach to explore
larger 2-complexes using the full amplitude; instead,
we will use its semiclassical approximation derived
in Refs. [40,48].

(iv) Continuous variables.—The semiclassical approxi-
mation is typically derived in the large j limit for
coherent boundary data, where the representation
labels of the vertex amplitude are uniformly scaled
up. In this limit, the discreteness of representations is
barely noticeable, and we approximate them as
continuous variables.

Most of these assumptions are drastic simplifications,
restricting the full spin foam model to a subset of the
gravitational path integral that is more readily accessible by
numerical means. Note that this does not fix a background
geometry a priori, as we sum over all configurations
permitted by these restrictions. However, as we will see
in this article, the system might be dominated by particular
configuration (plus fluctuations around it), which one can
interpret as the emergence of a dynamical background.
Clearly, the restricted models do not capture all properties
of spin foams, and these assumptions must be eventually
removed in future research.
The restriction of intertwiners is the final piece left to

define the concrete restricted model. We choose the
intertwiners to be coherent Livine-Speziale intertwiners
[66] peaked on the shape of cuboids, dubbed cuboid
intertwiners. Coherent SU(2) intertwiners (and also the
boosted intertwiners) are parametrized by spins ji and
normal vectors n⃗i ∈ S2 assigned to their faces, which agree
with the areas and outward-pointing normals of the
classical polyhedron on which they are peaked. For
cuboids, opposite faces carry the same area and opposite
normals are antiparallel, while each normal is perpendicular
to the normals of its four adjacent faces; see also Fig. 1. We
define the intertwiner as follows:

ιj1;j2;j3 ≔
Z
SUð2Þ

dg g⊳ ⊗
3

i¼1
jji; e⃗ii ⊗ jji;−e⃗ii: ð31Þ

The states jji; e⃗ii ∈ Vj denote SU(2) Perelomov coherent
states [67], i.e., maximum (or minimum) weight states on
which we act with SU(2) representation matrices. The state
jj; n⃗i is defined as gn⃗⊳jj; ji≕ gn⃗⊳jj; e⃗zi, where gn⃗ is the

FIG. 1. The shape of a cuboid is encoded in the areas of its faces
ji and the outward-pointing normal vectors.
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group element encoding the rotation e⃗z → n⃗. By e⃗iwedenote
the unit vectors for Cartesian coordinates. The group
integration, also called group averaging, ensures the invari-
ance of the intertwiner under SU(2) transformations.
Boosting these intertwiners for γ < 1 is straightforward:

Each coherent state jj; n⃗i gets mapped to a tensor product
of coherent states jjþ; n⃗i ⊗ jj−; n⃗i for the representations
j�. The SUð2Þ × SUð2Þ group averaging is then imple-
mented as two group integrations, one for all “þ” and one
for all “−” states. Thus, the resulting intertwiner is a tensor
product of two SU(2) intertwiners, one for þ and one for −
labels, peaked on the same coherent data fn⃗g. See [68,69]
for a more detailed derivation and explanation.

1. Semiclassical approximation of amplitudes

The vertex amplitude for cuboid spin foams is given by
the evaluation of the spin network in Fig. 2. For coherent
boundary data, it reads

Av ≔
Z
SUð2Þ8

Y8
a¼1

dgþa
Y
a<b

ðh−n⃗bajðgþb Þ−1gþa jn⃗abiÞ2j
þ
ab

×
Z
SUð2Þ8

Y8
a¼1

dg−a
Y
a<b

ðh−n⃗bajðg−b Þ−1g−a jn⃗abiÞ2j
−
ab

≕Aþ
v A−

v : ð32Þ

We denote the intertwiners in the amplitude by a and b and
have one group integration for each. Then, to each link
connecting two intertwiners, we assign an inner product of
coherent states labeled by their respective normal vectors:
n⃗ab denotes the normal vector to the face ab belonging to
the polyhedron a and n⃗ba vice versa. Moreover, we have
used the property of coherent states (as maximum weight
states) hj; n⃗1j · jj; n⃗2i ¼ ðhn⃗1j · jn⃗2iÞ2j, where the latter
expression is given in the fundamental spin 1

2
representa-

tion. For γ < 1 the amplitude factorizes over the þ and −
labels, such that we can write it as the product of two SU(2)
BF theory vertex amplitudes for specific representations.

These group integrations are highly oscillatory integrals
for large j�ab. Thus, the vertex amplitude is approximated by
performing a stationary phase approximation of the group
integrals: To do so, the inner products of SU(2) coherent
states are exponentiated to define an action:

S� ≔ 2
X
a<b

j�ab lnh−n⃗bajðg�b Þ−1g�a jn⃗abi: ð33Þ

The vertex amplitude is dominated by the critical points
of S� if all spins j�ab are large. These critical and
stationary points are derived by varying the action with
respect to the dynamical variables, here group elements,
and enforcing that ReS� ¼ 0. Variation with respect to the
group elements enforces closure of the coherent dataP

b≠a j
�
abn⃗ab ¼ 0 ∀ a, while the reality conditions deter-

mine how the polyhedra are glued together. Again, see [40]
for more details.
With the critical and stationary points found, we

approximate the vertex amplitude A�
v as follows:

A�
v ≈

X
gðcÞa

ð2πÞ212ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−HÞp j

gðcÞa

expðS�j
gðcÞa

Þ; ð34Þ

where we sum over the critical point solutions gðcÞa . The
action S� and the determinant of the Hessian matrix H are
evaluated on these solutions. We get one factor of

ffiffiffiffiffiffi
2π

p
for

each integration; we integrate over seven SU(2) group
elements (one integration can be absorbed due to gauge
invariance), which are each three-dimensional. For cuboid
boundary data, this formula simplifies drastically [40]:

A�
v ≈

�
1� γ

2

�21
2

Bv;

Bv ¼
�

2

16π2

�
7

ð2πÞ212
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−HÞp þ c:c:

�
: ð35Þ

FIG. 2. Left: spin network graph for a spin foam vertex with the combinatorics of a dual 4D hypercube. Right: the 3D boundary
corresponding to a hypercuboid and the area data matching the spin foam vertex amplitude.
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The action S� has two critical points with a multiplicity of
27 due to a discrete symmetry. We also obtain one factor of
ð16π2Þ−1 for each SU(2) integration. Note that the action
evaluated on the critical points, which corresponds to the
Regge action [70] associated with the 4D polytope,
vanishes. This has two important consequences: first, for
larger complexes, all deficit angles identically vanish such
that we find only flat geometries. Essentially, we are gluing
together flat geometries in a flat way, corresponding to a
cubulation of flat space-time. Second, due to the vanishing of
the Regge action, the vertex amplitude is not oscillatory and
determined by the scaling behavior encoded in the determi-
nant of theHessian. Thus,we can also pull the dependenceon
the Immirzi parameter γ in front of the amplitude. The
nonoscillating behavior of the cuboid amplitude evenpersists
in the quantum regime [57].
Because of the symmetry of the cuboid intertwiners, i.e.,

the fact that opposite sides of the 3D cuboids carry the same
spin, the amplitude Bv is a function of six SU(2) spins. This
is peculiar, since a 4D hypercuboid is determined by just
four edge lengths; this mismatch comes about as follows.
Each 3D cuboid is specified by three spins, which deter-
mine the six areas of its faces. As long as these areas are
nonvanishing, we can uniquely translate three areas into
three edge lengths for each cuboid. Depending on the
choice of six spins, these edge lengths may, however, not
agree, such that the faces shared between two cuboids have
the same area but their shapes do not match. In larger
2-complexes, this can lead to torsion effects where a loop
may not close due to the mismatch of lengths in neighbor-
ing hypercuboids [40].
In the following, we consider the subset of spin con-

figurations for which the edge lengths, as seen by different
cuboids, agree and shape matching is ensured. The non-
shape matching is related to the so-called volume simplicity
constraint, which is one of several simplicity constraints
imposed at the discrete level. In a classical 4-simplex,
expressed as a bivector geometry, the volume of this
4-simplex is spanned by any pair of bivectors associated
to triangles that share only one vertex. Again, for a 4-
simplex this constraint is automatically satisfied once all
other simplicity constraints are implemented, which is the
reason why it is not enforced in the original EPRL model.
However, this no longer holds for more general 2-com-
plexes [65,71,72], generically giving rise to nonmatching
shapes [73,74].
In Ref. [40], also the semiclassical expressions for the

edge and face amplitudes were derived. The edge amplitude
for the coherent cuboid intertwiners is a simple functions of
its three spins:

Aeðj1; j2; j3Þ ∼
ðj1 þ j2Þðj2 þ j3Þðj1 þ j3Þ

8ð1 − γ2Þ−3
2

: ð36Þ

Similarly, the face amplitude reads

Af ∼ j2αf : ð37Þ

As a final point, due to the regular combinatorics of the
hypercubic spin foams, we can combine vertex, edge, and
face amplitudes into a single amplitude associated to the
vertex. Each edge is shared by two vertices, while each face
contains four vertices; hence, we define

Âv ≔
Y
f⊃v

A
1
4

f

Y
e⊃v

A
1
2
eAv: ð38Þ

2. From spins to lengths

Let us briefly discuss the transition from spins to lengths.
First, we must restrict the spin configurations of the
hypercuboid such that the areas of its rectangles arise from
four edge lengths. To do so, we express two of the spins per
hypercuboid as functions of the remaining four spins.
However, since we are originally integrating over all spins
in the path integral, we effectively gauge fix the redundant
spins and account for this by including a Fadeev-Popov
determinant. In the second step, we obtain a Jacobian for
the change of variables from the four remaining spins to
four edge lengths. Both steps are explained in detail in
Ref. [47].
Eventually, due to the regular combinatorics, we com-

bine face, edge, and vertex amplitudes as well as Jacobian
and Fadeev-Popov determinant into a common amplitude
that we associate to the vertices Âv, which is a function of
four lengths of the hypercuboid and the parameter α.5 This
vertex amplitude is a homogeneous function of degree
24α − 14:

ÂvðfλligÞ ¼ λ24α−14ÂvðfligÞ: ð39Þ

The spin foam partition function is then given by

ZSF ¼
Z Y

i

dli
Y
v

ÂvðfligÞ: ð40Þ

In this partition function, we integrate over all possible
lengths assignments to the 2-complex, which are weighted
by the spin foam amplitudes. Note that the amplitude Âv is
positive and nonoscillatory. Thus, after introducing upper
and lower cutoffs for the lengths li, we can use the partition
function to define a probability distribution suitable for
Markov chain Monte Carlo techniques. This probability
distribution then determines the likely length configura-
tions of the spin foam.

5The Immirzi parameter appears only as a factor in the
partition function and, thus, does not affect observables. This
is due to the vanishing of the Regge action.
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V. SCALAR MATTER COUPLED TO SPIN FOAMS

In the previous Secs. III and IV, we have defined the two
models individually that we couple in this work, i.e., a free,
massive scalar field defined on a general, irregular lattice
and cuboid spin foams, which describe superpositions of
discrete flat space-times. Our idea for coupling both
theories is as follows: The discrete scalar field action is
a function of various (dual) volumes of the underlying
irregular lattice. Given a specific spin foam state, here a
configuration of lengths flig, we define the volumes in the
scalar field action as functions of these lengths, such that
the spin foam describes the space-time the scalar field is
defined on.6 A similar idea is also used in Ref. [14] to
couple Yang-Mills theory to the Barrett-Crane spin foam
model [75]. Then, we integrate or sum over all field
configurations and length configurations to define the
partition function.
In this setup, we solely modify the matter part of the

system without altering the gravitational side in analogy to
general relativity. There, the Einstein Hilbert action remains
unchanged, while the matter action has an explicit depend-
ence on the metric in contrast to its definition in flat space-
time. Thus, we will refer to our ansatz as “minimal
coupling”: The spin foam amplitudes remain unchanged,
while we include an explicit dependence on the geometry,
here given as a function of the edge lengths, in the matter
action. Explicit modifications of the gravitational part are
conceivable, but they are not subject of this work. However,
the coupling of matter and spin foams is not uniquely
defined. One important choice concerns “where” the matter
degrees of freedom are placed: the actual discretization
(here, the cubulation) or the dual 2-complex. We can decide
to place the scalar field either on the vertices of the
cubulation or on the vertices of the 2-complex, dual to
each 4D hypercuboid. In the example we are considering
here, where the combinatorics of the dual 2-complex is the
same as the lattice and we are imposing periodic boundary
conditions, we do not expect this choice to have a major
impact on the dynamics. Nevertheless, these choices lead to
different theories, because, in general, the matter theories
are not dual to themselves. Moreover, if the space-time
possesses a boundary, this choice affects the boundary
Hilbert spaces we associate to them.
In this work, we choose to place the scalar field on the

vertices σ0 of the cubulation and infer the volumes from the
lengths describing the spin foam. Volumes of the lattice
itself, e.g., the length Vσ1 , are computed directly from the
lengths. Analogously, we directly compute the dual vol-
umes from the dual lengths; the lattice dual to a hyper-
cuboidal lattice is again a hypercuboidal lattice. Since the
spin foam model we are considering is restricted to
hypercuboidal geometries, we simply place the vertices

of the dual lattice in the center of the hypercuboids. Thus,
the dual lattice is again a hypercubulation with the dual
edges connecting the centers of neighboring hypercuboids,
from which we straightforwardly compute the dual vol-
umes. All of these definitions are simple and straightfor-
ward due to the rigid right angles of the geometries given
by cuboids. Note that, in general, the construction of a dual
lattice is not unique, which thus influences the definition of
the matter action; see, e.g., [76] for further details. Finally,
we define the partition function of the coupled system as

Z ¼
Z Y

i

dli

Z Y
a∈σ0

dϕa

Y
v∈⋆σ0

Âvðfligi∈σ4Þ

× exp

�X
a;b

ϕaKabðM; fligÞϕb

�
: ð41Þ

Here, we denote the edges of the cubulation by i and the
vertices of the cubulation by a and b. σ4 are the hyper-
cuboids, and σ0 are the vertices of the cubulation. M
denotes the mass of scalar field.

A. Qualitative behavior from regular lattices

It is difficult to extract qualitative behaviors from the
composite system by analytical methods alone. To gain
some initial insight into the qualitative features of the
model, we set all lengths of the spin foam equal (yet
dynamical), such that we consider a superposition of
regular lattices of different sizes. As discussed above,
the spin foam vertex amplitude has a scaling behavior of
l24α−14. Additionally, for fixed l we perform the Gaussian
integrations of the scalar field, which leads to a factor in the
integrand of the following form (in four dimensions and N
lattice sites):

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2NðPN

i¼1 ail
2iM2iÞp : ð42Þ

ai denote numerical factors which are not relevant for our
argument here. Thus, the probability distribution for the
length l is given by

1

Z
lNð24α−14Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2NðPN
i¼1 ail

2iM2iÞp : ð43Þ

Thus, we observe two counteracting behaviors of the scalar
field and the spin foam (for sufficiently large α): The scalar
field leads to a polynomial suppression of large lengths,
which gets stronger as we increase the massM. Conversely,
the spin foam amplitude eventually favors larger lengths as
we increase α. Thus, we can readily identify two qualitative
regimes of the model.

(i) Finite M and small α.—α is too small to counteract
the suppression of large lengths by the scalar field.

6This ansatz contains the implicit assumption that the matter
action or theory is diagonalized by this spin foam representation.
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Thus, the amplitude diverges as we approach l → 0
and the smallest lengths dominate. To explore this
regime in the actual simulations, we introduce a
lower cutoff on the lengths. Note that such small
lengths are outside the validity of the semiclassical
approximation of spin foam models.

(ii) Finite M and large α.—α is so large that it
dominates over the suppression of large lengths
by the scalar field. Then, the amplitude diverges
for l → ∞ and largest lengths dominate. Thus, we
introduce also an upper cutoff in the simulations.

Note that for fixed lattice size the values of α when either
the smallest or the largest lengths dominate are independent
ofM. Moreover, we expect these two α-dependent regimes
to also exist in full spin foam models, albeit for different
parameter values. Spin foam vertex amplitudes are (in the
semiclassical limit) polynomially suppressed under uni-
form scaling of their representations [68,69], while the
scaling behavior of the scalar field in terms of lengths is
encoded in its action. Thus, while other effects will appear
under lifting the cuboid restrictions, e.g., oscillatory spin
foam amplitudes, the respective scaling behaviors persist,
which depends on the combinatorics of the 2-complex.
The form of the denominator additionally suggests that

an intermediate region between small and large α exists,
where the length l is finite. This is due to the various
summands in the denominator: Qualitatively, for small
lengths the term with smallest exponent dominates, while
clearly the opposite is true for large lengths. If we choose a
value for α such that the scaling behavior of the spin foam
amplitude is between these two extremes, the probability
distribution should have a peak at finite lengths, whose
position and width is a function of α and the mass M. This
is indeed the case as we show in Fig. 3.
From the simple form of the probability distribution, we

can straightforwardly derive the interval in α for which we
expect finite lengths. For small length l the probability
distribution scales like lNð24α−15Þ−1, whereas for large length

it scales as lNð24α−16Þ−1. Hence, for N ≫ 1 the interval of
interest is 5

8
¼ 0.625 ≤ α ≤ 2

3
¼ 0.66. Of course, all of these

considerations are strictly true only if all lengths are the
same, but they provide us valuable guidance and insights
into how the dynamics change once all lengths in the spin
foam are dynamical, i.e., we consider a superposition of
irregular lattices.

B. Observables of the coupled system

The expectation values of observables are defined
analogously to other path integrals or statistical systems.
Given an observable O, which depends on the configura-
tion variables flig and/or fϕag, its expectation values are
straightforwardly defined as

hOi ¼ 1

Z

Z Y
i

dli

Z Y
a∈σ0

dϕaOðflig; fϕagÞ

×
Y
v∈⋆σ4

Âve
P

a;b
ϕaKabϕb : ð44Þ

Here, we have suppressed the dependence of the spin foam
amplitudes and the matter action on the configuration
variables to keep the expression readable. In this work,
we are considering observables of either the spin foam
model or the scalar field. For the spin foam, we examine
simple geometric observables like the total 4-volume V or
individual lengths li and their variances, respectively, while
for the scalar field we are interested in the correlations ϕaϕb
of the scalar field located at vertices a and b. These
observables are interesting for the following reasons.
The geometrical observables, like the total volume of

space-time, are relevant, as they are a direct indicator for the
scaling behavior of the coupled model. Cuboid spin foams
by themselves usually have diverging edge lengths and
4-volume for values of α above ∼0.58; then the amplitude
Âv is a homogeneous function of positive degree, and

FIG. 3. Left: plot of the full amplitude for α ¼ 0.64, 0.65, 0.66 well within the region in which the scalar field and spin foams balance
each other out. The peak shifts to larger lengths as we increase α and its width increases. Right: As we further increase α, the width of the
peak starts to grow rapidly, here for α ¼ 0.65, 0.664, 0.666. Both plots are for lattice size 3.
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largest lengths dominate. However, we expect that the
scalar field instead favors smaller edge lengths: The kinetic
part of the action scales with ∼l2, while the potential part
with ∼M2l4. Hence, the action in the fields is smaller if the
lengths are smaller, which gets more pronounced as the
mass is increased. This interplay between the spin foam and
matter part is intriguing.
On the other hand, a free, massive scalar field is solely

determined by its two-point correlation function; any
correlations of higher degree can be understood as arising
from two-point correlations. Moreover, these correlations
drop off exponentially with the distance between vertices
and depend on the mass of the scalar field. Thus, it is the
ideal observable to study here, yet, due to our setup, the
interpretation is more subtle. Consider the correlator
hϕaϕbi for fields located at vertices a and b in lattice field
theory on a regular lattice. Here, the lattice inherits the
notion of distances as a discretization of the flat back-
ground space-time, such that the vertices a and b are space-
time events. We readily know the geodesic distance
between these vertices and use this information to compute
the correlation length from the correlations between all the
vertices of the lattice. However, in a spin foam and more
generally in a background-independent setup, the vertices
a and b have no inherent meaning; they are merely
unphysical coordinates or labels. Their distance is not
fixed by the discretization; in fact, we are integrating over
superpositions of distances between these two vertices.
Nevertheless, in addition to the correlations of the two
fields located at a and b, we also need the distance the
vertices a and b are apart to obtain a physically meaningful
relational observable [52–54].
In our Monte Carlo simulations, we use the following

approach: For each sample of lengths and fields, we
compute the correlations of fields for all pairs of vertices
and the distances between these vertices for a specific
sample. Then we use the collection of data of correlations
and distances to determine the correlation length as a
nonlocal, coarse-grained observable to learn how the matter
theory effectively behaves on the spin foam background.
Note that in this approach we cannot control the distance at
which we probe the correlations; we can access only the
correlations for probable spin foam and scalar field
configurations. A suggestion to measure the correlations
at arbitrary geodesic distance is described in the introduc-
tion of Ref. [27].7

C. Setup for numerical simulations

The partition function for the cuboid spin foam model
with minimally coupled scalar degrees of freedom on the

vertices of the cubulation is given by Eq. (41). In order to
study this system, we compute observables of the coupled
system using Markov chain Monte Carlo integration. The
general idea of Monte Carlo integration is to approximate
an expectation by the sample mean of the function of
simulated random variables [77]. We are interested in
computing the expectation values of observables of lengths
and fields as defined in the previous section. We approxi-
mate this expectation value with the sample mean of
Oðli;ϕaÞ, which is a function of the random variables
(lengths and fields) drawn from the distribution

Pðflig; fϕagÞ ¼
1

Z

Y
v∈⋆σ4

Âve
P

a;b
ϕaKabϕb : ð45Þ

We use the Metropolis-Hastings algorithm to sample the
lengths and fields. This algorithm is based on a theorem
that states that the Markov chain with transition proba-
bilities arising from the Metropolis-Hastings algorithm
converges to the target distribution if the chain is ergodic
and satisfies detailed balance [78]. In our setting, each
configuration of lengths and fields is an element of the
Markov chain. As this convergence can take time, we need
to discard some initial samples (called the burn in) in order
to “forget” the starting configuration. Although the mar-
ginal distribution of the Markov chain converges to the
target, it does not mean that the chain converges to a chain
of identically independently distributed draws from the
target distribution. This is because of the autocorrelation
introduced by the proposal distribution leading to a bias in
the observed sample means. Thus, it is important to sample
the chain at intervals longer than the autocorrelation length.
This autocorrelation also introduces a trade-off between
autocorrelation and acceptance rates. If the acceptance rate
is too high, the autocorrelation length increases, as each
consecutive sample represents only a small change in the
target distribution. On the other hand, a high rejection rate
results in slower convergence to the target distribution.
For this coupled system, it was particularly difficult to

balance the acceptance-rejection ratio. Changing both the
lengths and fields together leads to high rejection rates.
This forced us to settle for smaller changes in the
configuration to maintain a reasonable acceptance rate.
We chose to either change all the lengths associated to a
hypercuboid or the field at one vertex. New lengths were
proposed by rescaling

lnewi ¼ riloldi ; ri ∈ Uð0.5; 2Þ; ð46Þ

where the rescaling factor ri is different for each length of a
hypercuboid. Choosing this rescaling factor between 0.5
and 2. gives healthy acceptance rates (40%–60%) and also
allows us to explore several orders of magnitude of edge
lengths. Additionally, we also restricted the configuration
space by imposing an upper (104) and a lower cutoff

7The idea is to define the correlator as a function of geodesic
distance. Essentially, one integrates the scalar field correlation
function over all pairs of space-time points over all metrics and
enforces a fixed geodesic distance by a delta distribution.
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(5 × 10−5) on the lengths in order to avoid numerical
overflow as the spin foam amplitude diverges as the lengths
go to 0 or infinity.8 Detailed experimentation showed that
this did not have any qualitative impact on the results
presented in this article. New field values were proposed
using

ϕnew
i ¼ ϕold

i þ r; r ∈ ½−δ; δ�; ð47Þ

where δ was chosen to maintain an acceptance rate between
40% and 60%. The consequence of these incremental
changes is high autocorrelation resulting in a longer burn-
in period and the need for more intermediate Monte Carlo
steps between samples.
In order to determine if the chain had thermalized, we

plotted the amplitude and the volume for each Monte Carlo
step in Fig. 4 for different distinctive regions of the model.
During the burn-in period we expect a trend (increasing or
decreasing) in the amplitude plots, but after thermalization
we expect the amplitude to be uniformly distributed over
some range.
After thermalization, expectation values of observables

can be computed by drawing samples from the Markov
chain at regular intervals (determined by the autocorrelation
length). In Fig. 5, we plot the autocorrelation over the
samples for different parameters. There are four main
sources of error in this estimate:

(i) estimating the state of thermalization of the chain
incorrectly;

(ii) highly correlated samples;
(iii) the Markov chain takes too long to explore some

parts of the distribution, and, thus, these states are
not well represented in the sample (the “missing
mass” problem);

(iv) not sampling enough.
The first two errors are easily controlled for, the first by
identifying suitable observables to test for thermalization.
We use the full amplitude and the total volume of the spin
foam for this. The second error can be mitigated by
sampling the Markov chain at intervals greater than at
least twice the autocorrelation length for the observable of
interest, where the autocorrelation length is computed after
thermalization. This is known as subsampling.
The missing mass problem is harder to identify and

control for. A dirty fix is to run multiple simulations each
time starting with a different configuration. We tested our
algorithm by running multiple simulations for randomly
chosen initial configurations for lattices with 81 vertices.
But the time cost was prohibitive for larger lattices.
The last problem stems from the fact that the error in the

estimate of the expectation value of the observable is
dependent on the number of samples. Since subsampling
minimizes the autocorrelation between consecutive sam-
ples drawn from the Markov chain, we can treat these
samples as independent. Then, the true expectation value of
the observable of interest in terms of the sample mean of a
sample of size N can be written as

hOi ¼ 1

N

Xn¼N

n¼1

On þ
σ2ðOÞ
N2

; ð48Þ

where On is the observable value calculated using the nth
sample. The second term is the error term in our estimate of
hOi, where σ is the standard deviation ofO. Thus, the error
term can be reduced simply by increasing the number of
samples. We must, thus, balance the time cost of generating
the samples with the error in estimating the expectation
value by the sample mean.
The time complexity of the algorithm scales linearly with

the number of Monte Carlo steps and as a polynomial of the
number of vertices. Each time we sample the lengths, we
need to recalculate the amplitude of the coupled system.
This is the most expensive operation, as calculating the spin
foam amplitude is OðNÞ for a cubulation of N vertices and

FIG. 4. Plots of several functions during thermalization, logarithm of the total volume, logarithm of the total amplitude or integrand in
the partition function, and the average acceptance rate. Plots for lattice size 4 and mass M ¼ 5. Left: α ¼ 0.62, outside plateau region
and converges to a lower cutoff. Center: α ¼ 0.64, inside plateau region; system appears to have thermalized. Right: α ¼ 0.67, outside
plateau region, converges to an upper cutoff.

8The physical meaning of these cutoffs is different. For the
lower cutoff, one might choose the minimal nonvanishing area
eigenvalue of a face; however, also vanishing areas are permitted
in the state sum. Typically, the upper cutoff needs to be removed,
as it breaks gauge invariance, unless one is considering a model
incorporating a cosmological constant; see, e.g., [79–83].
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the calculation of the scalar field action involves a matrix
multiplication which in the worst case results inOðN3Þ and
even in the best case scales much faster than N2. We
optimize the algorithm to some extent by directly comput-
ing the change in the scalar field action when only the fields
are sampled instead of computing the full action. However,
this does not impact the worst case time complexity, which
remains OðMN3Þ, where M denotes the number of
Monte Carlo steps and N is the number of vertices in
the cubulation. In actuality, the performance is not quite so
dire, because the matrix multiplication algorithms are
highly optimized and multithreaded while the analysis
above only applies to calculations on a single thread; see
Fig. 6. Even so, it elucidates the difficulty in exploring large
cubulations for which thermalization is slower (more
Monte Carlo steps) and autocorrelations persist over longer
ranges (see Fig. 5), resulting in a higher number of
Monte Carlo steps between each sampling step.
When the observable is only a function of the lengths, it

is possible to sum over the scalar fields analytically and

FIG. 5. Plots of the total 4-volume autocorrelation for different cubulation sizes and α values. For α values outside the plateau region
where all the lengths approach the lower or upper cutoff, the autocorrelation for all lattice size is low. Within the α range where the
lengths remain bounded, the autocorrelation quickly increases with the number of cubulation vertices (N) as seen by the figures in the
right column.

FIG. 6. Plot of the time taken to simulate 1 million Monte Carlo
steps with respect to the number of vertices. The line denotes
OðN3Þ time complexity. As expected, the actual time complexity
is < OðN3Þ even for the single threaded [no basic linear algebra
subprograms (BLAS)] implementation.
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then apply the Metropolis algorithm to evaluate the sum
over the lengths. Sampling over just the lengths is easier, as
the burn-in period is shorter and the Markov chain can be
sampled more frequently since the autocorrelation is lower.
Details are provided in the next section.
For this system, the observables we are interested in are

detailed in Sec. V B. The geometric observables can be
calculated both by sampling the lengths and fields as well
as by analytically summing over the fields and then
sampling the lengths. We compute the 4-volume of the
spin foam to investigate the interplay between the scalar
field amplitude, which favors small lengths, and the cuboid
spin foam amplitudes, which favor large lengths as α is
increased. We find that there exists a range of α where the
opposing effects of the scalar field amplitude and the spin
foam amplitude balance, resulting in finite values of the
4-volume. These results are detailed in Sec. VI A.
The most important observable of the fields is the two-

point correlation function. We compute the correlation
function hϕaϕbi by averaging the product of the field
values over all pairs of vertices a and b. We find that when
plotted as a function of the geodesic distance between
vertices a and b this correlation function falls off exponen-
tially with distance, much like the two-point correlation
function on a fixed lattice, for the range of α where the
4-volume remains finite.

D. An alternative algorithm

In addition to the algorithm described above, in which
both lengths and fields are treated by Monte Carlo tech-
niques, an alternative algorithm is possible. Independent of
the shape of the underlying spin foam, the action of the
scalar field is always of the form ϕaKabϕb. Thus, if the
lengths are fixed, the integrals over the fields are Gaussian
and can be straightforwardly performed. Hence, we can
rewrite the partition of the coupled system purely as an
integral over the lengths:

Z ¼
Z Y

i

dli
1ffiffiffiffiffiffiffiffiffiffiffi
detK

p
Y
v∈⋆σ4

Âvðfligi∈σ4Þ: ð49Þ

In this representation, we would use
Z−1 1ffiffiffiffiffiffiffiffi

detK
p

Q
v∈⋆σ4 Âvðfligi∈σ4Þ as the probability distribu-

tion to sample the lengths. The advantage is apparent: This
distribution includes the full dynamics of the scalar field
and, thus, its impact on the gravitational theory. This is
particularly helpful for parameter ranges for which the
scalar field is difficult to sample, namely, small and large α.
Moreover, sampling just over the lengths is less sensitive to
how new length configurations are proposed, autocorrela-
tions decay more rapidly, and the burn-in period is shorter
as well. Therefore, this algorithm is well suited to study
geometric observables, such as the expectation values of
lengths or the total volume.

However, computing observables of the field is more
involved. Of course, the two-point partition function for
fixed length is simply given by the inverse matrix of K,
such that we obtain for its expectation value

hϕaϕbi ¼
1

Z

Z Y
i

dliK−1
ab

Y
v∈⋆σ4

Âvðfligi∈σ4Þ: ð50Þ

This expression is clearly different than for geometric
observables, since the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detK−1

p
is missing. To

sample the lengths for this observable, we could use
Z−1Q

v∈⋆σ4 Âvðfligi∈σ4Þ. However, this is actually not a
probability distribution, since the Z is the partition function
of both matter and spin foams. Moreover, we would
actually only use the spin foam amplitude to sample length
without considering the effect of the scalar field, which
leads to dramatically different results.
Alternatively, we can attempt to use the previous

probability distribution by expanding the integrand withffiffiffiffiffiffiffiffi
detK

pffiffiffiffiffiffiffiffi
detK

p ¼ 1; the denominator is part of the probability

distribution, while we absorb the numerator into the
observable. Unfortunately, this idea is not numerically
feasible. Generically, detK is a large quantity, even for
relatively small lattice sizes. Hence, it completely domi-
nates the expectation value, and convergence of the results
is slow. Therefore, we refrain from using this representation
for Monte Carlo simulations.

VI. RESULTS

The simulationswere performed at theAra-Cluster at FSU
Jena. For each set of parameters (α,M, andN), we randomly
generated an initial configuration of fields and lengths
followed up by a burn in of 108 Monte Carlo steps. This
was more than sufficient for the system to thermalize. Then,
depending on the lattice size, we sampled the Markov chain
at varying intervals to ensure that the samples were not
correlated. We chose the following interval lengths by
explicitly measuring the autocorrelation lengths, i.e., the
number of steps until two consecutive samples are uncorre-
lated and can be considered independent:

(i) N ¼ 81.—5 × 104 Monte Carlo steps;
(ii) N ¼ 256.—105 Monte Carlo steps;
(iii) N ¼ 625.—2 × 105 Monte Carlo steps.

Because of the increase in autocorrelation length with lattice
size and the increase in the time per iteration of the algorithm,
we reduced the number of samples taken for lattice sizeN ¼
625 to 2000, while 5000 samples were generated for lattice
sizes N ¼ 81 and N ¼ 256.
The algorithm and the data generated for and presented

in this article are freely available. The algorithm can be
found on Github [84], whereas the data are available on
Zenodo [85].
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A. Geometric observables

In Sec. VA, we obtained some qualitative insights for the
scenario when all lengths are constrained to be equal. To
check whether these qualitative insights also apply to the
full model, expectation values of coarse geometric observ-
ables provide a good point of comparison. A suitable
observable is the total four-dimensional volume of the
Universe and the square root of its variance (normalized
with respect to the volume expectation value). In Figs. 7
and 8, we plot both expectation values as a function of the
parameter α for lattices of size N ¼ 81, N ¼ 256, and
N ¼ 625 for different values of the scalar field mass M.
We observe the same qualitative behavior in all cases,

independent of the mass and lattice size. For α < 0.63 the
total volume is small, close to the volume given by the
minimal value of the lengths prescribed by the lower cutoff.
On the other hand, for α > 0.67 the volume is large and
close to the volume for largest allowed edge lengths (the
upper cutoff). These two regions are clearly cutoff depen-
dent, such that our simulations do not reflect the actual

dynamics in these regions. But they suggest that for small α
the lattice lengths are as small as possible, while they are as
large as possible for large α consistent with our previous
observations.
The interesting regime lies between these two extremes:

The boundary of the intermediate region is marked by steep
increases of the average total volume, from the lower cutoff
to a finite volume around α ≈ 0.63 and from a finite volume
to the upper cutoff around α ≈ 0.67. The finite average
volume is a function of α and the scalar field mass M.
Increasing α gives a larger volume, while a larger mass
drastically impacts the average volume. Crucially, this
region is independent of the choice of upper and lower
cutoffs on the lengths and, thus, accurately captures the
dynamics of the system. Because of the high symmetry of
the cuboid model, we thus expect it to look on average like
a regular lattice with an emergent lattice scale. To confirm
whether this average is a good representative of the
geometry, further observables must be examined. Note
that these results are in good agreement with our previous
considerations of the equilateral system in Sec. VA.
Moreover, the cutoff-independent existence of a regime
of finite volume is of note, as this does not exist for cuboid
spin foams without matter [40].
To learn more about the typical geometry of the spin

foam, if such a notion makes sense, we also examine the
(square root of the) variance of the volume which presents
an interesting feature: For smallest and largest volumes as
well as the finite plateau region, the variance of the total
volume is small. This has different meaning in the different
regions: When the total volume is determined by upper or
lower cutoff, the variance is small due to the cutoff. For
example, at the lower cutoff, the probability distribution
would favor even smaller lengths; however, such
Monte Carlo steps are forbidden by construction. On the
other hand, larger lengths are highly improbable. In
contrast, the interpretation in the finite volume region is
different: There, all length variations are a priori permitted,

FIG. 7. Plots of the expectation values of the total volume and its variance (normalized by the expectation value of the volume) as a
function of α for different masses. Left: lattice size 3 (N ¼ 81). Right: lattice size 4 (N ¼ 256).

FIG. 8. Plots for expectation values of total volume and its
variance for M ¼ 0.5 and lattice size 5 (N ¼ 625).
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yet large deviations away from the average configuration
are not probable. Thus, we can conclude that the spin foam
is peaked upon an emergent regular lattice with small
deviations around it.
However, at the boundaries of the plateau, where the

system transitions from a finite to a “cutoff” volume, the
variance shows pronounced peaks. This is because
the system transitions from being peaked at a finite volume
to being peaked on the lower or upper cutoff. Therefore, the
volume is permitted to vary in some cases over several orders
of magnitude. The height and position of the peaks might be
cutoff dependent, as we limit the minimal and maximal
volume the system is allowed to take. This regime is
interesting, as these peaks might indicate a phase transition
of the systemwith the possibility of taking a continuum limit.
More investigations are necessary though, e.g., considering
larger systems.

1. Comparing different lattice sizes

In addition to the previous plots where we studied the
total volume and its variance for different masses and the
same lattice size, we briefly compare these quantities for
the same masses and different lattice sizes. In Fig. 9, we
compare lattice size N ¼ 81 (three independent edge
lengths) and N ¼ 256 (four independent edge lengths)
for a mass M ¼ 5 and lattice N ¼ 81 and N ¼ 625 (five
independent edge lengths) for a mass of M ¼ 0.5.
Qualitatively, there is little difference between different

lattice sizes. In the plateau region, the larger lattice size
typically has a larger total volume, which indicates that the
typical lattice lengths are similar for the same parameters.
Moreover, the beginning and end of the plateau region are
slightly shifted toward smaller α for larger lattices. This
matches our expectations from our regular lattice consid-
erations in Sec. VA. We can confirm these observations
also by the position of the peaks in the variance plots.

2. Distribution of edge lengths

From the finite expectation value of the total volume in
the plateau region, it immediately follows that the spin
foam edge lengths are finite as well. Moreover, the low
variance (compared to the volume expectation value)
implies that the deviations are rather small. These results
are compatible with our analytic considerations in Sec. VA,
where we fixed all edge lengths to be the same. Because of
the high degree of symmetry of the system, a finite total
volume suggests that effectively the coupled system
behaves like a regular lattice, whose lattice length is
emergent and determined by the parameters of the model
(α and M), plus small deviations. However, the total
volume is a coarse observable and might average out other
features. To complement our understanding of the system,
we consider the distribution of lengths.
To do so, we plot histograms of the length distribution for

different values ofα (in or close to the plateau region),M, and
the lattice size in Figs. 10–12. In these histograms, we show
how often all lengths, i.e., in all space-time directions, were
sampled in an interval. From a qualitative perspective, the
plots are similar for any lattice size, massM, and α: We see a
(fairly) smooth distribution with a clearly defined peak at a
finite length; some plots look more jagged, which is due to
the finite sample size (in particular, for lattice size 5). The
peaks are asymmetric, with a sharper decline to shorter
lengths and a long tail toward larger lengths in good agree-
ment with our analytical examinations in Sec. VA. In short,
this distribution shows that in the plateau region all lengths
are sharply peaked around the same value, which confirms
our expectation that the system is peaked on an emergent
regular lattice. Only small deviations are permitted, such that
we are confident to characterize the effective spin foam
geometry as a regular lattice plus perturbations. In the
following, we will discuss how this effective geometry
changes as we change the parameters of the model.

FIG. 9. Comparison of volume and its variance for the same mass and different lattice sizes. Left: mass M ¼ 5 and comparison of
observables for lattices with three and four independent edge lengths, i.e., N ¼ 81 and N ¼ 256. Right: massM ¼ 0.5 and comparison
of observables for lattices with three and five independent edge lengths, i.e., N ¼ 81 and N ¼ 625.
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While all plots look fairly similar, there are strong
quantitative differences when changing the parameters.
Most striking are changes in the mass M: Increasing it
by an order of magnitude moves the peak of the length
distribution one order of magnitude lower for all lattice
sizes and values of α (in the plateau region) and suggests a
linear relation between the mass and the position of the
peak. However, while the absolute variance of lengths
decreases, relative to the peak of the distribution the
variance appears to be the same. In this sense, a larger
mass “shrinks” the distribution inversely proportional to the
mass increase.
In contrast, increasing the value of α, while keeping the

mass and lattice size fixed, moves the peak of the length
distribution to larger lengths. Moreover, while we always
see a sharp peak in the plateau region, the tail toward large
lengths becomes longer as we increase α, suggesting a

FIG. 10. Histograms of all lengths (lattice size N ¼ 81) obtained by Monte Carlo simulations. Left: mass M ¼ 0.5. Right: mass
M ¼ 5.

FIG. 11. Histograms of all lengths (lattice size N ¼ 256) obtained by Monte Carlo simulations. Left: mass M ¼ 5. Right: mass
M ¼ 50.

FIG. 12. Histograms of all lengths (lattice size N ¼ 625)
obtained by Monte Carlo simulations.

MASOOMA ALI and SEBASTIAN STEINHAUS PHYS. REV. D 106, 106016 (2022)

106016-18



larger variance. This is also confirmed by the variance of
the total volume. However, compared to our analytical
study of superimposed regular lattices, the tail appears to be
slightly shorter. However, this impression could be mis-
leading, since these lengths are less probable and might
require larger sample sizes to properly reflect the size of
these tails.
Finally, we consider the changes of the length distribu-

tion for different lattice sizes. First, if we keep the mass M
and α fixed, the peak of the distribution appears to be more
or less constant; that is, the typical edge length is mostly
determined by M and α and not by the lattice size. Clearly,
it is necessary to go to larger lattice sizes to confirm that.
Additionally, it seems that the distribution becomes more
sharply peaked for larger lattice sizes; in particular, the tail
is shorter. Again, though more samples might be necessary
to properly represent the distribution at such low proba-
bility, there is another reason why larger lattice sizes can be
more restrictive.
Because of the high degree of symmetry of quantum

cuboids, the entire spin foam is characterized by 4N edge
lengths, where N is the lattice size. If we vary a single edge
length in the spin foam, we affect N3 hypercuboids and
many scalar field interactions via the change of edge
lengths directly and also the changes in (dual) volumes.
Hence, for larger lattice sizes, edge length changes affect
more interactions and degrees of freedom compared to
smaller lattices, which might lead to more disfavored
proposals. This could be an explanation why for larger
lattice sizes the tails in the length distribution might be
shorter. Obviously, this is a peculiarity of the cuboid spin
foam model and does not hold for general triangulations. It
will be interesting to see whether a similar effect also
occurs in such cases.
In summary, the sharply peaked length distributions

suggest that, in the plateau region, the spin foam on
average looks like a regular lattice with average lattice
spacing determined mainly by the scalar field mass M and

the parameter α. Deviations around this regular shape do
occur. In the next section, we investigate the two-point
correlation function of the scalar field on this spin foam and
whether it is sensitive to the fluctuations around the regular
lattice.

B. Matter observables

The relevant matter observables of the coupled system
are the two-point correlation functions hϕaϕbi of the scalar
field, where a and b denote vertices in the cubulation.
Technically, this is not a pure matter observable: In addition
to the correlation of the fields, we also measure their
distance given by the specific spin foam configuration. This
is crucial for the physical interpretation of the correlator,
since the labeling of the vertices by itself has no physical
significance and is merely a choice of coordinates. Of
course, the combinatorics of the lattice plays a role, e.g.,
whether two vertices are neighbors and, thus, the associated
fields interact directly. However, we do not track this
information, as the distance appears to be the determining
factor for the correlators.
In the following, we discuss the two-point correlation

functions in the “plateau” region for different lattice sizes.
Investigating the correlators outside this region has little
merit, for different reasons. Primarily, the results depend on
the chosen upper and lower cutoffs and, therefore, cannot
be trusted. Even if the cutoffs could be removed, sampling
fields for infinitely small or large lattices is not possible or
reasonable. Not to mention that the semiclassical approxi-
mation breaks down for spin foam configurations with tiny
lengths.
In Figs. 13–15, we plot the samples of the two-point

correlators hϕaϕbi for all pairs of vertices a, b over the
distance that vertices a and b are apart (in the respective
sample), while also dropping the labels. That way, we
consider scalar field correlations as a function of distance.
We define the length between two vertices as the length of
the shortest path between them; i.e., we sum up the edge

FIG. 13. Two-point correlation function hϕaϕbi plotted over the distance d between the vertices a and b of lattices with three
independent edge length values (N ¼ 81).
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lengths along this path. Note that there are several paths
connecting two vertices due to periodic boundary con-
ditions. Thus, we consider field correlations as a function of
distance between the fields, similar to lattice field theory,
yet these distances are dynamical and determined by the
gravitational field encoded in the spin foam. Hence, we are
measuring a relational observable [52–54].
Following our discussion in the previous section, let us

first discuss the distances of vertices in the correlation plots.
For lattice sizes N ¼ 81 and N ¼ 625 (see Figs. 13 and 15,
respectively), we see that the correlations are measured at
almost equidistant distances with barely any spread, which
is difficult to resolve at the plotted distances. This obser-
vation is in agreement with the distribution of lengths and
shows that effectively the spin foam behaves like a regular
lattice. Comparatively, for lattice size N ¼ 256 in Fig. 14,
the correlations appear in “bunches” but in a distinct
pattern: Closest and furthest neighbors appear only in a
single line, the intermediate one in roughly three lines.
Since this consistently occurs in all simulations for lattices

with four independent edge lengths but not for lattices with
three and five independent edge lengths, and we find
qualitatively similar length distributions for all three lattice
sizes, this is most likely a peculiarity of lattices with an
even number of independent edge lengths. Because of the
cuboid symmetry and periodic boundary conditions, there
exist 16 different paths (of different lengths) between two
vertices, essentially the two directions per dimension. On
odd lattices, there always exists a combinatorially shortest
path, which immediately translates to (almost) regular
lattices. On even lattices, however, certain pairs of vertices
can have multiple paths of the same combinatorial distance
between them. In these cases, the fluctuations around
regular lattices become crucial and, thus, might allow for
more deviations of the distance. Hence, the pairs of vertices
which have an intermediate distance between them show
the largest spread in their distance, while furthest away
pairs are sharply peaked. Unfortunately, we cannot confirm
this for a larger even lattice, e.g., lattices with six inde-
pendent edge lengths per dimension, as the numerical costs
grow drastically. These results furthermore support our
hypothesis that, on average, the spin foam appears as a
regular lattice with fluctuations around this regular shape.
For the correlations themselves, we make two main

observations. First, the correlations fall off quickly and are
typically below 1=4 already for the smallest nonvanishing
distance. This is mainly due to magnitude of this distance,
which is dynamical. As discussed above, while smaller
edge lengths are permitted by the spin foam model, they are
highly improbable, and, thus, it is extremely difficult to
measure the correlations at small distances. On the other
hand, because these configurations are so unlikely, we can
assume that the correlations of the scalar field for smaller
nonvanishing distances are highly suppressed, but more
research is necessary to explore this question further.
The second observation is that there is significant spread
in the correlations also at large lengths. At such distances, the
system actually is difficult to sample, as only extremely small

FIG. 14. Two-point correlation function hϕaϕbi plotted over the distance d between the vertices a and b of lattices with four
independent edge length values (N ¼ 256).

FIG. 15. Two-point correlation function hϕaϕbi plotted over
the distance d between the vertices a and b of lattices with five
independent edge length values (N ¼ 625).
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values of the scalar field are viable. However, due to these
large deviations on the correlations and finite sample size, the
correlations might on average appear to be larger than
expected for such distances in ordinary lattice field theory.
This might affect the estimates of the mass from the
exponential decline of the correlators.
Qualitatively, the results look strikingly similar for

different masses M, but careful attention is necessary:
For all sets of parameters, we qualitatively observe that
correlations exponentially decay as the distance between
vertices grows. This observation is true for any lattice size,
mass of the scalar field M, and value of α (in the plateau
region). However, α andM play starkly different roles. α is
a parameter that appears only in the spin foam amplitude,
and it is directly related to the lengths: Larger α implies a
larger probability of larger lengths, meaning that the
distance between vertices a and b increases, which, in
turn, leads to lower correlations. Conversely, a larger mass
implies a shorter correlation length; however, at first sight,
the correlations do appear to decay similarly to the cases
with lower mass. This is due to the change in length; a
larger mass favors smaller lengths, such that the vertices are
on average closer together. Thus, the measured correlation
length is smaller, due to largerM, yet the fields are similarly
correlated since the vertices are effectively closer. Hence,
the scalar field and, in particular, the value of its mass have
a strong impact on the geometry of space-time. On the other
hand, the two-point correlation function on average
behaves like the two-point correlation function of a scalar
field theory of the same mass on a regular lattice, whose
lattice spacing agrees with the average lattice spacing of the
spin foam. This also holds for any lattice size, where
essentially a larger lattice size adds pairs of vertices to the
system that are further apart. To quantify our impression
that the two-point correlator of the scalar field is barely
affected by the dynamical spin foam, we compute the
correlation length, i.e., the inverse of the “effective” mass,
from the exponential decay of the correlator.

In scalar lattice field theory, the two-point correlation
function exponentially decays with the distance between
the vertices, where the decay rate is called the correlation
length. For a free, massive scalar field, this correlation
length is equal to the inverse mass of the scalar field; a
larger mass implies a shorter correlation length. In our
setup, we can thus disentangle changes of the correlations
and lengths by fitting the exponential decay of the
correlation function and infer an effective mass of the
scalar field coupled to the spin foam. Note that this is also a
coarse, nonlocal observable derived from the entire system.
In Figs. 16 and 17, we plot the measured effective mass

for a fixed mass M of the scalar field as a function of the
parameter α and different lattice sizes. First of all, we see
that in the plateau region the effective mass is at a similar
order of magnitude as the field massM, yet it changes with
α. For α around 0.64, we see a good agreement between the
fitted and actual mass. However, the effective mass
decreases as we increase α, to around half the value of

FIG. 16. Plots of mass estimated from exponential decline of scalar field correlations in logarithmic scale. Horizontal lines show the
mass parameter of the model for comparison. Left: lattice size 3. Right: lattice size 4.

FIG. 17. Plot of mass estimated from exponential decline of
scalar field correlations in logarithmic scale for lattice size 5.
Horizontal lines show the mass parameter of the model for
comparison.
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the field mass close to the end of the plateau. Outside the
plateau region, the mass estimates from the fits cannot be
trusted, because the lattice is close to either the lower or
upper cutoff, respectively. However, the decline of the
mass in the plateau region toward larger α remains to be
understood.
The decline of the effective or fitted mass is universal for

different lattice sizes and masses. Since this decrease is tied
to α, the cause might be related to changes in the spin foam,
e.g., the length distribution. For larger α, we observe a
broader spread in the length distribution with a longer tail
toward larger lengths. However, it is not clear how this
would translate into correlations that die off later and thus
result into a smaller effective mass. Moreover, for larger
lattice sizes, this broadening of the length distribution is
less pronounced, yet the decline in mass is comparable.
Instead, a different explanation appears more likely.
As discussed above, we observe a significant spread of

correlations also for large distances, even though the
correlations are exponentially suppressed. This is due to
the fact that scalar lattice field theory is difficult to sample
in those regions. Because of this systematic issue of
Monte Carlo simulations, the correlations might appear
on average larger than they should be, from which we
obtain a larger correlation length or smaller effective mass
from the fit to the measured two-point correlation function.
To our best knowledge, this is the most plausible explanation
for the observed effect, which makes it unlikely that this
difference betweenmass parameterM and effectivemass is a
physical effect. Certainly, this question for the cuboids
should be investigated in more detail. Furthermore, it will
be interesting to see whether this result still holds for more
general spin foams, which allow for curved geometries.
In summary, the observables of the scalar field coupled

to cuboid spin foams are remarkably similar to studying a
scalar field on a regular lattice, giving further evidence to
our hypothesis that our model can be effectively regarded
as a scalar field on a regular lattice with dynamical lattice
spacing. Changing the mass of the scalar field mostly
affects the spin foam, while the correlation function
remains similar to one on a regular lattice. Estimating
the scalar field mass from the correlation function does
reveal a decline with α, yet it seems unlikely that this is a
physical effect and rather rooted in the difficulty of
sampling the scalar field for large lattice lengths.

VII. SUMMARY AND DISCUSSION

In this article, we have defined the coupling of free,
massive scalar field theory to a 4D (semiclassical) spin foam
model and for the first time computed expectation values of
this coupled matter-gravity system in the restricted case of
cuboid spin foams [40]. The idea of the couplingmechanism
is to consider a spin foam configuration as an irregular lattice
on which we define lattice field theory via discrete exterior
calculus [55,56,58]. Then, we sum over spin foam

configurations and, thus, superimpose lattice field theories
weighted by spin foam amplitudes, akin to the ideas
developed in Ref. [14]. Our ansatz is not restricted to cuboids
and can be straightforwardly adapted to other semiclassical
approaches like frusta spin foams [48] or effective spin foams
[35].9 The particular advantage of cuboid spin foams is that
its amplitudes are nonoscillatory, even in the quantum regime
[57], such that we can use Markov chain Monte Carlo
techniques to compute observables of the matter spin foam
system.
In this paper, we have studied two types of observables,

geometric ones, like the total volume and edge lengths
distribution, and matter ones, like the two-point correlation
function. From these observables, we identify two counter-
acting mechanisms of the coupled matter-gravity system:
The scalar field leads to a polynomial suppression of large
lengths, derived from integrating out the scalar fields,
which is more pronounced for larger mass. On the other
hand, the parameter α in the spin foam face amplitude
favors large lengths as it is increased. From the geometric
observables, we then identify three regimes: For small α the
lengths of the system are as small as possible, while for large
α the lengths are as large as possible. These two regimes are
connected by an extended region in parameter space atwhich
the total volume and the edge lengths are finite, and the
system on average and effectively looks like a regular lattice.
The average lattice size is a function of the scalar field mass
M and α and appears to be independent of the lattice size.
Note that this lattice size is dynamical and not related to the
fundamental discreteness of area variables in spin foams; due
to the semiclassical regime, we have assumed the length
variables to be continuous. Additionally, we studied the two-
point correlation function of the scalar field, which effec-
tively behaves as if the scalar field is defined on a regular
lattice. While our estimates show some deviations in the
effective mass and correlation lengths, we attribute those to
the difficulty of measuring correlations for large lattice
distances. Interestingly, changing the mass of the scalar field
mostly appears to affect the spin foam, whose average edge
lengths change inversely proportional to the change of mass.
Our results have several interesting implications for spin

foam quantum gravity. Primarily, the effective emergence
of scalar lattice field theory defined on a dynamical regular
lattice is first evidence that spin foam quantum gravity
coupled to matter might possess a regime that effectively
describes quantum field theory defined on a fixed back-
ground space-time. Additionally, the effective lattice spac-
ing is also dynamical and given as a function of the
parameters of the theory, in particular, the scalar field
mass. This could hint toward a new mechanism as to how

9For effective spin foams, special attention must be paid to
configurations, where two 4-simplices are glued along a tetra-
hedron, yet the shapes of this tetrahedron seen from the two
4-simplices do not match.
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new intermediate scales can emerge in spin foams or loop
quantum gravity coupled to matter. It furthermore raises the
questions as to how other types of matter will influence the
spin foam and whether there are limits to how many matter
fields we can couple and still recover a quantum field
theory from our coupled system. This is indeed a question
raised in many approaches to quantum gravity, e.g.,
asymptotic safety [26], in particular, whether the standard
model of particle physics is compatible and whether there is
a mechanism that limits the number of matter fields one can
couple to quantum gravity.
Additionally, in this workwegain first insights into how to

extract physical observables frommatter–spin foam systems.
In the absence of a background space-time, no overall scale
like a lattice spacing is a priori available to define a
correlation length. One can resort to using combinatorial
information or simply the labels of vertices, but this is a
coordinate distance instead of a physical one. Instead, we
measure both the distance (here, path distance) between two
vertices as well as the correlation of the scalar field located at
these vertices and drop their labels. That way, we store
physical, diffeomorphism invariant information, namely,
correlations in relation to the geodesic distance between
two points, in the spirit of relational observables [52–54].
Note, however, that, in ourMonteCarlo approach, we cannot
probe the correlations at arbitrary distances, only at probable
distances. In the review on causal dynamical triangulation
[27], a scalar field two-point correlation function is discussed
that defines the correlator at arbitrary geodesic distances.
At this stage, it is not clear how to define a continuum or

refinement limit [42,44] of the coupled spin foam matter
system. From the observables we studied in this work, none
appears to be an order parameter indicating a second-order
phase transition. While the variance of the total volume
shows a divergent behavior at the edges of the plateau
region, these divergences do not grow for larger lattice
sizes. Moreover, it would be necessary to evaluate in more
detail whether the variance is dependent on the chosen
cutoff. Beyond the conclusions we can draw from our
current work, renormalization or coarse graining of the
matter-gravity system, similar to Ref. [86], is indispensable
to address this question and to evaluate what influence
various ambiguities might have on the dynamics, e.g., the
definition of the scalar field theory. In our concrete case, we
could attempt to define a renormalization group flow where
the system defined on a finer lattice effectively looks like
the refinement of a coarser system, while keeping the two-
point correlation function of the scalar field fixed.
Essentially, this amounts to matching the average total
volume by tuning the parameter α and keeping the massM
fixed. In the plateau region, where the two-point correlation

function and correlation length are well understood, this
strategy of identifying observables will likely work only for
a few coarse-graining steps. On the other hand, on the
edges of the plateau region, where the lengths start to
fluctuate, it might be possible to relate the average geo-
metric observables across different lattice sizes by tuning α.
Further work is necessary to explore this idea, in particular,
how the scalar field correlator behaves for such parameters
on larger lattices.
While the results of this article are encouraging and

intriguing, it is clear that many assumptions are made that
must be lifted in order to check whether they also hold in
physically more relevant situations. On the side of the spin
foam, this requires us to go beyond quantum cuboids and
eventually beyond semiclassical models. A suitable first
step could be to use effective spin foams [35] defined on a
triangulation, which is numerically more accessible than
the full quantum theory and allows for vastly more
configurations with nonvanishing curvature and nonme-
tricity. However, due to the oscillatory nature of the
amplitude, Monte Carlo methods will no longer be appli-
cable and other numerical methods must be explored. A
first attempt might be to consider a scalar field coupled to
effective spin foams expanded around a flat triangulation of
hypercubes similar to Ref. [87]. Extending the matter
coupling to the quantum regime of spin foams is another
interesting challenge that must be addressed, as well as
coupling other types of matter and studying their dynamics,
e.g., gauge field [14] and fermions [18,19].
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