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Recently, the stochastic dynamical model based on the free energy landscape was proposed to quantify
the kinetics of the black hole phase transition. An essential concept is the generalized free energy of the
fluctuating black hole, which was defined in terms of the thermodynamic relation previously. In this work,
by employing the Gibbons-Hawking path integral approach to black hole thermodynamics, we show that
the generalized free energy can be derived from the Einstein-Hilbert action of the Euclidean gravitational
instanton with the conical singularity. This work provides a concrete and solid foundation for the free
energy landscape formalism of black hole phase transition.
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I. INTRODUCTION

Recently, it was proposed that the kinetics of black hole
phase transition can be described by the stochastic dynami-
cal model based on the free energy landscape [1–3]. An
essential concept is the generalized free energy function of
the fluctuating black hole, which was defined in terms of
the thermodynamic relation previously. It is well known
that thermodynamics is universal. Therefore, the previous
definition of the generalized free energy from the thermo-
dynamics viewpoint should be reasonable. However, how
to derive the generalized free energy of the fluctuating
black hole from the first principle is still unclear. In the
gravity aspect, this thermodynamic quantity should be
related to the Einstein-Hilbert action in the path integral
formalism of quantum gravity [4]. In this paper, we address
this issue. Prior to this, we will make some clarifications.
In studying phase transition, order parameter is usually

used to distinguish two different phases (or orders). For
liquid-gas transitions, the order parameter is the density
which has a clear distinction between the liquid phase
and the gas phase. For the Reissner-Nordstrom anti–de
Sitter (RNAdS) black hole phase transition in the extended
phase space, the number density of the black hole molecules

is proposed to distinguish the different black hole phases
[5,6]. However, the order parameter for a given system is
often not unique and there are other possible choices for an
order parameter [7]. In the free energy landscape of black
hole phase transition, it is proposed that the black hole radius
can be a proper order parameter to describe the black hole
phase. In the example of Hawking-Page phase transition, the
Schwarzschild anti–deSitter (SAdS) black hole phase has the
nonzero black hole radiuswhile the pure anti–de Sitter (AdS)
space phase has vanishing black hole radius [1]. For the
small/large RNAdS black hole phase transition, the three
branches of black holes also have different black hole
radii [2,3].
The kinetics of the black hole phase transition can be

studied as follows. The evolution of the order parameter
under the influence of thermal bath is assumed to be
governed by the stochastic dynamics. In analogy to the
random motion of particles suspended in thermal environ-
ment, there are three types of forces that determine the
dynamics of the order parameter. The first force is the friction
that results from the interaction between the black hole and
the thermal bath. The second is the thermodynamic driving
force, which is represented by the gradient of the generalized
free energy function. The third is the stochastic force from the
thermal environment. In this way, one can study the kinetics
of black hole phase transition by using theLangevin equation
for the dynamical trajectory evolution or the Fokker-Planck
equation for the probabilistic evolution. The formalism has
been applied to investigate the Markovian dynamics [8–21]
and the non-Markovian dynamics [22,23] of the black hole
phase transitions.
In the present work, unlike the previous proposal [3] that

the thermal bath is the effective description of the portion
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of the microscopic degrees of freedom of black hole,
the thermal bath is considered as the real entity or the
external environment that black hole can be in contact with.
For the asymptotically flat cases, the radiations and the
matter fields far away from the black hole horizon can be
considered as the environment. For the AdS case, one can
also imagine that there is a thermal bath at the AdS spatial
infinity, just as the physical model studied in island
formalism of Hawking radiation [24–27]. In this case,
the AdS boundary does not behave like a mirror that
reflects the radiation back into the black hole. It is trans-
parent and allows the radiation or energy flow from the
black hole to the bath or back [28]. The temperature of the
environment or the thermal bath with which the system
interacts is defined as the ensemble temperature. In this
setup, the ensemble temperature is an external adjustable
quantity, which is independent of the black hole parame-
ters. In addition, due to the existence of the thermal
environment, the fluctuating black holes will be generated
from the local stable black holes by absorbing or radiating
the matter or energy during the phase transition process.
The free energy landscape provides an intuitive and

quantitative description of the free energy topography, on
which the local minimum/maximum points represents the
local stable/unstable black holes while other points repre-
sents the fluctuating black holes [1–3]. A sketch of the free
energy landscape is presented in Fig. 1. The fluctuating
black holes act as the intermediate states during the phase
transition process. It should be noted that the fluctuating
black holes as well as the local stable and unstable black
holes are distinguished by the order parameter (black hole

radius) as discussed previously. Therefore, every point on
the landscape, which represents a spacetime state in the
phase transition process, should be described by a metric
that solves the Einstein field equations. Then, the macro-
scopic thermodynamic quantities can be expressed as
the functions of the order parameter (black hole radius).
The main purpose of the current work is to compute the
generalized free energy of the fluctuating black hole. It is
expected that the generalized free energy should be related
to the Euclidean gravitational action in the path integral
approach to black hole thermodynamics.
In the Euclidean path integral approach to quantum

gravity, the statistical ensemble consists of all the gravi-
tational configurations that satisfy the specific boundary
conditions. In our setup, the Euclidean gravitational con-
figurations in the ensemble are specified by the following
conditions: (1) the fixed ensemble temperature T; (2) the
fixed horizon radius rþ and the asymptotic AdS behavior
on the external boundary. In principle, the partition function
should take into account all the contributions from all the
spacetime geometries that satisfy these conditions. It is well
known that the saddle point approximation leads to the
conventional semiclassical method to evaluate the partition
function. In this way, one can consider only the contribu-
tion of the classical solution that solves Einstein field
equations. More precisely, the partition function can be
evaluated on the Euclidean fluctuating black hole with
the fixed horizon radius rþ and the fixed Euclidean time
period β related to the ensemble temperature T as β ¼ 1=T.
This type of classical geometry is known as the Euclidean
black hole instanton with conical singularity at the
horizon [29–32]. Recall that the ensemble temperature is
an external adjustable parameter, which is independent of
the black hole parameters. Therefore, for the arbitrary
period β of the Euclidean time, the Euclidean manifold
of the fluctuating black hole is not regular, but has a conical
singularity. As is well known, there exists a special period
(Hawking inverse temperature of the fluctuating black
hole), for which the conical singularity disappears.
However, for the arbitrary period, there is a two dimen-
sional cone with nonzero deficit angle near the event
horizon in the Euclidean manifold. Fortunately, the issue
of how to deal with the conical singularity was previously
investigated in [33,34]. Thus, it is possible to calculate the
partition function by evaluating the gravitational action on
singular Euclidean gravitational instanton. The essential
idea to derive the generalized free energy of the fluctuating
black hole is to introduce an arbitrary fixed ensemble
temperature. This approach was used to study the quantum
corrections to the black hole entropy, which is called the
off-shell method [35–41]. This off-shell approach was also
applied to give the geometric interpretation of the tachyon
condensation of string gas in the framework of the gauge/
gravity duality [42,43]. We expect that the present work can
provide a concrete and solid foundation for the free energy
landscape formalism of black hole phase transition.

FIG. 1. A sketch of the free energy landscape. The typical free
energy landscape of the first order phase transition has the shape
of double well when the generalized free energy FðrþÞ is plotted
as the function of the order parameter rþ. On the landscape,
the local minimum points (red) represents the local stable black
holes, the local maximum point (light blue) represents the
unstable black hole, and other points (dark blue) represents
the fluctuating black holes.
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The rest of the paper is devoted to the computation of the
generalized free energies of the SAdS black hole (Sec. II),
the RNAdS black hole (Sec. III), and the Kerr-AdS black
hole (Sec. IV). The conclusion and discussion are presented
in the last section.

II. GENERALIZED FREE ENERGY LANDSCAPE
OF HAWKING-PAGE PHASE TRANSITION

It is well known that Hawking-Page phase transition is
the first order phase transition between the SAdS black hole
and the thermal AdS space [44]. In this section, our aim is
to elucidate the idea of the calculation of the generalized
free energy for the black hole phase transition.
To begin with, we recall that in the Gibbons-Hawking

approach to black hole thermodynamics, the partition
function of the canonical ensemble can be written in the
form of the gravitational path integral [4]

ZgravðβÞ ¼
Z

D½g�e−IE½g� ≃ e−IE½g�; ð1Þ

where IE½g� is the Euclidean gravitational action and β is
the integral period of the Euclidean time. This functional is
taken on all the Euclidean gravitational configurations that
satisfy the given boundary conditions. For our purpose, the
saddle point approximation is used.
The Euclidean Einstein-Hilbert action is given by [4]

IE ¼ −
1

16π

Z
M

�
Rþ 6

L2

� ffiffiffi
g

p
d4x; ð2Þ

where R is the Ricci scalar curvature. Note that there
should be Gibbons-Hawking boundary terms that lead to
the well defined variation for the equation of motion and
the counter terms that cancel the divergence at the AdS
spatial infinity. As shown in the following, we will employ
the background subtraction trick to calculate the finite part
of the Euclidean gravitational action [44,45]. The boundary
terms will be canceled in this procedure because the black
hole correction to the AdS metric decays very rapidly at
infinity. In the following, we will evaluate the Euclidean
action on the singular manifold with the conical singularity
at the interior boundary. The boundary’s contribution will
be discussed independently.
The integral period β of the Euclidean time in the

partition function (1) is determined by the ensemble
temperature T, which is given by

β ¼ 1

T
: ð3Þ

As discussed in the introduction, the ensemble temperature
is just the temperature of the thermal environment, which is
an adjustable external parameter and independent of the
black hole parameters in our setup.

To proceed, we consider the Euclidean SAdS black
hole solution in four dimensions, which is described by
the metric

ds2 ¼
�
1 −

2M
r

þ r2

L2

�
dτ2 þ

�
1 −

2M
r

þ r2

L2

�−1
dr2

þ r2dΩ2
2; ð4Þ

where M is the mass of the SAdS black hole and L is the
AdS curvature radius. The mass of the SAdS black hole can
be expressed as the function of the black hole radius rþ

M ¼ rþ
2

�
1þ r2þ

L2

�
: ð5Þ

As discussed in the introduction, black hole radius is
treated as an order parameter. The fluctuating black hole
with the given horizon radius rþ has the mass given by
Eq. (5) and the corresponding geometry is then described
by the metric Eq. (4). For example, consider the spacetime
solution that has the order parameter rþ ¼ 0. From Eq. (5),
the mass of this spacetime solution is zero. The spacetime
geometry is then described by the metric Eq. (4) with
M ¼ 0. It is easy to see that this spacetime is just the pure
AdS space. In this way, all the black hole states on the free
energy landscape are described by this type of the SAdS
metric toward the relation Eq. (5).
The presence of the environment/ensemble temperature

T ¼ 1=β implies that the periodicity of Euclidean time τ in
the metric (4) is given by

0 ≤ τ ≤ β: ð6Þ

In our setup, the period β of the Euclidean time is
independent of the black hole parameter M, or is
irrelevant to the black hole radius rþ. By introducing the
coordinate ρ as

dρ ¼ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r þ r2

L2

q ; ð7Þ

the near horizon metric of the Euclidean SAdS black hole
can be approximated by

ds2 ≃ ρ2d

�
2πτ

βH

�
2

þ dρ2 þ r2þdΩ2
2; ð8Þ

where βH is given by

βH ¼ 4πrþ
ð1þ 3r2þ=L2Þ : ð9Þ

For arbitrary period β of the Euclidean time τ, the metric (8)
represents the product manifold of a two dimensional cone

GENERALIZED FREE ENERGY LANDSCAPE OF A BLACK HOLE … PHYS. REV. D 106, 106015 (2022)

106015-3



and a two dimensional sphere. The Euclidean geometry
of the fluctuating black hole is depicted in Fig. 2. The
Euclidean manifold of the fluctuating black hole is not
regular, but has a conical singularity [33,34]. More pre-
cisely, there is a two dimensional cone with nonzero deficit
angle 2πð1 − β

βH
Þ near the event horizon r ¼ rþ. It should

be emphasized that the Euclidean SAdS metric (4) with the
arbitrary time period β satisfies the Einstein field equations
except at the event horizon r ¼ rþ. Therefore, to evaluate
the partition function by using the semiclassical approxi-
mation method, one just needs to compute the Hilbert-
Einstein action (2) on the singular Euclidean gravitational
instanton as depicted in Fig. 2.
It is well known that when the periodicity of the

Euclidean time is taken to be the inverse Hawking temper-
ature βH, the near horizon metric represents a two dimen-
sional disk rather than a singular cone. Then, the conical
singularity disappears and the corresponding Euclidean
manifold is regular. The physical implication of the con-
dition β ¼ βH for the regularity of the Euclidean manifold
will be further explained at the end of this section.
Because the Euclidean gravitational instanton is singular,

the gravitational bulk term contains the extra contribution
from the conical singularity Σ [33,34]. It can be shown that
this contribution is proportional to the horizon area times
the deficit angle of the conical singularity [46–48]. It can be
proved that [41]

Z
M

R ¼ 4π

�
1 −

β

βH

�Z
H
1þ

Z
M=Σ

R; ð10Þ

where H represents the event horizon r ¼ rþ, and M=Σ
represents the regular manifold by excising the conical
singularity Σ.
For the regular part of the Euclidean gravitational

instanton, the action becomes

IM=Σ ¼ 3

8πL2

Z
M=Σ

ffiffiffi
g

p
d4x; ð11Þ

where we have used the fact that R ¼ − 12
L2 for the AdS

solutions of the equations of motion. It is clear that this
expression is divergent because the volume of the bulk is
infinite. In order to regularize the bulk action, one can
terminate the r integral at a cutoff boundary r ¼ r0, subtract
off the action of the pure AdS space, and finally take
the limit of r0 → þ∞ to obtain the finite part of the bulk
action [44,45,49].
In this procedure, one has to match the SAdS metric

with the background AdS metric at r ¼ r0. Thus the time
coordinate τ0 of the AdS space is related to the time
coordinate τ of the SAdS metric by the following condition

�
1 −

2M
r0

þ r20
L2

�
dτ2 ¼

�
1þ r20

L2

�
dτ20: ð12Þ

This in turn gives the time periods in the action integrals
that are related by the relation

β0¼ β
ð1−2M=r0þ r20=L

2Þ1=2
ð1þ r20=L

2Þ1=2 ¼ β

�
1−

ML2

r30
þO

�
1

r50

��
:

ð13Þ

Thus, the bulk action of SAdS black hole with the
subtraction of the background AdS action is then
given by [49]

IM=Σ ¼ 3

8πL2

�
β

Z
r0

rþ

ffiffiffi
g

p
drdθdϕ − β0

Z
r0

0

ffiffiffiffiffi
g0

p
drdθdϕ

�
;

ð14Þ

where g0 is the Euclidean metric determinant of the pure
AdS space. Note that there is a subtlety in the lower
bound of the r direction integral over the pure AdS space.
However, for the even dimensions, the lower bound of the
radial integration is just zero [49].
At last, considering all the contributions discussed

above, we have

IE ¼ −
�
1 −

β

βH

�
A
4
þ β

2L2
ðr30 − r3þÞ −

β0
2L2

r30;

¼ −πr2þ

�
1 −

β

βH

�
þ βM

2
−
βr3þ
2L2

¼ βrþ
2

�
1þ r2þ

L2

�
− πr2þ; ð15Þ

whereA ¼ 4πr2þ is the horizon area of the SAdS black hole
and the cutoff surface r0 is sent to infinity in the final result.

FIG. 2. Euclidean geometry M of the fluctuating black hole
with the event horizon radius rþ and the arbitrary time period β.
There is a conical singularity Σ at the event horizon r ¼ rþ. Every
point in this two dimensional surface represents a sphere of
radius r. When β ¼ βH , the singularity disappears and the
corresponding Euclidean manifold is regular.
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The free energy is defined as [50]

F ¼ −
1

β
lnZgravðβÞ

¼ IE
β

¼ rþ
2

�
1þ r2þ

L2

�
− πTr2þ: ð16Þ

This is just the generalized free energy of the fluctuating
black hole previously defined from the thermodynamic
relation F ¼ M − TS [1]. To make it more explicit, we
recall that the energy E and entropy S of a canonical
ensemble at the temperature T ¼ 1=β can be derived from
the free energy as [50]

E ¼ ∂

∂β
ðβFÞ ¼ rþ

2

�
1þ r2þ

L2

�
; ð17Þ

S ¼ βðE − FÞ ¼ πr2þ: ð18Þ

It can be seen that the energy E and the entropy S are
independent of the inverse temperature β. By identifying
the energy E as the black hole massM, the thermodynamic
definition of the generalized free energy is then given by

F ¼ M − TS ¼ rþ
2

�
1þ r2þ

L2

�
− πTr2þ; ð19Þ

which coincides with the result Eq. (16) calculated from the
gravitational action on the singular Euclidean instanton.
As shown, we have derived the generalized free energy

of the fluctuating SAdS black hole from the gravitational
action on the singular Euclidean instanton by using the
path integral approach. In the Eqs. (16)–(19), the black hole
radius rþ should be treated as the order parameter. In
general, the order parameter can be interpreted as the one
emergent from the underlying microscopic degrees of
freedom of the black hole. For the SAdS black holes,
the order parameter rþ changes continuously from zero to
infinity without any constraint. The generalized free energy
F is then the continuous function of the order parameter rþ
and the ensemble temperature T. This forms the free energy
landscape for the SAdS black holes at the temperature T.
The second law of thermodynamics for an ensemble of

arbitrary systems in contact with identical thermal baths is
equivalent to the law that the free energy of the system can
never increase. This can be stated as the minimum principle
for the generalized free energy [50]. By using the extremum
condition ∂F=∂rþ ¼ 0, one can obtain the condition for the
local stable state in the thermodynamics as

T ¼ 1

4πrþ

�
1þ 3r2þ

L2

�
: ð20Þ

This is just the expression of Hawking temperature TH,
which implies that the Hawking temperature TH of the local
stable black hole is equal to the ensemble’s temperature T.
Recall that this is also the condition that guarantees the
regularity of the Euclidean SAdS black hole. Therefore,
the local stability of the black hole is equivalent to the
regularity of the corresponding Euclidean geometry. In fact,
the condition (20) gives only the local extreme points on the
landscape. The black hole being local stable or unstable
state should be further determined by whether the secon-
dary order derivative of the generalized free energy with
respect to the order parameter is positive or negative.
Analogous to the ordinary thermodynamic system where

the equation of state can be derived from the minimum
principle of the generalized free energy [51], the local
stable condition (20) should be regarded as the equation of
state for the black hole system. In this sense, the gener-
alized free energy (16) or (19) should be regarded as the
off-shell free energy function at the arbitrary temperature T.
By substituting Eq. (20) into Eq. (16) or Eq. (19), one can
obtain the on-shell value of the free energy for the SAdS
black hole [44]. Here, the on-shell or off-shell refers to
whether the ensemble temperature is equal to the Hawking
temperature or not.
The free energy landscape provides a pictorial and

quantitative description of the generalized free energy
topography. One can refer to Ref. [1] for the detailed
discussion on the free energy landscape. The minimum
principle of the generalized free energy indicates that the
local stable black holes are the extreme points on the free
energy landscape. The thermodynamic stability of the local
stable black hole and the kinetics of black hole phase
transition were also discussed based on the free energy
topography in [1].

III. GENERALIZED FREE ENERGY LANDSCAPE
OF RNADS BLACK HOLES

In this section, we derive the generalized free energy
landscape of the small/large RNAdS black hole phase
transition in extended phase space [52–54]. As shown in
the last section, to evaluate the partition function in the
semiclassical approximation, one just needs to compute the
gravitational action of the Euclidean gravitational instanton
with the conical singularity.
We start with the Euclidean metric of RNAdS black hole

in four dimensions

ds2 ¼
�
1 −

2M
r

þQ2

r2
þ r2

L2

�
dτ2

þ
�
1 −

2M
r

þQ2

r2
þ r2

L2

�−1
dr2 þ r2dΩ2

2; ð21Þ

where M is the mass, Q is the electric charge, and L is the
AdS curvature radius. The mass of the fluctuating RNAdS
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black hole as the function of the black hole radius can be
expressed as

M ¼ rþ
2

�
1þ r2þ

L2
þQ2

r2þ

�
: ð22Þ

Note that the Euclidean time has the period β determined
by the ensemble temperature T. Therefore, the metric (21)
with the general time period also describes the Euclidean
gravitational instanton with the conical singularity, the
geometry of which is depicted in Fig. 2. Analogous to
the case of Hawking-Page phase transition, one can derive
the generalized free energy of the fluctuating RNAdS black
hole from the gravitational action of the singular Euclidean
instanton by using the path integral approach.
The finite part of the Einstein-Hilbert action includes

the contributions from the conical singularity and the AdS
bulk. The singularity contribution is proportional to the
horizon area of the RNAdS black hole times the deficit
angle ð1 − β

βH
Þ, where βH is the inverse Hawking temper-

ature of the RNAdS black hole:

βH ¼ 4πrþ
1þ 3r2þ=L2 −Q2=r2þ

: ð23Þ

For the bulk contribution, we employ the background
subtraction trick to compute the finite part. The matching
of the RNAdS metric with the background AdS metric on
the cutoff surface r ¼ r0 gives the following relation of the
Euclidean time periods as

β0 ¼ β
ð1 − 2M=r0 þQ2=r20 þ r20=L

2Þ1=2
ð1þ r20=L

2Þ1=2

¼ β

�
1 −

ML2

r30
þO

�
1

r40

��
: ð24Þ

It is easy to see that the large r0 behavior for the RNAdS
case is the same as that for the SAdS case. Therefore,
the finite part of the Einstein-Hilbert action for the RNAdS
bulk spacetime is the same as that for the SAdS case.
However, One should also consider the electromagnetic
field contribution, which is given by

IEM ¼ 1

16π

Z
M

FabFab ffiffiffi
g

p
d4x ¼ βQ2

2rþ
: ð25Þ

Thus the total Euclidean action for the fluctuating RNAdS
black hole is given by

IE ¼ −
�
1 −

β

βH

�
A
4
þ β

2L2
ðr30 − r3þÞ −

β0
2L2

r30 þ
βQ2

2rþ
;

¼ βrþ
2

�
1þ r2þ

L2
þQ2

r2þ

�
− πr2þ; ð26Þ

where A ¼ 4πr2þ is the event horizon area the RNAdS
black hole and the cutoff boundary is sent to infinity in the
last step.
The generalized free energy of the fluctuating RNAdS

black hole is then given by

F ¼ IE
β
¼ rþ

2

�
1þ 8

3
πPr2þ þQ2

r2þ

�
− πTr2þ; ð27Þ

where T is the ensemble temperature, and the effective
thermodynamic pressure P ¼ 3

8π
1
L2 is introduced, with L

being the AdS curvature radius [55,56]. From the gener-
alized free energy, one can obtain the energy and the
entropy of the fluctuating RNAdS black hole as

E ¼ ∂

∂β
ðβFÞ ¼ rþ

2

�
1þ 8

3
πPr2þ þQ2

r2þ

�
; ð28Þ

S ¼ βðE − FÞ ¼ πr2þ: ð29Þ

It can be seen that the energy and the entropy of the
fluctuating RNAdS black hole are also independent of the
ensemble temperature T. Once again, the energy E is
identified as the black hole mass M and the generalized
free energy of the fluctuating RNAdS black hole obtained
from the Euclidean path integral of gravitational action
is also consistent with the thermodynamic definition
F ¼ M − TS [2].
By treating the black hole radius rþ as the independent

argument, one can formulate the generalized free energy
landscape of the RNAdS black hole at the temperature T.
The free energy landscape of the RNAdS black holes
has the shape of double well [2]. The local stable state
condition ∂F=∂rþ ¼ 0 leads to three extreme points, i.e.,
three branches of the RNAdS black holes. They correspond
to the small, the intermediate, and the large RNAdS black
holes. In [2], the stability of the three branches of RNAdS
black holes was discussed based on the free energy land-
scape in detail. In addition, as observed in the case of
Hawking-Page phase transition, the local stable state
condition will lead to the condition that the ensemble
temperature is equal to the Hawking temperature of the
RNAdS black hole

T ¼ TH ¼ 1

4πrþ

�
1þ 8πPr2þ −

Q2

r2þ

�
: ð30Þ

When this condition is satisfied, the Euclidean geometry
of the RNAdS black hole is free of the conical singularity.
In addition, the Eq. (30) should be treated as the equation of
state for the RNAdS black hole [52]

P ¼ T
2rþ

−
1

8πr2þ
þ Q2

8πr4þ
: ð31Þ
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For the arbitrary ensemble temperature, the generalized free
energy (27) is off-shell. For the ensemble temperature
satisfying the equation of state, the generalized free energy
is on-shell. If substituting the Eq. (30) into the expression
Eq. (27) of the generalized free energy, one can obtain the
on-shell value of the free energy for the RNAdS black
hole [57,58].
At last, we have to point out that the black hole radius rþ

as the order parameter of the small/large RNAdS black hole
phase transition has a constraint from the non-negativity of
the Hawking temperature TH. The constraint on the order
parameter is then given by

rþ ≥
Lffiffiffi
6

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12Q2

L2

r
− 1

�1=2

: ð32Þ

This constraint implies that the RNAdS black hole cannot
have arbitrary small event horizon due to the presence of
electric charge [18].

IV. GENERALIZED FREE ENERGY LANDSCAPE
OF KERR-ADS BLACK HOLES

In this section, we derive the generalized free energy
landscape for the rotating black hole in AdS space. Kerr-
AdS black hole is a rotating black hole solution to Einstein
equations in AdS space [59,60]. In analogy to the RNAdS
black holes, it was shown that the Kerr-AdS black holes in
extended phase space also exhibit the Van der Waals-type
liquid-gas phase transition [61–64].
The Kerr-AdS black hole in four dimensions is described

by the metric [59,60]

ds2 ¼ −
Δ
ρ2

�
dt −

a
Ξ
sin2θdϕ

�
2

þ ρ2

Δ
dr2 þ ρ2

Δθ
dθ2

þ Δθsin2θ
ρ2

�
adt −

r2 þ a2

Ξ
dϕ

�
2

; ð33Þ

where

Δ ¼ ðr2 þ a2Þ
�
1þ r2

L2

�
− 2mr;

ρ2 ¼ r2 þ a2 cos2 θ;

Δθ ¼ 1 −
a2

L2
cos2 θ;

Ξ ¼ 1 −
a2

L2
: ð34Þ

The physical mass M and angular momentum J of
the Kerr-AdS black hole are related to the parameters m
and a appearing in the metric by the following relations
[49,58,65]

M ¼ m
Ξ2

; J ¼ ma
Ξ2

: ð35Þ

Thus the mass and the angular momentum of the Kerr-AdS
black hole can also be expressed as the functions of the
horizon radius rþ:

M ¼ rþ
2Ξ2

�
1þ a2

r2þ

��
1þ r2þ

L2

�
; ð36Þ

J ¼ arþ
2Ξ2

�
1þ a2

r2þ

��
1þ r2þ

L2

�
: ð37Þ

The other thermodynamic quantities are given by

TH ¼ rþð1þ a2=L2 þ 3r2þ=L2 − a2=r2þÞ
4πðr2þ þ a2Þ ; ð38Þ

S ¼ πðr2þ þ a2Þ
Ξ

; ð39Þ

ΩH ¼ að1þ r2þ=L2Þ
r2þ þ a2

: ð40Þ

The black hole radius rþ as the order parameter of the
Kerr-AdS black hole has to guarantee the non-negativity of
the Hawking temperature TH, which gives us the constraint
on the order parameter rþ as

rþ ≥
Lffiffiffi
6

p
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1þ a2

L2

�
2

þ 12a2

L2

s
−
�
1þ a2

L2

�#1=2

: ð41Þ

This constraint condition implies that the Kerr-AdS black
hole cannot have arbitrary small event horizon due to the
presence of the rotations [14].
We now proceed to derive the gravitational action on

the Euclidean Kerr-AdS geometry with the arbitrary time
period β. We first consider the contribution of the conical
singularity to the Euclidean action. For the rotating black
hole, the geometry is more complex because near the
conical singularity the Euclidean geometry is no longer the
product of the horizon sphere and the two dimensional cone
as the static black hole case [34]. Instead, the near horizon
geometry of the stationary rotating black hole is a nontrivial
foliation of the horizon surface, which is shown to share
certain common features with the static case [34]. It is
further argued that the curvature singularity at the horizon
of a stationary rotating black hole behaves in the same way
as in the static case. This is to say that Eq. (10) is still valid
in the stationary rotating case [41]. Thus, the contribution
to the action from the conical singularity is given by

IC ¼ −
�
1 −

β

βH

�
A
4
; ð42Þ
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where A ¼ 4πðr2þþa2Þ
Ξ is the horizon area of the Kerr-AdS

black hole.
We then compute the gravitational action on the regular

bulk part of the Euclidean Kerr-AdS geometry. In order to
subtract the volume contribution of the background AdS
space, one has to match the geometry of the Kerr-AdS
metric with the background AdS at the cutoff surface
r ¼ r0, which leads to the matching condition as [49]

Δðr0Þdτ2 ¼ Δ0ðr0Þdτ20; ð43Þ

where Δ0 denotes Δðm ¼ 0Þ. Note that the metric for
m ¼ 0 is just the metric of the pure AdS space in non-
standard “spheroidal” coordinates. For the large cutoff r0,
the Euclidean action integral over the background AdS
space has the time period

β0 ¼ β

�ðr20 þ a2Þð1þ r2
0

L2Þ − 2mr0

ðr20 þ a2Þð1þ r2
0

L2Þ

�1=2

¼ β

�
1 −

mL2

r30
þO

�
1

r50

��
: ð44Þ

The finite part of the bulk gravitational action is then
obtained as the difference between the Kerr-AdS black hole
and the background AdS space. It is given by

IB ¼ 3

8πL2

�
β

Z
r0

rþ

ffiffiffi
g

p
drdθdϕ − β0

Z
r0

0

ffiffiffiffiffi
g0

p
drdθdϕ

�
;

ð45Þ

where g and g0 are the Euclidean metric determinants
of the Kerr-AdS black hole and the background AdS space,

respectively. It is easy to see that g ¼ g0 ¼ ðr2þa2 cos2 θÞ
Ξ sin θ

in the ðτ; r; θ;ϕÞ coordinates. Performing the integral and
taking the limit r0 → þ∞, one can finally obtain

IB ¼ β

2Ξ

�
m −

rþðr2þ þ a2Þ
L2

�
: ð46Þ

Adding up the contributions from the conical singularity
and the AdS bulk, one can obtain the gravitational action of
the singular Euclidean instanton in a closed form as

IE ¼ −
�
1 −

β

βH

�
A
4
þ β

2Ξ

�
m −

rþðr2þ þ a2Þ
L2

�
;

¼ βrþ
2Ξ

�
1þ r2þ

L2

�
−
πðr2þ þ a2Þ

Ξ
: ð47Þ

For the conical ensemble with the angular momentum, the
generalized free energy is defined as

F ¼ IE
β
þ ΩHJ

¼ rþ
2Ξ2

�
1þ a2

r2þ

��
1þ r2þ

L2

�
−
πTðr2þ þ a2Þ

Ξ
; ð48Þ

which is obviously consistent with the thermodynamic
definition F ¼ M − TS in [14]. The generalized free
energy of the Kerr-AdS black hole as the function of black
hole radius rþ can be shown to have the shape of double
well [14], which forms the free energy landscape of the
Kerr-AdS black hole at the temperature T.
The equilibrium state condition ∂F=∂rþ ¼ 0, which is

equivalent to T ¼ TH, leads to three extreme points. They
correspond to the small, the intermediate, and the large
Kerr-AdS black holes. In [14], the stability of the three
branches and the kinetics of phase transition of the Kerr-
AdS black holes were discussed based on the free energy
landscape in detail.

V. CONCLUSION AND DISCUSSION

In summary, by employing the Gibbons-Hawking path
integral approach to black hole thermodynamics, we show
that the generalized free energy of the fluctuating black
hole generated during the phase transition process can
be derived from the partition function of the canonical
ensemble evaluated on the Euclidean gravitational instan-
ton with the conical singularity in the semiclassical
approximation. To illustrate this point, we have presented
the computation of the generalized free energies of the
Schwarzschild-AdS black hole, the RNAdS black hole,
and the Kerr-AdS black hole explicitly. We expect that the
current work can provide a concrete and solid foundation
for the free energy landscape formalism of the black hole
phase transition.
It should be noted that our derivation of the generalized

free energy is different fromWhite and York’s work [66] (see
also [67,68]) although the results appear to be the same.
The difference is manifested in the following: (a) In [66],
White and York considered the asymptotically flat spacetime
where the infrared regulator is a simple box. Here, we
consider the AdS case, where the AdS spatial infinity
provides the regulator naturally. (b) In this work, we evaluate
the Euclidean action on the Euclidean gravitational instanton
with the conical singularity at the interior boundary. In [66],
the Euclidean action is evaluated on the regular manifold
where the horizon is free of the singularity.
Let us make some more discussion on the meaning of the

generalized free energy. One can regard the fluctuating
black holes with the Hawking temperature not equal to the
ensemble temperature as being in the nonequilibrium states
with the thermal baths. In this case, the fluctuating black
holes will relax to the local stable black holes. The
generalized free energy can be considered as the thermo-
dynamic potential of the nonequilibrium states [51,69].
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If ignoring the fluctuating force (noise) of the thermal bath,
the relaxation process from the initial nonequilibrium black
hole with T ≠ TH to the final equilibrium black hole with
T ¼ TH is completely determined by the gradient force of
the nonequilibrium potential.
To give a physical picture of the above statement, let us

discuss the free energy landscape for the Hawking-Page
phase transition. In Fig. 3, we plot the generalized free
energy and the Hawking temperature of the fluctuating
SAdS black hole. The black, the red, and the blue points
represents the AdS space, the small SAdS black hole, and
the large SAdS black hole, respectively. The ensemble
temperature T is selected to be the critical temperature of
Hawking-Page phase transition THP ¼ 1=πL. For conven-
ience, we denote the radius of the small/large SAdS black
hole as rs=rl.
When rþ < rs, TH > T. Then the fluctuating black holes

with the radius smaller than rs will radiate out energy to
baths, which will reduce their masses and in turn decrease
their horizon radii because the mass is the monotonic
increasing function of the radius. Finally, these black holes
will relax to the AdS space. When rs < rþ < rl, TH < T.
In this case, the fluctuating black holes will absorb energy
or matter from baths, which will increase their masses and
horizon radii. Finally, these black holes will relax to the
large SAdS black hole. When rþ > rl, TH > T. In this
case, the fluctuating black holes will also relax to the large
SAdS black hole. In the left panel of Fig. 3, we have
explicitly indicated the directions of the relaxation process
for the nonequilibrium black holes without the fluctuating
forces. The above analysis can also be performed for the
RNAdS black hole and the Kerr-AdS black hole. Therefore,
the free energy landscape gives a physical picture of the
relaxation process of the nonequilibrium black holes with-
out the fluctuating forces.
However, this is not adequate for studying the kinetics of

the phase transition. If only considering the gradient force

from the free energy landscape, the local stable SAdS black
hole can never make a transition and switch to the AdS
space, and the reverse statement is also true. It is the
fluctuating force (thermal noise) from the bath that makes
the transition process possible. Therefore, the dynamics of
black hole phase transition is described by the Langevin
equation for the stochastic evolution or equivalently the
Fokker-Planck equation for the probabilistic evolution. In
this sense, the late time stationary Boltzmann distribution
P ∼ e−βF for the fluctuating black holes can be obtained
from the Fokker-Planck equation.
At last, we compare our assumptions made in the

current work with those in the previous work on the free
energy landscape of black hole phase transition. First, in
the previous studies [1–3], it was stated that the fluctuat-
ing black holes are not the solutions to Einstein field
equations. In this work, we clarify that the fluctuating
black holes as well as the local stable/unstable black holes
are all the solutions to Einstein field equations. This is to
say that their geometries can be described by the metric
that solves the Einstein equations. As we have discussed,
order parameter (black hole radius) determines the black
hole parameters (mass, angular momentum, et.al), and in
turn black hole parameter determines the geometry of the
fluctuating black hole. However, in evaluating the parti-
tion function at the arbitrary ensemble temperature by
using the saddle point approximation, the Euclidean
geometry of the fluctuating black hole is singular due
to the conical singularity at the event horizon. As shown,
the Euclidean geometry of the local stable black hole is
regular because the Hawking temperature of the local
stable black hole is equal to the ensemble temperature and
the conical singularity is canceled.
Second, in the previous work [1–3], it was assumed that

there is no constraint on the order parameter (event horizon
radius) of the fluctuating black hole. This was based on
the statement that the fluctuating black holes are not the

FIG. 3. The plots of the generalized free energy (left panel) and the Hawking temperature (right panel) of the fluctuating SAdS black
hole as the functions of the black hole radius. In the left panel, the arrows indicate the directions of the relaxation process for the
nonequilibrium black holes without the fluctuating forces. In the right panel, the dashed line represents the ensemble temperature. Here,
the ensemble temperature is selected to be the critical temperature of Hawking-Page phase transition. The AdS radius L is set to unity.

GENERALIZED FREE ENERGY LANDSCAPE OF A BLACK HOLE … PHYS. REV. D 106, 106015 (2022)

106015-9



solutions to Einstein field equations. If so, the Hawking
temperature of the fluctuating black hole would not make
sense any longer. The black hole radius is then not required
to guarantee the non-negativity of the Hawking temperature
of the fluctuating black hole. This is to say that the size of
the fluctuating black hole can vary from zero to arbitrary
large value. In the present work, we have assumed that the
fluctuating black holes as well as the local stable/unstable
black holes are all the solutions to Einstein field equations.
In this sense, the relation between the Hawking temperature
and the event horizon radius for the fluctuating black hole
imposes the constraint on the order parameter (black hole
radius). Thus, it seems not quite appropriate to assume that
the order parameter of the fluctuating black hole can take
arbitrary value. It is shown that for the Hawking-Page phase
transition, the Hawking temperature of the SAdS black hole
is always positive in spite of the event horizon radius. In
this case, there is no constraint on the order parameter.
For the RNAdS black holes and the Kerr-AdS black holes,
the constraints on the order parameter can be properly
carried out in order to guarantee the non-negativity of the
Hawking temperature.

Third, in the previous work [1–3], it was assumed that
the thermal bath stems from the effective description of the
partial microscopic degrees of freedom of the black hole. In
this work, we point out that there are identical external
thermal environments/baths with which each system in the
ensemble can be in contact. For the AdS case considered in
the present work, the thermal bath can be placed at the AdS
spatial infinity and the AdS boundary is transparent to
allow the energy or radiation to pass through. In studying
the kinetics of black hole phase transition, the evolution of
the order parameter is then governed by the gradient force
from the free energy landscape as well as the friction force
and the stochastic noise from the thermal baths. Thus, the
friction coefficient reflects the interaction strength between
the fluctuating black hole and the external thermal bath.
Except this point, all the conclusions that were obtained in
the previous work [1–3,22,23] do not change.
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