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We analyze the large-N expansion of general nonequilibrium systems with fluctuating matrix degrees of
freedom and SUðNÞ symmetry, using the Schwinger-Keldysh formalism and its closed real-time contour
with a forward and backward component. In equilibrium, the large-N expansion of such systems leads to a
sum over topologies of two-dimensional surfaces of increasing topological complexity, predicting the
possibility of a dual description in terms of string theory. We extend this argument away from equilibrium
and study the universal features of the topological expansion in the dual string theory. We conclude that in
nonequilibrium string perturbation theory, the sum over world sheet topologies is further refined: Each
world sheet surface Σ undergoes a triple decomposition into the part Σþ corresponding to the forward
branch of the time contour, the part Σ− on the backward branch, and the part Σ∧ that corresponds to the
instant in the far future where the two branches of the time contour meet. The sum over topologies becomes
a sum over the triple decompositions. We generalize our findings to the Kadanoff-Baym time contour
relevant for systems at finite temperature and to the case of closed and open, oriented or unoriented strings.
Our results are universal and follow solely from the features of the large-N expansion without any
assumptions about the world sheet dynamics.
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I. INTRODUCTION

Our Universe is not in equilibrium.1 The framework of
string theory has successfully provided a consistent theo-
retical picture for describing various aspects of its dynam-
ics, capable of accommodating both the quantum
mechanical nature of its constituents and the evolving
geometry of its large-scale structure. Yet, somewhat para-
doxically, the machinery of string theory as understood
today does not appear to be particularly well suited for
describing systems out of equilibrium, such as early-
Universe cosmology.
Concepts originating from string theory have been very

influential in a remarkable number of areas of physics (and
even mathematics). This interdisciplinary influence of
string theory includes particle phenomenology, with
brane-world scenarios, large extra dimensions, and the
Randall-Sundrum scenario enriching the scene beyond the
Standard Model; anti–de Sitter (AdS)/condensed matter
theory and holographic methods for describing strongly

correlated condensed matter systems [2,3]; the extension of
K-theory from a method for classifying D-branes in string
theory to classifying stable Fermi surfaces [4] and phases of
topological insulators; and the impact of string theory on
inflationary cosmology [5] and in quantum gravity, notably
leading to the statistical explanation of the Bekenstein-
Hawking entropy of various supersymmetric black holes.
In most of these applications, string theory is excellent at

describing equilibrium systems, ideally with as many
supersymmetries as possible. However, this effectiveness
seems to be lost for systems or states away from equilib-
rium. One naturally wonders why: Is this a fundamental
limitation of string theory? Or is it a historical accident,
with the proper formulation of string theory away from
equilibrium yet to be discovered? Indeed, a glance at the
history of string theory reveals a strong bias toward
equilibrium states. Since its inception in the 1960s and
certainly for much of its early development [6], string
theory has been deeply rooted in the ideology of the
S-matrix, which depends strongly on the axiom of a static,
stable, eternal vacuum.
Can we uncouple string theory from this assumption of

the eternal stable vacuum? While many partial results for
string-theory states away from equilibrium have been
accumulated—notably, in areas ranging from tachyon
condensation to nonequilibrium AdS=CFT dynamics—
progress has been rather slow and spotty. It is natural to
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hope that even in its natural area of quantum gravity, string
theory should be able to do better with nonequilibrium
systems, to have a more systematic impact of string theory
on concepts in early-Universe cosmology, or to give new
insights into dynamical evaporating black holes.
It may not be immediately clear how to wean critical

string theory from its dependence on the S-matrix and
equilibrium or how to formulate nonequilibrium string
theory from first principles. However, we do know how to
take a general quantum many-body system or quantum
field theory out of equilibrium: The basic rules of
quantum mechanics can certainly accommodate non-
equilibrium states, leading to the formulation known as
the Schwinger-Keldysh formalism. In fact, in recent years
the methods of the Schwinger-Keldysh formalism have
found their way into string theory, primarily in the
context of AdS=CFT [7–12]. However, these approaches
are mostly based on the spacetime field theory descrip-
tion, with very little understanding so far of the world
sheet dynamics.
Here we will follow a different strategy: We use the

methods of the large-N expansion and its connection to
string theory and extend them to nonequilibrium systems
where we can directly apply the Schwinger-Keldysh
formalism. In that way, we begin to learn something about
the universal rules of nonequilibrium string perturbation
theory. Our goal is twofold: To stimulate string-theory
research in directions away from equilibrium and to
encourage further study of possible dual descriptions of
nonequilibrium systems across diverse areas of physics in
terms of string theory.
This paper is organized as follows. In the remainder of

this introductory Sec. I, we briefly review two important
topics: The interpretation of the large-N expansion in a
quantum theory of matrices in terms of string theory and the
nonequilibrium formalism for quantum systems known as
the Schwinger-Keldysh formalism. The reviewed material
is well known to experts in the corresponding fields, but
since we wish to make this paper accessible to a broad
audience from a wide range of fields—from string theory to
nonequilibrium mesoscopic physics to early-Universe cos-
mology—we include this material to make our paper
relatively self-contained and to set a uniform stage for
the later sections. In Sec. II, we connect the two topics
reviewed in Sec. I and analyze how the large-N expansion
of the nonequilibrium Schwinger-Keldysh formalism leads
to a refined expansion in terms of string-theory topologies.
It is the hallmark of the Schwinger-Keldysh formalism that
the system is followed forward and then backward in time,
and we analyze how string perturbation theory out of
equilibrium reflects this doubling phenomenon. We con-
centrate on aspects which are universal and follow solely
from the structure of the large-N expansion; we make no
assumptions about world sheet dynamics. We perform our
analysis for the case of matrices with SUðNÞ symmetry,

which corresponds to the case of closed oriented strings.
We develop the universal structure of nonequilibrium string
perturbation theory in terms of a refined sum over world
sheet topologies.
Sections III and IV are then devoted to several gener-

alizations of our main results from Sec. II. In Sec. III, we
consider an important special case, particularly useful for
studies of equilibrium systems at finite temperature T. Here
the relevant time contour—often referred to as the
Kadanoff-Baym contour—contains not only the forward
and backward evolution segments in real time familiar from
the Schwinger-Keldysh contour, but also a “Matsubara
segment” along the imaginary time direction by the amount
β ¼ 1=T. This approach naturally contains both the real-
and imaginary-time approaches to systems at nonzero T.
We analyze how the large-N theory on the Kadanoff-Baym
contour leads to a further refinement of the expected
universal features of string perturbation theory. In
Sec. IV, we briefly outline the generalizations of our main
results from Sec. II to the case of matrices with SOðNÞ or
SpðNÞ symmetries, which lead to closed unoriented
strings, and the addition of vectorlike degrees of freedom,
in the fundamental representation of the appropriate sym-
metry group, which leads to open strings and the presence
of world sheet boundaries. We conclude in Sec. V.
A brief summary of our results (without proofs) appears

in the short companion paper [13], which also contains
additional results on the topological expansion in the
Keldysh-rotated version of the Schwinger-Keldysh
formalism.

A. Strings from the large-N expansion

The genus expansion into world sheets of increasing
topological complexity, weighted by the powers of the
string coupling gs, is a universal hallmark of string theory in
its perturbative regime. It is remarkable that the same
topological expansion is obtained, quite universally, in the
large-N limit of theories with degrees of freedom described
by matrices of rank N, with 1=N playing the role of the
string coupling constant gs. The large-N expansion has
turned into an efficient strategy for reorganizing theories
that would otherwise be difficult to understand perturba-
tively. In the context of high-energy physics, the use of
this strategy to illuminate QCD dynamics goes back to
1974 and ‘t Hooft [14–16]. Quite universally, the large-N
expansion predicts the existence of a dual description of
the same system in terms of string theory. This association
with the large-N description of generic systems of
fluctuating matrix degrees of freedom is one of the
most compelling arguments for the importance of string
theory. For readable reviews of the elements of the large-N
approach, see [17] (reprinted in [18]) or the more
recent [19].
We begin with a system of fluctuating degrees of

freedom, described by M which happens to be an N × N
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matrix, which we take to be Hermitian and traceless, so that
it carries the adjoint representation of our symmetry group
SUðNÞ. This matrix may depend on spacetime coordinates,
and its dynamics may be relativistic or not; the details are
immaterial, and we suppress them in what follows. We will
study the system in the perturbative expansion in the
powers of 1=N. The limit of large N will correspond to
a new classical limit [20], in a dual theory described by
strings. For simplicity, we assume that the system is defined
by a path integral, with a classical action SðMÞ. M can be
relativistic Yang-Mills gauge fields,2 or they can be non-
relativistic matrix fields in some number of spatial dimen-
sions. They can also just be N × N matrices in quantum
mechanics, dependent only on time. The beauty of the
large-N expansion argument that we are about to review is
in its universality.
In order to set the stage for our arguments, we must

choose an action for M. We will mimic the case of Yang-
Mills gauge theory and will take the action to be

SðMÞ ¼ 1

2g2

Z
dtTrð _M2 þM3 þM4 þ…Þ: ð1:1Þ

In the quadratic term, we indicated explicitly only the piece
with time derivatives, but generally there will also be terms
involving spatial derivatives, as well as mass/chemical
potential terms; we keep those implicit, focusing on the
universal features only. The propagator is determined by
the full quadratic part in M.
A simple field redefinition to m ¼ M=g would take this

action to another, perhaps more familiar form, traditionally
used for perturbation theory in g,

SðmÞ ¼
Z

dtTr

�
1

2
_m2 þ g

2
m3 þ g2

2
m4 þ…

�
: ð1:2Þ

Here the quadratic term is normalized to 1=2, and each
interaction term is controlled by the appropriate power of g.
It is also not difficult to generalize this and make the M4

coupling constant independent of the coupling that controls
the M3 term. Such cosmetic modifications will not change
the our line of reasoning. Importantly, the change from
M to m is just a simple change of coordinates, which
will not influence the underlying physics. We feel that
our arguments will be simplest in the original notation
using M and will use that parametrization in the rest of our
analysis.

The propagator defined by the full quadratic part of the
action in (1.1) is depicted by a ribbon, with each of the two
indices associated with one edge of the ribbon,

a
b

d
c

ð1:3Þ

The arrows at the edges distinguish the upper and lower
indices.3 The bare propagator G can be a function of
various suppressed arguments of M, but is independent of
g. The vertices are

b
1

1

a
b

a
b

3
3

2
2

a ð1:4Þ

2

4

1a
b1 a2

b

b3a3
4b

a

ð1:5Þ

..

. ð1:6Þ

Feynman diagrams built from these propagators and
vertices are often called “ribbon diagrams,” and this is
the terminology we will use in this paper.4 Let us focus
for simplicity on vacuum ribbon diagrams. For a generic
ribbon diagram, we will denote by P its number of
propagators, by V the number of vertices, and by L the
number of closed loops. We will also denote the ribbon
diagram itself by Δ.
Each ribbon diagram Δ can be uniquely associated with

a compact surface Σ. Loosely speaking, Σ is the lowest-
genus surface on which the ribbon diagram can be drawn.
More precisely, the constructive prescription for obtaining
this Σ for a given ribbon diagram is very simple: Start with

2IfM are Yang-Mills gauge fields or if there is any other gauge
symmetry, we assume that the gauge symmetry is handled in the
Becchi-Rouet-Stora-Tyutin formalism, extending the matrix de-
grees of freedom to include ghosts and antighosts such that each
matrix field has a nondegenerate kinetic term and a well-defined
propagator, so that the ribbon-diagram expansion discussed
below makes sense.

3A standard word of explanation and caution about the
distinction between UðNÞ and SUðNÞ: By our assumptions,
the M degrees of freedom are traceless, and the symmetry is
SUðNÞ. The correct propagator would then contain also an
additive term −ð1=NÞδabδcd on the right-hand side of (1.3), in
order to maintain the tracelessness of M. We drop this term
systematically in the large-N expansion. Thus, we approximate
SUðNÞ by UðNÞ, which is permissible as long as the Uð1Þ factor
is free and decouples (which we assume throughout this paper).
For further discussion of this standard approach, see [18].

4Historically, ribbon diagrams appeared independently in the
mathematical literature, where they are often referred to as
“fatgraphs” (see, e.g., [21] and references therein).
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the ribbon diagram (as a topological two-manifold, with
boundaries consisting of the edges of the ribbons) and for
each closed loop (i.e., a boundary component which is
topologically an S1) glue in a two-dimensional disk D2,
thus closing all holes in the ribbon diagram and producing
a compact surface Σ with ∂Σ ¼ ∅. In turn, the ribbon
diagram gives a cellular decomposition of Σ, with the
vertices and propagators of the diagram serving as the zero-
dimensional and one-dimensional cells, while the glued-in
disks—which we will refer to as “plaquettes”—play the
role of the two-dimensional cells in this cellular decom-
position of Σ. When we wish to indicate explicitly which
ribbon diagram Δ gave rise to a given surface, we will
denote that surface by ΣðΔÞ.
By Feynman rules, the contribution of a given ribbon

diagram to the vacuum amplitude depends on g and N as

g2P−2VNL: ð1:7Þ

Importantly, the factor of NL appears because each pla-
quette corresponds to a closed loop and therefore includes
the summation over the N values of the index a running
around the loop.
We are primarily interested in a meaningful 1=N

expansion and therefore have to determine which combi-
nation of g and N to hold fixed as N → ∞ in order to
achieve this. Defining the ‘t Hooft coupling λ

λ≡ g2N ð1:8Þ

turns this scaling to

λ2P−2VNV−PþL: ð1:9Þ

We recognize the power of N in this expression as

χðΣÞ≡ V − Pþ L; ð1:10Þ

the Euler number χðΣÞ of the surface Σ associated with the
ribbon diagram by the construction summarized above. In
(1.10), χðΣÞ is expressed in terms of the combinatorial data
about Σ. It is crucial, however, that χðΣÞ is a topological

invariant of Σ, independent of the specific cellular decom-
position of Σ into a collection of vertices, lines, and
plaquettes (see Fig. 1 for an example).
Famously, topologically inequivalent compact oriented

Riemann surfaces are fully classified by specifying just one
non-negative integer, the genus h of the surface, and we
have χðΣÞ ¼ 2 − 2h. Hence, our 1=N expansion is natu-
rally interpreted as organized according to the increasing
complexity of the topology of Σ. All diagrams can now be
resummed into a perturbative expansion in the powers of
1=N, and the partition function can be written as

Z ¼
X∞
h¼0

�
1

N

�
2h−2

F hðλ;…Þ: ð1:11Þ

We define the large-N limit by holding the ‘t Hooft coupling
fixed and identify 1=N as the string coupling constant

gs ¼
1

N
: ð1:12Þ

We showed the analysis for simplicity for the partition
function, but the same conclusion extends to the correlation
functions of physical observables in the underlying theory of
the matrix degrees of freedom: There is a dual interpretation
of this theory as a string theory.
This argument is very convincing in its generality and

universality. The catch with this simple universal argument
is that it does not give us a priori clues as to which string
theory is dual to our system. The world sheet dynamics of
the string needs to be found by other independent means,
which are available only in a few rare cases (such as
maximally supersymmetric Yang-Mills theories whose
additional features allow the dual string theory to be
uniquely determined, leading to the celebrated AdS=CFT
correspondence [22]).

B. Quantum theory in real time:
Schwinger-Keldysh formalism

The relationship between the large-N expansion and a
perturbative string-theory expansion as reviewed in Sec. I A
is derived under a very important implicit assumption, with
historical roots in particle physics: the assumption that the
system is in a stable, eternal, static vacuum, or in a state not
too far from it. Our main goal in this paper is to relax this
assumption and study the large-N expansion away from
equilibrium. Such systems are naturally described by a
natural generalization of standard quantum field theory,
known as the Schwinger-Keldysh formalism.
Here we give a lightning review of Schwinger-Keldysh

formalism, which describes quantum theory for general
states, in or out of equilibrium [23,24]. There are many
useful reviews of this formalism, scattered across various
fields of physics; see, e.g., [25–40]. Schwinger-Keldysh
formalism is also sometimes referred to as the “in-in”

FIG. 1. A typical ribbon diagram, with six vertices, ten
propagators, and four closed loops. The Riemann surface
associated with this diagram has Euler number χðΣÞ ¼ V −
Pþ L ¼ 0, i.e., it is the surface of genus one, Σ ¼ T2.
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formalism [36], especially in cosmology [41–43].5 All
these labels for this formalism are largely historical; it
would be sensible to think of this formalism simply as
“quantum mechanics without simplifying assumptions
about the vacuum.”
The main highlight of the Schwinger-Keldysh formalism

is that it describes the system as evolving on a doubled
closed-time contour C (known as the Schwinger-Keldysh
time contour, see Fig. 2), starting in the remote past,
evolving to the far future t∧ along the forward part Cþ of
the time contour, and then returning along the backward
part C− of the contour back to the remote past. Often the
turnaround point is taken t∧ → ∞.
Why such a closed-time contour? In fact, this contour is

encoded automatically in the rules of quantum mechanics,
if one does not make the simplifying assumption of the
static vacuum. To see this, let us focus on simple observ-
ables: Time-ordered correlation functions of operators in
the Heisenberg picture,

hψ injTðϕHðtnÞ…ϕHðt1ÞÞjψ ini; ð1:13Þ

in some general initially prepared state jψ ini. If this state is
the static, stable vacuum, the standard Lehmann-Symanzik-
Zimmermann procedure extracts from these correlators the
physically observable S-matrix elements. Those are also the
natural observables in string theory.
If jψ ini is not the static, stable vacuum, we can still apply

standard rules of quantum mechanics and develop a

perturbative expansion for (1.13). Assume that the
Hamiltonian can be written as

H ¼ H0 þ VðtÞ; ð1:14Þ

where H0 describes a simple system, and define the
interaction picture using this split. The interaction-picture
operators ϕðtÞ are related to the Heisenberg-picture oper-
ators ϕH by

ϕHðtÞ ¼ Sðt0; tÞϕðtÞSðt; t0Þ: ð1:15Þ

Here Sðt0; tÞ is the evolution operator

Sðt0; tÞ ¼ T exp

�
−i

Z
t0

t
V0ðt00Þdt00

�
; ð1:16Þ

and V0ðtÞ is the interaction part VðtÞ of the Hamiltonian in
the interaction picture. We will denote Sðþ∞;−∞Þ simply
by S.
The fixed reference time t0 in (1.15) can be taken to be in

the remote past. We may also assume, for illustration, that
jψ ini was prepared from the vacuum j0ini of H0 in the
remote past, by adiabatic turning on of the interactions. The
correlators are then

h0injS−1TðSϕðtsÞ…ϕðt1Þj0ini: ð1:17Þ

Note that the factor of S−1 is automatically present, and it
serves to evolve the system back from the infinite future to
the remote past where h0inj was prepared,

S−1 ¼ ½Sðþ∞;−∞Þ�−1 ¼ Sð−∞;þ∞Þ: ð1:18Þ

Clearly, the perturbative expansion of (1.17) will involve
not just time-ordered two-point functions of ϕ, but also
antichronologically ordered ones and unordered ones as
well. This proliferation of propagators is best encoded by
defining the closed-time contour C, with the factor of S under
the time ordering symbol T in (1.17) evolving the system
forward in time along Cþ, and the factor of S−1 outside of T
evolving back along C−. We introduce the time ordering
symbol TC to denote chronological ordering along the entire
contour, allowing (1.17) to be succinctly written as

h0injTCðSCϕðtsÞ…ϕðt1ÞÞj0ini; ð1:19Þ

with SC the evolution operator (1.16) along the entire contour
C. Only when the final vacuum j0fini is given by the initial
vacuum up to a possible phase,

j0fini ¼ eiθj0ini; ð1:20Þ

can we replace h0injS−1 by eiθh0finj and obtain the standard
perturbation theory involving only the Feynman propagators

t

t0

t^

C−C+

FIG. 2. Schwinger-Keldysh closed-time contour C ¼ Cþ ∪ C−.
The remote past t0 and the far future t∧ are usually taken to be
−∞ and þ∞.

5Although the in-in formalism is the consequence of the same
quantum mechanics as the Schwinger-Keldysh formalism, it
might be appropriate to point out that the physical focus is a
bit different: In the cosmological in-in formalism, one concen-
trates on the correlation functions of observables located at t∧,
which is interpreted as “the present.” In the Schwinger-Keldysh
formalism, t∧ represents “the end of time” in the future, and the
correlators are typically evaluated for observables on the forward
time contour before t∧ is reached.
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of ϕ. In more general circumstances, however, we cannot
replace the initial state h0inj with a suitable out-state, simply
because the final state is not known. We must then follow the
general formula (1.17) and evolve the system back using
S−1, before closing the correlator on the known initial state.
It is often impractical to work directly with the doubled

time contour C. Instead, one can keep the single-valued
time t and double the number of fields, with ϕþðtÞ and
ϕ−ðtÞ denoting ϕðtÞ on the Cþ and C− branch of the
Schwinger-Keldysh contour C at the same value of t. These
doubled fields can be used in the path integral representa-
tion of the theory. The action that appears in the path
integral of the nonequilibrium system is then formally
given by

SSK ¼
Z þ∞

−∞
dtfLðϕþÞ − Lðϕ−Þg; ð1:21Þ

with S ¼ R
LðϕÞ the original action of the equilibrium

system. Note, however, that the compact form (1.21) is
somewhat deceiving, and careful arguments involving
regulators may be needed to provide the correct treatment
of the nonequilibrium path integral (see [33] for details).

II. LARGE-N EXPANSION IN QUANTUM
SYSTEMS OUT OF EQUILIBRIUM

In this section, we put the Schwinger-Keldysh formu-
lation of nonequilibrium systems together with the large-N
expansion and analyze the consequences of the Schwinger-
Keldysh formalism for string perturbation theory. In par-
ticular, we wish to understand how the Schwinger-Keldysh
time contour is perceived by the string world sheet
topologies.

A. Ribbon diagrams on the Schwinger-Keldysh
time contour

First, we formulate Feynman rules out of equilibrium, for
our theory of Hermitian traceless matrices Ma

b, in the
adjoint of SUðNÞ. The elements of Feynman graphs again
lead to ribbon diagrams, but now with all vertices and
all ends of propagators labeled with þ or −. The propa-
gators are

+
a
b

d
c

+

ð2:1Þ

a
b

d
c
−+

ð2:2Þ

a
b

d
c

− +

ð2:3Þ

a
b

d
c
−−

ð2:4Þ

The operation TC of time ordering along the contour C again
acts on its arguments by reordering them from the right to
the left in the order of increasing contour time, with the
flow of time following the direction of the arrows on the
contour in Fig. 2.
More explicitly, the TC time ordering can be understood

in terms of the more elementary orderings on the standard
time axis parametrized by coordinate time t: the chrono-
logical time ordering T along t and the antichronological
ordering T̄, in the reverse direction of t. Here we suppress
the ab

cd indices for simplicity, but restore the time
dependence, while still suppressing the spatial dependence
and all other possible indices and quantum numbers ofM�,

hTCðMþðtÞMþðt0ÞÞi ¼ hTðMðtÞMðt0ÞÞi ¼ g2GFðt; t0Þ;
ð2:5Þ

hTCðMþðtÞM−ðt0ÞÞi ¼ hMðt0ÞMðtÞi ¼ g2G<ðt; t0Þ; ð2:6Þ

hTCðM−ðtÞMþðt0ÞÞi ¼ hMðtÞMðt0Þi ¼ g2G>ðt; t0Þ; ð2:7Þ

hTCðM−ðtÞM−ðt0ÞÞi ¼ hT̄ðMðtÞMðt0ÞÞi ¼ g2GF̄ðt; t0Þ:
ð2:8Þ

We thus recognize all four types of propagators in (2.1)–
(2.4) in more elementary terms, as representing the
Feynman iε propagatorGF, the “anti-Feynman” propagator
GF̄ (sometimes called the Dyson propagator), and the G-
lesser and G-greater propagators G<, G>. For clarity and
simplicity, we will keep our G�� notation of (2.1)–(2.4)
throughout the paper.
The vertices look the same as in the equilibrium case,

except that each vertex is assigned a � sign,

b
1

1

a
b

a
b

3
3

2
2

a + ð2:9Þ
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b
1

1

a
b

a
b

3
3

2
2

a − ð2:10Þ

2

4

+

1a
b1 a2

b

b3a3
4b

a

ð2:11Þ

2

4

1a
b1 a2

b

b3a3
4b

a

− ð2:12Þ

..

.

The vertical dots at the bottom of this list of vertices
represent the possibility of having higher, n-point vertices
beyond n ¼ 4. These higher-point vertices can be con-
trolled by 1=g2, or they can have their own independent
couplings. These additional choices do not change the
universal results of our analysis, and we will often freely
assume below, simply for convenience, that such higher-n
vertices do exist. Similarly, we assume for simplicity that
all vertices have at least three ends; the arguments could be
easily extended if one added “2-vertices” and “1-vertices”
as well, without altering our conclusions.
Note that because of the Hermiticity ofM and the nature

of the time ordering along C, we have

Gþ−
ac
bd ¼ G−þca

db; ð2:13Þ

and there is therefore only one independent propagator that
can connect a þ vertex to a − vertex. This is reflected in our
graphical notation: The propagator on the left side of (2.2),
after the ends of the ribbon are exchanged and the indices
swapped, looks identical to the propagator on the left side of
(2.3). This means that wewill not have to distinguish between
Gþ− andG−þ propagators, as long as they are attached to the
appropriate þ and − vertices. As a result, each ribbon
diagram in nonequilibrium perturbation theory will look like
a ribbon diagram of the type we encountered in Sec. I A at
equilibrium, but now with each vertex labeled by a � sign.6

Now we proceed to the analysis of generic ribbon
diagrams, and we study how they lead to an expansion
of the partition function and correlation functions in terms
of the topology of surfaces, generalizing the well-known
string perturbation theory away from equilibrium. We will
refer to the surfaces representing string world sheets as
“Riemann surfaces” for short, without implying that any
geometric structure on them is a priori assumed, besides
their smooth manifold structure.

B. First look at string perturbation theory
out of equilibrium

In the special case of equilibrium and zero temperature,
the Schwinger-Keldysh formalism should correctly repro-
duce the standard formulation of equilibrium quantum field
theory in real time t. This limit is usually taken such that as
we sent t∧ → ∞, the return part of the Schwinger-Keldysh
contour decouples from the calculations of the correlation
functions of operators located on the forward branch, and
therefore it can be ignored, reproducing standard textbook
rules of quantum field theory with the static eternal
vacuum. However, remnants of the Schwinger-Keldysh
formalism do appear even in this textbook example of
vacuum correlation functions in equilibrium at zero temper-
ature, in an almost clandestine way, under a very different
name: it reduces to the Cutkosky rules, which are crucial
for analyzing unitarity properties of physical amplitudes
[44–46].7 Indeed, we can take the t∧ → ∞ limit for the
vacuum correlators in equilibrium at zero temperature, but
still allow insertions of observables along both branches
of C. The− vertices and operator insertions located on
the backward branch C− behave exactly like those on the
“shaded side” from the unitarity cuts. Similarly, the
propagators on the unshaded or shaded sides are simply
the equilibrium limits of Gþþ and G−−, and the “cut
propagators” of the Cutkosky formalism correspond to the
equilibrium limit of Gþ−, where this propagator reduces to
the on-shell delta function. Thus, we reproduce the stan-
dard Cutkosky rules from the Schwinger-Keldysh formal-
ism: The shaded and unshaded portions in the Cutkosky
rules for Feynman diagrams correspond to the forward and
backward branch of the Schwinger-Keldysh time contour,
and the cut between the shaded and unshaded region is
simply the location of the crossing from the forward branch
Cþ to the backward branch C−, at t∧ → ∞.
We now wish to extend the story of the large-N expansion

and string theory away from equilibrium. The first guess
might be that propagating strings will also exhibit cuts, and
that each string world sheet Σ will consequently be split into

6In what follows, when we draw ribbon diagrams we will often
put the� sign next to the vertex rather than inside the ribbon; this
will make some of our diagrams easier to read.

7This remarkable connection between the Schwinger-Keldysh
formalism and the Cutkosky rules seems absent in most textbooks
on relativistic quantum field theory. One notable exception,
where this relationship is explained in a lucid way, is the recent
textbook by Gelis [35].
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two parts—its forward and backward portions Σþ and
Σ−, joined along a shared one-dimensional boundary
∂Σþ ¼ ∂Σ−. This common boundary between Σþ and Σ−

would then represent the cuts in the world sheet language. It
is one of the central points of this paper to show that such an
expectation is not quite correct. Instead, we will find that the
portion of the world sheet connecting Σþ and Σ− is
topologically two dimensional.

C. Extending the cuts

Intuitively, the propagators that connect a vertex on the
forward portion Cþ of the time contour with a vertex on the
C− portion of the contour represent worldlines of particles
that have to cross from Cþ to C− and therefore pass through
the time instant t∧ where the two branches meet. This
crossing can be usefully denoted in Feynman diagrams by
placing cuts across such propagators, indicating the passage
through t∧. This suggests that, in the string picture, such
cuts should be perhaps extended from cuts of ribbon
diagrams to world sheet cuts.
Let us first test this guess by considering some simple

examples of ribbon diagrams. We begin by placing a cut
line across all Gþ− and G−þ propagators,

a
b

d
c
−+

Intuitively, one can think of the cut as indicating where the
worldline of the virtual particle, represented by the propa-
gator, crosses over from the forward branch Cþ to the
backward branch C− of the Schwinger-Keldysh time
contour C, where the two ends of the propagator are
located. If our expectation about cuts of surfaces were
correct, such cuts on ribbon propagators should induce
uniquely the corresponding cuts on surfaces.
There are indeed many ribbon diagrams for which this

works: An example is shown in Fig. 3. In such cases, when
the cuts across the Gþ− propagators can be continuously

extended across the plaquettes in a unique way, the
resulting lines of cuts form a collection of closed circles
S1 on Σ. Moreover, this collection of S1 ’s separates þ
regions and − regions in a way which is globally well
defined for the whole surface. Thus, cutting Σ along this
collection of S1 ’s separates Σ into the forward-branch
surface Σþ and backward-branch Σ−. The collection of
S1’s is then their common boundary, ∂Σþ ¼ ∂Σ−, along
which they are glued together to form Σ.
On the other hand, there are also many ribbon diagrams

for which this prescription is incomplete or ambiguous. An
example is shown in Fig. 4. Upon closer examination, the
origin of the ambiguity in this example is clear: There is a
plaquette which has more than two Gþ− propagators
adjacent to it (namely four), and there are two inequivalent
ways how the corresponding four cuts can be joined into
two nonintersecting lines. This makes it clear that the
original prescription for extending the cuts across pla-
quettes to obtain a unique collection of S1 ’s cuts on Σ
works precisely for those ribbon diagrams in which each
plaquette has at most two Gþ− propagators adjacent to it.8

How do we systematically resolve this ambiguity?
Consider a generic plaquette with at least four Gþ−
propagators adjacent to it. In Fig. 5 we have an example

+ − Σ Σ+ −

(a) (b)

FIG. 3. An example of a ribbon diagram with cuts, and its
associated surface. (a) This ribbon diagram has a unique extension
of the propagator cuts into the plaquettes. (b) The corresponding
surface is Σ ¼ S2, and the cut decomposes it into two disks Σþ, Σ−.

+

−

−

−

FIG. 4. A simple example of a ribbon diagram with an
ambiguity in how to connect the cuts across the plaquettes.
There are two plaquettes: The one on the outside has just two
adjacent Gþ− propagators (thus the two cuts can be connected
without ambiguity), while the other plaquette has four adjacent
Gþ− edges, giving two inequivalent ways how to connect the four
cuts into two nonintersecting lines.

+

+

−

+ −

−

+

+

FIG. 5. An example of a plaquette with six adjacent Gþ−
propagators, indicating their cuts.

8Of course, in vacuum diagrams considered here, the number
of Gþ− propagators adjacent to any plaquette is always even.
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with six. There is no unique way how to pairwise connect
the six cuts illustrated there to form three nonintersecting
lines cutting across the plaquette. In fact, there are five
different such pairings, three of which are illustrated in
Fig. 6. With the increasing number of adjacent Gþ− the
number of possibilities increases rapidly, and we need a
new strategy how to extend the cuts through such
plaquettes.
In order to formulate a unique prescription for extending

the cuts, we mark the center of each ambiguous plaquette
with a dot and connect all cuts to the dot in the unique way
without forming intersections (see Fig. 7). This gives a
unique prescription, for any ribbon diagram, how to extend
the cuts from the Gþ− propagators to the full diagram and
its associated surface Σ. We see that the resulting cut of Σ
generally does not correspond to a smooth one-dimensional
manifold (which would have to be the union of S1 ’s), but it
is described by a graph consisting of a number of dots
connected by lines and drawn on Σ in a particular way.9

Given a diagramΔ, we will denote the graph so constructed
by ΓðΔÞ and refer to it as the “graph of cuts” of the
diagram Δ.

D. Topology of world sheets on the Schwinger-Keldysh
time contour

One could work in this language of cuts given by graphs
on world sheets, but this representation of the cuts is quite
cumbersome. Questions such as “which graphs are
allowed” and “how are they mapped to the world sheet”
are not easy to answer in this language. For example, not
every graph, not even every connected graph, is allowed: It
must be bipartite in the sense that it must separate Σ into
regions that can be consistently labeled alternately by þ
and −. Moreover, there are way too many allowed graphs,
and having to classify them and sum over them would ruin
the anticipated simplicity of the topological expansion in
string theory. A much clearer picture emerges when we
move away from graphs and replace them with smooth
manifolds. Indeed, graphs are complicated, but smooth
manifolds are simple (at least in low-enough dimensions).
How do we associate a graph of cuts Γ with a smooth

manifold? Consider one of the ambiguous plaquettes,
for example, again the one in Fig. 7. The graph of cuts
across this plaquette is not a smooth manifold, but we can
define—in a topologically unique way—its “thickening”
into a smooth two-dimensional surface with smooth one-
dimensional boundaries, as indicated in the example of
Fig. 8. Moreover, these two-dimensional thickenings
extend smoothly across all adjacent propagators into
neighboring plaquettes, forming a globally well-defined
smooth manifold with nonempty smooth boundary. We
refer to this manifold as the “wedge region” of Σ and denote
it by Σ∧.10 It is this wedge region Σ∧ that represents the
topology of the cuts, connecting Σþ and Σ− into the original
smooth surface Σ.
Thus, we have reached one of the main and perhaps most

surprising points of this paper: The turnaround point t∧ on
the Schwinger-Keldysh contour, where the forward branch
Cþ is connected to the backward branch C−, is from the
world sheet point of view topologically two-dimensional.
The cuts connecting the forward and backward parts of Σ

+

+

−

+ −

−

+

+

+

+

−

+ −

−

+

+

+

+

−

+ −

−

+

+

FIG. 6. Ambiguities in extending the cuts in Fig. 5 across the plaquette. In this example, there are five inequivalent ways, of which we
show three.

+

+

−

+ −

−

+

+

FIG. 7. The unique extension of the propagator cuts into the
plaquette, by marking the center of the plaquette with a dot and
connecting all propagator cuts to the dot.

9As a general rule, only the centers of those plaquettes which
have more than two Gþ− propagators adjacent to them will be
marked with a dot; any plaquette with just two adjacent Gþ−
propagators has an unambiguous cut through it, and no dot is
needed in that case.

10For readers viewing this paper in color, we note that the
wedge regions Σ∧ are systematically depicted in our figures in
yellow.
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are not boundaries between Σþ and Σ−, but are themselves
two-dimensional surfaces Σ∧.
In the remainder of this Sec. II, we will demonstrate in

detail that Σ∧ can have an arbitrarily complicated topology
(i.e., any finite number of connected components, handles,
and boundaries connecting it to Σþ and Σ−) and therefore
carries its own genus expansion.

E. The triple decomposition of Σ
We have just found that the natural way how to think

about the “cut” between the forward and backward part of
Σ is to represent it by a smooth two-manifold with
boundaries, not by a one-dimensional graph. It is this
triple decomposition of world sheets Σ into the forward
surface Σþ, backward surface Σ−, and the wedge region Σ∧
which emerges universally from the large-N expansion.
A simple example is the surface associated with the

diagram in Fig. 3(a), with Σ ¼ S2 and the following triple
decomposition:

Σ Σ+ Σ−
^

ð2:14Þ

Our next task is to classify all possible triple decomposi-
tions of Σ that can emerge from actual ribbon diagrams.
First of all, it is easy to find examples where Σ∧ has more

than one connected component, but its graph of cuts is still
just a collection of circles. In Fig. 9, the graph of cuts ΓðΔÞ
has two connected components, each isomorphic to S1, and
no vertices. Thus, Σ∧ consists of two disconnected cylin-
ders [see Fig. 9(b)].
The simplest graph of cuts with at least one vertex is the

figure-eight graph. It can appear in various ribbon diagrams
and also be drawn in various inequivalent ways on surfaces.
One example of a ribbon diagram with the figure-eight Γ is

in Fig. 4, with the associated surface and its triple
decomposition depicted in Fig. 10. Iterating such con-
structions shows immediately that connected components
of Σ∧ can have an arbitrarily high number of boundary
components.
Next, one wonders about higher genus: Can Σ∧ with

handles also emerge from consistent ribbon diagrams? To
show that the answer is yes, consider the diagram in
Fig. 11. This example gives us an opportunity to introduce
a useful mathematical notion, known as the Whitehead
reduction of a ribbon diagram: Given a ribbon diagram Δ
with two distinct vertices of orders 2þ k and 2þ l
connected by a propagator, define the “Whitehead reduc-
tion of Δ” along this propagator by shrinking the propa-
gator to zero length, thus replacing the two vertices with

Σ−

(a) (b)

Σ+
−+

FIG. 9. An example yielding more than one connected com-
ponent of Σ∧. (a) A ribbon diagram with Σ ¼ T2. (b) The
corresponding triple decomposition of Σ, with Σ� each a cylinder
and Σ∧ a union of two cylinders.

Σ

Σ

ΣΣ
Σ

− −
+

+

^

(a) (b)

FIG. 10. The surface Σ that corresponds to the ribbon diagram
from Fig. 4 and its triple decomposition. (a) Σ is the torus, Σþ the
disk, and Σ− the cylinder. The cut between them forms a figure-
eight graph with one vertex. (b) The triple decomposition of Σ;
the thickening Σ∧ of the figure-eight graph is the smooth “pair-of-
pants” surface.

+

+

−

+ −

−

+

+

FIG. 8. The topologically unique thickening of the graph of
cuts Γ into a smooth surface with boundaries. The collection of all
such thickenings (denoted here in yellow) across all plaquettes
forms the smooth wedge region Σ∧.

+

+

−

−

FIG. 11. A simple ribbon diagram illustrating that Σ∧ can be of
higher genus.
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one composite vertex of order 2þ kþ l. Since we wish to
keep track of the information in the triple decomposition of
Σ, we allow only those Whitehead reductions that do not
change this decomposition, i.e., Whitehead reductions
along Gþþ propagators and G−− propagators are allowed,
but Whitehead reductions along the Gþ− propagators are
not. Two ribbon diagrams that differ by a sequence of
allowed Whitehead reductions correspond to the same
triple decomposition into Σþ, Σ−, and Σ∧.
Returning now to our example from Fig. 11, we see that

the diagram can be simplified by twoWhitehead reductions
to that depicted in Fig. 12. Both of these diagrams should
thus lead to the same triple decomposition of their under-
lying surface Σ ¼ T2, which we can easily determine by
direct inspection: Since both Σþ and Σ− will be disks, Σ∧
has to have two boundaries and a handle, as shown in
Fig. 13. We conclude that the wedge region can indeed
carry a handle.

F. Combinatorial picture of Σ+ , Σ− , and Σ∧
In order to prepare the ground for showing that arbitrarily

high genera in Σ∧ can also occur, it will be useful to
develop a combinatorial approach to the ribbon diagrams,
their associated surfaces Σ, and their triple decomposition
into Σþ, Σ−, and Σ∧.
Consider a surface Σ, obtained from a ribbon diagram Δ.

The ribbon diagram provides a cellular decomposition of Σ:

The vertices of the ribbon diagram are the zero-dimensional
cells, the propagators represent the one-dimensional cells
(or edges), and the plaquettes represent the two-dimen-
sional cells of this cellular decomposition. For cellular
decompositions, the Euler number χðΣÞ of a given surface
Σ is simply calculated as χðΣÞ ¼ V − Pþ L, with V the
number of vertices, P the number of edges, and L the
number of plaquettes. We already used this formula in
Eq. (1.10), in our review of the large-N expansion in
equilibrium.
Now we can use the cellular decomposition of Σ implied

by Δ to define Σþ, Σ−, and Σ∧ by assigning the various
elements of this cellular decomposition to belong to the
three parts of the triple decomposition.
First, recall that all vertices in Δ are labeled as either þ

or −, and consequently each propagator is labeled by the
two signs indicating the vertices it connects. Wewill use the
following notation:

Vþ ¼ the number of þ vertices;

V− ¼ the number of − vertices;

Pþ ¼ the number of Gþþ propagators;

P− ¼ the number of G−− propagators;

Pþ− ¼ the number of Gþ− andG−þ propagators;

Lþ ¼ the number of plaquettes ðor closed loopsÞwith
onlyGþþ adjacent propagators;

L− ¼ the number of plaquettes with onlyG−− adjacent

propagators;

Lþ− ¼ the number of plaquettes with a nonzero number

of Gþ−ðorG−þÞ adjacent propagators:

We now subdivide the elements of the cellular decom-
position of Σ into those belonging to Σþ, Σ−, and Σ∧ as
follows:

(i) All þ vertices, all Gþþ propagators, and all pla-
quettes with only Gþþ adjacent propagators belong
to Σþ.

(ii) All − vertices, all G−− propagators, and all pla-
quettes with only G−− adjacent propagators belong
to Σ−.

(iii) All Gþ− (and G−þ) propagators and all plaquettes
with a nonzero number ofGþ− (orG−þ) propagators
belong to Σ∧.

This is our combinatorial definition of the triple decom-
position of Σ, in terms of the cellular decomposition
defined by the underlying ribbon diagram.
We can now define the “cellular Euler numbers” asso-

ciated with the ingredients of the ribbon diagram Δ that
have been assigned to Σ� and Σ∧ as follows:

+ −

FIG. 12. This diagram is obtained from that in Fig. 11 by
Whitehead reduction, therefore it corresponds to the same surface
Σ and the same triple decomposition.

Σ + Σ −

Σ ^

FIG. 13. Surface Σ ¼ T2 corresponding to the ribbon diagrams
in Figs. 11 and 12 and its triple decomposition. While both Σþ
and Σ− are disks, Σ∧ is a surface with two boundaries and a
handle.
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χþðΔÞ ¼ Vþ − Pþ þ Lþ; χ−ðΔÞ ¼ V− − P− þ L−;

ð2:15Þ

and

χ∧ðΔÞ ¼ −Pþ− þ Lþ−: ð2:16Þ

It is straightforward to show that the cellular Euler numbers
so defined are equivalent to the standard topological
definition of the Euler numbers of Σþ and Σ− as topological
manifolds with boundaries,

χþðΔÞ ¼ χðΣþÞ; χ−ðΔÞ ¼ χðΣ−Þ: ð2:17Þ

Indeed, this follows from the simple observation that the
elements of the cellular decomposition of Σ that we
assigned to Σþ and Σ− form a cellular decomposition of
those surfaces with boundaries, and our definition of χ� in
(2.15) coincides with the standard expression for χðΣ�Þ in
terms of this cellular decomposition.
It is perhaps a little less immediate to see that the cellular

Euler number χ∧ðΔÞ defined in (2.16) is also the topo-
logical Euler number of the surface Σ∧ with boundary
whose construction we presented in Sec. II D. First of all,
the elements of the cellular decomposition of Σ that we
assigned to Σ∧ do not give a cellular decomposition of a
surface: There are only edges and plaquettes, but no
vertices, and these ingredients do not give a closed
submanifold in Σ. It is easy, however, to construct an
honest cellular decomposition of Σ∧ by refining the
elements that we assigned to Σ∧. First, add vertices at
the ends of all theGþ− (andG−þ) propagators, and think of
them as the points at the boundaries between Σ∧ and Σþ or
Σ−. Then connect these vertices by new edges, with each
edge simply following these boundaries within each pla-
quette, as indicated in Fig. 8. The addition of these vertices
and edges to the ingredients previously assigned to Σ∧
defines a cellular decomposition of Σ∧, as a closed
manifold with boundary. Essentially, the new ingredients
just add the boundary S1 components to Σ∧, without
changing the alternating sum of the vertices, edges, and
plaquettes. We conclude that

χ∧ðΔÞ ¼ χðΣ∧Þ: ð2:18Þ

Equipped with this combinatorial picture of the triple
decomposition, we can now show that Σ∧ of arbitrarily high
genus can indeed emerge from ribbon diagrams.
Consider a ribbon diagram, constructed from ingredients

shown in Fig. 14: two ribbon diagrams with n loose ends. If
we glue the end marked 1 with n0, 2 with n0 − 1, … and n
with 10, the surface Σ associated with the resulting diagram
is the sphere. Indeed, in this case we have

Vþ ¼ V− ¼ Pþ ¼ P− ¼ Pþ− ¼ n; Lþ ¼ L− ¼ 1;

ð2:19Þ

and Lþ− ¼ n, implying that χðΣþÞ ¼ χðΣ−Þ ¼ 1,
χðΣ∧Þ ¼ 0, and χðΣÞ ¼ 2. The triple decomposition is
the one we found in (2.14): Σþ and Σ− are disks, and Σ∧
is a cylinder.
On the other hand, if we glue the loose ends in the order

indicated in Fig. 14, we obtain a surface whose cellular
decomposition is characterized by the same numbers as in
(2.19), while the number Lþ− of þ− plaquettes changes
from n to just 1 if n is odd and to 2 if n is even. Thus, for
odd n ¼ 2hþ 1 or even n ¼ 2hþ 2, we see that
χðΣ∧Þ ¼ −2h. Since Σ� are disks, Σ∧ has two boundary
components. We conclude that Σ∧ resulting from the
construction in Fig. 14 is the surface with two boundaries
and h handles (see Fig. 15). This demonstrates that wedge
regions Σ∧ obtained from ribbon diagrams can have
connected components with an arbitrarily high number
of handles.

G. Measure once, cut twice

Our analysis of the large-N expansion of nonequilibrium
systems revealed one, perhaps surprising, fact: The time
instant t∧ where the forward branch of the Schwinger-
Keldysh time contour meets the backward branch does not

2

1

n

1 −
+ + +
+

2

1

n

1−
+ + +
+n

2

1

n’

’

’

)’1−n(

− −−
−

FIG. 14. Construction of the ribbon diagram whose Σ∧ is a
higher-genus surface with two boundary components, depicted in
Fig. 15. Prepare two ribbon diagrams with n loose ends each as
indicated and connect pairwise the ends labeled by i and i0: 1 to
10, 2 to 20,…, n to n0. Note that with this order of gluing the ends,
the resulting ribbon diagram will have only the total of three
plaquettes if n is odd, or four plaquettes if n is even.

Σ Σ Σ+ ^ −

FIG. 15. The world sheet topology whose Σ∧ has h handles and
two boundary components, and Σþ, Σ− are both disks. This
surface is obtained from the ribbon-diagram construction de-
picted in Fig. 14, with n ¼ 2hþ 1 or n ¼ 2hþ 2.
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cut the world sheet Σ into its forward and backward parts
Σþ and Σ∧ connected along a common one-dimensional
boundary—instead, the world sheet region Σ∧ correspond-
ing to t∧ is topologically two dimensional and even carries
its own genus expansion.
Having seen that the wedge region Σ∧ can have

components with arbitrary numbers of boundaries and
high genus, there are some natural follow-up questions
about Σ∧ and how it is connected to the forward and
backward regions Σþ and Σ∧.
Does Σ∧ always have to have nonempty boundaries with

both Σþ and Σ−? The answer is yes, in the following sense:
There are certainly ribbon diagrams, such that their
associated surface is Σ ¼ Σþ or Σ ¼ Σ−, and Σ∧ is empty.
But if Σ∧ is nonempty, it has to have a nonempty boundary
both with Σþ and with Σ−. The proof is simple: In the
combinatorial description, Σ∧ is built from lines represent-
ing Gþ− propagators and the þ− plaquettes. If Σ∧ is
nonempty, it contains at least one Gþ− propagator. This
propagator has to have a place to end, at both ends. On the
þ side, the propagator can only end at a nonempty
boundary with Σþ; similarly, on the − side, it must end
on a nonempty boundary with Σ−.
We can summarize this structure in a simple slogan:

Measure once, cut twice. If you find that Σ has both Σþ and
Σ− nonempty, you must cut; and if you cut, you must cut
twice. The first cut indicates the location within Σ of the
boundary between Σþ and Σ∧ (which we denote by ∂þΣ),
and the second cut indicates the location of the boundary
between Σ∧ and Σ− (which we denote by ∂−Σ). Of course,∂þΣ is just a collection of n circles and ∂−Σ is a collection
of n0 circles; note that n does not have to equal n0.
It is intriguing to find that the structure of world sheet

cuts is so much richer in comparison to the simple
propagator cuts known from standard quantum field theory
of particle physics.

H. Dual picture

Ribbon diagrams exhibit a very useful duality property,
closely related to what mathematicians call Poincaré duality
in topology of manifolds. Each ribbon diagram Δ defines
uniquely another, dual ribbon diagram Δ⋆, as follows: Each
plaquette of Δ is associated with a vertex in Δ⋆. Whenever
two plaquettes inΔ share an edge, the corresponding vertices
inΔ⋆ are connected by a ribbon. All ribbons are attached to a
given vertex in Δ⋆ in the same cyclic order as the order of
their dual edges around the original plaquette in Δ. As a
result, each plaquette inΔ⋆ is associated with a unique vertex
in Δ. It is easy to see that with this construction, ΣðΔ⋆Þ ¼
ΣðΔÞ [and consequently χðΣðΔ⋆ÞÞ ¼ χðΣðΔÞÞ], and
ðΔ⋆Þ⋆ ¼ Δ. In particular, the cellular decompositions of Σ
provided by a diagram Δ and its dual Δ⋆ are dual to each
other in the sense of cellular decompositions.
We can use this duality to shed more light on the Σ∧

region. In the combinatorial description of Σ using a ribbon

diagram Δ, it was perhaps surprising that we assigned only
propagators and plaquettes to Σ∧, i.e., one- and two-
dimensional cells, but no vertices. The dual picture using
Δ⋆ reveals why that was so: The plaquettes ofΔ correspond
to vertices in the dual picture, and the Gþ− propagators that
traverse across Σ∧ from the ∂þΣ boundary to the ∂−Σ
boundary turn in the dual picture to lines connecting those
vertices. Thus, dualizing the formula (2.16) for the Euler
number of Σ∧, we see that contributions to χðΣ∧Þ come
only from vertices and propagators ofΔ⋆, so only zero- and
one-dimensional components contribute. These compo-
nents of Δ⋆ of course form nothing other than the graph
of cuts ΓðΔÞ. In this sense, the topological information
about Σ∧ can be encoded in cellular data not involving cells
of dimension two.
This does not mean that we should abandon our smooth-

surface representation of Σ∧ and revert back to the graph
description: The classification of Σ∧ as surfaces with
smooth boundaries is much more transparent than the
classification of the corresponding graphs and the ways
how they can be drawn on surfaces. In particular, without
keeping track of how the graph of cuts Γ is drawn on Σ, the
graph itself does not contain enough information to
reconstruct the topology of Σ∧. Take for example the
trefoil graph, depicted in Fig. 16(a). This graph can be
drawn on the sphere, in a topologically unique way. This
configuration indeed corresponds to a particular ribbon
diagram, whose Σ ¼ S2 and Σ∧ is the sphere with four
boundaries. The trefoil graph can also be drawn on a torus,
in several inequivalent ways. First, if drawn in a local patch
of the torus, it again gives the same Σ∧ as on the sphere. Or
it can be drawn such that all three cycles of the trefoil are
noncontractible and mutually homotopically inequivalent,
as in Fig. 16(b). This describes the configuration in Fig. 12,
and Σ∧ is the torus with two boundaries. Of course, both of
these Σ∧ topologies (as well as the graph Γ itself) have the
same Euler number, χ ¼ −2.
Indeed, this ambiguity is not at all surprising—in order

to keep track of how Γ is drawn on Σ, we have just learned

Σ

(b)(a)

FIG. 16. Surfaces with distinct Σ∧’s but with the same
graph of cuts Γ. In this example, Γ is the trefoil graph. (a) Here
Γ is drawn on the sphere, and Σ∧ is the sphere with four
boundaries. (b) Here Σ is the torus, represented as a square with
the opposite sides pairwise identified. The indicated graph of cuts
is again the trefoil. The triple decomposition of this surface
reproduces that of Fig. 13.
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that it is natural to interpret it as a ribbon subdiagram of the
dual ribbon diagramΔ⋆. As a two-dimensional surface with
boundaries, this ribbon diagram corresponding to Γ is
indeed just the thickening of Γ into Σ∧ that we introduced
in Sec. II D.

I. Grothendieck’s dessins d’enfants make an
appearance

Over its lifetime, string theory has demonstrated an
extraordinary ability to make meaningful connections to
many diverse areas of modern mathematics. These con-
nections have been very fruitful both for mathematics and
physics. In this subsection, we take a brief detour to point
out one unexpected connection between the structure of the
nonequilibrium string diagrams and objects that have been
studied extensively in pure mathematics, under the name of
Grothendieck’s dessins d’enfants. Readers interested in the
physical picture of nonequilibrium string perturbation
theory should feel free to skip this subsection and go
directly to Sec. II J, where our main results are stated.
Since the notion of dessins d’enfants (see, e.g., [47–50])

was first introduced by Grothendieck in his 1984 Esquisse
d’un Programme, “dessins” have been found to relate
remarkably many diverse areas in pure mathematics
(including such arcane concepts as the absolute Galois
group11 and its faithful action on various categories [50]),
and it is only fitting that they should appear in string
theory.12 For our purposes, a “dessin d’enfant” can be
defined as a connected graph, consisting of a finite number
of vertices and lines, and drawn on a two-dimensional
surface Σ0 such that no two vertices coincide on Σ0 and no
two lines intersect on Σ0, and such that two additional
conditions are satisfied: (i) the graph is bipartite in the
following sense: each vertex is labeled either black or
white, with each line of the graph connecting a black vertex
with a white one; and (ii) the complement of the graph in Σ0
is topologically a collection of disks.
Now we can show that there is a close relation between

dessins d’enfants and the wedge-region part of our ribbon
graphs. Imagine asking the following question: How do we
keep track of only that part of the ribbon diagram that
defines the Σ∧ region of its associated surface? This
question is answered as follows. Consider a ribbon diagram
Δ and draw it on its associated surface Σ with triple
decomposition Σþ, Σ−, and Σ∧. Erase the Σþ and Σ∧ parts
of Σ, keeping only the wedge region Σ∧. Glue in a disk
inside each of the boundary components of Σ∧, place a new
vertex in the center of each such disk, and label it þ or −

depending on whether the disk replaces a boundary with
Σþ or Σ−. All ribbon propagators are now ending on the
edges of the glued-in disks; extend them to the vertex at the
center of the disk, without intersections. This defines a new,
“reduced” ribbon diagram, whose associated surface is Σ∧
with the boundary components filled in with the disks. All
detailed information about how the original ribbon diagram
extends into the Σþ and Σ− regions has now been erased, so
the resulting reduced ribbon diagram encodes only the
information about Σ∧.
We now observe that each such reduced ribbon diagram

defines a unique dessin d’enfant: Label each þ vertex as
black, and each − vertex as white, and note that all the
axioms of dessins are satisfied by our reduced ribbon
diagram. In turn, every dessin d’enfant is realized by at least
one ribbon diagram in this way. More precisely, we can
define an equivalence relation on the original ribbon
diagrams by declaring two ribbon diagrams equivalent if
they may differ only in their Σþ and Σ− regions, but give
the same reduced ribbon diagram when our procedure is
followed. Two ribbon diagrams correspond to the same
dessin d’enfant if they belong to the same equivalence
class. For example, the ribbon diagrams in Figs. 11 and 12
are in the same equivalence class, and the dessin d’enfant
corresponding to them can be drawn like this

This dessin is supposed to be visualized as being drawn on
a torus, and the Σ∧ that corresponds to this dessin is
depicted in Fig. 13.
In turn, two ribbon diagrams from distinct equivalence

classes correspond to distinct dessins. We conclude that
there is a one-to-one correspondence between dessins
d’enfants and the equivalence classes of all ribbon diagrams
defined above, represented by the reduced ribbon diagrams.
We do not have any immediate use in nonequilibrium

physics for this connection to dessins d’enfants, yet we find
it fascinating that they do naturally appear in the structure
of nonequilibrium string perturbation theory and are related
so intimately to the most interesting portion Σ∧ of the world
sheet, associated with the crossing from the forward to the
backward branch of the Schwinger-Keldysh time contour.

J. Nonequilibrium string perturbation theory

After this thorough analysis of the surfaces Σ that can
emerge from ribbon diagrams in our large-N theory of
matrix degrees of freedom out of equilibrium, we are ready
to formulate the main lessons about the dual string-theory
expansion. Which surfaces contribute to the expansion? If
we make no additional assumptions about the dynamics of
the large-N system, i.e., assume no “hidden identities” of

11The absolute Galois group GalðQ̄=QÞ is defined as the group
of automorphisms of the algebraic numbers Q̄ which fix the
rational numbers Q [51].

12In an unrelated context, dessins d’enfants also appeared
previously in string theory in certain brane engineering con-
structions [52] and Calabi-Yau compactifications [53,54].
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individual ribbon diagrams (or among groups of ribbon
diagrams) that would make some contributions vanish, then
as we have seen above, all possible triple decompositions of
world sheets result from consistent ribbon diagrams.13

In nonequilibrium string perturbation theory, the parti-
tion function is expressed as a refined topological expan-
sion over world sheet surfaces,

Z ¼
X∞
h¼0

�
1

N

�
2h−2 X

triple decompositions
χþþχ−þχ∧¼2−2h

FΣþ;Σ−;Σ∧ðλ;…Þ: ð2:20Þ

This formula is the central result of this paper: In non-
equilibrium string theory, the genus expansion into a sum
over connected surfaces Σ known from equilibrium is
further refined into a sum over triple decomposition of
each surface Σ into its forward part Σþ, backward part
Σ−, and the wedge part Σ∧ which corresponds to the
time instant t∧ where the two branches Cþ and C− of the
Schwinger-Keldysh time contour meet (see Fig. 17 for a
typical surface). We stated the result here for the partition
function Z, but the same expansion is expected of
correlation functions of local observables as well.
In our derivation of this result from the original large-N

system, the individual contribution FΣþ;Σ−;Σ∧ of each triple
decomposition is weighted by the power of N given by the
total Euler number χðΣÞ ¼ 2 − 2h. Thus, the term at a fixed
order h in the string coupling is further refined into a sum
over all triple decompositions of Σ with that genus h into
Σþ, Σ−, and Σ∧, subject only to the condition that Σ be
connected. At this stage, individual triple decompositions
are still weighted just by the overall Euler number χðΣÞ,
with 1=N the only parameter of the expansion. This may be
the limit of how far the large-N expansion arguments can
take us, in predicting the universal properties of the dual
string theory.

However, once we identify 1=N with the string coupling
constant gs, one can use our experience with critical string
theory at equilibrium to speculate that a more refined
weighting should be possible. For example, one can
imagine dialing different values of the string coupling on
the forward and backward branches of the time contour (let
us call them gþ and g−) or a different value of the string
coupling in the asymptotic future at t∧ (which we naturally
call g∧). Indeed, in critical string theory in equilibrium,
there are many examples where the string coupling “con-
stant”—being given by the vacuum expectation value of the
dilaton field Φ as gs ¼ heΦi—is dependent on the space-
time location, no longer necessarily equal to a fixed value
set by 1=N. Assuming that on the Schwinger-Keldysh
contour gs can take such three different values g� and g∧ in
its three different regions, each term in the perturbation
theory sum (2.20) would then be weighted by the more
refined weight

g−χðΣ
þÞ

þ g−χðΣ−Þ
− g−χðΣ

∧Þ∧ ; ð2:21Þ

replacing the overall g−χðΣÞs that we obtained from the 1=N
expansion. In order to see whether such a possibility is
realized, we would need to know more about the world
sheet dynamics of strings away from equilibrium.
Having shown that all topologies can appear in the triple

decompositions of world sheet surfaces, one can reorganize
the question and ask, for a given surface Σ, what is the full
classification of all its possible triple decompositions. Such
decompositions are fully classified in terms of the discrete
topological data about Σþ, Σ−, and Σ∧: their numbers of
handles and numbers of boundary components. However,
without making any additional assumptions about the
world sheet dynamics, the number of distinct triple decom-
positions of a fixed surface Σ is infinite. This proliferation
of decompositions is illustrated for the sphere in Fig. 18.
We find an infinite number of decompositions of the
sphere, with connected components of Σ∧ ¼ Σ0;b given
by spheres with b boundaries. Upon closer inspection, we

Σ

Σ

Σ
+
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^

−Σ

+Σ

FIG. 17. A typical string topology contributing to the non-
equilibrium string perturbation theory.
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FIG. 18. Illustration of the possible infinite proliferation of
triple decompositions for a given Σ (here illustrated for Σ ¼ S2),
if connected components of Σþ and Σ− with non-negative Euler
number (and no additional insertions of observables inside them)
are not identically zero.

13For specific systems, there might be additional identities that
make some classes of surfaces drop out from the sum; those can
be studied on a case-by-case basis. Here we concentrate on the
universal predictions about nonequilibrium string perturbation
theory, following solely from the topology of the large-N
expansion, without any additional dynamical assumptions.
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find that the origin of this proliferation is in the existence of
components in Σþ, Σ−, and Σ∧ whose Euler number χ is
non-negative: Indeed, since the Euler number of Σ is the
sum of the Euler numbers of its triple decomposition, if
only those components that have negative χ were allowed,
there would only be a finite number of possible
decompositions.
In vacuum diagrams, the components of Σþ and Σ∧ with

non-negative Euler numbers are disks and cylinders, while
in Σ∧ it is only the cylinder. When we generalize from
vacuum diagrams to correlation functions of local observ-
ables on Σ, each insertion counts as a “puncture” in Σ and
contributes an additional −1 to the Euler number. In this
case, the additional components of Σþ and Σ∧ causing
proliferations in the triple decompositions of Σ are also
disks with one puncture. How to deal with such prolifer-
ations? There are two main options: (a) allow them to be
nonzero and perhaps resum the contributions with non-
negative χ to define “renormalized” triple decompositions
of Σ, or (b) make an additional assumption about the world
sheet dynamics, declaring that contributions of components
of Σþ and Σ− with χ ≥ 0 vanish identically.
While option (a) might be necessary in some circum-

stances far from equilibrium, option (b) is something we are
familiar with from critical string theory in equilibrium. In
critical string theory, string world sheets inherit a complex
structure from the dynamics of world sheet gravity and its
symmetries. The F h contributions at fixed genus h are
given as integrals over moduli spaces of such complex
structures. When the world sheet is a sphere with fewer than
three punctures, such contributions vanish identically, since
they are suppressed by the infinite volume of a residual
world sheet gauge symmetry. In the language of math-
ematics, only “stable nodal Riemann surfaces” [55] (i.e.,
surfaces with punctures and with non-negative Euler
numbers) contribute to the amplitudes. This suggests a
realization of our option (b): In theories where the world
sheet dynamics implies additional world sheet structure
(such as the complex structure), one could propose that the
boundaries ∂þΣ and ∂−Σ in the triple decomposition
should be interpreted geometrically as nodes in the
Riemann surface and expect that the components of Σþ
and Σ− which carry non-negative Euler numbers vanish
identically, in analogy with critical string theory in
equilibrium.
Note that in option (b), in order to get a finite sum over

triple decompositions, it would not be sufficient to assume
that just the components of Σþ and Σ− with strictly positive
χ (i.e., the disks) vanish identically: There would still be an
infinite number of triple decompositions of vacuum dia-
grams at each order in gs, starting at genus one.
In fact, the list of topological invariants associated

universally with our triple decompositions of Σ is even
richer than just χðΣþÞ, χðΣ−Þ, and χðΣ∧Þ. We can define bþ
to be the number of boundary components in the boundary

∂þΣ between Σþ and Σ∧, and similarly b− as the number of
components in the boundary ∂−Σ between Σ− and Σ∧.
These b� are of course topological invariants, and if we
introduce “fugacities” fþ and f− for them, we can weigh
each triple decomposition of Σ by an additional factor of

fþbþf−b− : ð2:22Þ

Another set of useful invariants are the numbers of
connected components in Σþ, Σ−, and Σ∧, which we denote
by nþ, n−, and n∧. Even if option (a) applies, and the disk
and cylinder components of Σþ and Σ− turn out not to be
zero, there is one way to reduce the sum over triple
decompositions at each genus h to a finite sum: if we
allow only connected Σþ and Σ− to contribute. This can be
arranged by introducing fugacity parameters γþ and γ− for
the numbers of components nþ and n− to weigh the
contribution of a given triple decomposition by

γnþ−1þ γn−−1− : ð2:23Þ

Presumably, we choose γ� to be smaller than 1, so that they
suppress contributions from higher numbers of connected
components of Σ�. Sending γ� → 0 then keeps only the
contributions from connected Σ�.
The question of whether or not the appropriate refined

expansion parameters such as g� and g∧, γ� or f� do
naturally appear in a given string theory is likely to depend
on the specific examples and their string dynamics. Since in
this paper we are only focusing on the universal properties
independent of any knowledge about the world sheet
dynamics, such questions are outside of the scope of this
paper. Our universal arguments only reveal the universal
existence of the topological invariants to which such
hypothetical dynamical expansion parameters could be
sensitive.

III. STRINGS ON THE KADANOFF-BAYM
TIME CONTOUR

Our analysis of the Schwinger-Keldysh time contour has
several straightforward generalizations. In this section, we
present the large-N expansion of theories on another
popular time contour, relevant particularly for systems at
finite temperature T at or near equilibrium, known as the
Kadanoff-Baym contour14 [31,32,37–40,56]. Since the
logic of this analysis is a straightforward generalization
of our discussion in Sec. II, we will be relatively brief.

A. The Kadanoff-Baym contour and finite temperature

The Kadanoff-Baym (KB) contour Cβ consists of three
segments [see Fig. 19(a)]: Besides the forward and

14Sometimes this contour is referred to as the Konstantinov-
Perel’ contour [34].
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backward branches Cþ and C− known from the Schwinger-
Keldysh contour, there is a third segment CM representing
an excursion into the imaginary direction by the amount
−iβ. This last segment of the KB contour is referred to as
the “Matsubara” segment of the KB contour. Indeed, this
Matsubara segment would constitute the entire time con-
tour in the standard imaginary-time approach to equilib-
rium systems at finite temperature known as the Matsubara
formalism. Keeping both the imaginary-time segment and
the real-time segments of the KB contour allows us to
combine the benefits of the imaginary-time Matsubara
formalism with the possibility of studying real-time phe-
nomena at finite temperature. The condition of thermal
equilibrium translates into the so-called Kubo-Martin-
Schwinger (KMS) conditions on correlation functions of
meaningful quantities. As a consequence of the KMS
conditions, the correlation functions are periodic (or
antiperiodic) along the imaginary direction of the com-
plexified time; it is therefore natural to think of the KB
contour as a closed contour on the cylinder [see Fig. 19(b)].
Now the fields are tripled: M on the Cβ contour can be

represented by two fields M�ðtÞ that depend on real time
and one new fieldMMðτÞ which depends on the coordinate
τ defined as τ ¼ −Imt along the Matsubara segment CM,

MM
a
bðτÞ≡Ma

bð−iτÞ: ð3:1Þ

With this definition, τ ∈ ½0; βÞ.
This triplication of fields means that we have nine

a priori distinct propagators, defined using the time order-
ing TCβ along the KB contour. They are denoted by ribbons
as in (2.1)–(2.4), but now labeled with three possible
indices þ;−;M at each end. The propagators involving
the M� fields are as in (2.5)–(2.8). Then there are four

propagators connecting one MM with either Mþ or M−;
these are expressed in terms of Green’s functions G⌈ and
G⌉ known in the nonequilibrium literature as G-left and
G-right [34],

hMMðτÞM�ðtÞi ¼ g2G⌈ðτ; tÞ; ð3:2Þ

hM�ðtÞMMðτÞi ¼ g2G⌉ðt; τÞ: ð3:3Þ

Finally, we have the GMM propagator, familiar from the
Matsubara formalism and given by the two-point function
of MM along the Matsubara segment. For clarity, we will
again use a uniform two-index notation for all nine
propagators in the rest of this section, with the indices
running over þ;−;M.
The vertices are the same as in (2.9)–(2.12), except now

they are labeled by one of the three indices þ;−;M.

B. Sevenfold decomposition of Σ
In understanding the decomposition of Σ for the KB

contour, we will use the same combinatorial approach that
worked for us in Sec. II F.
All ribbon diagrams now have vertices labeled by þ;−,

and M. Consider such a diagram Δ. It defines a cellular
decomposition of its associated surface Σ. We wish to
construct the decomposition of Σ on the KB contour,
analogous to the triple decomposition of Σ that we found
on the Schwinger-Keldysh contour. We begin by construct-
ing the forward region Σþ: Combinatorially, we define Σþ
to be the region whose cellular decomposition consists of
all þ vertices in Δ, all the Gþþ propagators, and all the
plaquettes whose all adjacent propagators are Gþþ. This
collection of data indeed defines a cellular decomposition
of a surface with boundaries, which will be our Σþ.
Repeating the same with − vertices, propagators, and
plaquettes defines the backward region Σ−. Finally, repeat-
ing the same with M vertices, propagators, and plaquettes
defines ΣM, the Matsubara region of Σ.
In complete analogy with Sec. II F, we introduce the

following notation:

Vþ ¼ the number of vertices labeled byþ;

Pþ ¼ the number ofGþþpropagators;

Lþ ¼ the number of plaquettes with all their vertices

labeled byþ;

(with similar definitions for V−, P−, L−, VM, PM, and LM).
We define the combinatorial Euler numbers χ� and χM, and
argue that they are equal to the topological Euler numbers
of surfaces with boundaries Σþ, Σ−, and ΣM,

0t

t̂

CM

C+ C−

−
0−t

CM

C+ C−

t0
iβ

iβ t0

tt
t̂

(a) (b)

FIG. 19. (a) The Kadanoff-Baym time contour Cβ ¼ Cþ ∪
C− ∪ CM in the plane of complexified time, with the dashed
line indicating the periodicity of observables by β in the
imaginary time direction. (b) The KMS periodicity properties
suggest that the complexified time can be naturally thought of as
a cylinder, on which the KB contour is a closed contour with
winding number one.
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χþðΔÞ≡ Vþ − Pþ þ Lþ ¼ χðΣþÞ;
χ−ðΔÞ≡ V− − P− þ L− ¼ χðΣ−Þ;
χMðΔÞ≡ VM − PM þ LM ¼ χðΣMÞ:

Next we try to repeat our definition of Σ∧ and define the
regions of Σ that correspond to the parts of the KB contour
where two of the regions Σþ, Σ−, or ΣM connect. First, we
define region Σþ− by assigning to it all Gþ− and G−þ
propagators in Δ and all the plaquettes with at least one
adjacent Gþ− or G−þ propagator but no adjacent M
vertices. We denote by Vþ−, Pþ−, and Lþ− the numbers
of vertices, propagators, and plaquettes so assigned to Σþ−.
Next, we similarly define regions ΣþM and Σ−M by
repeating the same steps which defined Σþ−.
Precisely as in the case of Σ∧ in Sec. II F, these

combinatorial data contain no vertices, and they do not
define a cellular decomposition of the three surfaces. We
can still define the cellular Euler numbers

χþ−ðΔÞ≡ Vþ− − Pþ− þ Lþ−;

χþMðΔÞ≡ VþM − PþM þ LþM;

χ−MðΔÞ≡ V−M − P−M þ L−M;

and ask whether they are equal to the topological Euler
numbers of the surfaces Σþ−, ΣþM, and Σ−M. In contrast to
the Schwinger-Keldysh case, here we find that these three
surfaces are in general not manifolds with smooth boun-
daries, but instead they are manifolds with corners.
Compared to the Schwinger-Keldysh case studied in
Sec. II F, the novelty here is that the combinatorial
ingredients of Δ assigned to the six distinct region do
not yet generally cover all of Σ. We must add yet another
region, Σþ−M, to which we assign all the plaquettes which
have adjacent indices of all three types þ, −, and M. The
number of such plaquettes will be denoted by Lþ−M. With
the addition of Σþ−M, each combinatorial element of the
cellular decomposition of Σ has been accounted for and
assigned to exactly one region, and we have defined a
partition of Σ into seven parts.
Let us take a closer look at the Σþ−M component. Its

combinatorial Euler number will be simply the number of
the plaquettes assigned to Σþ−M,

χþ−MðΔÞ ¼ Lþ−M: ð3:4Þ

In contrast to the other six regions, which can be topo-
logically complicated with arbitrarily high genus, the
topology of Σþ−M is quite simple: Since it contains only
plaquettes and no propagators or vertices of the original
ribbon diagram Δ, it consists topologically of a collection
of disconnected disks, one for each plaquette. The entire
topology of Σþ−M is thus completely fixed in terms of its

Euler number χþ−M ¼ Lþ−M, which simply counts the total
number of the disconnected disks.
A simple example of the sevenfold decomposition

of Σ associated with a ribbon diagram Δ, for which
all seven parts of this decomposition are nonempty, is
given in Fig. 20. It also provides an example where Σþ−,
ΣþM, and Σ−M are not smooth manifolds, but manifolds
with corners, as one can verify by evaluating their Euler
numbers.
The decomposition patterns for Σ can get even more

complicated when one considers time contours with more
than three segments. An extension to such contours is not
just a mindless mathematical exercise, as such contours can
be physically well motivated: For example, the contour
relevant for thermofield dynamics has four segments
(see Fig. 21). In the case with k > 3 segments of the
time contour, we introduce an index i ¼ 1;…; k and
iterate our combinatorial construction for k ¼ 3 from
earlier in this section to construct regions Σi,
Σij;…;Σi1…ik . It is best to think of them as antisymmetric
in the indices. The one simplifying feature is that starting
from Σijl, all higher-order regions consist solely of isolated
plaquettes of Δ and are therefore topologically simple, just
as our Σþ−M above. Unfortunately, the Σij’s are again
manifolds with corners.
Manifolds with corners are rather awkward, and it would

be much preferable to work only with manifolds with
smooth boundaries. One can avoid using the manifolds
with corners in the following way. First, we define a coarser
decomposition of Σ into just four parts: keeping Σþ, Σ−,

+ −

M

FIG. 20. A simple ribbon diagram with a sevenfold decom-
position of Σ.
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FIG. 21. The time contour relevant for thermofield dynamics,
as a physically motivated example of a contour with four
segments [31,32,57].

PETR HOŘAVA and CHRISTOPHER J. MOGNI PHYS. REV. D 106, 106013 (2022)

106013-18



and ΣM, and assigning all the rest of Σ to be the fourth
region Σ̂. In our example from Fig. 20, Σ̂ is a sphere with
three boundaries. Σ̂ can be viewed as a manifold with a
smooth boundary, using the same arguments that we used
in Sec. II F for Σ∧.
This fourfold decomposition is rather crude, since it

loses track of the regions corresponding to just two seg-
ments of the time contour meeting, such as Σþ−. We can
restore this refinement by the following slight modification
of our previous rules:

(i) All þ vertices, all Gþþ propagators, and all the
plaquettes which have only Gþþ adjacent propaga-
tors define region Σþ; analogously for Σ− and ΣM.

(ii) All Gþ− (and G−þ) propagators and all the pla-
quettes that have at least one Gþ− (or G−þ) adjacent
propagator define region eΣþ−; analogously for eΣþM

and eΣ−M.
Clearly, all the combinatorial ingredients in Δ have been
assigned. The Σþ, Σ−, and ΣM regions are defined as
before, and they do not share any plaquettes with each other
or any other region. The novelty is in the eΣ regions: They
can be interpreted as surfaces with smooth boundaries, but
they can now overlap over disks. Their union is Σ̂. The
seventh region Σþ−M of the sevenfold decomposition is
the collection of all the disks in Σ over which at least two of
the eΣ components overlap.15 In our example from Fig. 20,eΣþ−, eΣþM, and eΣ−M are all disks, overlapping over two
disks, as indicated in Fig. 22.
To conclude this section, we point out that the dual

picture of the ribbon diagrams developed in Sec. II H
gives an interesting perspective also on the sevenfold

decomposition of Σ associated with the Kadanoff-Baym
contour. Going from the original ribbon diagram Δ to its
dual diagram Δ⋆ reveals that while Σþ, Σ−, and ΣM are
effectively two-dimensional (since they are built from
vertices, lines, and plaquettes of Δ⋆), Σþ−, ΣþM, and
Σ−M are effectively one dimensional, built only from
vertices and lines of Δ⋆. This is reminiscent of what we
saw in the triple decomposition on the Schwinger-Keldysh
contour in Sec. II H. In the sevenfold decomposition, this
pattern goes one step further, and Σþ−M is found to be
effectively zero dimensional, since it is built only from
vertices in Δ⋆ and therefore represents just a finite
collection of points in this dual picture.

IV. OTHER GENERALIZATIONS

Our analysis can be naturally extended from the theory
of closed oriented strings to theories containing unoriented
and/or open strings. Since this generalization is straightfor-
ward, we will be brief.

A. Unoriented strings

Until now, we assumed the matrix degrees of freedom to
be Hermitian and traceless, in the adjoint representation of
the symmetry group SUðNÞ. We can replace the unitary
group SUðNÞ with another sequence of simple groups that
allows a large-N limit—either orthogonal SOðNÞ or sym-
plectic SpðNÞ. Our story then naturally generalizes and
involves unoriented surfaces.
For SOðNÞ or SpðNÞ, Feynman rules and their ingre-

dients are essentially the same as in the UðNÞ case,
except that the ribbons now do not carry arrows on their
edges,

a d
c
+

b
+− −

The arrows were needed in the SUðNÞ case to distinguish
between the upper indices and the lower indices of M,
which correspond to inequivalent representations N and N̄.
In contrast, for SOðNÞ and SpðNÞ the upper and lower
indices correspond to the same representation, and can be
freely raised and lowered using the invariant quadratic form
of SOðNÞ or SpðNÞ. Hence, in Feynman diagrams we no
longer have to keep track of the difference between the left
and right edge of the ribbons, as reflected by the absence of
arrows in the notation. The matrices M are antisymmetric
for SOðNÞ and symmetric traceless for SpðNÞ; this differ-
ence is immaterial for our arguments, and both cases will
lead to the same topological expansion in nonequilibrium
string perturbation theory. [See also Footnote 3 above for a
clarification of the tracelessness condition relevant to the
SpðNÞ case.]

+

−
M−

M

+

−

+M

FIG. 22. The surface associated with the diagram in Fig. 20 and
its decomposition into Σþ, Σ−, ΣM, eΣþ−, eΣþM, and eΣ−M. The
three eΣ’s overlap over two disks. All components are manifolds
with smooth boundaries, and Σ̂ ¼ eΣþ− ∪ eΣþM ∪ eΣ−M is the
sphere with three boundaries.

15These new decomposition rules can be extended straight-
forwardly to the case of time contours with k components. One
defines regions Σi and eΣij for i; j ¼ 1;…; k and i < j in analogy
with the k ¼ 3 case. They are all manifolds with smooth
boundaries. Then Σ̂ ¼∪ Σij, and all the higher Σi1…is with s ≥
3 correspond to the collection of disks where the appropriate eΣij’s
overlap.
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Similarly, the vertices are

b
1

1

a
b

a
b

3
3

2
2

a +
b
1

1

a
b

a
b

3
3

2
2

a −

2

4

+

1a
b1 a2

b

b3a3
4b

a

2

4

1a
b1 a2

b

b3a3
4b

a

−

The dots here stand again for the list of higher n-point
vertices, which are allowed but kept implicit.
Since the edges of the ribbons are no longer oriented, the

propagators and vertices can now be connected with an
additional twist (see Fig. 23). The resulting surfaces are
then unoriented.
Recall how the classification of closed oriented surfaces

extends to the case of closed unoriented surfaces. Besides
the number h of handles, such surfaces Σ can also have c
cross-caps.16 With any nonzero c, Σ is nonorientable. In the
classification of topologically inequivalent Σ’s, the two
non-negative integers h and c are not independent. Instead,
there is one identity that fully describes their redundancy: Σ
with h handles and 3þ c cross-caps (and b boundary
components, should those be present) is topologically
equivalent to Σ with hþ 1 handles and cþ 1 cross-caps
(and b boundary components),

Σh;cþ3;b ¼ Σhþ1;cþ1;b; ð4:1Þ

for all h ¼ 0; 1;… and c ¼ 0; 1;… (and b ¼ 0; 1;…). In
equilibrium string theory, the genus expansion is over all
inequivalent topologies, classified now by h and c subject

to this one identity. Each surface contributes at order g−χðΣÞs

in the string coupling, with the Euler number now given by

χðΣÞ ¼ 2 − 2h − c: ð4:2Þ

Note that, in contrast to the case of closed oriented strings,
(i) there are generally several distinct topologies contributing
at a given order in gs, and (ii) there are now surfaces that
contribute at odd orders in gs. All this is of course extremely
well understood in the case of critical string theory [58].
The results of our analysis for SUðNÞ in Sec. II extend

directly to unoriented string theory. Each surface Σ con-
tributing to the nonequilibrium perturbative expansion

again exhibits a triple decomposition into the forward
region Σþ, backward region Σ−, and the wedge region
Σ∧, glued together along common boundaries ∂þΣ and
∂−Σ to form Σ, the only novelty being that each of the three
regions of the triple decomposition can now be orientable
or nonorientable. With this one exception, the story
parallels that of Sec. II.

B. Coupling to vector degrees of freedom:
Open string theory

Another natural generalization involves the presence of
both matrix and vector degrees of freedom, in the adjoint
and fundamental representation of one of the large-N
sequences SUðNÞ, SOðNÞ, or SpðNÞ. This generalization
leads to surfaces with boundaries or, in other words, a
theory of both closed and open strings. For simplicity we
concentrate on the SUðNÞ case, which makes the strings
oriented; the SOðNÞ and SpðNÞ cases will lead to a
description in terms of unoriented closed and open strings.
Adding the degrees of freedom Ψa in the fundamental

representation N (with its conjugate Ψ̄b in the antifunda-
mental N̄) adds new terms to the action,

SðM;ΨÞ ¼
Z

ðΨ̄a
_Ψa þ g0Ψ̄aMa

bΨb

þ g00Ψ̄aMa
bMb

cΨc þ…Þ: ð4:3Þ

To the Feynman rules for M, this will add a propagator for
Ψ and new vertices. In equilibrium, the new propagator is
the two-point function hΨaΨ̄bi, which is now denoted by
an oriented single line. When we take the system away
from equilibrium, the Schwinger-Keldysh time contour is
again that of Fig. 2, and it leads to the doubling of fields
Ψ�, Ψ̄�. The nonequilibrium propagators thus have each
end again labeled by a choice of a � sign,17

+ −

FIG. 23. A typical ribbon diagram involving a twist in one of
the propagators. The resulting surface is nonorientable, in this
case the projective sphere RP2. In its triple decomposition, Σþ
and Σ− are both disks, and Σ∧ is the sphere with two boundaries
and a cross-cap.

16The cross-cap is defined by removing a disk from Σ, which
creates an S1 boundary, and then pairwise identifying the
opposite points on this boundary; see, e.g., [58].

17In the quadratic part of (4.3), we again only displayed the
term with the time derivative, keeping all the other terms bilinear
inΨ and Ψ̄ (such as masses, terms with spatial derivatives, or with
more time derivatives) implicit, to keep the notation simple and to
reflect the universality of our arguments. The propagator (4.4) of
course contains the full information about all such terms.

PETR HOŘAVA and CHRISTOPHER J. MOGNI PHYS. REV. D 106, 106013 (2022)

106013-20



a b +−+−

In SðM:ΨÞ in (4.3), the “…” denote interactions with
higher powers of M.18 Besides the original vertices of the
theory with the matrix degrees of freedom M�, there are
now new vertices,

a1 b

b

1

a +

a1 b

b

1

a −

a
a

a b

1

1b
b2

2

+

a
a

a b

1

1b
b2

2

−

which describe the interaction betweenM�,Ψ�, and Ψ̄� on
the Schwinger-Keldysh contour. Our conclusions about the
topology of the large-N expansion will be unaffected by
whether we choose to think of Ψ as fermions or bosons:
Only some signs in individual diagrams change, but the
features of the topological expansion remain the same.
Consider for simplicity vacuum Feynman diagrams; the

extension to n-point correlators is straightforward. With the
vector degrees of freedomΨ present, any Feynman diagram
Δ will now be associated with a surface Σ with boundaries.
The prescription for constructing Σ from Δ is exactly the
same as in Sec. I A. Following this prescription leaves us
with boundaries, each boundary component traced by a
closed loop made of the ΨΨ̄ propagators. Thus, the dual
string theory contains closed and open oriented strings.
In equilibrium string theory of oriented closed and open

strings, the sum over topologies extends over the topo-
logically inequivalent oriented surfaces Σh;b with bounda-
ries, fully classified by the number of handles h and
boundaries b which are non-negative integers and without
redundancies. Taking the coupled system of M, Ψ away
from equilibrium shows that our conclusions from Sec. II
hold again: The sum over topologies Σh;b is refined to a sum
over triple decompositions Σþ, Σ−, and Σ∧ of each Σh;b.
At first, it might appear a little awkward that we are

supposed to split a surface Σh;b, which itself has bounda-
ries, into three regions: Some of the cuts may cut across the
boundaries of Σh;b. However, this seemingly intricate issue

is easy to deal with, by invoking one of the classic
techniques with a proven record in critical string theory
in equilibrium [59–61], in the context of D-branes and
orientifolds: Treat each world sheet surface Σ with boun-
daries (and/or cross-caps) as a Z2 orbifold of a closed
oriented surface Σ̄, i.e., Σ ¼ Σ̄=Z2, with Z2 an orientation-
reversing involution of Σ̄. The boundaries of Σ correspond
to the lines of Z2 fixed points of the involution. The triple
decomposition of Σ is then simply defined as a triple
decomposition of the closed oriented cover Σ̄ (in the sense
of Sec. II), consistent with theZ2 symmetry. With this trick,
our conclusions of Sec. II extend straightforwardly from
oriented closed theories to theories with closed and open
strings, orientable or nonorientable.

V. CONCLUSIONS

In this paper, we studied the large-N expansion in
nonequilibrium quantum systems with matrix degrees of
freedom on the Schwinger-Keldysh time contour to derive
universal features of the perturbative expansion in the dual
string theory. In equilibrium, the standard loop expansion
in the powers of the string coupling gs takes the form of a
sum over inequivalent world sheet topologies Σ, fully
classified (in the case of closed oriented strings) by the
number of handles on Σ. In nonequilibrium string theory,
we found that this topological expansion is further refined:
Each surface Σ undergoes a triple decomposition into
region Σþ on the forward branch of the Schwinger-
Keldysh time contour, Σ− on the backward branch of the
time contour, and the wedge region Σ∧ which corresponds
to the instant in time where the two branches meet.
Surprisingly, Σ∧ is itself a topologically two-dimensional
region, with arbitrarily complicated topology and its
own genus expansion. The perturbative sum over world
sheet topologies Σ now includes a sum over all triple
decompositions.
These findings are quite universal, since they follow just

from the robust features of the large-N Feynman diagrams,
without any assumptions about the (unknown) world sheet
dynamics of the dual theory. In this sense, we expect that
any candidate string-theory dual should consistently repro-
duce this refined structure of string perturbation theory.
The next challenge is to find concrete realizations of the

refined string perturbation theory in examples where the
world sheet dynamics is known or can be worked out. At
least three natural testing grounds suggest themselves: One
is noncritical string theory in low spacetime dimensions,
which is nonperturbatively described by the appropriate
continuum limit of matrix models. Another example, where
a lot is known about both sides of the large-N=string-theory
duality and our ideas can presumably be tested, is the most-
studied example of AdS=CFT correspondence, given by
N ¼ 4 supersymmetric Yang-Mills theory and its type IIB
superstring AdS5 × S5 dual. Finally, critical superstring

18In the theory of M alone, our interactions were all single
trace, and here we also assume that all the interactions between Ψ
and M are of the “single-trace” type—only those monomials that
do not factorize into the product of two singlets are admitted. This
in particular implies that the vector degrees of freedom appear
quadratically, and all the new vertices have just two single-line
ends. This simplification indeed occurs in various important
examples and, in particular, mimics the behavior of quarks in
QCD.
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theory in asymptotically flat spacetimes should also provide
interesting tests. In fact, the insights of this paper may also be
relevant for equilibrium superstring perturbation theory, in
the context of extending the beautiful methods of Cutkosky
rules and Refs. [44–46] for proving unitarity of amplitudes to
string theory. These methods have been surprisingly out of
reach in the first-quantized approach to string theory (see
[62] for the relevant discussion), and progress on these issues
so far seems to require string field theory [63].

We mainly hope that the results of this paper will help to
pave the way toward the development of nonequilibrium
string theory, enlarging the scope of physical systems that
can be described by a string-theory dual.

ACKNOWLEDGMENTS

This work has been supported by NSF Grants No. PHY-
1820912 and No. PHY-1521446.

[1] G. Reggio, P. Glass, and R. Fricke, Koyaanisqatsi (IRE &
American Zootrope, 1982).

[2] J. Zaanen, Y.-W. Sun, Y. Liu, and K. Schalm, Holographic
Duality in Condensed Matter Physics (Cambridge Univer-
sity Press, Cambridge, England, 2015).

[3] S. A. Hartnoll, A. Lucas, and S. Sachdev, Holographic
quantum matter, arXiv:1612.07324.
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