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The Chern-Simons-Kodama (CSK) state is an exact, nonperturbative wave function in the Ashtekar
formulation of classical general relativity. In this work, we find a generalized fermionic CSK state by
solving the extended gravitational and fermionic Hamiltonian constraints of the Wheeler-DeWitt equation
exactly. We show that this new state reduces to the original Kodama state upon symmetry reduction to
Friedmann-Lematre-Robertson-Walker (FLRW) coordinates with perturbative fermionic corrections,
making contact with the Hartle-Hawking and Vilenkin wave functions of the universe in cosmology.
We also find that when both torsion and fermions are nonvanishing, the wave function possesses a finite
amplitude to evade the big bang curvature singularity.
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I. INTRODUCTION

In various attempts to quantize gravity, the question of
background independence (active diffeomorphisms) is a key
guiding principle. In nonperturbative quantizations such as
loop quantum gravity, causal dynamical triangulations, spin
foams, and group field theory, only the gravitational degrees
of freedom, such as the connection, are elevated to quan-
tization. A criticism of these approaches is that they lack a
principle that links the rest of the matter fields in nature to the
quantization of gravity.1 Supergravity is an approach that
was able to link gravity to matter via supersymmetry [3].
Quantum gravitational approaches, such as string/M-theory,
place the graviton andmatter fields on the same footing since
both arise from excitations from the string vacua.
Another approach in the canonical quantization route is

the procedure laid out by Dirac, which quantizes a con-
strained Hamiltonian system. In the case of general relativity
(GR), this invariably leads to the Arnowitt-Deser-Misner

formalism [4], where the spacetime manifoldM4 is decom-
posed into a family of spacelike three-dimensional hyper-
surfaces Σt which are parametrized by a time coordinate t.2

This approach is also not without its problems. The
Hamiltonian and momentum conjugate enter the action as
constrained quantities. The resulting quantization of the
Hamiltonian constraint gives the Wheeler-DeWitt equation,
which is a second-order hyperbolic functional differential
equation, corresponding to an infinite number of degrees of
freedom at each spatial point. This makes any calculation
cumbersome at best and ill-defined at worst. The Ashtekar
formulation of GR [5] provides one way to tame some of the
issues pertaining to this naive canonical quantization picture.
The Ashtekar formalism (for which we will delve into

more detail in the next section) recasts the dynamical
variables in GR from the metric to a Yang-Mills gauge field
over the SUð2Þ gauge group. This reduces the Hamiltonian
to a much simpler and far more manageable form where
one is dealing with a polynomial in the gauge field and its
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1The geometrization of matter, which posits that matter fields

emerge from conical defects of geometry, has been pursued by
Crane, and cosmological applications have been explored [1,2].

2This approach introduces a set of functions made from the
time-time and time-space components of the 4-metric gμν: the
lapse function Nðx; tÞ and the shift function Naðx; tÞ. The lapse
function relates variations in coordinate time t to those of the
proper time as one follows a curve that lies normal to Σt. The shift
vector, on the other hand, describes the variations in a spatial
point as one moves along a curve that lies tangential to Σt.
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canonical partner. This allows the Wheeler-DeWitt equa-
tion to be solved exactly, amounting to finding the ground
state of the quantized theory; with the inclusion of a
cosmological constant, the solution is known as the
Chern-Simons-Kodama (CSK) state. The fact that the
CSK state is an exact, nonperturbative solution makes it
a promising candidate for describing quantum gravity with
a cosmological constant. More broadly, the Ashtekar
variables also provide a natural way to incorporate cou-
plings to matter fields. This leads to a potentially auspicious
avenue of working within a universal, nonperturbative
framework for treating both the geometry and matter
sectors on equal footing, as the general theory of relativity
would have us do.
Since all of the known matter in the Standard Model are

fermions, we seek to find a new CSK state that includes
fermionic matter on the same footing as gravity (for
inclusions of bosonic matter see [6]). In this work, we
explore a quantization of gravity with the inclusion of
fermionic matter by solving both the gravitational and
fermionic Hamiltonian constraint. We find an exact wave
function that has interesting connections to the CSK state
with the inclusion of torsion. We then seek to make contact
with the Hartle-Hawking/Vilenkin wave functions of quan-
tum cosmology from this exact wave function.
This paper is organized as follows: in Sec. II, we provide

a brief overview of the Ashtekar formalism and derive the
Kodama state from the quantum Hamiltonian constraint. In
Sec. III, we add fermions and find we can still solve the
modified Hamiltonian constraint exactly. In Sec. IV, we add
torsion into the picture and find that the original Hartle-
Hawking (or Vilenkin) state is the leading term to the
resulting wave function when we expand around the
fermion fields. We conclude with some remarks and
directions for future work.

II. THE ASHTEKAR FORMALISM
AND KODAMA STATE

In pursuit of a Wheeler-DeWitt quantization of gravity, it
is instructive to understand how the Ashtekar connection
and the resulting Hamiltonian, diffeomorphism, and gauge
constraints emerge from a manifestly covariant 4D theory
of gravity. In the Ashtekar formalism [5], gravitational
dynamics on a four-dimensional (4D) manifold M4 is
not described by a metric gμν but,3 rather, a real-valued
gravitational field eIμðxÞ, mapping a vector vμ in the tangent

space of M4 at the point x into Minkowski spacetime M4

[with metric ηIJ ¼ diagð−1; 1; 1; 1ÞIJ]. Locally, the metric
on M4 is gμν ¼ ηIJeIμeJν .
The Lorentz connection ωμi

J is ωI
J ≡ ωμI

J dxμ, dωI
J ≡

∂μωνI
J dxμ ∧ dxν is the exterior derivative, and the curva-

ture of ω is RI
J ¼ dωI

J þ ωI
K ∧ ωK

J. The action of self-
dual gravity is (up to the gravitational constant G)

S ¼ 1

32πG

Z
M4

�
�ðeI ∧ eJÞ ∧ RIJ þ ieI ∧ eJ ∧ RIJ

−
Λ
6
ϵIJKLeI ∧ eJ ∧ eK ∧ eL

�
; ð1Þ

where � is the Hodge dual, the first term is the Hilbert-
Palatini action, and the second is the Holst term (propor-
tional to the first Bianchi identities in the absence of
torsion).
Here we are interested in the Hamiltonian formulation in

Ashtekar variables [5,8]. In the gauge choice e0μ ¼ 0, it is

convenient to define the densitized triad Ea
i ¼ ϵijkϵ

abcejbe
k
c,

which is conjugate to the self-dual connection

Ai
aðxÞ≡ −

1

2
ϵijkωaj

k − iωa0
i: ð2Þ

As the Lorentz connection (and, in particular, the spin
connection Γi

a ≡ − 1
2
ϵijkωaj

k) is real, A is complex valued
and obeys the reality conditions (for a discussion, see
e.g., [9])

Ai
a þ Ai�

a ¼ 2Γi
a½E�; ð3Þ

where � denotes complex conjugation and the spin con-
nection solves the equation deþ Γ½E� ∧ e ¼ 0.
The Poisson bracket of the elementary variablesA andE is

fAi
aðx; tÞEb

j ðy; tÞg ¼ i8πGδbaδijδðx − yÞ: ð4Þ
Introducing the “magnetic” field and the gauge field strength

Bai ≡ 1

2
ϵabcFi

bc; ð5Þ

Fk
ab ¼ ∂aAk

b − ∂bAk
a þ ð8πGÞϵijkAi

aA
j
b; ð6Þ

one can show that the Hamiltonian scalar constraint follow-
ing from Eq. (1) is

H≡ ϵijkEaiEbj

�
Fk
ab þ

Λ
3
ϵabcEck

�
¼ 0; ð7Þ

whereΛ is a cosmological constant (of any sign) and × is the
vector spatial product defined as ðu × vÞa ¼ ϵabcubvc. In
exterior algebra notation, the gauge field is A≡ Aa dxa≡
Ai
aτi dxa [τi being an suð2Þ generator], the covariant deriva-

tive is D≡ dþ ð8πGÞA ∧, and Eq. (6) can be compactly

3We use themostly plusmetric signature, i.e., ημν¼ð−;þ;þ;þÞ
in units of c ¼ 1. We use boldface letters x to indicate 3-vectors,
and we use x to denote 4-vectors. Conventions for curvature
tensors, covariant and Lie derivatives are all taken fromCarroll [7].
Greek indices (μ; ν;…) denote spacetime indices, Latin indices
ða; b;…Þ denote spatial indices, and Latin indices ði; j;…Þ denote
indices for the internal space ranging from 0,…3 for the former and
1,…3 for the latter.
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recast as F ¼ dAþ ð8πGÞA ∧ A. Under a local gauge
transformation, the Ashtekar connection transforms as

A → A0 ¼ gAg−1 − g−1 dg; ð8Þ

where gðxÞ is an element of the gauge group of gravity
G ¼ SUð2Þ. Let G0 be the subgroup of small gauge trans-
formations, i.e., local transformations continuously con-
nected to the identity. Its elements are of the form
g0 ¼ exp½−iθiðxÞτi�, where θiðxÞ are some functions on a
spatial slice of M4. Pure gauge configurations g−1 dg are
equivalent to the flat gauge A ¼ 0.
The full invariance group of the theory is the semi-

direct product of the diffeomorphism and gauge groups.
Invariance under small gauge transformations is guaranteed
by the Gauss constraint

Gi ≡DaEa
i ¼ ∂aEa

i þ ð8πGÞϵijkAj
aEak ¼ 0; ð9Þ

while spatial diffeomorphism invariance is imposed by the
vector constraint

Va ≡ ðEi × BiÞa ¼ Eb
i F

i
ab ¼ 0: ð10Þ

The total Hamiltonian is a linear combination of the
constraints; up to constants, H ¼ ð8πGÞ−1 RM3

d3xðNHþ
NaVa þ λjGjÞ, whereM3 is the spatial submanifold andN,
λj, and Na are Lagrange multipliers [in particular, λj is a
generator of suð2Þ].
Now, let us construct the CSK state by following the

example of [10] to solve the Wheeler-DeWitt equation. We
have the Hamiltonian

HWDW ¼ ϵijkEaiEbj

�
Fk
ab þ

Λ
3
ϵabcEck

�
; ð11Þ

which acts on some wave function ψ ½A�, and we want to
find the form of ψ ½A� that is annihilated by (11). Applying
the regular canonical quantization procedure, i.e.,

Êai → −8πGℏ
δ

δAai
; ð12Þ

the annihilation of the quantum state becomes

ĤWDWψ ½A� ¼ ð8πGℏÞ2ϵijk
δ

δAai

δ

δAbj

×
�
Fk
ab −

8πGℏΛ
3

ϵabc
δ

δAck

�
ψ ½A� ¼ 0: ð13Þ

If we assume that the field strength is self-dual, then
Fk
ab ¼ − Λ

3
ϵabcEck so

ϵabc
δψ

δAck
¼ 3

8πGℏΛ
Fk
abψ ½A�: ð14Þ

Contracting both sides with ϵdab gives us

2δdc
δψ

δAck
¼ 3

l2
PlΛ

ϵdabFk
abψ ½A�⇔

δψ

δAai
¼ 3

2l2
PlΛ

ϵabcFi
bcψ ½A�;

ð15Þ

where l2
Pl ¼ 8πGℏ is the Planck length. Recognizing the

term multiplying the wave function to be the Chern-Simons
functional, we can write down the exact solution to the
Wheeler-DeWitt equation as being

ψK½A�≡N exp

�
−

3

2l2
PlΛ

Z
YCS½A�

�
; ð16Þ

where N is some normalization constant independent of
the gauge field and

YCS½A� ¼ Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�

¼ −
1

2

�
Ai dAi þ 1

3
ϵijkAiAjAk

�
ð17Þ

is the Chern-Simons functional, with the trace taken in the
Lie algebra. It can be said that the WKB semiclassical limit
of the CSK state is de Sitter spacetime [11],4 with

Ai
a ¼ i

ffiffiffiffi
Λ
3

r
e

ffiffi
Λ
3

p
tδia; Ea

i ¼ e2
ffiffi
Λ
3

p
tδai : ð18Þ

Now that we have the CSK state solely in terms of the
gravitational connection and the cosmological constant, we
would like to explore a full nonperturbative state that also
includes the fermionic Hamiltonian.

III. THE FERMIONIC CSK SOLUTION

To find the Hamiltonian constraint associated with
fermions covariantly coupled to gravity we start with the
covariant fermionic Lagrangian [13,14]

L ¼ eeaACebBCF abAB − 2eΛþ
ffiffiffi
2

p
eeaABξ̄BDaξA; ð19Þ

where eaAB is the spinorial representation of the tetrads,
AaAB is the 4D gauge field with curvature tensorF abAB, ξ is
a 2-component Weyl spinor, and the covariant derivative
acting on spinors is

DaξA ≡ ∂aξA þ ð8πGÞAaA
BξB: ð20Þ

4See [12] for criticisms of this view.
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Next, we employ the Arnowitt-Deser-Misner variables by
first decomposing the full 4D manifold M4 ¼ R × Σ. We
define a scalar function t (that acts as our time coordinate)
and vector field ta such that

ta∇at ¼ 1; ð21Þ

where ∇ is the torsion free eaAB-compatible connection.
We also pick t under the constraint that hypersurfaces of
constant Σt are spacelike and ta is timelike. We define a
new timelike unit vector na such that nana ¼ −1 at each
point on Σt. We can define a unit spinor by

nAB ≡ naeaAB: ð22Þ

The induced metric on Σt is then given by

γab ≡ gab þ nanb; ð23Þ

and so every tensor field can be decomposed into a part that
is orthogonal to Σt and a component that is parallel to it. In
particular, we have

ta ¼ Nna þ Na; ð24Þ

where N and Na are the previously mentioned lapse and
shift vector respectively, and naNa ¼ 0. Now, the object
−i

ffiffiffi
2

p
nAB defines a Hermitian metric with the property

nABnCB ¼ 1

2
δAC; ð25Þ

which has the action of mapping spinors to their Hermitian
conjugate, i.e. ξ†A ≡ −i

ffiffiffi
2

p
nABξ̄B. Next, we can extract the

spatial part of eaAB by defining

EaAB ≡ i
ffiffiffi
2

p
eaCðAnBÞC; ð26Þ

and we then have the identity

eaAB ¼ nanAB þ i
ffiffiffi
2

p
EaACnBC: ð27Þ

From these definitions, we get naEaAB ¼ 0 and Ea
A
A ¼ 0,

where we raise and lower the spinorial indices using the

2D Levi-Civita symbol ϵAB, which acts as a metric on the
vector space of spinors. Now we need only to plug these
definitions into the action to get

SEH ¼ 1

2κ

Z
dt
Z
Σt

d3xNE½i
ffiffiffi
2

p
na EbAB FabAB

− EaAC EbB
C FabAB − 2Λ�; ð28Þ

where we have introduced the notation κ ≡ 8πG, EaAB

projects out the timelike component of F abAB, leaving
only the spatial components FabAB. Next, we write na ¼
ðta − NaÞ=N and replug it into the action to find

SEH ¼ 1

2κ

Z
d4x ½i

ffiffiffi
2

p
Tr½ẼbtaFab� − i

ffiffiffi
2

p
Na Tr½ẼbFab�

− N Tr½ẼaEbFab� þ 2NEΛ�; ð29Þ

where overhead tildes denote densitized quantities, the
trace is taken in the suð2Þ, and the taFabAB term is found
to be

taFabAB ¼ LtAbAB −DbAtAB; ð30Þ

where AtAB ≡ taAaAB, Lt is the Lie derivative along ta

(which we will henceforth denote as overhead dots), and
Db is the covariant derivative with connection AaAB. We are
then left with

SEH ¼ 1

2κ

Z
dt
Z
Σt

d3x½i
ffiffiffi
2

p
ðTr _AaẼa þ TrAtDaẼa

− Na Tr Ẽb FabÞ − NðTr ẼaEbFab − 2EΛÞ�; ð31Þ

where we integrated by parts on the covariant derivative
term. For a discussion on the neglected boundary terms,
see 4.4 in [15]. Next, we focus on the matter sector for
which (after some tedious algebra) the action is

Sf ¼
Z

d4x½Π̃A _ξA þ AtA
BΠ̃AξB − NaΠ̃ADaξA

þ i
ffiffiffi
2

p
NẼaABΠBDaξA�: ð32Þ

This brings the total action to the form

S ¼
Z

dt
Z
Σt

d3x

�
i

ffiffiffi
2

p

2κ
Trð _AaẼaÞ þ Π̃A _ξA þ AtAB

�
i

ffiffiffi
2

p

2κ
DaẼaAB þ ξðBΠ̃AÞ

�

þN
~

�
−

1

2κ
ðTrðẼaẼbFabÞ þ 2EΛÞ þ i

ffiffiffi
2

p
ẼaABΠ̃BDaξA

�
þ Na

�
−
i

ffiffiffi
2

p

2κ
TrðẼbFabÞ þ Π̃ADaξA

��
; ð33Þ

where N
~
≡ N=E. We shall henceforth drop all overhead tildes with the understanding that all quantities are densitized.

Finally, the symplectic structure for the spinor field and its conjugate partner is
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fξAðx; tÞΠBðy; tÞg ¼ δABδ
3ðx − yÞ: ð34Þ

The introduction of the fermionic fields has resulted in
modifications to the scalar, vector, and Gauss constraints
that we saw earlier. Given the fact that N (or in this case
N=E), Na, and AtAB all enter into the action as Lagrange
multipliers, we are again inspired to find quantum states
that can be simultaneously annihilated by all three new
constraints. First we start off with the scalar constraint but
with the addition of a new Hamiltonian

Hf ¼ i
ffiffiffi
2

p
ðDaξÞAEaABΠB; ð35Þ

with

EaABðxÞ ¼ −
iffiffiffi
2

p EaiðxÞσABi ; AaA
BðxÞ ¼ Ai

aðxÞτiAB;

ð36Þ

where σi are the Pauli matrices and τj ¼ −iσj=2 are the
suð2Þ generators. We are interested in finding a state vector
Ψ½A; ξ� such that

ðĤWDW þ ĤfÞΨ½A; ξ� ¼ 0; ð37Þ

i.e., it is simultaneously annihilated by the Wheeler-DeWitt
and fermionic Hamiltonian constraints. Next we write

�
1

2κ
ϵijkÊ

aiÊbj

�
F̂k
ab þ

Λ
3
ϵabcÊ

ck

�

þ 2 dðDaξÞAÊaiσABi Π̂B

�
Ψ½A; ξ� ¼ 0; ð38Þ

where we used E ¼ 1
3!
ϵijkϵabcEaiEbjEck and we have

suppressed the Dirac indices. Assuming nondegeneracy
of the triads, we can factor out a triad, which leads to a
Hamiltonian that is a little simpler:

�
1

2κ
ϵijkÊ

bj

�
F̂k
ab þ

Λ
3
ϵabcÊ

ck

�

þ 2 ˆðDaξÞAσABi Π̂B

�
Ψ½A; ξ� ¼ 0: ð39Þ

We then apply the usual canonical quantization scheme

Êai → −l2
Pl

δ

δAai
; Π̂A → −iℏ

δ

δξA
: ð40Þ

Taking our ansatz for the wave function to be Ψ½A; ξ� ¼
Ω½A�ψK½A�eαAξA , as well as neglecting higher-order deriva-
tive terms because the wave function is occupying its
ground state, reduces us to the following constraint:

1

2
ϵijkF

j
ab

δΩ
δAbk

þ 2iðDaξÞAσABi αBΩ½A� ¼ 0; ð41Þ

where αA is a constant spinor. Next, we employ symmetry
reduction arguments; i.e., we restrict our solution space
to only include gauge fields that are homogeneous and
isotropic, i.e.,

Aai ¼ iAðtÞδai ⇒ Fj
ab ¼ −κA2ϵjab: ð42Þ

This brings our constraint equation to the form

A2
1

Ω½A�
δΩ
δA

δai ¼
1

4πG
ðDaξÞAσABi αB; ð43Þ

where we used the fact that

δΩ
δAai

¼ −iδai
δΩ
δA

: ð44Þ

From here, we can solve the constraint equation exactly by
simply integrating our result. Doing so after taking the trace
on both sides, we get

Ω½A� ¼ Ω0 exp

�
1

12πG

Z
A ðDaξÞA0σA

0B
a αB

A02 dA0
�
; ð45Þ

where the ξ in the exponential is said to be fixed and we use
the notational index A0 to communicate that we are using
the A0 gauge field. The exact wave function solution for the
combined gravity and fermion system is5

Ψ½A; ξ�≡Ω½A�ψK½A�eαAξA

¼ Ω0 exp
�

1

4πG

Z
A ðDaξÞA0σA

0B
a αB

3A02 dA0
�

× ψK½A�eαAξA : ð46Þ

We see that our wave function (46) has the structure
of a product wave function of the pure CSK state and an
integral part Ω½A�, which is suppressed for large values of
the gravitational connection. To make a connection with
cosmology, we will pursue studying this exact state in a
mini-superspace Friedmann-Lematre-Robertson-Walker
background, assuming nonvanishing torsion.

5We can replug this term into the (symmetry-reduced) con-
straint in order to see if our original justification to ignore the
third derivative term was valid. Doing so yields

δ3Ω
δA3

≃O
ℏ3

A3
;

meaning for a fixed value for ξ, in the limit of small ℏ and large A,
this term is indeed negligible.
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IV. MINI-SUPERSPACE REDUCTION OF THE
FERMIONIC STATE WITH TORSION

It is well known [13] that in the first-order and Ashtekar
formalism, fermions source torsion. We are interested
in exploring the relationship between fermions and a
symmetry-reduced torsion at the level of our full wave
function, similar to what was considered in [16]
(see [17–19] for other treatments of torsion and fermions).
We relax the torsion-free condition on the spin connection
while keeping the metric compatibility constraint (thus the
spin connection is still antisymmetric in its internal
indices). Recall the definition of the torsion

TI ≡ deI þ ωI
J ∧ eJ; ð47Þ

where we have suppressed the spacetime index for the time
being. On a homogeneous and isotropic spacetime, the
vierbein, torsion, and spin connection become

e0 ¼ dt; ei ¼ a dxi; ð48Þ

T0 ≡ 0; Ti ≡ −TðtÞe0ei þ PðtÞϵijkejek; ð49Þ

ωi
0 ¼

�
_a
a
þ T

�
ei ≡ gðtÞei; ωij ¼ −Pϵijkek; ð50Þ

where we have defined gðtÞ≡ ð _aa þ TÞ. We note here
that gðtÞ is a real-valued function that plays the role of
the Hubble parameter. Upon plugging the spin connection
to (2), we get the particularly simple form for the gauge
field

Ai
a ¼ aðP − igÞδia ≡ ðibþ cÞδia; ð51Þ

where −b ¼ _aþ aT and c ¼ aP. Now we can just plug
this into (43):

1

ΩðbÞ
dΩ
db

¼ −
1

12πG
DaξAσ

AB
a αB

ðibþ cÞ2 : ð52Þ

Now we take the spinor field to be homogeneous,6

ξ ¼ ξðtÞ, which enables us to solve for the exact form of
the wave function,

ΩðbÞ ¼ Ω0ðibþ cÞ−αAξA ; ð53Þ

where we used ξA ≡ ϵABξB ¼ −ξA and Ω0 is a normaliza-
tion constant. The full wave function is then

Ψbðb; c; ξÞ ¼ Ω0ðibþ cÞ−αAξAψKðbÞeαAξA ; ð54Þ

where the symmetry-reduced Kodama State becomes

ψKðbÞ ¼
1ffiffiffiffiffiffi
2π

p exp

�
−
3Vc

Λl2
Pl

ðibþ cÞ3
�
; ð55Þ

where we have chosen the normalization constant
ffiffiffiffiffiffi
2π

p ≡
N −1 because we require the wave function to be delta-
function normalizable and Vc is the volume of the 3D
hypersurface. The fact that we have obtained an exact
solution for the full wave function in the form of (54) is
intriguing, and it is plotted in Figs. 1 and 2.
Recently, Magueijo discovered [23] that with different

choices of contours, the Kodama state is the Fourier dual to
the Hartle-Hawking wave function and Vilenkin (or tun-
neling) states. In [24], this analysis was extended to include
both torsion and beyond mini-superspace solutions to the
Wheeler-DeWitt equation. We would like see if our full
fermionic wave function can make contact with these
previous results in order to better interpret the solution
we have. Reducing our full wave function (54) to

FIG. 1. The real (solid blue) and imaginary (dashed orange) parts of the full wave function (54) for αAξA ¼ 1. The plot on the left is for
c ¼ 0, while on the right c ¼ 0.05.

6See [20–22] for further exploration of spinor fields on a
cosmological background.
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mini-superspace, we are able to read off the commutation
relations between the connection and its electric field:

½b̂; â2� ¼ il2
Pl

3Vc
: ð56Þ

In the numerical plots of the wave function (54) above,
we see an interesting generic behavior due to the presence
of fermions and torsion. First, we find that, in general, the
wave function has divergences as we approach the vanish-
ing scale factor, signaling that this form of the wave
function is ill-defined at the classical big bang singularity.
These divergences occur when torsion is vanishing and the
fermion amplitude is nonvanishing. However, this diver-
gence in the wave function is dynamically regulated when
we have both nonvanishing torsion and fermion ampli-
tudes. This is suggestive of a quantum version of the
classical statement that fermion currents source torsion
[13,25]. The fact that the wave function has nonvanishing
probability at the classical big bang suggests that it can
realize a quantum bounce, which was explored by Gielen
and Magueijo [26]. We now study the wave function
analytically.
Because the action is manifestly real-valued, we can

replace
R
YCS → i Im

R
YCS, which brings the Kodama

state to the form

ψKðbÞ ¼ N exp

�
3iVc

Λl2
Pl

ðb3 − 3bc2Þ
�
: ð57Þ

Moving into the a2 representation and taking our contour
to be the real number line, the Fourier transform of our
fermionic wave function (54) becomes

Ψa2ða2;c;ξÞ¼
ffiffiffiffiffiffiffiffi
3Vc

p
lPl

Z
R

dbffiffiffiffiffiffi
2π

p exp

�
−
3iVc

l2
Pl

a2b

�
Ψbðb;c;ξÞ

ð58Þ

¼
ffiffiffiffiffiffiffiffi
3Vc

p
lPl

eα·ξ
Z
R

dbffiffiffiffiffiffi
2π

p e
−3iVc

l2
Pl

a2b

× ½1−αAξ
A lnðibþcÞþ �� ��ψKðbÞ ð59Þ

¼N 0Aið−zÞeαAξA

−N 00½ξ�
Z
R
dbe

−3iVc
Λl2

Pl

ðb3−3bc2Þ−3iVc
l2
Pl

a2b
lnðibþcÞ

þ���; ð60Þ

where we expanded Ψbðb; c; ξÞ about the spinor product

αAξ
A using the fact that x−p ¼ P∞

n¼0
pnð− lnðxÞÞn

n! , with

z ¼
�
9Vc

Λl2
Pl

�
2=3

�
c2 þ Λa2

3

�
; ð61Þ

N 0 ¼ N
ffiffiffiffiffiffiffiffiffiffiffi
6πVc

p
lPl

�
Λl2

Pl

9Vc

�
1=3

; ð62Þ

N 00½ξ� ¼ N
lPl

ffiffiffiffiffiffiffiffi
3Vc

2π

r
eα·ξαAξA: ð63Þ

Evaluation of the corrections to the zeroth order term in
(60) shows that all higher terms are much smaller than the
previous one if αAξA ≪ 1. We find this also holds when we
instead select our contour of integration to be the negative
imaginary number line and the positive real number line; in
this case, the zeroth order term of (60) is the Vilenkin wave
function instead of the Hartle-Hawking wave function [23].

FIG. 2. The real (solid blue) and imaginary (dashed orange) parts of the full wave function (54) for αAξA ¼ 2. The plot on the left is for
c ¼ 0, while on the right c ¼ 0.05. For even values of the spinor product αAξA and when c ¼ 0, the real part of the wave function
diverges as −b → 0 while the imaginary part remains finite; this phenomenon is switched for odd values (see Fig. 1).
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The convergence of (60) using this complex contour is in
line with what is argued in [27–29], where the functional
integral over the matter fields describing the wave function
of the universe is closely related to describing quantum
field theory in curved spacetime.
Equation (60) shows that the inclusion of fermions can

be interpreted as corrections to the Hartle-Hawking (or
Vilenkin) wave function, at least when restricting to
homogeneous and isotropic metrics, provided the scalar
product αAξA is sufficiently small.

V. DISCUSSION

Wehave found an exact solution to the quantizedWheeler-
DeWitt equation when one introduces matter fields by
working in the Ashtekar formalism. This approach replaces
the traditional second-order hyperbolic functional differ-
ential equation with a cubic polynomial equation. Our wave
function can be generalized to include all fermionic species
of the Standard Model by replacing ξ̄BDaξ

A →
P

f ξ̄
B
fDaξ

A
f

in the action, where f labels the fermionic species.
A striking feature of this new wave function (46) is that it

cannot be written solely as a product of gravity and fermion
wave functions, even though the Hamiltonian is a sum of
the gravity and fermion sectors. Instead, the wave function
requires an integration of the fermionic configuration
convolved with the connection. It will be interesting to
numerically simulate this state in the presence of a
propagating fermion field. To make progress and make
contact with cosmology, we find that the mini-superspace
approximation of our fermionic wave function gives back
the Hartle-Hawking and Vilenkin wave functions of the
universe of quantum cosmology, with perturbative correc-
tions that depend on the spinor and torsion.
The cosmological realization of our wave function

provides new solutions that has no divergences at what
would be a classical big bang curvature singularity,7

suggesting a quantum gravitational resolution to that
singularity. It has been expected for some time that
fermions sourced by torsion can semiclassically resolve
the big bang singularity, and we plan to explore how our
wave function might be related to these results [30,31].

These new cosmological solutions are reminiscent of
quantizing fermions in a Bunch-Davies vacuum during
inflation. It would be interesting to see how this exact
solution we have obtained above compares to quantum
field theory results of fermions in curved backgrounds.
Such a comparison may demonstrate that fermions enjoy a
preferential status in any background independent formu-
lation of quantum gravity.
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APPENDIX: VECTOR AND DIFFEOMORPHISM
CONSTRAINTS

Here we apply the (symmetry-reduced) constraints to act
on the new state we have derived. Recall the vector and
diffeomorphism constraints in the presence of fermionic
matter:

i
2κ

Eb
kF

k
ab þ ΠADaξA ¼ 0; DaEaiσABi þ ξðBΠAÞ ¼ 0:

ðA1Þ
When we plug our state in these constraints, we find�
i
2κ

Êb
kF

k
abþ Π̂ADaξA

�
Ψ½A;ξ�¼ iℏαADaξAΩ½A�ψK½A�eαAξA ;

ðA2Þ
½DaÊ

aiσABi þ ξðBΠ̂AÞ�Ψ½A; ξ�

¼ iℏ

�
σABa

�
αE∂aξ

E

�
DbξCσ

CD
b αD

24πGA2
−
9iVcA2

Λl2
Pl

�

þDaDbξCσ
CD
b αD

24πGA2

�
þ ξðBαAÞ

�
Ψ½A; ξ�; ðA3Þ

where Vc is the volume of the 3D hypersurface.

7Provided that the parity-even or -odd component of the
torsion has a dependence on the scale factor that is ∝ a−p
for p ≥ 1.
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