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Modular fluctuations have previously been shown to obey an area law hΔK2i ¼ hKi ¼ A=4GN.
Furthermore, modular fluctuations generate fluctuations in the spacetime geometry of empty causal
diamonds. Here we demonstrate the physical origin of these fluctuations, showing that the modular area
law, in d-dimensionsal Minkowski space, can be reproduced from shockwaves arising from vacuum
fluctuations. The size of the vacuum fluctuations is fixed by commutation relations in light-ray operators, of
the same form postulated by ’t Hooft in the context of black hole horizons.
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I. INTRODUCTION

An important question in quantum gravity is to deter-
mine the size of the quantum fluctuations in the spacetime
geometry. Recent advances in understanding the (emer-
gent) properties of gravity and spacetime in connection to
quantum information theory offer a concrete path toward
answering this question. A central role in these develop-
ments is played by the entanglement entropy associated
with a finite region of spacetime bounded by a (Rindler)
horizon. A related physical quantity that enters in these
studies is the modular Hamiltonian. Using path integral
techniques similar to those that were used in deriving the
Ryu-Takayanagi formula, one can derive the fluctuations in
the modular Hamiltonian. The goal of this paper is to relate
these modular energy fluctuations to metric perturbations
that take the form of gravitational shockwaves.
Gravitational shockwaves have provided fundamental

insight into the structure of quantum gravity. Developed to
study the effect of outgoing Hawking radiation on energetic
particles traveling along the horizon of a black hole [1–4], the
shockwave geometries have proved to provide insight where
the quantum entanglement structure changes under the
backreaction from infalling and outgoingmatter, particularly
in the context of black holes and the AdS/CFT correspon-
dence [5,6]. More recently, there have been efforts to extend
this work beyond black holes and negatively curved space
into flat space, including a thermodynamic description of

gravitational shockwaves as small variations in the
Bekenstein-Hawking area law [7].
In this paper we are interested in vacuum fluctuations in

the spacetime geometry due to shockwaves resulting from
vacuum energy fluctuations. In particular, quantum fluctua-
tions in the energy momentum tensor, having longitudinal
light cone components, Tuu; Tvv, generate longitudinal light
cone metric fluctuations huu; hvv of the form

huuðu; yÞ ¼ ld−2
p

Z
dd−2y0fðy; y0ÞTuuðu; y0Þ;

hvvðu; yÞ ¼ ld−2
p

Z
dd−2y0fðy; y0ÞTvvðu; y0Þ ð1Þ

where ld−2
p ¼ 8πGN . Here fðy; y0Þ represents the Green’s

function of the transversal Laplacian Δy and obeys

Δyfðy; y0Þ ¼ δðd−2Þðy; y0Þ: ð2Þ

The shockwave geometries lead to tiny shifts δuðyÞ and
δvðyÞ in the longitudinal light coordinates u and v. Applying
the arguments of ’t Hooft at a black hole horizon [3,4] to a
light sheet horizon, it can be shown that these shifts obey
uncertainty relations of the form

ΔδuðyÞΔδvðy0Þ ¼ ld−2p fðy; y0Þ; ð3Þ

where Δ here denotes the uncertainty on the quantum
shifts δuðyÞ; δvðyÞ.
The purpose of this paper is to relate such shockwave

geometries to the vacuum expectation value and fluctua-
tions of the modular Hamiltonian K associated with a
spacetime region bounded by a Rindler horizon. The
modular Hamiltonian K is defined microscopically in terms
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of the density matrix ρ obtained by tracing out the
complement of the region via

ρ ¼ e−K

Z
with Z ¼ trðe−KÞ: ð4Þ

One can normalize K in the vacuum Z ¼ 1, so that its
vacuum expectation value is precisely equal to the entan-
glement entropy S ¼ −trðρ log ρÞ, and one finds

S ¼ hKi ¼ Area
4G

: ð5Þ

Thus the quantum entanglement of a region bounded by a
Rindler horizon is characterized by the entanglement
entropy, which in magnitude is given by hKi. This result
can be derived from the gravitational replica trick, follow-
ing the same steps as in [8]. These same methods can be
used to compute the fluctuations in K. It has by now been
firmly established, both in AdS [9–12] and in flat space
[13,14], that these modular energy fluctuations ΔK are also
determined by the area of the horizon via the relation

hΔK2i ¼ Area
4G

with ΔK ¼ K − hKi: ð6Þ

Here ΔK denotes a finite perturbation of the modular
energy K with respect to its vacuum expectation value.
The modular Hamiltonian K can be expressed as an

integral of the stress energy tensor via

K ¼
Z
Σ
ξK · T ð7Þ

where Σ is the part of the Cauchy slice on one side of the
horizon, and ξK denotes the Killing vector. The fluctuations
in the modular Hamiltonian K can thus be directly
expressed as an integral of the two point function of the
stress energy tensor. The main contribution in the integral
comes from the short distance behavior of the hTTi two
point function and from the region close the horizon. The
fluctuations in the stress energy tensor in this region are a
direct consequence of the high degree of entanglement of
the quantum fields across the horizon. The stress-energy
fluctuations in turn lead to small perturbations in the
spacetime geometry.
In this paper we will focus directly on the fluctuations in

the spacetime geometry instead of those of the stress energy
tensor. Specifically we will show that the fluctuations in the
modular Hamiltonian are associated with fluctuations in the
spacetime geometry near light fronts that take the form of
gravitational shockwaves. The fluctuating shockwave
geometries around the vacuum are a direct consequences
of uncertainty relations between light ray operators, cor-
responding to the shifts δu and δv, according to Eq. (3). We
find that the fluctuating shockwaves that are a consequence

of the light-ray uncertainty relation imply hΔK2i ¼ hKi ¼
Area
4G for empty space. We take this as evidence for
fundamental uncertainties in the light ray operators as
applied to the vacuum state.
The outline of this paper is as follows. In Sec. II we

review the shockwave action, long established in the
literature, adapted for our purposes of studying spacetime
behavior in a causal diamond. Then, in Sec. II A we show
that, in planar coordinates, the shockwave action is pre-
cisely the modular Hamiltonian. In Sec. III we introduce
quantum behavior by postulating commutation relations for
the light front operators. These quantum relations are
closely related to those introduced by ’t Hooft at black
hole horizons. Here we postulate these uncertainty relations
describe light front operators at the horizons of causal
diamonds. This opens the way in Sec. IV to compute
expectation values of the modular Hamiltonian from the
uncertainty in the light front operators, from which we
obtain the results Eqs. (6). Finally, in Sec. V we generalize
our results to closed causal diamonds with spherical
entangling surfaces, before concluding.

II. EFFECTIVE ACTION FOR
SHOCKWAVE GEOMETRIES

We are interested in the behavior of spacetime at light
fronts, as shown in Fig. 1. We consider a family of light
trajectories which first are traveling to the right and then are
reflected back at x ¼ 0 at time t ¼ 0 to start moving to the
left. In terms of the light cone coordinates u ¼ tþ x and
v ¼ t − x, this means we are looking at trajectories that

FIG. 1. A planar lightsheet consisting of a family of light
trajectories. The directions longitudinal to the light sheet consist
of the light cone coordinates, u, v, while the transverse directions
are labeled with y.
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travel first from u ¼ −∞ to u ¼ 0 along v ¼ 0 and then
from v ¼ 0 to v ¼ ∞ along u ¼ 0.
Our goal is to determine the fluctuations in these

trajectories due to quantum gravity effects. The fluctuations
in the location of the trajectory due to a metric perturbations
can be expressed as a change δv in the value of the light
cone coordinate for the lower trajectory, and a change δu in
upper trajectory. These coordinate shifts can be expressed
as integrals of the metric perturbations huu and hvv as
follows

δvðu; yÞ ¼
Z

u

−∞
du0huuðu0; yÞ; and

δuðv; yÞ ¼
Z

v

−∞
dv0hvvðv0; yÞ: ð8Þ

We will assume that these metric perturbations are induced
by fluctuations in the stress energy tensor Tuu and take the
form of a shock wave geometry, as given in Eq. (1). Note
that fðy; y0Þ is only dimensionless in four dimensions. A
particularly clear example is the shockwave due to a fast
particle moving in the v-direction at transversal position y00.
Its energy-momentum density is given by

Tuuðu; y0Þ ¼ puδ
ðd−2Þðy0; y00Þδðu − u0Þ ð9Þ

and produces shockwave geometry described by the
Aichelburg-Sexl metric

ds2 ¼ −dudvþ ld−2
p pufðy; y0Þδðu − u0Þdu2 þ dy2: ð10Þ

Geometrically a shockwave corresponds to two parts of flat
Minkowski space glued together on the location of the
shockwave after a coordinate shift v → vþ δv, where in
the case of a single energetic particle

δvðyÞ ¼ ld−2
p pufðy; y00Þ: ð11Þ

Similar and completely analogous equations hold for the
shockwave geometry caused by a fast particle moving in
the u-direction.
We will be interested in general metric fluctuations that

take the form of a shockwave geometry caused by
fluctuations in the Tuu and Tvv stress energy tensor
components. These geometries can be parametrized by
functions Xvðu; v; yÞ and Xuðu; v; yÞ that incorporate the
coordinate shifts due to the shockwave. For instance, Xv

combines the shift δvðu; yÞ in the coordinate v together
with the (shifted) v-coordinate via

Xvðu; v; yÞ ¼ vþ δvðu; yÞ; ð12Þ

Similarly we can introduce variables Xuðu; v; yÞ describing
the shock waves in the upper light trajectories. For a fast
particle moving along fixed ðv; yÞ

Xuðu; v; yÞ ¼ uþ δuðv; yÞ; ð13Þ

a shift induced on the upper half of the causal diamond.
The general shockwave geometries can be conveniently
written in a gauge in which one allows mixed transversal-
longitudinal metric components1

ds2 ¼ −dudvþ∇yXvdudyþ∇yXudvdyþ dy2: ð14Þ

The equations of motion for the variables Xu and Xv

can be derived directly from the Einstein equations.
Alternatively, one can derive an effective action for Xu

and Xv by inserting the metric Ansatz for the shockwave
geometry into the Einstein-Hilbert action. In this way one
finds

I ¼
Z

dd−2y

�
−

1

ld−2
p

Z
dτXuΔy

dXv

dτ

þ
Z

dτðXuTuτ þ XvTvτÞ
�

ð15Þ

where

Tuτ ≡ Tuu
du
dτ

þ Tuv
dv
dτ

and Tvτ ≡ Tvu
du
dτ

þ Tvv
dv
dτ

:

This effective action does not live in the full d-dimensional
spacetime, but on the d − 1-dimensional boundary of the
causal diamond. Indeed, by inserting the metric Ansatz for
the shockwave geometry one finds that the Einstein-Hilbert
action becomes a total derivative, and hence is dimension-
ally reduced to one lower dimension. It is important to point
out that the action is invariant under reparametrizations of
the boundary time τ. We will make use of this remark
below. In [15] a systematic derivation was given of the
action (15) using a scaling argument appropriate for high
energy scattering. We assume that these same scaling
arguments apply to the present situation. Note that there
is an asymmetry in the time derivative acting on Xu versus
Xv, leading to a relative minus sign in the effective action
depending on which variable the time derivative acts. The
physical reason, as shown in Fig. 2, is that energy Tuu is
flowing into the causal diamond on the lower trajectory, but
Tvv is flowing out of the causal diamond on the upper
trajectory.

A. The on-shell action equals the modular Hamiltonian

One can easily verify that the action Eq. (15) leads to the
correct equations for the shockwaves. For this discussion it
will be convenient to write the total action as a sum of three
parts: one living on the past light trajectory, one part living

1This form of the metric is derived from the one in terms of huu
and hvv by shifting the u and v coordinates by δu and δv.
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on the future light trajectory, and a third term that is
associated with the bifurcate horizon:

I ¼ Ilower þ Iupper þ Ihorizon: ð16Þ
The horizon contribution comes from the asymmetry
between Xu and Xv in the shockwave action Eq. (15),
where Xv has a time derivative but Xu does not. An
integration by parts to obtain the Xu equation of motion
generates Ihorizon. We now describe each of these contri-
butions in turn.
For the unperturbed light trajectories, v is constant on the

lower part, while u is constant on the upper part. First let us
concentrate on the lower part of the causal diamond. We
can then choose τ ¼ u, so that the action becomes

Ilower ¼
Z

dd−2y

�
−

1

ld−2
p

Z
0

−∞
duXuΔy

dXv

du

þ
Z

0

−∞
duXuTuu

�
: ð17Þ

Here we have assumed that the stress energy tensor is
effectively traceless, which in the scaling regime appropriate
for shockwave means that Tuv ¼ 0. One easily verifies that
by varying Xu in the action Ilower one reproduces the correct
shockwave equation for Xv

Δy
dXv

du
¼ ld−2

p Tuu: ð18Þ

The other equation of motion obtained by varying Xv is also
satisfied, since on this lower trajectory dXu=du is a constant.
When the equations of motion are satisfied one finds that the
integrand of the action integral, and hence the action Ilower
itself, vanishes on-shell. Similarly we define an action for
the upper trajectory by interchanging the role of the u- and
v-coordinates and replacing Xu by Xv and vice versa. This
gives

Iupper ¼
Z

dd−2y

�
1

ld−2
p

Z
∞

0

dvXvΔy
dXu

dv
þ
Z

∞

0

dvXvTvv

�

ð19Þ

This action leads, similarly as for the lower part, to the correct
equations of motion and vanishes on-shell, hence Iupper ¼ 0

on-shell. However, we have neglected a surface term in
integrating by parts to obtain Eq. (19) from Eq. (15), which
takes the form:

Ihorizon ¼ −
1

ld−2
p

Z
dd−2yXuðyÞΔyXvðyÞ; ð20Þ

where we have denoted

XvðyÞ≡ Xvð0; 0; yÞ and XuðyÞ≡ Xuð0; 0; yÞ:

We will now show that the on-shell action can also be
identified with the modular Hamiltonian K. The argument
is as follows. We will choose a new gauge where, instead of
allowing Xv and Xu to fluctuate, we fix Xv ¼ 0 at u ¼ −∞
for the lower trajectory in the absence of quantum fluctua-
tions, and likewise Xu ¼ 0 for v ¼ ∞ for the upper
trajectory. This means that on shell the first term in the
action I vanishes. Hence, the total on shell action in that
case just becomes

Ion−shell ¼
Z

dd−2y

�Z
0

−∞
duXuTuu þ

Z
∞

0

dvXvTvv

�
≡ K:

ð21Þ

The fields Xu and Xv can in fact be identified with the
components of the Killing vector associated with the
Killing horizon.
Combining these two results leads then to an expression

for the modular Hamiltonian K in terms of the fluctuating
shockwave variables Xu and Xv

K ¼ 1

ld−2
p

Z
dd−2y∇yXuðyÞ∇yXvðyÞ: ð22Þ

Here we rewrote the Laplacian asΔy ¼ ∇2
y and performed a

partial integration in the transversal plane. This result for
the modular Hamiltonian may appear somewhat unex-
pected, but one should see it first of all as an on-shell
relation that makes use of the Einstein equations to rewrite
the stress energy in terms of the metric variables.
In the following section we will also use it as an operator

identity. In particular we will argue that the left and right-
hand side both have the same vacuum expectation value
and also exhibit the same fluctuations. A key ingredient in
our derivation will be commutation relations proposed by
’t Hooft in the context of black hole horizons. Here we
apply them to a bifurcate light sheet horizon.

FIG. 2. We consider shockwave geometries of the type shown
here, where vacuum fluctuations Tuuðu; yÞ and Tvvðv; yÞ induce
shifts in the light cone coordinates δv and δu on the lower and
upper half of the causal diamond, respectively.
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III. QUANTUM MECHANICS
OF SHOCKWAVE OPERATORS

We will first present a summary of the commutation
relations at the bifurcate horizon. Let us introduce the
momentum densities Puðu; yÞ and Pvðv; yÞ via

Puðu; yÞ ¼
Z

u

−∞
duTuuðu; yÞ and

Pvðv; yÞ ¼
Z

v

−∞
dvTvvðv; yÞ ð23Þ

As quantum operators Pu and Pv generate shifts in the
lightcone coordinates u and v. It is natural to identify these
shifts with the fields Xu and Xv. Following this reasoning
one arrives at the equal time canonical commutation
relations

½PuðyÞ; Xuðy0Þ� ¼ iδðd−2Þðy; y0Þ and

½PvðyÞ; Xvðy0Þ� ¼ iδðd−2Þðy; y0Þ: ð24Þ

On shell the momentum density operators Pu and Pv are
related to the shockwave variables Xu and Xv via the
equations of motion, which in terms of these variables read

ΔyXu ¼ ld−2
p Pv and ΔyXv ¼ ld−2

p Pu: ð25Þ

Hence, the commutation relations can be rewritten directly
in terms of the variables Xu and Xv as

½XuðyÞ; Xvðy0Þ� ¼ ild−2
p fðy; y0Þ: ð26Þ

These are the ’t Hooft commutation relations. The deriva-
tion is somewhat heuristic, since it makes use of the
identification of the generator of translations in the coor-
dinates u and v with the canonical conjugate to the
variables Xu and Xv.
The justification of this heuristic derivation comes from

the effective shockwave action (15). This action makes
manifest that as operators Xu and Xv are noncommuting,
since they both appear in the first term involving the time-
derivative. In fact, the relations Eq. (25) directly identify the
momentum density variables Pu and Pv with the canonical
momenta conjugate to Xu and Xv. In other words, by
applying the standard canonical quantization rules to the
effective action Eq. (15) one precisely obtains the ’t Hooft
commutation relations.
Note that by the usual rules of quantum mechanics these

commutation relations imply that the variables Xu and Xv

have quantum mechanical uncertainties ΔXu and ΔXv that
obey the uncertainty relations, which are directly related to
the commutation relation via

ΔXuðyÞΔXvðy0Þ ≥ 1

2i
h½XuðyÞ; Xvðy0Þ�i: ð27Þ

The proof of this relation requires that XuðyÞ and XvðyÞ are
Hermitian operators:

XuðyÞ ¼ ðXuðyÞÞ† and XvðyÞ ¼ ðXvðyÞÞ†: ð28Þ

One can note further that the uncertainty relations imply that
the two point functions hXuðyÞXuðy0Þi and hXvðyÞXvðy0Þi
are generically nonvanishing. Their value, however, is not
a priori determined and generally depends on the choice of
state. In the following we are interested in verifying the
calculation of the expectation value and fluctuations of the
modular Hamiltonian. For this purpose we will make use of
the Euclidean path integral over the shockwave variables Xu

andXv. As wewill see, this will lead to expressions that may
appear counterintuitive from the viewpoint of the standard
Lorentzian quantization. In particular, we will see that in the
Euclidean path integral the only nonzero two point function
is hXuðyÞXvðy0Þi. Indeed, nonzero two point functions of
the type hXuXui or hXvXvi would break Lorentz invariance,
and hence are only possible in situations with a preferred
Lorentz frame.

A. From Lorentzian to Euclidean quantization

The basic variables Xu and Xv can be continued to
Euclidean space as follows. First we introduce

XuðyÞ ¼ ZðyÞ þ TðyÞ XvðyÞ ¼ −ZðyÞ þ TðyÞ: ð29Þ

We now replace T → iTE, so that

Xu
EðyÞ ¼ ZðyÞ þ iTEðyÞ Xv

EðyÞ ¼ −ZðyÞ þ iTEðyÞ: ð30Þ

We thus find that, instead of the relations (28), the Euclidean
operators now satisfy the following Hermiticity property

Xu
EðyÞ ¼ −ðXv

EðyÞÞ†: ð31Þ

The minus sign is just a choice of convention and will
not have major implications. Euclidean quantization then
proceeds by imposing canonical commutation relations

½Xu
EðyÞ; Xv

Eðy0Þ� ¼ l2pfðy; y0Þ; ð32Þ
without the usual factor i. Hence, instead of being like
coordinate andmomentumvariable, we nownote thatXu and
Xv behave as creation and annihilation operators. We can
now pursue this analogy and introduce a vacuum state that is
annihilated by Xu, and its conjugate state that is annihilated
by Xv:

Xu
EðyÞj0i ¼ 0 and h0jXv

EðyÞ ¼ 0: ð33Þ

Note this choice of initial and final states is consistent with
the boundary conditions imposed on the fields XuðyÞ and
Xvðy0Þ [see discussion just above Eq. (21)].
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The goal is now to compute the two point functions.
First of all, one immediately sees that in the Euclidean
quantization there are no two-point functions of the type
hXuXui of hXvXvi. The only nonvanishing two point
function is

h0jXu
EðyÞXv

Eðy0Þj0i ¼ l2pfðy; y0Þ: ð34Þ

which is directly derived from the commutator Eq. (32). In
the remainder of this paper we will be working in Euclidean
signature, and hence we will drop the subscript E, leaving it
implicit in our notation. We will now show that the same
result follows from the Euclidean path integral.

B. The Euclidean two point function

Since the effective action is quadratic, the path integral
can be computed by applying Wick’s theorem so that all
correlators become expressed in terms of two point
functions. The two point function of Xu andXv corresponds
to the inverse of the kinetic operators, and hence, in
Euclidean space, obeys

1

ld−2
p

Δy
d
dτ

hXuðτ; yÞXvðτ0; y0Þi ¼ δðτ − τ0Þδðd−2Þðy; y0Þ:

ð35Þ

Note that in Euclidean space this two point function must
be real. Equation (35) is easily solved and leads to

hXuðτ; yÞXvðτ0; y0Þi ¼ ld−2
p θðτ − τ0Þfðy; y0Þ: ð36Þ

Our goal is to show that the fluctuations in the modular
Hamiltonian have their origin in tiny shockwaves in the
spacetime geometry caused by quantum gravity effects. In
particular, we want to derive the correct magnitude of both
the expectation value hKi as well as the fluctuations hΔK2i.
For this purpose it is sufficient to know the two-point
functions of the coordinate shifts Xu and Xv at the bifurcate
horizon. Hence we may ignore the time-dependence, and
only consider the two point correlator as function of the
transversal coordinates. Concretely this means we will take
the limit where uðτÞ → L from below and vðτ0Þ → −L from
above, so that θðτ − τ0Þ ¼ 1. In this way we find

hXuðyÞXvðy0Þi ¼ ld−2
p fðy; y0Þ: ð37Þ

We will use this result below to compute the expectation
value and fluctuations of the modular energy. However, to
obtain finite results we will need to introduce an extra
ingredient. Namely, we will have to impose a short distance
cutoff on the allowed shockwaves geometries. Our analysis

clearly breaks down for shockwaves whose transversal
wavelength becomes shorter than the Planck scale. Indeed,
it is natural to assume that one has to introduce a cutoff on
the allowed transversal wavelengths at or close to the
Planck scale. Below we will indeed find that this cutoff is
necessary to find agreement with the known values for the
modular energy fluctuations.

IV. MODULAR ENERGY FLUCTUATIONS
FROM SHOCKWAVES

We have now all the ingredients to compute the
fluctuations of the modular Hamiltonian using the expres-
sion (22) and the results of the previous section. First we
will consider the vacuum expectation value hKi. In fact, for
this computation we need to set the short distance cutoff at
its most natural value, which then turns out to precisely give
the expected result. Once the correct value of the cutoff is
known, we will proceed to compute the fluctuations.
Combining the expression (22) with (37) leads to the

result

hKi ¼ 1

ld−2
p

Z
dd−2y lim

y0→y
∇y∇y0 hXuðyÞXvðy0Þi

¼
Z

dd−2y lim
y0→y

∇y∇y0fðy; y0Þ ð38Þ

The integrand in the right hand side formally diverges. But
we will impose the most natural cutoff by assuming that the
points y and y0 need to be separated by at least one Planck
length. This implies that

lim
y0→y

∇y∇y0fðy; y0Þ ∼
1

ld−2
p

: ð39Þ

We will now choose the overall constant so that we obtain
the expected result

hKi ¼ Area
4G

: ð40Þ

Note that we have not really derived the constant of
proportionality. But this is the only point were we can
use the freedom to fix this constant. So to check that our
proposed identification between the modular Hamiltonian
and the fluctuating shock wave geometries is correct, let us
now compute the variance hΔK2i using the same method.
In our calculation we will assume that the fluctuations are
Gaussian, which means that all higher point correlation
functions can be reduced via Wick’s theorem to two-point
functions. Since our calculation is being performed in the
Euclidean setting, the only nonvanishing two point func-
tions are between XuðyÞ and Xvðy0Þ. By again combining
the Eqs. (22) and (37) one obtains after a few steps
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hK2i − hKi2 ¼ 1

l2ðd−2Þ
p

Z
dd−2y

Z
dd−2y0h∇yXuðyÞ∇yXvðyÞ∇y0Xuðy0Þ∇y0Xvðy0Þi

−
1

l2ðd−2Þ
p

Z
dd−2y

Z
dd−2y0h∇yXuðyÞ∇yXvðyÞih∇y0Xuðy0Þ∇y0Xvðy0Þi

¼ 1

l2ðd−2Þ
p

Z
dd−2y

Z
dd−2y0∇y∇y0 hXuðyÞXvðy0Þi∇y∇y0 hXuðyÞXvðy0Þi: ð41Þ

In the last line we used that one of the two possible Wick
contractions of the four-point function cancels against the
product of the two-point functions. In particular this means
that the Wick contractions between XuðyÞ and XvðyÞ at
coincident points are being subtracted. In other words, the
only remaining Wick contractions are those between oper-
ators at different positions y and y0. A pictorial representation
of the decomposition in Eq. (41) is shown in Fig. 3, where the
vacuum fluctuation in the modular Hamiltonian becomes the
product of two-point functions of the light-ray operators Xu,
Xv. We can now insert the expression for the two-point
functions in terms of the Green functions to obtain

hΔK2i ¼
Z

dd−2y
Z

dd−2y0ð∇y∇y0fðy; y0ÞÞ2

¼
Z

dd−2y lim
y0→y

∇y∇y0fðy; y0Þ: ð42Þ

To obtain the second expression we performed a partial
integration and used the fact that the Green function fðy; y0Þ
obeys the identity (2). On the right-hand side of this last
equation we recognize the same expression that we obtained

in the computation of hKi. By choosing the same natural
value for the short distance cutoff as before, we obtain the
same result for the fluctuations in the modular Hamiltonian
as its expectation value. Concretely, we find

hΔK2i ¼ Area
4G

ð43Þ

and thus reproduce the known answer for themodular energy
fluctuations. This is the main result of the paper.
We can now translate our result into a statement about

the size of the quantum fluctuations in the spacetime
geometry. Let us consider the product of ∇yXu and
∇yXv averaged of the transversal plane:

½∇yXu∇yXv�avg ≡ 1

Area

Z
dd−2y∇yXuðyÞ∇yXvðyÞ: ð44Þ

In fact, the quantities∇yXu and∇yXv can be identified with
the fluctuations in the metric components gyu and gyv:

δgyu ¼ ∇yXu and δgyu ¼ ∇yXu: ð45Þ

Our main result can thus be reformulated as a statement
about the size of the fluctuations in these metric compo-
nents

hðδgyuδgyvÞ2i ∼ h½∇yXu∇yXv�2avgi ∼
�
lp

L

�
d−2

ð46Þ

Note that in d ¼ 4 we thus find that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðδg2Þ2i

p
∼ L=lp.

This result was anticipated in previous work, and appears to
coincide with the intuitive answer that would result from a
random walk picture, in which Planckian fluctuations
accumulate along the light trajectory over a distance L,
as reviewed in Ref. [16] in a general number of dimensions.
This point of view becomes more manifest in a spherically
symmetric setup, in which the various contributing modes
can be labeled by discrete quantum numbers. In the
remainder of this paper we will describe this spherically
symmetric perspective in more detail.

FIG. 3. A causal diamond with a spherical entangling surface of
size L. The red lines describe two radially outward traveling light
rays separated by an angle Ω that are reflected back at the
entangling surface.
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V. CAUSAL DIAMONDS AND SPHERICAL
SHOCKWAVES

We now consider a spherically symmetric causal dia-
mond in which we place the light source and detector in the
origin, and consider a family of light trajectories starting at
t ¼ −L traveling in all directions before being reflected by
to the origin at time t by a family of mirrors located on a
sphere of radius L. In this setup it is natural to work in
spherical coordinates ðt; r;ΩÞ. The family of light rays can
be depicted as traveling along the boundary of a causal
diamond, which locally looks like a Rindler horizon. It is
worth commenting, as shown in Fig. 3, that the difference
in the clock of a Rindler observer Planckian separated from
the horizon at the bottom of the causal dimaond, is given by
the geometric mean of the Planck length with the size of the
causal diamond. The bifurcate horizon is now located at
t ¼ 0 and corresponds to the sphere with radius L centered
around the origin.
The calculations for the spherical configuration are very

similar to the case with the flat Rindler horizon. We will
therefore mainly focus on those aspects which are different.
First of all, the boundary of the causal diamond strictly
speaking does not correspond to a horizon, since it is not
left invariant by a boost-like Killing vector. Instead, as is
well described in the literature, it is invariant under a
conformal Killing vector that locally near the boundary
looks like a boost. We will therefore still refer to the
boundary of the diamond as the horizon. The advantage of
using a spherical set up is that the area of the bifurcate
horizon is finite and given by the area of a d − 2-sphere of
radius L. Since our calculations will eventually reduce to
the bifurcate horizon, we may consider fields XuðΩÞ and
XvðΩÞ as functions of the angular coordinates Ω: the
transversal coordinates y that were used in the previous
sections may roughly be thought of as y ∼ LΩ. In particu-
lar, one finds that the role of the transversal Laplacian and
its associated Green’s function are now taken over by

Δy →
1

L2
ðΔΩ−RΩÞ and fðy;y0Þ→ 1

Ld−4fðΩ;Ω0Þ ð47Þ

whereΔΩ and RΩ are the scalar Laplacian and the Riemann
curvature of the unit d − 2-sphere: in general dimension d
one has RΩ ¼ ðd − 2Þðd − 3Þ=2, while for d ¼ 4 the result
is simply RΩ ¼ 1. The angular Green’s function fðΩ;Ω0Þ
obeys

ðΔΩ − RΩÞfðΩ;Ω0Þ ¼ δðd−2ÞðΩ;Ω0Þ: ð48Þ

When we make these substitutions it follows that the
Lagrangian description of the shockwave variables
XuðΩÞ and XvðΩÞ only depends on a particular combina-
tion of the UV scale lp and IR scale L, namely

l̃2
p ≡ ld−2

p

Ld−4 : ð49Þ

In particular, one finds the two point function of the
coordinate shifts for the spherical case is given by

hXuðΩÞXvðΩ0Þi ¼ l̃2
pfðΩ;Ω0Þ: ð50Þ

Let us introduce the momentum surface density operator
PuðΩÞ defined by

PvðΩÞ ¼ Ld−2
Z

L

0

dxvTvvðv;ΩÞ and

PuðΩÞ ¼ Ld−2
Z

L

0

dxuTuuðu;ΩÞ: ð51Þ

The factor Ld−2 is included so that PuðΩÞ represent the
momentum density per unit solid angle. The equations of
motion for the shockwave geometries can then be
expressed as

ðΔΩ − RΩÞXuðΩÞ ¼ l̃2
pPvðΩÞ and

ðΔΩ − RΩÞXvðΩÞ ¼ l̃2
pPuðΩÞ: ð52Þ

These equations should again be seen as operator identities.
As operators the momenta Pu and Pv are, just as for the flat
case, canonically conjugate to Xu and Xv.

A. Modular energy fluctuations
for spherical causal diamonds

We now discuss the computation of the modular energy
fluctuations for causal diamonds. Following the same
reasoning as for the flat horizon, one can argue that the
modular HamiltonianK associated with the causal diamond
may be expressed as

K ¼ −
1

l̃2
p

Z
dd−2ΩXuðΩÞðΔΩ − RΩÞXvðΩÞ: ð53Þ

To calculate the expectation value and fluctuations of K we
again need to introduce a Planckian cutoff. This is
conveniently implemented by making use of the mode
expansion of the variables in terms of spherical harmonics.
We will first describe this mode expansion and its

consequences in d ¼ 4, and discuss the generalization to
other dimensions afterwards. On the sphere we can write
out the fields Xu and Xv as

XuðΩÞ ¼
X
l;m

Xu
lmYlmðΩÞ and XvðΩÞ ¼

X
l;m

Xv
lmYlmðΩÞ;

ð54Þ
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where m takes the usual range from −l to l. The modular
Hamiltonian can now be written as a sum over the different
modes as

K ¼
X
l;m

ðl2 þ lþ 1ÞXu
lmX

�v
lm: ð55Þ

Here we used the fact that the spherical harmonics Ylm are
eigenstates of the modified Laplacian ΔΩ − RΩ with
eigenvalue −ðl2 þ lþ 1Þ.
The short distance cutoff is imposed by requiring that l

only takes values up to a certain maximum lmax. This leads
for instance to a regulated Green function

fregðΩ;Ω0Þ ¼
Xlmax

l¼0

Xl

m¼−l

YlmðΩÞY�
lmðΩ0Þ

l2 þ lþ 1
: ð56Þ

From this one can directly read off that the two-point
function of the discrete variable Xu

lm and Xv
lm is given by

hXu
lmX

v
l0m0 i ¼ l2

p
δl;l0δm;−m0

l2 þ lþ 1
: ð57Þ

This leads to the following result for the expectation value
of the modular Hamiltonian

hKi ¼
Xlmax

l¼1

Xl

m¼−l
ðl2 þ lþ 1ÞhXu

lmX
�v
lmi

¼
Xlmax

l¼0

ð2lþ 1Þ ¼ ðlmax þ 1Þ2: ð58Þ

Let us for the moment leave the value of lmax to be
determined. Given a choice for lmax it becomes possible
to compute the fluctuations in the modular Hamiltonian in a
similar way. After some straightforward steps one finds

hΔK2i ¼
Xlmax

l¼1

Xl

m¼−l

Xlmax

l0¼1

Xl0
m0¼−l0

ðl2 þ lþ 1Þðl02 þ l0 þ 1Þ

× hXu
lmX

�v
l0m0 ihXu

l0m0X�v
lmi: ð59Þ

By inserting the result for the second two point function
one easily verifies that the sum over l0 and m0 can be
explicitly performed and leads to an identical result as for
the expectation value of K. One gets

hΔK2i ¼
Xlmax

l¼1

Xl

m¼−l
ðl2 þ lþ 1ÞhXu

lmX
�v
lmi

¼
Xlmax

l¼0

ð2lþ 1Þ ¼ ðlmax þ 1Þ2: ð60Þ

We thus find that both the expectation value as well as the
fluctuations of K depend in an identical way on the value of
the mode cutoff lmax. We can now choose the value of lmax so

that the expectation value of K gives the expected result in
terms of the area of the bifurcate horizon. As we have just
shown, we then obtain the same result for the fluctuations,
and thereby confirm the expected result obtained by other
methods.
These same methods apply to higher dimensional space-

times and lead to identical conclusions. The only difference
is that instead of the conventional spherical harmonics, one
has to use their higher dimensional generalizations.

B. Lorentzian quantization and uncertainty relations

In our calculations of the modular energy fluctuations we
used aEuclidean quantization procedure, inwhichXu andXv

are treated as Hermitian conjugate variables. In Lorentzian
signature, Xu and Xv are each Hermitian, and are only
canonically conjugate variables. This means their commu-
tation relations contain a factor i, as for the usual case of
coordinates and momenta. In addition one can follow this
analogy and conclude that in Lorentzian quantization the
operators Xu and Xv must have quantum mechanical
uncertainties ΔXu and ΔXv that obey uncertainty relations.
In this subsectionwewill describe these uncertainty relations
for the case of the finite causal diamond. This is a particularly
convenient situation, since the coordinate fields Xu and Xv

have a mode expansion in terms of discrete set of modes Xu
lm

and Xv
l0m0 obeying canonical commutations relations.

½Xu
lm; X

v
l0m0 � ¼ il2

p
δl;l0δm;−m0

l2 þ lþ 1
: ð61Þ

where we reinstated the factor of i. Applying the standard
derivation of the Heisenberg uncertainty relations leads to

ΔXu
lmΔXv

l0m0 ≥
l2
p

2

δl;l0δm;−m0

l2 þ lþ 1
: ð62Þ

When translated back to coordinate space one finds that the
uncertainty relation implies that

ΔXuðΩÞΔXvðΩ0Þ ≥ l2p
2
fðΩ;Ω0Þ ð63Þ

As mentioned before, these uncertainty relations also lead to
inequalities to the conclusion that in Euclidean space two
point functions type hXuðΩÞXuðΩ0Þi and hXvðΩÞXvðΩ0Þi are
nonvanishing, and represent fluctuations that are associated
with only the lower or only the upper trajectory. The study of
the physical implications of these type of fluctuations will be
left for further work.

C. Generalization to other dimensions

The spherical harmonics Yl on a higher dimensional
sphere are labeled by an integer l. Let us consider the unit
(d − 2)-sphere Sd−2 contained in Rd−1. One can represent
the harmonic functions on Sd−2 as restrictions of the set of
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solutions to the d − 1-dimensional Laplace equation
ΔpðxÞ ¼ 0, where pðxÞ ∈ Pl is a polynomial of degree
l. The eigenvalues of the spherical Laplacian are

ΔSd−2Yl ¼ −lðlþ d − 3ÞYl: ð64Þ
We denote the space of all independent spherical harmonics
Yl by Hl. The number of independent spherical harmonics
Yl ∈ Hl with a given value of l equals

dimHl ¼
�
lþ d − 2

d − 2

�
−
�
lþ d − 4

d − 2

�
: ð65Þ

This generalizes the familiar case for d ¼ 4.
We can now use the space of spherical harmonics to put a

mode cutoff on the Green’s function and delta functions on
the sphere in higher dimensions. The Green’s functions are
again given by

fðΩ;Ω0Þ ¼
X
l

X
Yl∈Hl

YlðΩÞYlðΩ0Þ
lðlþd−3Þþðd−2Þðd−3Þ=2 : ð66Þ

where we added the contribution of the Ricci curvature to
the eigenvalue of the Laplacian. Similarly as for d ¼ 4 we
put a mode cutoff of l so that l ≤ lmax. The computation of
the expectation value and fluctuation of K proceeds
identically as for d ¼ 4 and will not be repeated here.
The answer is again given by the sum of the dimensions of
all the representations with l ≤ lmax. The result is

hKi ¼ hΔK2i ¼
Xlmax

l¼0

dimHl ¼
�
lmax þ d − 2

d − 2

�

þ
�
lmax þ d − 3

d − 2

�
∼

1

ðd − 2Þ! l
d−2
max: ð67Þ

So, just like in four dimensions one finds that, in order to
reproduce the expected result given by the area of the
bifurcate horizon, one has to choose lmax ∼ L=lp. But once

the value of lmax is fixed to give the correct expectation
value ofK, the result for the fluctuations inK automatically
comes out correctly as well.

VI. CONCLUSIONS

We have shown that shockwave geometries give rise to
fluctuations in the modular Hamiltonian, hKi ¼ hΔK2i.
The shockwave geometries are generated by vacuum
fluctuations of a size given by uncertainty relations in
light ray operators, Eq. (26). Since hKi ¼ hΔK2i has been
by now well established in many contexts, including for
boundary-anchored diamonds in AdS/CFT [9–12], and
near light fronts in flat space [13], our result supports
the idea that the commutator in Eq. (26) is the fundamental
object governing the quantum mechanics of spacetime.
In previous work, we argued that modular fluctuations

could give rise to uncertainties in the location of light fronts
that accumulate into the infrared [16,17], becoming observ-
ably large over the light crossing time of a causal diamond.
The fundamental uncertainty relation in Eq. (26) effectively
acts as a noise term for the causal development of a region
of spacetime, giving us a new tool to compute quantum
uncertainties in position observables. We leave such an
application for future work.
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