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We present the Becchi-Rouet-Stora-Tyupin (BRST) formalism of a Weyl conformal gravity in Weyl
geometry. Choosing the extended de Donder gauge-fixing condition (or harmonic gauge condition) for the
general coordinate invariance and the new scalar gauge fixing for the Weyl invariance, we find that there is
a Poincaré-like /0Sp(10[10) supersymmetry as in a Weyl invariant scalar-tensor gravity in Riemann
geometry. We also point out that there is a gravitational conformal symmetry in quantum gravity although
there is a massive Weyl gauge field as a result of spontaneous symmetry breakdown of Weyl gauge
symmetry, and we account for how the gravitational conformal symmetry is spontaneously broken to the
Poincaré symmetry. The corresponding massless Nambu-Goldstone bosons are the graviton and the
dilaton. We also show the unitarity of the physical S-matrix on the basis of the BRST quartet mechanism in

the case of an absence of anomalies.
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I. INTRODUCTION

More than 100 years ago, Weyl advocated a new theory
to unify all the interactions known at that time, namely
gravitational interaction and electromagnetic force, within
the framework of a newly established geometry which is
nowadays called “Weyl geometry” [1,2]. In Riemann
geometry both length and angle are preserved under
parallel transport while in Weyl geometry, only angle,
but not length, is preserved by the Weyl gauge field. Soon
after the advent of Weyl’s idea, Einstein criticized that
regarding the spacing of atomic spectral lines, the pre-
diction obtained from Weyl’s theory and the experimental
observations were in contradiction (this problem is some-
times called the second clock problem [3]); thus, the Weyl
theory has been buried in oblivion for a long time.

However, in recent years a considerate interest has been
developed for Weyl conformal geometry. This is because it
was found that the Weyl gauge field acquires a huge mass
around the Planck scale and decouples at low energies,
thereby avoiding the second clock problem [12-15]. In
addition, we have noticed the importance of global scale
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'Even during this period, there were some papers dealing with
Weyl theory [4—11].
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invariance and also local scale invariance, which is also
called Weyl invariance, in formulating a theory beyond the
Standard Model [16] and quantum gravity. Hence, Weyl
geometry provides us with a natural playground for
describing Weyl symmetry.

The study of Weyl conformal gravity in Weyl geometry
has been mainly limited to a classical analysis thus far.” One
of the motivations behind the present article is to present a
quantum theory of Weyl conformal gravity. To this end, we
construct a Becchi-Rouet-Stora-Tyupin (BRST) formalism
of the theory from which we can shed some light on
important features of quantum aspects of Weyl conformal
gravity in Weyl geometry. For instance, as has already been
shown in the case of Weyl invariant scalar-tensor gravity
[17-19], there is an extended /0S5 p(10]10) choral symmetry
compared with the /OS p(8|8) choral symmetry in Einstein’s
gravity [20,21]. This extended symmetry is not confined to
the sector of the Nakanishi-Lautrup auxiliary fields and the
Faddeev-Popov (FP) (anti)ghosts but relevant to a classical
theory. Moreover, it can be shown that we have a gravita-
tional analog of conformal algebra as a subalgebra of the
10Sp(10]10) choral symmetry. That algebra then gives rise
to a spontaneous symmetry breakdown to the Poincaré
symmetry, by which we can prove that the graviton [22]
and the dilaton [18,19] are exactly massless since they are
the Nambu-Goldstone particles.

The paper is organized as follows. In Sec. II, we give a
brief review of Weyl geometry. In Sec. III, we consider a

At the one-loop level, the effective potential has already been
calculated in [14,15].

Published by the American Physical Society


https://orcid.org/0000-0001-5252-4197
https://orcid.org/0000-0002-5500-6827
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.106007&domain=pdf&date_stamp=2022-11-14
https://doi.org/10.1103/PhysRevD.106.106007
https://doi.org/10.1103/PhysRevD.106.106007
https://doi.org/10.1103/PhysRevD.106.106007
https://doi.org/10.1103/PhysRevD.106.106007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ICHIRO ODA and PHILIPP SAAKE

PHYS. REV. D 106, 106007 (2022)

classical theory that is not only invariant under Weyl gauge
transformation but also is free of ghosts, which generally
existin the higher-derivative gravities. Based on the classical
theory in Sec. III, we fix the gauge symmetries by the
extended de Donder gauge and new scalar gauge conditions
and construct a BRST invariant quantum Lagrangian in
Sec. IV. In Sec. V, we perform the canonical quantization
of the quantum Lagrangian where we meet primary and
secondary constraints associated with Weyl symmetry.
They are the second-class constraints and hence are treated
by applying the Dirac brackets. In Sec. VI, we prove the
unitarity of the physical S-matrix on the basis of the BRST
quartet mechanism. We find that physical modes are the two
polarizations of the massless graviton and the three modes of
the massive Weyl gauge fields. Furthermore, it is shown that
the massless dilaton, which is eaten by the Weyl gauge field
via the Higgs mechanism, belongs to the unphysical sector.
In Sec. VII, we show that the quantum Lagrangian of Weyl
conformal gravity possesses the huge global /0Sp(10]10)
choral symmetry. In Sec. VIII, we point out that there exists a
gravitational analog of conformal symmetry in quantum
gravity and explain the spontaneous symmetry breaking. We
find that the graviton and the dilaton are massless Nambu-
Goldstone bosons. The final section is devoted to discussion.

II. REVIEW OF WEYL CONFORMAL GEOMETRY

In this section, we briefly review the basic concepts and
definitions of Weyl conformal geometry [15]° In Weyl
geometry, the Weyl gauge transformation, which is a
combination of a local scale transformation for a generic
field ®(x) and a gauge transformation for the Weyl gauge
field S,(x), is defined as

®(x) = D' (x) = " "V D(x),

S,(x) = S, (x) =S,

1
(x) _?aﬂA(x)v (2.1)
where w is called the “Weyl weight,” or simply “weight”
henceforth; f is the coupling constant for the noncompact
Abelian gauge group; and A(x) is a local parameter for the
Weyl transformation. The Weyl gauge transformation for
various fields is explicitly given by

G (%) > G (X) =€ N g, (x)., P(x) > ¢ (x) = Wgh(x),

Y (x) >y (x) =e MWy (x), A, (x) A (x) =A,(x),
(2.2)

3We follow the notation and conventions of Misner-Thorne-
Wheeler (MTW) textbook [23]. Lowercase Greek letters p, v, ...
and Latin ones i, j, ... are used for spacetime and spatial indices,
respectively; for instance, ¢ =0,1,2,3 and i =1,2,3. The
Riemann curvature tensor and the Ricci tensor are, respectively,
defined by R/, = 0”1“{; - 0,10 + F’jﬂl“ﬁy - nyl“ﬁ,, and
R,, = R?,,,. The Minkowski metric tensor is denoted by 7,,;
Moo = =N = My = —N33 = —1 and ,, = 0 for p # v.

where g,,(x), ¢(x), w(x), and A,(x) are the metric tensor,
scalar, spinor, and electromagnetic gauge fields, respec-
tively. The covariant derivative D, for the Weyl gauge
transformation for a generic field ®(x) of weight w is
defined as
D,® =0, +wfS,0, (2.3)
which transforms covariantly under the Weyl transforma-
tion:
D,® - (D,®) = "D, . (2.4)
The Weyl geometry is defined as a geometry with a real

symmetric metric tensor g,,(= g,,) and a symmetric
connection I, (= I%,) which is defined as’

1
Eglﬂ(Dugup + Dygyp - ng;w)

=T}, + f(S,6: + S,8. — $*g.),

i, =
(2.5)

where I';, is the standard Christoffel symbol in Riemann
geometry. The most important difference between Riemann
geometry and Weyl geometry lies in the fact that in
Riemann geometry the metric condition is satisfied,

vﬂg;u/ = aﬁg;u/ - Fﬁ}”gpu - Fﬁ)ygup = 0’ (26)
while in Weyl geometry we have
v/1g/u/ = azlg,uu - fﬁﬂgpu - f‘ﬁpgyp = _2fslgﬂw (27)

where V, and vﬂ are covariant derivatives for diffeo-
morphisms in Riemann and Weyl geometries, respectively.
Since the metric condition (2.6) implies that both length
and angle are preserved under parallel transport, Eq. (2.7)
shows that only angle, but not length, is preserved by the
Weyl connection.

The general covariant derivative for both diffeomor-
phisms and Weyl gauge transformation, for instance, for a
covariant vector of weight w, is defined as

D,V,=D,V,-TILV,
=V, V, +wfS,V,
=V, V, +wfS,V, = f(S,0 + 8.,8: = $9,,)V,
=09,V, +wfS,V, -0V,

- f(Sﬂél//} + Suéz - S/}g/,w)vp' (28)

One can verify that using the general covariant derivative,
the following metric condition is satisfied:

“We often use the tilde characters to express quantities
belonging to Weyl geometry.
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D;9,, = 0. (2.9)
Moreover, under Weyl gauge transformation the general
covariant derivative for a generic field ® of weight w
transforms in a covariant manner as desired:
_ WA
D,® - (D,®) = "D, , (2.10)
because the Weyl connection is invariant under Weyl gauge
transformation, i.e., [, = I[,.
As in Riemann geometry, in Weyl geometry one can also
construct a Weyl invariant curvature tensor R,,,” via a
commutator of the covariant derivative V,:

V.. V,IV, =R,,°V,. (2.11)

Calculating this commutator, one finds that
R;wpa = avFZp - 0/4 ng + Fﬁﬂrgv - Fgﬂrgﬂ
= RW/,(r + 2f(5‘[;V,4 S/, - 5ZV[MSV] - g/,[ﬂVD]S”)

+ 2f2(S[;45:]S/1 - Sbtgy]pso— +5{[:491/]/)S(Jts{l)7 (2 12)

where R,,,° is the curvature tensor in Riemann geometry
and we have defined the antisymmetrization by the square
bracket, i.e., A,B,; =3 (A,B, — A,B,). Then, it is straight-
forward to prove the following identities:

R,,°=-R

Hvp wp”> Riuwp)” =0, VMR#U]/’G =0.

(2.13)

From R, ,° one can define a Weyl invariant Ricci tensor:

uvp
R =R r
R/w = Rﬂpv

= R;w =+ f(_zvﬂsv - H;w - g/wvasa)

+ 2f2(SﬂS,, — 9SS, (2.14)
where H,, is the field strength of S, defined as
H,=V,S,-V,S,=0d,,-0,S,. (2.15)
Let us note that
Ry, = % (R, —R,,) =-2fH,,. (2.16)

Similarly, one can define not a Weyl invariant but a Weyl
covariant scalar curvature:
R=g" I?W =R-6fV,S" - 6f2SMS”. (2.17)
One finds that under Weyl gauge transformation, R — R’ =
e >R while . R,,,°, and R, are all invariant.
We close this section by discussing a spinor field as an
example of matter fields in Weyl geometry. As is well

known, to describe a spinor field it is necessary to introduce
the vierbein ey, which is defined as
9 = nabezezlj’ (218)
where a, b, ... are local Lorentz indices taking 0,1,2,3 and
Nap = diag(—1,1,1,1). Now the metric condition (2.9)
takes the form
D,ef =D, el + @d"y,eb —Thet =0,  (2.19)
where the general covariant derivative is extended to
include the local Lorentz transformation whose gauge
connection is the spin connection @“,, of weight 0 in
Weyl geometry, and D,ej = d,ef + fS,ej since the vier-
bein e has weight 1. Solving the metric condition (2.19)
leads to the expression of the spin connection in Weyl
geometry,
d)abﬂ = wabﬂ + fe;ct(nacsb - ”cha)’ (220)
where @,;, is the spin connection in Riemann geometry

and we have defined S, = e’Z,Sﬂ. Then, the general covar-
iant derivative for a spinor field ¥ of weight —3 reads

i o a

D”lP = D”lP + E(Dabﬂs blP, (221)
where D,¥ = 9,¥ — % /S,'¥ and the Lorentz generator Sab
for a spinor field is defined as S = £ [y, y’]. Here we
define the gamma matrices to satisfy the Clifford algebra
{r*,7*} = =25*. Since the spin connection @“j, has
weight 0, the covariant derivative D,'¥ transforms cova-
riantly under Weyl gauge transformation:

DY - (D,¥) = e 0D, W (2.22)

Then, the Lagrangian density for a massless Dirac spinor
field is of the form

i _ _
L=edi(BrD¥-DIyY).  (223)
where e = /=g, ¥ =¥7)", and D,V is given by
_ i
D = D, ¥ - ¥y, . (2.24)

Inserting Egs. (2.21) and (2.24) into the Lagrangian density
(2.23), we find that

i

L= 5¢ [eﬁ (\ifyaaﬂ‘y -0, Pr"Y + %wbcﬂ@{ya, SbC}\If)

i = X
+ _f(ﬂabsc - nach)lP{ya? Shc}‘P:| . (225)

2
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The last term identically vanishes owing to the relation

{}/a7 Sbc} — _EadeYS}’d,

where we have defined ys = iy’y!y?y? and €% = +1.
Thus, as is well known, the Weyl gauge field S, does not
couple minimally to a spinor field ¥. Technically speaking,
it is the absence of imaginary unit { in the covariant
derivative D,¥ = 9,¥ — % fS,¥ that induced this decou-
pling of the Weyl gauge field from the spinor field. Without
the imaginary unit, the terms including the Weyl gauge field
cancel out each other in Eq. (2.23). In a similar manner, we
can prove that the Weyl gauge field does not couple to a
gauge field, i.e., the electromagnetic potential A, either. On
the other hand, the Weyl gauge field can couple to a scalar
field such as the Higgs field as well as a graviton.

(2.26)

III. CLASSICAL THEORY

We wish to consider a model of Weyl conformal gravity
in Weyl geometry. It is of interest to recall that without
matter fields we have a unique classical Lagrangian which
is invariant under the Weyl gauge transformation; the
Lagrangian must be of form of quadratic gravity:

1 ~ -
Loc =+/—9 <_2—§2 ChuipeCH7° + (1R2> ’ (3.1)

where ¢ and a are dimensionless coupling constants, and C wwpo
and R are a generalization of conformal tensor and scalar
curvature in Weyl geometry, respectively. Note that the
Lagrangian of the Einstein-Hilbert type or the higher-derivative
terms involving more than quadratic terms are prohibited to
be present by Weyl gauge symmetry. The fatal defect of the
Lagrangian (3.1), however, is the existence of a massless ghost
that breaks unitarity in the quantum regime. Another unsat-
isfactory feature of the Lagrangian (3.1) is that it does not
reduce to Einstein’s general relativity at low energies which is
known to be a good description of the physics relevant to
gravitational phenomena at such long range scales.

Provided that we are allowed to use matter fields,5 the
situation changes and we can construct a scalar-tensor
gravity of the Einstein-Hilbert type which includes at most
the second-order derivatives of the metric tensor [4]:

1 -
Lsr =/ —gich,’)zR, (32)
where ¢ is a real scalar field.® The most general classical
Lagrangian, which is invariant under Weyl gauge trans-
formation and is free of the massless ghost, reads

’As explained in the previous section, fermions and the
conventional gauge fields do not couple to the Weyl gauge field,
but only the scalar field does.

The extension to a complex scalar field or multiple scalar
fields is straightforward.

1 - 1 1 A
Le=+/=g [§§¢2R - ZH””HW - EGQ”IJDﬂfﬁDuQ{) - E¢4

1 1
+r (E $R+ 3 g””@,,qﬁa,,(b)] , (3:3)
where &, 4, n are all dimensionless constants and € = +1
depending on a normal field ¢ = 1 or a ghost field € = —1.
In this article, we limit ourselves to the case 6 + ¢ # 0
since the specific case 6+ ¢ =0 leads to the same
expression as the last term with the constant 7, which is
called “Weyl invariant scalar-tensor gravity,” when surface
terms are ignored. Finally, the scalar field ¢ has the weight
—1 so the Weyl covariant derivative in (3.3) takes the form’
D,p =0, —S,9. (3.4)
Since we have already analyzed the Weyl invariant scalar-
tensor gravity in Riemann geometry [18] and the quartic
potential term has no essential role in the BRST formalism,
we will put 4 = = 0. Thus, the classical Lagrangian that
is treated in this article reads

1 | 1
‘Cc = \/__g|:§§¢2R _ZH;WH”U _Eegley¢Du¢:|

1 1
=9 [5 EP*(R — 6V, 8" —65,8") — 2 HuH"

- %eg/“’(a,ﬁb = S.$) (0.9 — Su¢):| . (3.5)

IV. QUANTUM THEORY

The classical Lagrangian (3.5) is invariant under both
general coordinate transformation (GCT) and Weyl gauge
transformation. For a quantum theory we have to fix such
gauge symmetries by introducing suitable gauge-fixing
conditions. After introducing the gauge-fixing conditions,
the quantum Lagrangian is no longer invariant under the
gauge transformations, but as residual global symmetries
the quantum Lagrangian is invariant under two BRST
transformations, one of which is denoted as &z, corre-
sponding to the GCT, and is defined as

539;41/ = _(vﬂcb + vl/cﬂ) = _(caaag;w + a/,tcagav + aucagﬂa)’
Spp=—c"0,p, 65S,=—c*V,;8,=V,c*S,.

Spc’ =—ct0,c”, ogc,=iB,, 63B,=0, (4.1)
where ¢’ and ¢, are, respectively, the FP ghost and
antighost, and B, is the Nakanishi-Lautrup (NL) field.
For convenience, in place of the NL field B, we will

introduce a new NL field defined as [24]

"In what follows, we will set f = 1 for the coupling constant
for the noncompact Abelian gauge group.
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b,=B,— iclaﬁp, (4.2)
and its BRST transformation reads
ogb, = —c'laﬂb,,. (4.3)

The other BRST transformation, which is denoted as o,
corresponding to the Weyl transformation is defined as

SB¢ = _C¢9
SBC = BBB = O,

SBSM = —aﬂc,
(4.4)

Sngw = 209;41/’
(_SBE' - lB,

where ¢ and ¢ are, respectively, the FP ghost and FP
antighost, and B is the NL field. Note that the two BRST
transformations are nilpotent, i.e.,

5% = 5% =0. (4.5)

To complete the two BRST transformations, we have to
fix not only the GCT BRST transformation dz on ¢, ¢, and
B but also the Weyl BRST transformation 6z on ¢”, Cps and
b,. The BRST transformations on these fields are fixed by
requiring that the two BRST transformations anticommute
with each other [18], that is,

{85,065} = 6305 + 6565 = 0. (4.6)

Then, the resultant BRST transformations take the form

8yB = —c0,B, dgc = —c*o,c,
SBbp = SBC/) ES SBEp ES 0

5yt = —c*0,c,

(4.7)

In this context, it is worthwhile to recall that the gauge
condition for the GCT must be invariant under Weyl gauge
transformation while the one for Weyl transformation
must be invariant under GCT in order for the two BRST
transformations to anticommute. In that case we can
consider the two BRST transformations separately. The
suitable gauge condition for the GCT is almost unique and
is called “the extended de Donder gauge” [18]%:
|

1 1
_§¢2G;w__§(vuvv_g;w )¢ 3§¢2 <S S 29/41/‘5 Sa) +3§¢(S 0 ¢+S ¢_g/4vsaaa¢)

ay(ff'”(ﬁz) =0,

where we have defined 3 = |/—gg"”.

On the other hand, we have a few candidates for the
gauge-fixing condition for the Weyl transformation, which
must be invariant under the GCT, i.e., a scalar quantity. The
first one is the well-known “unitary gauge,” ¢ = const,
which is taken to show that Weyl invariant scalar-tensor
gravity is equivalent to the Einstein-Hilbert term. The other
gauge condition is the Lorenz gauge, V,$* = 0, which is
usually adopted in quantum field theories. However, it turns
out that these gauge conditions are not so interesting in the
present context since they do not allow for conformal
symmetry to remain. Hence, we shall choose what we call
“the scalar gauge condition” [18]:

(4.8)

9,(7¢,p) = 0, (4.9)
which can alternatively be written as
Og? = 0. (4.10)

After taking the extended de Donder gauge condition
(4.8) for the GCT and the scalar gauge condition (4.9) for
the Weyl transformation, the gauge-fixed and BRST
invariant quantum Lagrangian is given by
Ly=L.+ Lopipp + LGrirp

= [’c + 153 (gﬂv¢zaﬂab) + ISB [an (gﬂu¢ay¢)]
= \/__g
l v 1 v
4H;wHﬂ —569’4 Dy¢Dv¢
- #¢*(9,b, + i0,¢,0,c")
+ 3 $0,Bo,p — i $*0,T0,c,
where surface terms are dropped.
From the Lagrangian L, it is straightforward to derive

the field equations by taking the variation with respect to
s Su> §: by, B, c?, ¢, ¢, and ¢ in order:

1
5P (R —6V,5" ~65,5")

(4.11)

1 .
Sl + g0, Hoy

1 1 1
__6 ﬂ¢Du¢ g;w( a¢)2:| _E <E;w_§gﬂyE) =0, (6§+€)g””¢Dy¢—V,,H””:(),

EP*(R—6V, S —6S,5") +¢

—2¢" 9, Bd,p— $* 1B =0,

1
\/__g(ﬁDM (#“¢D,p)—

9 (7 ¢*) =0, 0,(3"¢o,¢)=0, ¢*0,0,¢,=¢"0,0,c" =g¢"0,0,c=g"d,0,c=0, (4.12)

¥Let us note that this gauge condition breaks the general coordinate invariance, but it is invariant under the general linear
transformation GL(4). Thus, the quantum Lagrangian that is obtained shortly is also invariant under the GL(4).
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where G, =R, — %gWR denotes the Einstein tensor,
while E,, and E are defined as

E, = qﬁz(aﬂby + iaﬂ@aycl) — ¢9,Bo,¢
+ i?0,c0,c + (u < v),

E=g¢"E,,. (4.13)

Moreover, since §“D,¢ has the weight 1, the Weyl
covariant derivative is defined as

D, (#"D,¢) = 9,(7#"Dyg) + S, 7"Dop.  (4.14)

When we introduce the dilaton o(x) by defining

d(x) = e, (4.15)

the two gauge-fixing conditions in (4.12), or equivalently,
Egs. (4.8) and (4.9), lead to a very simple d’ Alembert-like
equation for the dilaton:

¢0,0,0 = 0. (4.16)

It is worthwhile to notice that it is not the scalar field ¢ but
the dilaton o that satisfies this type of equation.

To show that the auxiliary field B also obeys the same
type of equation, let us take into account the trace part of
the Einstein equation, i.e., the first field equation in (4.12),
which gives us the equation

EP*R — 66 S, S + 126pS*0,p — (D op)* — E = 0.
(4.17)

Next, we can rewrite the field equation for ¢, the third
equation in (4.12), as

EP*R—6EP* S, S* + 12680, —€(Dop)* —E
— (6&+€)¢*¢"9,S, —2¢" $,B0,p—$*TIB=0. (4.18)

Using Egs. (4.17) and (4.18), we can obtain the equation

¢"0,0,B + (6¢ 4 €)¢*9,S, = 0. (4.19)
Now we are ready to prove
90,8, = 0. (4.20)

To do that, let us consider the field equation for S, in (4.12),
multiply by /=g, and then operate the covariant derivative
consequently leading to

V=9V, VL H" = (66 + )V, (3“¢D, ). (4.21)

The left-hand side (LHS) of Eq. (4.21) is identically zero
and 6 + € # 0 by our assumption, and we find that

V,(#¢D,$) = 0. (4.22)

Using the formula

vy(glwAy) = aﬂ(f)/”’Ay), (4'23)

which holds for an arbitrary covariant vector A, Eq. (4.22)
is reduced to the form

aﬂ (g"”gba,,qb - gﬂv¢2gy) =0. (424)

Then, using the gauge conditions (4.8) and (4.9), we can

reach Eq. (4.20). Hence, Eq. (4.19) implies that the

auxiliary field B obeys the equation

¢"0,0,B = 0. (4.25)

Surprisingly enough, using the Weyl BRST transforma-

tion, we can show Eq. (4.25) in the simplest way. For this
aim, let us start with the field equation for ¢ in (4.12):

g"9,0,¢ = 0. (4.26)
Operating 6 on this equation leads to
—2c¢g"0,0,¢ + ig"9,0,B = 0. (4.27)

The first term on the LHS is vanishing owing to (4.26), so
we can arrive at Eq. (4.25).

In a perfectly similar manner, we can show that the
Nakanishi-Lautrup ~ auxiliary field b, satisfies the
d’ Alembert-like equation by either an explicit calculation
or using the BRST transformation for the GCT. Here we
present only the latter proof since the former one was given
in our previous paper [17].

Let us start with the field equation for ¢, in (4.12):

g*9,0,¢, = 0. (4.28)
Taking the GCT BRST transformation of this equation
yields

(=0,0" c* + g0 c” + G"%0,c*)0,0,¢, + ig"*0,0,B, = 0,
(4.29)
where we have used the GCT BRST transformation (4.1).

Substituting the definition of b, in Eq. (4.2) into (4.29), we
have the equation for b,:

106007-6
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ig9,0,b, = ¢"0,0,(c*0,¢,)
— (=09 c* 4+ 2¢"%0,¢¥)0,0,8,.  (4.30)

With the help of Eq. (4.28) and the field equation for ¢’ in
(4.12), the right-hand side (RHS) is found to be vanishing
so we have the desired equation

g"0,0,b, = 0. (4.31)
In other words, setting X" = {x*,b,,0,B,c",¢,,c, E},g
XM turns out to obey the very simple equatlon

¢0,0,X" = 0. (4.32)

This fact, together with the gauge condition d,,(#*¢*) = 0
produces the two kinds of conserved currents:

PIM = g0, XM = v (19,XM).

MIMN = g g2 (XM G, YV, (4.33)
where we have defined X* 9,Y" = X9, YN — (9,X™)Y".
These conserved currents constitute a Poincaré-like
10Sp(10]10) supersymmetry as will be shown later.

V. CANONICAL QUANTIZATION AND EQUAL-
TIME COMMUTATION RELATIONS

In this section, after introducing the Poisson brackets,
we will evaluate various equal-time commutation relations
|

1 ~uy ¢ T« ¢ Ta
'Cq = _5 7" ¢2<F/wro'a_r arav+6S SI./)

‘%V_H Hv - —eg””D $D,p + 0,(F*P*)b,
i ?0,50,c + O,V

+ gﬂya,uB¢av¢ -

where we have also integrated by parts two terms with the linear S, and b,

1
W= Eg(pz(gaﬂr’;ﬂ -

— &0, (TP

7"Tl)

(ETCRs) among fundamental variables. To simplify vari-
ous expressions, we will obey the following abbreviations
adopted in the textbook of Nakanishi and Ojima [21]:

[A,B] = & =56(x-X),

f=

[A()C), B()C/)] |x0:x'o?
1

1
LI 5.1
gOO \/_—ggOO ( )

where we assume that 3% is invertible. Here the above
brackets [A, B'] symbolically describe the Poisson brackets
and the ETCRs.

First of all, let us set up the Poisson brackets of canonical
variables:

1
A
(g Y= (004 5160)5

{S,mp =85 {e.x}p={en

{B.ag}p={c.n}p={c.n}p=0,

{d)vﬂ;j}P =&,
72} p =858,
(5.2)

where the other Poisson brackets vanish. Here the canoni-
cal variables are g,w,gb, S”,B c? ,Cps €, C and the corre-
sponding canonical conjugate momenta are mf’ ,ﬂ,/,,ﬂ’g,
B, Ty, 72, n,, ., respectively, and the b, field is regarded
as not a canonical variable but a conjugate momentum
of .10

To remove second-order derivatives of the metric
involved in R, we perform the integration by parts once

and rewrite the Lagrangian (4.11) as

- §"T5,) + 653" ¢S,0,¢

— i3 ¢*0,c,0,c"
(5.3)

, and a surface term V¥ is thus given by

_3§§”U¢251/_§”D¢2by‘ (54)

Using this Lagrangian, the concrete expressions for canonical conjugate momenta become

The conventional de Donder condition, 0 7" = 0, can be rewritten as 9, (g0, x #) = 0. This can also be described as 90,0, x=0
by means of the de Donder condition. In other words, by adding the spacetlme coordinates x* to XM, we can consider the de Donder

condition as well.

'“Taking the variation of (5.3) with respect to dpg O leads to the expression ¢2b + -

- where - - - does not involve the time derivative

of fields, which means that the b, field is in essence a conjugate momentum of P uptoa factor of ¢.
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oL

v — q
agﬂl/

1
=~ VI [—g“gﬂ”g“ — g7 =g

g

+9% g7+ 979" g + ( gt + g% g") ‘”} 010t
—\/_{ (9% +g" ") - 9"”9"0]5470,;(17

- 5 V=9(* " + g% g — g% ) p*b,,
oL

o=t D 2 1+ T T
+63% ¢S, + 3" $a,B,
()E oL
o= —/—gHY™, & = 1=%pa, o,
57098, 5 0B Pout
oL, 0 . oL, on 12
Moo =—2 ——Lg”gbdcg, ﬂE:——lg”gbac
oc’ oc,
oL
ncza—é”:—igoﬂd)zaﬂa me=—=ig"¢?dc, (5.5)
where we have defined the time derivative, such as

G = g“” = 0dy9,,» and differentiation of ghosts is taken

from the right.
It can easily be seen that we have a primary constraint

¥, =72=0. (5.6)
|
A 1
Akl _ _Z\/_aqs [ QOmgklg _g gkmgla
1
2
N 1
Bklp _ _5\/_—g¢2(90kglp + gOlgkp _ QOpgkl),
éklmn _ _l\/_—gg¢2( gOnglgmn _ gOnQOkglm
4

+ g()ngklg0m + g()kg()lg )
\/_547( 00 kl _QOkg()l)

Solving (5.10) with respect to ¢, together with Eq. (5.9)
leads to

gt = Cipyy |y =A™ = B"" b, — D" <¢”B 7%, ¢>]
(5.12)
where Cpl,, is the inverse matrix of C*™" given by

-9

Let us recall that a secondary constraint comes from the
consistency under time evolution of the primary constraint:

lP2 = 7.[2 - {ﬂg, HT}P NO, (57)

where Hr is the Hamiltonian of the system at hand, which
is defined as

HTE/d3xHT

= / Px(7 gy + 1y + 758, + wpB + 1m0

+ 74C, + mo¢ + 1 — L), (5.8)
To obtain the Hamiltonian, we have to express the time
derivatives of the canonical variables in terms of the
canonical conjugate momenta in (5.5). To do that, let us
first consider zg, which gives us the expression of ¢ as

. - (1 .
¢ = f<$”3 - §Olai¢>~

Next, let us turn our attention to the (k) components of zf)",
which take the form

(5.9)

4= QM BHop, 1 gy G (5.10)

where AK BK CK™and D¥' commute with g,,, and are
defined as

Om kt

_ gOangglm + Mg gla + QOTlegma

( Ok lrn+g01 km)g :| N \/_§¢|: ( Ok lm _|_90[ km) kl ()m md)

Om kn Ol 00 kn Im
+9°9"g

(5.11)

N 2
Climn = ?&f (GkiGmn = GkmGin = GknYim)-

CHm Cropij = = (858 4 818%). (5.13)

2(

Using the extended de Donder gauge condition (4.8), gg
and g are described as
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1
Joo = 70 (9 9ij — 2901900 + ¢¢>

A A =1
— g C - |: Amn By — Dmnf <_ P
W { " . ¢""
L[, 1 2
ig — g0, ) P
g % ( Jjk i Qak + 59" %Yap + & k¢>
1 A e |
Oj C |: mn Amn an[)b _ Dmnf (_
— g0 { ! ¢

In a similar manner, based on b ﬂ'/;v Teos 7l 7., and 7;
in Eq. (5.5), the time derivatives B, S, Sy, ¢,. ¢, ¢, and ¢
can be expressed in terms of the canonical conjugate
momenta as follows:

B=F g | myt cm— G-+ IS, =2, ~ 40,
—EF{(§0g7 =" ") Cijppulmyn =A™ — B b,
—&f (g™ =" g™ (5= T Por)]

+ (397 =5"9")0i9up}

S =Sy +J~C(_gkj”§ +3"Hy;).

So=—F{5""[20,S, +]~C<_gij”§ +3%H;;)]+770;S;}

Co=if 7 nee— 17" 0iC,,

" =—if 7 nl [ 0,c”,

c=if¢p~*n.~fg"o;c,

e=—if¢p .~ fi’o;c,

7Z'¢+€

(5.15)

where we have used Eq. (4.20) in deriving So.

Finally, we can also express the b, field in terms of
canonical conjugate momenta. Since the b, field is
regarded as a conjugate momentum of %, we begin with
ﬂ'g , which has a structure

70 = A% 4 BP9y + CPhy, (5.16)

where A%, B, and C% = —15¢”¢* do not include

Gy» and Baﬂaﬂ¢ does not have qﬁ Solving this equation
with respect to b, leads to

b, = —2F 72 Gn™ — —éf {50 (gofg*" - ‘”g‘”) 0,90

— (Z]Onga _ 5 gOOgm-) aﬂgﬂ:|

— &7 (9,p — 81FF"0uth).- (5.17)

. . 4./1
- 90’01'4")] —24"0;90a + —f<$”3

. . 1 2
g — 0'51'4’)} = 4" 0iYor + Egaﬂakgaﬁ =+ Eakd’}-

o).

¢

(5.14)

|
Note that the RHS of this equation does not involve g,,, and

gb as can be verified explicitly. Incidentally, the relation
(5.16) is utilized to derive some useful Poisson brackets
such as {g,,.b)}p.

Using the Hamiltonian Hy, Eq. (5.7) provides us with a
secondary constraint:

¥, = ol + (6€ + €)(mp — §#¢*S,) = 0, (5.18)
which is just the same as the (Ou) components of the field
equation for S, in (4. 12) and there are no more constraints
since we can show that'!
¥, = {¥,,Hr}p =0 (5.19)
The Poisson bracket between the constraints is evaluated
to be

(1), = (6 + RS = (66 +) 24, (5.20)

which implies that the constraints are the second-class
constraint so that they can be treated by means of the Dirac
bracket defined as

{AB'}p = {A B}y — (AW pCH{¥) B Yy (5.21)
where ¥, (a = 1, 2) are the second-class constraints and
~} is the inverse matrix of C,;, = {¥,, ¥} } p. Concretely,

the matrix elements, C;/, are given by

Cp=-C3l = —f¢ 253,

6re Cil=C3}l=0.

(5.22)

As is well known, the canonical quantization can be
carried out by replacing i{A, B’} with the equal-time
commutation relation [A, B']. After some calculations, we
can write down several important ETCRs, which are
needed for later calculations:

""A derivation of constraints is exhibited in Appendix.
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. 2~
[gpm g;w] == lf¢ 2[9/709/41/ ~ 9puGov —
¢

+ 8980y + 82809, + 82809,,)18°,

GpvY9ou + V _g}‘(525290'u

[gpav ¢/] =0, [gpa’ Bl] = 2if¢_zgp053a
(. b)) = [B.b)] = [B.B| = [p.¢'| = [$.S,] =0.  [$.B] =—ifp™'5",
1 -

[S(), S;{] = - 65 i if¢_26k63, [Sk’ Sﬂ - 0,

. - . - 1
[So. Sk) = —if gor’. (St S1] = —if gus® + 6F + e ——— 0, (fp~20,8%),
[So. b] = =if¢72S,8%,  [So, B = ~if¢p™*8,  [Sk.b)] =[S, B =0,
[So. B'] = 2if5"0,(fp28°). S B = —id (F$28%).

(¢, ¢} = —{c0.8)} = —f¢p2698°,

{e.dy=~{e. ey =978,

(G b)) = =i (8095 + 809,)8°.  [§*. b)) = if g2 (3°8, + 08, — 3 6))5°

(G- B)) = i{[F 20,9, — 0o (™) (809, + 809,18 + (85 — 2607 5%) g,

+ (u < )0k (fp728%)},

. b)) = —ifd20,05%,  [B.b)) = —ifp20,B5,

[So. b},) = =if*$2[7"(9,S, + 9,,) — "' H |8 + 2if 7 0;(fp75,8°).

[S4. b)) = if p2 Hy&® — i0u(F7285,8%).

b bi] =0, (b, B} = if¢p72(9,b, +0,b,)&,

[b,.c”] = [b,. )] = [b,.c'| = [b,.c'] =0,

(1. b)) = —if 20,88, (7, b)) = —if¢p™20,c78,

[6.b)) = —if$p20,e5°, ¢, b)) = —if$20,c5°. (5.23)
These ETCRs can be obtained from the explicit calcula- {B, B tp = (6&+ g)}¢—253
tions and/or the BRST transformations. For instance, we 1 3
will present a derivation of [B, B'] =0 by both methods. = (65 +€)C3 (65 + €)5” = 0. (5.26)

First, let us focus on the explicit calculation via the Dirac
bracket:

{B’B/}D = {B’B/}P {B.¥3}p 211{'{’”’3/}13 (5.24)

Since we can easily evaluate each Poisson bracket whose
result reads

{B.B'}p = {B, (6 + €)fp7n}p = (6 + €)f 725",
{B.W,}p = {B, (6 + €)mp}p = (66 + €),
{¥),B'}p = {n§, —(6¢ + €)fi™S,} = (6¢ + )5’
(5.25)

the Dirac bracket becomes

Second, we will present a derivation by means of the
BRST transformation that is more general and elegant than
the above explicit calculation. The ETCR, [B, .| =0,
leads to [B, ¢/] = 0. Taking the Weyl BRST transformation
of this ETCR yields the equation

{[iQg.B].&'} + [B.{iQp.¢'}] = (5.27)
Then, the Weyl BRST transformation (4.4) immediately
leads to [B,B'] = 0.

VI. UNITARITY ANALYSIS

As in the conventional BRST formalism, the physical
state |phys) is defined by imposing two subsidiary con-
ditions [25]
= Qglphys) = 0.

QOp|phys) (6.1)
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It is then well known that the physical S-matrix is unitary
under the assumption that all BRST singlet states have
positive norm. In this section, we would like to prove the
unitarity of the physical S-matrix in the present theory.
From the classical analysis we know that the gauge field
becomes massive via the Higgs mechanism. Thus, we wish
to understand how the Higgs mechanism is described in
terms of the BRST formalism.

In analyzing the unitarity, it is enough to take into
account the asymptotic fields of all the fundamental fields
and the free part of the Lagrangian. Let us first assume the
asymptotic fields as
|

= _gd)o( w;,w (p/,w - _(/)Dw - _(p/w p(pb

+ (6 +¢) <¢0s > — ¢Os s")

— ih50,7,07" + o9, b —

4 i

where U =#"0,0,,9 =n"¢,, and h,, = 0,5, — 0,s,.
Based on this Lagrangian, it is easy to derive the linearized
field equations:

1 1 1 1
5545(2) <§D¢yv_§nﬂu|:|§0_apa(ﬂ(py) +50 av§0+ ’/I;w o‘(pp )

2 H
+5¢0(_nyuD—i_aﬂau)&s"i_(ﬁ%a(ﬂﬂy) —ifﬁ%’?ﬂyapﬂp:o» (64)
€|:|£Zs + €¢0(_D§0 + 6ﬂavg0””) - (65 =+ €)¢Oaﬂsﬂ
= 2¢po0,° — PpolIp = 0, (6.5)
& hy,, + (6& + €)3 <sﬂ - %a@) =0, (6.6
0
0,4 ! b ! d,0) =0 6.7
/4¢_§¢0< 90;41/_5 /4()0)_ ’ ()
O¢ =0y =0y, =0y =07 =0. (6.8)

Here we have introduced the symmetrization notation
AyB, = 1(AB,+A,B,).

Now, operating ¢ on Eq. (6.7) and using Eq. (6.8), we
obtain

1
0,0, ~ 30 = 0. (6.9)

Next, taking the trace of Eq. (6.4) with the help of Egs. (6.8)
and (6.9) leads to

gﬂD:”ﬂD+(pMD’ ¢:¢0+<Z’ S = Sy

"
b, = Py B=p, ct =yH, Cy = Tus
c=y, c=7, (6.2)
where 7, (= ") is the flat Minkowski metric with the

mostly positive signature and ¢, is a nonzero constant. In
this section, the Minkowski metric is used to lower or raise
the Lorentz indices. Using these asymptotic fields, the free
part of the Lagrangian reads

1 ~
_(pﬂyauapqo) + §¢0¢(—|:|(,0 + ayazxq)m/)

y 1
€0 P p — (211"”¢o¢ — P + 5 </)577"”rﬂ) 2,8,

(6.3)

Ol + gapﬁﬂ =0. (6.10)

Moreover, operating 0" on Eq. (6.6), and using the identity
0"d"h,, = 0 and Eq. (6.8), yields the Lorenz condition
9,st = 0. (6.11)

As can been seen in Eq. (6.6), it is more convenient to
introduce 3, defined as

) (.
8, =8, — 0,0,

o (6.12)

which also obeys the Lorenz condition owing to Egs. (6.8)
and (6.11):
9,5* = 0. (6.13)
With the new gauge field §, and the corresponding field
strength h,, = 9,5, —9,3,, the “Maxwell equation” (6.6)
can be cast to the form
#hy, + (66 + )35, =0, (6.14)
which clearly shows that the Weyl gauge field absorbs the
Nambu-Goldstone boson ¢ associated with the spontane-
ous symmetry breakdown of the Weyl gauge symmetry,
thereby becoming massive with the mass squared
(6 + €)¢3. (Here we assume 6& + ¢ > 0, which is con-
sistent with the positive Newton constant £ > 0.) To put it

differently, after spontaneous symmetry breakdown of the
Weyl gauge symmetry, the Weyl gauge field §, satisfies not
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only the Lorenz condition (6.13) but also the massive
Klein-Gordon equation

(6.15)
where m? is defined by
= (6¢ + €)f2. (6.16)

Furthermore, with the help of Egs. (6.8)—(6.11) and (6.5)
can be rewritten as

Up =o0. (6.17)
Moreover, acting ¢ on Eq. (6.4) yields
0p, = 0. (6.18)

Finally, using various equations obtained thus far, the
“Einstein equation” (6.4) is reduced to the form

4
Z0b) =0,

Uy + z

(6.19)

which means that the field ¢, is not a simple pole field but
a dipole field:

B¢, = 0. (6.20)
On the other hand, in addition to Eq. (6.15), the other fields
are all simple pole fields:

O¢=08,=0p=0p=0y,=0y=07y=0. (6.21)
Note that Eq. (6.21) corresponds to Eq. (4.32) in a curved
spacetime.

Following the standard technique, we can calculate the
four-dimensional (anti)commutation relations (4D CRs)
between asymptotic fields. The point is that the simple
pole fields, for instance, the Nakanishi-Lautrup field f,(x),
can be expressed in terms of the invariant delta function
D(x) as

Pu(x) = (6.22)

—/d%D(x—z)Sf)ﬁﬂ(Z)’

whereas the dipole field ¢,, (x) takes the form

<>

@wu»——/&&uxx—@asﬁw@»+Eu—@3@1@w@n

_/d3z [D(x—z)géfpw(Z)
(6.23)

4 <
—EE(X—Z) 563(,“5”)(2)} :

where in the last equality we have used Eq. (6.19). Here the
invariant delta function D(x) for massless simple pole
fields and its properties are described as

/d4k€(k )6(k*)e’*,  OD(x) =0,

D(0.5)=0, 9,D(0.7)=5(x).
(6.24)

(22
D(—x)=-D(x),

where ¢e(ky) = o+ Similarly, the invariant delta function
E(x) for massiess dipole fields and its properties are

given by
E(x)=— (271) /d4k€(k0)5’(k2)eikx, OE(x)=D(x),
E(—x)=—E(x). E(0.%)=0,E(0.5) = RE(0.5) =0,
ARE(0,X)=—8%(x), (6.25)

where &' (k?) = d‘;g{k;).

On the other hand, the Weyl gauge field §(x) obeys the
massive Klein-Gordon equation (6.15), so it needs to be
described in terms of the invariant delta function A (x; m?)
for massive simple pole fields as

3,(x) = —/d3zA(x—z;m2)36§ﬂ(z), (6.26)
where A(x;m?) is defined as
A(x;m?) = — : 2/a’“/’ce(ko)é(k2 + m?)e*,
(27)-
(O —-m*)A(x;m?) = 0,
A(=x;m?) = —A(x;m?), A(0,%;m?) =0,
0pA(0, X; m?) = 8% (x), A(x;0) = D(x). (6.27)

It is easy to show that the RHS of Egs. (6.22), (6.23), and
(6.26) is independent of z°. Thus, for instance, when we
evaluate the four-dimensional commutation relation
[0,(X). @5:(¥)], we can put z° =y° and use the three-
dimensional commutation relations among asymptotic
fields. After some manipulation, we find that the 4D
CRs are given by

[0(%), 95z (V)]

2.
= - E 1(1502[(’7;41/’7(;1 ~ Nuolvr — ”ﬂr’?zxo’)D('x - y)

+ (77;405”51 + 771/00/407 + nm'auao + nurauaa)E(x - y)]!
(6.28)
(6.29)

[(p;w(x)’ﬂ/)(y)] = _i¢62(’7ﬂpau + nbpaﬂ)D('x - y)’
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[(0;41/( x), p)] = 2ipy' nuD(x =),  (6.30)

¢ (x). B( )] = —igyy' D(x —y), (6.31)

5,008,001 = (10 = 20,0, A= yim?), (632
{r°(x).7.0)} = 5°%D(x~y).  (633)
{r(x).70)} = ¢g”D(x = y). (6.34)

The other 4D CRs vanish identically.

Now we would like to discuss the issue of the unitarity of
the physical S-matrix. To do that, it is convenient to
perform the Fourier transformation of Egs. (6.28)—(6.34).
However, for the dipole field we cannot use the three-
dimensional Fourier expansion to define the creation and
annihilation operators. We therefore make use of the four-
dimensional Fourier expansion [21]12

1 4 ipx T e—ipx
ol = / & pO(po) [0y (D)™ + ghu(p)e?").
(6.35)

where 0(p,) is the step function. For any simple pole fields,
we adopt the same Fourier expansion, for instance,

Balx) = / & pB(po)|B, (p)e™ + Bl(p)e=].

(6.36)

1
(2n)

Thus, using Egs. (6.22), (6.23), (6.35), and (6.36), for
instance, the Fourier transforms of, e.g., ¢, (x) and f,(x),
take the following expressions:

0(P). 0he(@)] = =2 8320(00)5* (9 — D)[5(p?) (s tor —

¢

[0 (P). £(a)]

ulp) = rsg0lpo) [ e G550 2
+8(p?) 00, (2)].
) = G 8e0d(p?) [ s Sip @) (637)

Incidentally, for a generic simple pole field ® with
a mass m, the three-dimensional Fourier expansion is
defined as

D _ ipx (I)% 23\ ,—ipx ,

)= G | Er g 0PI+ 01 (P
(6.38)

with ®, = +/p*+ m?, whereas the four-dimensional

Fourier expansion reads

o(x) = / & pO(po)[@(p)e™ + ©' (p) (p)e=7].

(6.39)

(22}

Thus, the annihilation operator @( p) in the four-dimensional
Fourier expansion has a connection with the annihilation
operator ®( ) in the three-dimensional Fourier expansion via

(6.40)

®(p) = 0(po)s(p* + m*)\/ 20,9 (p).

Based on these Fourier expansions, we can calculate the
Fourier transforms of Egs. (6.28)—(6.34):

NucMur — 77/41’71/0)
=38 (P?) MuoPu Pz + Moo PuPr + NuePuPo + N PuPs))s (6.41)
[

{r°(p).75(q)} = —ighy?620(po)3(p*)5*(p — q).  (6.46)
= i (M0 + P00V (p = q). (642 _ o
P Cb = Mgp)0POXPIT P = @) (O8] ) gy 005 (0 — ). (647
[0 (P). B (9)] = 25" 1,,0(po)S(p*)5* (P —q).  (6.43)
[B(p). A (q)] = —¢5'0(po)8(p*)5* (P — q).  (6.44)

5,031 = + (1 = 2 2
X 0(po)d(p* +m*)8*(p —q), (6.45)

"For simplicity, the Fourier transform of a field is denoted by
the same field except for the argument p instead of x.

Next, let us turn our attention to the linearized field
equations. After Fourier transformation, Eq. (6.7) takes the
form

1 -
— =Py =203 .

: (6.48)

PP
If we fix the degree of freedom associated with ¢, which
will be discussed later, this equation gives us four inde-
pendent relations on ten components of ¢,,(p), thereby
reducing the independent components of ¢,,(p) to be six.
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To deal with six independent components of ¢, (p), it is
convenient to take a specific Lorentz frame such that p; =
p2» =0 and p3 > 0, and choose the six components as
follows:

901(17):%[(/’11(19)—(.022(17)]’ »2(p) =@12(p),
wy(p) = —ZLPO(POO(P)» w;(p)= —éfﬂw(l’)’
w3(p) = —2%73(033(17)7 (6.49)

where the index 7 takes the transverse components I = 1, 2.
In this respect, it is worthwhile to consider the GCT
BRST transformation for these components. First, let us
write down the GCT BRST transformation for the Fourier
expansion of the asymptotic fields, which reads

889, (P)==ilpur.(P) + Puru(P)].  Ssr"(p)=0.

387u(P) =iBu(P),

Sp(p) = 5Py (p) =0pP(p) =5y (p) =57(p) =0.
(6.50)

Using this BRST transformation, the GCT BRST trans-
formation for the components in (6.49) takes the form

éBw;t(p) = l]/M(P),
6Byﬂ(p) = 5Bﬂ,u(p) = 07

Sppi(p) =0,

where p; = p, = 0 was used. This BRST transformation
implies that ¢;(p) could be the physical observable while a
|

%456 K2

set of fields, {w,(p). B,(p).7,(p).7.(p)}. might belong to
the BRST quartet and thus are dropped from the physical
state by the Kugo-Ojima subsidiary condition, Q|phys) =
0 [251."

Next, let us move on to the other BRST transformation,
which is the BRST transformation for the Weyl trans-
formation. The Weyl BRST transformation for the asymp-
totic fields is of the form

Spy =0, oy =ip,

(6.52)

SB(/);w = ZCI’]}”/, SB& = _¢Oy’
53 =0pP, =0py, =07, =0.

The Weyl BRST transformation of ¢; is vanishing,

BB(p[ = 0, (653)
which means that together with dzp; = 0, ¢, is truly the
physical observable. The four-dimensional commutation
relations among the fields {¢, B, y,7} read

_

[#(p).9'(q)] =0.
[B(p). BT (9)] = —¢5"0(po)5(p*)5*(p - q).

{r(p).7"(q)] = =i5*0(po)d(p*)8*(p —q).  (6.54)
As can also be seen in these 4D CRs, all the fields
{@1,&,B. 7,7} are massless simple pole fields. Via relation
(6.40) the three-dimensional commutation relations

[@(p).©¥(q)} with  ®(p) = {1 (7). (). B(P).7(P),
y(p)} are of form

[@(p). ()} =

0 x 8(p - G). (6.55)

Thus, ¢; is the physical observable while the set of fields
{¢.p.y,7} consists of the BRST quartet and is the
unphysical mode by Kugo-Ojima’s subsidiary condition

"The situation is, in fact, a bit complicated since Bu(p)s74(P),
and 7,(p) are simple pole fields obeying p*p,(p) =
p*7,(p) = p*7,(p) = 0, while ¢, (p) is a dipole field satisfying
(P*)*9,,(p) =0, so that a naive Kugo-Ojima’s quartet mecha-
nism does not work in a direct way. But this problem can be
remedied by introducing an operator that takes out a simple pole
from a dipole field. The detail can be shown in Ref. [18].

—igpy?

+igy?

I

[25]. Here it is worth mentioning that the Nambu-
Goldstone boson ¢ associated with spontaneous sym-
metry breaking of the Weyl gauge symmetry is an
unphysical particle. In this context, let us recall that the
Nambu-Goldstone theorem never tells us whether the
Nambu-Goldstone boson is physical or unphysical.
From our analysis at hand, we can conclude that the
Nambu-Goldstone boson ¢ is the unphysical mode,
which is absorbed into the longitudinal mode of the Weyl
gauge field s,(x), and thereby the gauge field becomes
massive.
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Finally, let us focus on the Weyl gauge field §,, which
satisfies the Lorenz condition (6.13) and the massive Klein-
Gordon equation (6.15). In a specific Lorentz frame

Py = (m,0,0,0), (6.56)
the Lorenz condition (6.13) produces
S0(p) = 0. (6.57)

With the Lorentz frame (6.56), it turns out that the spatial
components of §, are invariant under both GCT and Weyl
BRST transformations:

(6.58)

Moreover, using the relation (6.40) and Eq. (6.45), the
commutation relation between the three-dimensional anni-
hilation and creation operators reads

[5:(P).3}(9)] = 6,,6*(p — q). (6.59)
Together with the BRST invariance in Eq. (6.58), this
equation clearly shows that the spatial components §;(x)
are really genuine physical massive modes belonging to
BRST singlets with positive norm.

VII. CHORAL SYMMETRY

In the previous article [18], we have clarified the
existence of a huge global symmetry called ‘“choral
symmetry,” which is the /0Sp(10/10) symmetry, in
Weyl invariant scalar-tensor gravity in Riemann geometry.
We will show that the choral symmetry also exists in the
theory at hand. The existence of the choral symmetry is
expected from the fact that as shown in Sec. IV, a set of
fields (including the spacetime coordinates x*) XM =
{x*,b,,0,B,c",¢,,c,c} obeys a very simple equation,

¢*0,0,X" = 0. (7.1)
It is worthwhile to note that this equation holds if and only
if we adopt the extended de Donder gauge condition (4.8)
for the GCT and the scalar gauge condition (4.9) for the
Weyl gauge transformation. Furthermore, Eq. (7.1) implies
that there should be many conserved currents defined in
Eq. (4.33) in the theory under consideration. In this section,
along the same line of argument as that in the previous
article [18,19], we will explicitly prove that there is the
choral symmetry /0Sp(10]|10) in Weyl conformal gravity
in Weyl geometry.

Let us start with the Lagrangian (4.11), which can be cast
to the form

1 1
L,=+/~g Efqﬁz(R -6V,8"—6S,5") —ZHWH/“’
1 1._ A
—EGQ”D(—2¢6”¢SH+S”SD¢2) _Eg’w(szmn (72)
where we have defined E,w as

. 1
E, = Egaﬂgayg + 0,b, +i0,¢;0,c* — 0,Bd,0

+i0,cd,c + (u < v) (7.3)
and used the relation (4.15) between the scalar field ¢ and
the dilaton o.

Next, let us focus our attention on the last term in
Eq. (7.2) and rewrite it into a more compact form:

o L,
L = =37 DB = =7 ¢nund, X0, X"

= ——Q"”qﬁz()ﬂXMﬁMNd,,XN. (7.4)

N = N —

Here we have introduced an /0Sp(10]10) metric nyy =
nhn = fiyy defined as [26]

v a
b]/ 65
o e —1

e B -1 0

NINM =TMN = v -
Cy 10K
c —1
c 1
¥ b, o B ct cu, ¢ ¢C

Let us note that this /OSp(10[10) metric 77y, which is a
c-number quantity, has the symmetry property such that

Mun = (_)‘MHM”NM = (_)‘M|’7NM = (_)‘N‘WNM’ (7.6)
where the statistics index |[M| is 0 or 1 when XM is
Grassmann-even or Grassmann-odd, respectively. This
property comes from the fact that 5,y is “diagonal” in
the sense that its off-diagonal, Grassmann-even and
Grassmann-odd, and vice versa, matrix elements vanish,
i.e., nyy = 0 when |M| # |N|, thereby being M| = |N| =
|M| - |N| in front of 7,y [26].

Now that (7.4) is expressed in a manifestly /OSp(10|10)
invariant form except for the Weyl invariant metric F#*¢?,
which will be discussed later, there could exist an
I0Sp(10[10) as a global symmetry in our theory. Note
that the infinitesimal OSp rotation is defined by

SXM = yMLg, XN = M XN, (7.7)

106007-15



ICHIRO ODA and PHILIPP SAAKE

PHYS. REV. D 106, 106007 (2022)

where #MV is the inverse matrix of #,,y, and the infini-
tesimal parameter ¢,y has the following properties:

ey XL = (=) ILIM+INDXLe o

(7.8)

ey = (=) TMHNlgy,,

To find the conserved current, we assume that the infini-
tesimal parameter €,y depends on the spacetime coordi-
nates x*, i.e., &yy = ey (x#).

Assuming for a while that the metric §*“¢? is invariant
under the OSp rotation (7.7), we find that (7.4) is trans-
formed as

SLY) = 72 (9,enp XM, XN + £xp0,XM0,XN). (7.9)
It is easy to prove that the second term on the RHS vanishes
owing to the first property in Eq. (7.8). Thus, EE,E> is

invariant under the infinitesimal OSp rotation. The con-
served current is then calculated to be

SLL) = —g 20,5y X0, XY
_ _%gﬂpqﬁzaﬂeNM [XMabe _ (_)\MHN|XNayxM]
= —% #P*0,enu (XM, XN — 0, XMXN)
S % 70,5 XM 0, XN
(7.10)

with the conserved current M*MN for the OSp rotation
taking the form

MHMN — g2 xM g XN, (7.11)

The above proof makes sense only under the assumption
that the metric #“¢* and the other terms except for the last
term in (7.2) are invariant under the OSp rotation, but it is
obviously not the case. However, this problem is cured by
noticing that the OSp rotation includes a Weyl trans-
formation on the dilaton,

o0 = ﬂﬂLSLNXN = —EBNXN = —E(X), (712)
where we have used (7.5) and
e —1\"! 0 -1
D A
-1 0 -1 —€

where we recall that the matrix nL is the inverse matrix of
Nur- As for the scalar field ¢(x), this transformation for the
dilaton can be interpreted as a Weyl transformation,

=P =e W, (7.14)
Thus, simultaneously with the OSp rotation, if we
perform a Weyl transformation, which is denoted as &',
given by
8 Gy = 26(X) gy 88, = —0,e(x), (7.15)
and a local shift for the Nakanishi-Lautrup field B, which is
also denoted as &,

§'B = ee(x), (7.16)
it turns out that under the (local) OSp rotation é in (7.7) and
the additional transformation &', the quantum Lagrangian
L, transforms as

1
(5 + 5/)£q = —EaﬂSNMMMMN. (717)

As a result, the conserved current M*MN for the OSp
rotation takes the form (7.11).

In a similar way, we can derive the conserved current for
the infinitesimal translation,

SXM = M| (7.18)
and it turns out that the conserved current P*M for the
translation reads

M = g o, XM = g (10,XM).  (7.19)

From the conserved currents (7.11) and (7.19), the
corresponding conserved charges are given by

MMNE/dBXMOMN :/d3x§0u¢2xM3 XN
PME/d3x7)0M _/d3x§0y¢20UXM. (720)

For instance, the BRST charges for the GCT and Weyl
transformation are, respectively, expressed as

Qp=M(b,.c") = /d3xgo”¢2bp3yc”,

0p = M(B, c) / PGB, c. (7.21)

We can then verify that using various ETCRs obtained so
far, the I0Sp(10|10) generators {MMN, PM} generate an
10Sp(10[10) algebra:

“Under the OS p rotation, the B field is transformed as
OB = nPle, y XN = —e,ny X" + €e. The transformation (7.16) is
carried out independently of this OSp rotation.
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[PM, PN} =0,
[MMN’ PR} _ i[PMﬁNR _ (_)\N||R\PN,~1MR]’
[MMN,MRS} — i[MMSﬁNR _ (_)\NHR\MMRFINS

_ (_>|NHR|MNS,~1MR + (_)\MHR|+|NHS\MNR,~1MS]7 (7.22)
where [A, B} denotes the graded commutator, which is the
anticommutator if both A and B are fermionic and the
commutator otherwise.

Finally, it is useful to compare our extended choral
symmetry /0Sp(10|10) with the original choral symmetry
I10Sp(8]8) in Einstein’s general relativity [21]. In our case,
the choral symmetry is extended in the sense that the GCT
is replaced with a larger symmetry, which consists of both
the GCT and the Weyl gauge transformation. Accordingly
the dilaton o, the Nakanishi-Lautrup field B, ghost ¢, and
antighost ¢ are joined in the algebra. The choral symmetry
I10Sp(10]10) therefore includes the dilaton or, equiva-
lently, the scalar field, which exists in the classical
Lagrangian and is closely related to a classical theory. In
contrast, the original /0Sp(8|8) symmetry is purely a
symmetry among quantum fields, which are the NL field
and ghosts, so the symmetry is limited to the sector related
to the gauge-fixing procedure. From this viewpoint, we
expect that the extended 710Sp(10|10) choral symmetry
might play an important role in clarifying the dynamics
peculiar to the classical theory.

VIII. GRAVITATIONAL CONFORMAL
SYMMETRY AND SPONTANEOUS SYMMETRY
BREAKDOWN

One of the most interesting features in the formalism at
hand is that as an analog of the well-known conformal
symmetry in a flat Minkowski spacetime, there is a
gravitational conformal symmetry which is a subgroup
of the choral symmetry, and its spontaneous symmetry
breakdown down to the Poincaré symmetry guarantees that
the graviton and the dilaton are exactly massless Nambu-
Goldstone particles [18]. This feature is so important for
future developments of quantum gravity that we would like
to explain the gravitational conformal symmetry and its
spontaneous symmetry breakdown in detail.

In particular, as already shown in Sec. VI, there is a
massive Weyl gauge field in the spectrum, so at first sight it
appears to be strange that there is a conformal symmetry in
the present theory since it is usually thought that conformal
or scale symmetry exists in the theories with only massless
particles. With regard to this, it is worthwhile to recall that
the massless Weyl gauge field acquires the mass via
spontaneous symmetry breakdown (SSB) of Weyl gauge
symmetry and the SSB is the breakdown of symmetry at the
level of not field operators but the representation of field
operators in the sense that the symmetry cannot be realized
by a unitary transformation in the state vector space. Thus,

it is not strange that there is a conformal symmetry in the
present theory with the massive gauge field if the mass is
generated through the SSB. Moreover, this physical sit-
uation is also supported by the Zumino theorem [27] to
some degree since the theorem insists that theories invariant
under general coordinate transformation and Weyl trans-
formation at the same time should possess conformal
symmetry in a flat Minkowski background at least
classically.

As clarified in the previous paper [18], the extended de
Donder gauge condition (4.8) and the scalar gauge con-
dition (4.9) have a residual symmetry that corresponds to
the dilatation and the special conformal transformation in a
flat Minkowski spacetime. Indeed, the quantum Lagrangian
(4.11) is still invariant under the restricted Weyl trans-
formation [28]:

5g;w = 2Agﬂl/’ 5¢ = _A¢’
08, = —0,A, ob, = —0,AB, (8.1)
where the infinitesimal transformation parameter A takes
the form

A =1=2k,x", (8.2)
with 4 and k, being infinitesimal constants corresponding
to a global scale transformation and the special conformal
transformation, respectively [18]. Note that A obeys the
equation ¢“d,0,A = 0, which is a characteristic feature of
the restricted Weyl transformation. The whole global
symmetry in the theory under consideration should be
included in the extended /0Sp(10[10) choral symmetry.
Actually, we can construct the generators corresponding to
the transformation parameters 4 and k, out of those of the
choral symmetry as

Dy=-P(B) = — / &xg™ ¢*o,B,
K* =2M*(x,B) =2 / dxg”¢*x*0,B.  (8.3)

It is easy to verify that these generators generate the
symmetry (8.1) in terms of the ETCRs in (5.23).

Our theory is also invariant under the translation and the
general linear transformation GL(4). Actually, we can
make the translation generator P, and GL(4) generator
G*, from the choral symmetry as

P,=P,(b) = / dxg™¢*o,b,,
G, =M*,(x,b) —iM* (c%,c,)

_ / Bxg P (H0,b, — ich0,5,).  (8.4)
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For instance, based on the ETCRs in (5.23), we can check
that the GL(4) generator G*,, correctly generates the GL(4)
transformation on the fields ¢, S,, and g,,:

[iG*,, p] = x#0,¢, [iG*,.S,] = x"0,S, + &S,

[iG* ), Goc) = X'0,G5c + FoGye + 52 Gy (8.5)
Finally, we can build a generator corresponding to the
dilatation in a flat Minkowski spacetime, which is closely
related to the generator D, of the scale transformation in
(8.3). The construction of such a dilatation generator has
been explained in Ref. [18], so the result is given by
D= Gﬂ” - Do. (86)
It turns out that the algebra among the generators
{Pw G",,K*,D} closes and takes the form

[Py, P) = [Py, G’ 5] = iPyd),

P, K*] = —21(G/’ -D)&%,  [P,.D|=iP,
[G",.GP] = i(G",8, — G, 55).
[G”D,K/’} = iK*§), [G*,,D] = [K*,K*] =0,

[K*,D] = —iK*,  [D,D] = 0. (8.7)

To extract the gravitational conformal algebra in quan-
tum gravity, it is necessary to introduce the “Lorentz”
generator. It can be constructed from the GL(4) generator
and the flat Minkowski metric to be

M, =-n,,G", +n,G,. (8.8)

In terms of the generator M

- the algebra (8.7) can be cast

to the form
[PusP =0, [Py.Mye] = i(Pyus— Potlyy).
[Pwa]:_zl( )5;Dw [PM’D]:iPM’

My M o] = =i(M ity = Mooty + Mo, = My 5,)
[M/twKﬂ]: ( -K 5p+Ku5’/;) [MﬂwD] [K” Ky] 0,
[K*,D]=—iK*, [D,D]=0, (8.9)

where we have defined K, = 7, K”. It is of interest that the
algebra (8.9) in quantum gravity, which we call “gravita-
tional conformal algebra,” formally resembles conformal
algebra in the flat Minkowski spacetime except for the
expression of [P,, K*] [29,30]." This difference stems from
the difference of the definition of conformal dimension (or
weight) in both gravity and conformal field theory, for

“In the case of conformal algebra in the flat spacetime, the
expression is given by [P,, K| = =2i(6,D + M,").

which the metric tensor field g,, has weight 2 in gravity
while it has weight 0 in conformal field theory.

On the basis of the gravitational conformal symmetry, we
are able to show that the GL(4) symmetry is spontaneously
broken to the Poincaré symmetry whose Nambu-Goldstone
boson is the graviton [18]. The dilatation symmetry and the
special conformal symmetry are also spontaneously broken
and the corresponding Nambu-Goldstone bosons are the
dilaton and the derivative of the dilaton, respectively [18].
Interest here is that the Nambu-Goldstone boson associated
with the special conformal symmetry is not an independent
field in quantum gravity as in conformal field theory [31].

IX. CONCLUSION

In this article, we have presented a BRST formalism of a
Weyl conformal gravity in Weyl geometry. The essential
ingredient in our formalism is choosing suitable gauge
conditions for the general coordinate invariance and the
Weyl invariance. To implement two independent BRST
transformations 8z and 5 corresponding to the GCT and
the Weyl transformation, respectively, i.e., {5,05} =0,
one has to select the gauge conditions in such a way that the
gauge condition for the GCT must be invariant under the
Weyl transformation and that for the Weyl transformation
must be so under the GCT [18].

In addition, both gauge conditions must give us a gauge
invariant measure in place of the conventional measure
/=9 and ensure the masslessness of the dilaton.
Interestingly enough, such gauge conditions are almost
uniquely determined by the extended de Donder gauge
condition (4.8) for the GCT and the scalar gauge condition
(4.9) for the Weyl transformation. With the other gauge
conditions, we cannot construct the conserved currents for
the extended choral symmetry, and without the choral
symmetry we cannot ensure the gravitational conformal
algebra such that we cannot prove the masslessness of the
graviton and the dilaton. It is usually said that the gauge
conditions do not change the physical content of a theory,
but it is true that the existence of global symmetries seems
to critically depend on the gauge choice as seen in the
present study of Weyl conformal gravity.16

As for the future works, we would like to present a BRST
formalism of quadratic conformal gravity (3.1) since this
theory is the unique theory that is invariant under Weyl
gauge transformation without matter fields."” However, it is
known that higher-derivative gravities such as quadratic
gravity generally suffer from the existence of a massless or

16Independence of the gauge conditions holds only in the case
of the absence of gauge anomalies, which might stem from the
Abelian gauge field S,. The issue of anomalies is one of the future
problems.
Recently, spontaneous symmetry breakdown of conformal
symmetry in quantum quadratic gravity in Riemann geometry has
been investigated in [32].
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massive ghost which prevents a lower bound of energy at
the classical level and violates the unitarity at the quantum
level. Thus, we have to provide a recipe for nullifying such
a ghost. Since our choral symmetry is a huge global
symmetry including the gravitational conformal symmetry,
it might give us a useful tool for attacking various important
problems such as the ghost and renormalizability. The work
is currently in progress with partial affirmative results.
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APPENDIX: A DERIVATION OF CONSTRAINTS

In this appendix we present a derivation of the secondary
constraint (5.18) and show that the tertiary constraint is
vanishing as seen in Eq. (5.19).

Since the primary constraint (5.6) is given by 7% ~ 0, the
terms involving S, in the Hamiltonian density H; con-
tribute in the calculation of the secondary constraint. Thus,
the relevant part in Hy is given by18

Hy ~7eS, + npB - L,, (A1)
where the relevant part in £, reads
1
ﬁq = _3§§”u¢2SﬂSy + 6§gﬂy¢sﬂay¢ - Z V _gH;lew
1 s UV
- 5 GQ”UD”¢DD¢ + g” ade)aud) (Az)

Note that Sy in —%, /—gH,,H" can be expressed in terms
of 7§ so this term can be ignored.

T3]
~

"We use the symbo to denote the relevant terms.

Using Egs. (5.5), (5.9), and (5.15), the Hamiltonian
density takes the form

: . 1 .
Hy ~ 750;So + 364 $°S,,S, — 6&n5Sy + 59" Du$D,9,
(A3)

where ¢ is defined by (5.9). Then, a straightforward
calculation of (5.7) gives us the secondary constraint
(5.18).

Next, let us evaluate the tertiary constraint which comes
from the time development of the secondary constraint
(5.18). For this purpose, let us calculate the Poisson bracket
between the total Hamiltonian and each term in the
secondary constraint (5.18). The method of the calculation
is similar to that of the derivation of the secondary
constraint; just write out the relevant terms in the
Hamiltonian density and then evaluate the Poisson bracket.
The results are presented in what follows:

{Hr.0ims}p = —(6£ + €)9,(5*$D, ).

{HT’ ﬂB}P = 5i(§iﬂ¢5p¢)»

{Hr, %S, }p = 0:(5*¢°S,,).
From these expressions, it is easy to see that the tertiary
constraint identically vanishes. As a remark, a direct
calculation of the last Poisson bracket is a bit complicated,
but instead we can make use of the relation between the

Hamiltonian and time derivative and the extended de
Donder gauge condition (4.8) and Eq. (4.20) as follows:

{Hr. 3% ¢S, }p = —00(3"¢°S,)
= —0y(5™¢*)S, — 90,8,
= 0;(G"$*)S, + §*$*0;S,
= 0i(5"$*Sy)-

(A4)
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