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We present the Becchi-Rouet-Stora-Tyupin (BRST) formalism of a Weyl conformal gravity in Weyl
geometry. Choosing the extended de Donder gauge-fixing condition (or harmonic gauge condition) for the
general coordinate invariance and the new scalar gauge fixing for the Weyl invariance, we find that there is
a Poincaré-like IOSpð10j10Þ supersymmetry as in a Weyl invariant scalar-tensor gravity in Riemann
geometry. We also point out that there is a gravitational conformal symmetry in quantum gravity although
there is a massive Weyl gauge field as a result of spontaneous symmetry breakdown of Weyl gauge
symmetry, and we account for how the gravitational conformal symmetry is spontaneously broken to the
Poincaré symmetry. The corresponding massless Nambu-Goldstone bosons are the graviton and the
dilaton. We also show the unitarity of the physical S-matrix on the basis of the BRST quartet mechanism in
the case of an absence of anomalies.
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I. INTRODUCTION

More than 100 years ago, Weyl advocated a new theory
to unify all the interactions known at that time, namely
gravitational interaction and electromagnetic force, within
the framework of a newly established geometry which is
nowadays called “Weyl geometry” [1,2]. In Riemann
geometry both length and angle are preserved under
parallel transport while in Weyl geometry, only angle,
but not length, is preserved by the Weyl gauge field. Soon
after the advent of Weyl’s idea, Einstein criticized that
regarding the spacing of atomic spectral lines, the pre-
diction obtained from Weyl’s theory and the experimental
observations were in contradiction (this problem is some-
times called the second clock problem [3]); thus, the Weyl
theory has been buried in oblivion for a long time.1

However, in recent years a considerate interest has been
developed for Weyl conformal geometry. This is because it
was found that the Weyl gauge field acquires a huge mass
around the Planck scale and decouples at low energies,
thereby avoiding the second clock problem [12–15]. In
addition, we have noticed the importance of global scale

invariance and also local scale invariance, which is also
called Weyl invariance, in formulating a theory beyond the
Standard Model [16] and quantum gravity. Hence, Weyl
geometry provides us with a natural playground for
describing Weyl symmetry.
The study of Weyl conformal gravity in Weyl geometry

has been mainly limited to a classical analysis thus far.2 One
of the motivations behind the present article is to present a
quantum theory of Weyl conformal gravity. To this end, we
construct a Becchi-Rouet-Stora-Tyupin (BRST) formalism
of the theory from which we can shed some light on
important features of quantum aspects of Weyl conformal
gravity in Weyl geometry. For instance, as has already been
shown in the case of Weyl invariant scalar-tensor gravity
[17–19], there is an extended IOSpð10j10Þ choral symmetry
compared with the IOSpð8j8Þ choral symmetry in Einstein’s
gravity [20,21]. This extended symmetry is not confined to
the sector of the Nakanishi-Lautrup auxiliary fields and the
Faddeev-Popov (FP) (anti)ghosts but relevant to a classical
theory. Moreover, it can be shown that we have a gravita-
tional analog of conformal algebra as a subalgebra of the
IOSpð10j10Þ choral symmetry. That algebra then gives rise
to a spontaneous symmetry breakdown to the Poincaré
symmetry, by which we can prove that the graviton [22]
and the dilaton [18,19] are exactly massless since they are
the Nambu-Goldstone particles.
The paper is organized as follows. In Sec. II, we give a

brief review of Weyl geometry. In Sec. III, we consider a
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1Even during this period, there were some papers dealing with
Weyl theory [4–11].

2At the one-loop level, the effective potential has already been
calculated in [14,15].
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classical theory that is not only invariant under Weyl gauge
transformation but also is free of ghosts, which generally
exist in the higher-derivativegravities. Based on the classical
theory in Sec. III, we fix the gauge symmetries by the
extended de Donder gauge and new scalar gauge conditions
and construct a BRST invariant quantum Lagrangian in
Sec. IV. In Sec. V, we perform the canonical quantization
of the quantum Lagrangian where we meet primary and
secondary constraints associated with Weyl symmetry.
They are the second-class constraints and hence are treated
by applying the Dirac brackets. In Sec. VI, we prove the
unitarity of the physical S-matrix on the basis of the BRST
quartet mechanism.We find that physical modes are the two
polarizations of themassless graviton and the threemodes of
the massiveWeyl gauge fields. Furthermore, it is shown that
the massless dilaton, which is eaten by the Weyl gauge field
via the Higgs mechanism, belongs to the unphysical sector.
In Sec. VII, we show that the quantum Lagrangian of Weyl
conformal gravity possesses the huge global IOSpð10j10Þ
choral symmetry. In Sec.VIII, we point out that there exists a
gravitational analog of conformal symmetry in quantum
gravity and explain the spontaneous symmetry breaking.We
find that the graviton and the dilaton are massless Nambu-
Goldstone bosons. The final section is devoted to discussion.

II. REVIEW OFWEYL CONFORMAL GEOMETRY

In this section, we briefly review the basic concepts and
definitions of Weyl conformal geometry [15].3 In Weyl
geometry, the Weyl gauge transformation, which is a
combination of a local scale transformation for a generic
field ΦðxÞ and a gauge transformation for the Weyl gauge
field SμðxÞ, is defined as

ΦðxÞ → Φ0ðxÞ ¼ ewΛðxÞΦðxÞ;

SμðxÞ → S0μðxÞ ¼ SμðxÞ −
1

f
∂μΛðxÞ; ð2:1Þ

where w is called the “Weyl weight,” or simply “weight”
henceforth; f is the coupling constant for the noncompact
Abelian gauge group; and ΛðxÞ is a local parameter for the
Weyl transformation. The Weyl gauge transformation for
various fields is explicitly given by

gμνðxÞ→g0μνðxÞ¼e2ΛðxÞgμνðxÞ; ϕðxÞ→ϕ0ðxÞ¼e−ΛðxÞϕðxÞ;
ψðxÞ→ψ 0ðxÞ¼e−

3
2
ΛðxÞψðxÞ; AμðxÞ→A0

μðxÞ¼AμðxÞ;
ð2:2Þ

where gμνðxÞ, ϕðxÞ, ψðxÞ, and AμðxÞ are the metric tensor,
scalar, spinor, and electromagnetic gauge fields, respec-
tively. The covariant derivative Dμ for the Weyl gauge
transformation for a generic field ΦðxÞ of weight w is
defined as

DμΦ≡ ∂μΦþ wfSμΦ; ð2:3Þ

which transforms covariantly under the Weyl transforma-
tion:

DμΦ → ðDμΦÞ0 ¼ ewΛðxÞDμΦ: ð2:4Þ

The Weyl geometry is defined as a geometry with a real
symmetric metric tensor gμνð¼ gνμÞ and a symmetric
connection Γ̃λ

μνð¼ Γ̃λ
νμÞ which is defined as4

Γ̃λ
μν ¼

1

2
gλρðDμgνρ þDνgμρ −DρgμνÞ

¼ Γλ
μν þ fðSμδλν þ Sνδλμ − SλgμνÞ; ð2:5Þ

where Γλ
μν is the standard Christoffel symbol in Riemann

geometry. The most important difference between Riemann
geometry and Weyl geometry lies in the fact that in
Riemann geometry the metric condition is satisfied,

∇λgμν ≡ ∂λgμν − Γρ
λμgρν − Γρ

λνgμρ ¼ 0; ð2:6Þ

while in Weyl geometry we have

∇̃λgμν ≡ ∂λgμν − Γ̃ρ
λμgρν − Γ̃ρ

λνgμρ ¼ −2fSλgμν; ð2:7Þ

where ∇μ and ∇̃μ are covariant derivatives for diffeo-
morphisms in Riemann and Weyl geometries, respectively.
Since the metric condition (2.6) implies that both length
and angle are preserved under parallel transport, Eq. (2.7)
shows that only angle, but not length, is preserved by the
Weyl connection.
The general covariant derivative for both diffeomor-

phisms and Weyl gauge transformation, for instance, for a
covariant vector of weight w, is defined as

DμVν ≡DμVν − Γ̃ρ
μνVρ

¼ ∇̃μVν þ wfSμVν

¼ ∇μVν þ wfSμVν − fðSμδρν þ Sνδ
ρ
μ − SρgμνÞVρ

¼ ∂μVν þ wfSμVν − Γρ
μνVρ

− fðSμδρν þ Sνδ
ρ
μ − SρgμνÞVρ: ð2:8Þ

One can verify that using the general covariant derivative,
the following metric condition is satisfied:

3We follow the notation and conventions of Misner-Thorne-
Wheeler (MTW) textbook [23]. Lowercase Greek letters μ; ν;…
and Latin ones i; j;… are used for spacetime and spatial indices,
respectively; for instance, μ ¼ 0; 1; 2; 3 and i ¼ 1; 2; 3. The
Riemann curvature tensor and the Ricci tensor are, respectively,
defined by Rρ

σμν ¼ ∂μΓ
ρ
σν − ∂νΓ

ρ
σμ þ Γρ

λμΓλ
σν − Γρ

λνΓλ
σμ and

Rμν ¼ Rρ
μρν. The Minkowski metric tensor is denoted by ημν;

η00 ¼ −η11 ¼ −η22 ¼ −η33 ¼ −1 and ημν ¼ 0 for μ ≠ ν.

4We often use the tilde characters to express quantities
belonging to Weyl geometry.
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Dλgμν ¼ 0: ð2:9Þ

Moreover, under Weyl gauge transformation the general
covariant derivative for a generic field Φ of weight w
transforms in a covariant manner as desired:

DμΦ → ðDμΦÞ0 ¼ ewΛðxÞDμΦ; ð2:10Þ

because the Weyl connection is invariant under Weyl gauge
transformation, i.e., Γ̃0ρ

μν ¼ Γ̃ρ
μν.

As in Riemann geometry, in Weyl geometry one can also
construct a Weyl invariant curvature tensor R̃μνρ

σ via a
commutator of the covariant derivative ∇̃μ:

½∇̃μ; ∇̃ν�Vρ ¼ R̃μνρ
σVσ: ð2:11Þ

Calculating this commutator, one finds that

R̃μνρ
σ ¼ ∂νΓ̃σ

μρ−∂μΓ̃σ
νρþ Γ̃α

μρΓ̃σ
αν− Γ̃α

νρΓ̃σ
αμ

¼Rμνρ
σþ2fðδσ½μ∇ν�Sρ−δσρ∇½μSν�−gρ½μ∇ν�SσÞ

þ2f2ðS½μδσν�Sρ−S½μgν�ρSσþδσ½μgν�ρSαS
αÞ; ð2:12Þ

where Rμνρ
σ is the curvature tensor in Riemann geometry

and we have defined the antisymmetrization by the square
bracket, i.e., A½μBν� ≡ 1

2
ðAμBν − AνBμÞ. Then, it is straight-

forward to prove the following identities:

R̃μνρ
σ ¼−R̃νμρ

σ; R̃½μνρ�σ ¼ 0; ∇̃½λR̃μν�ρσ ¼ 0: ð2:13Þ

From R̃μνρ
σ one can define a Weyl invariant Ricci tensor:

R̃μν ≡ R̃μρν
ρ

¼ Rμν þ fð−2∇μSν −Hμν − gμν∇αSαÞ
þ 2f2ðSμSν − gμνSαSαÞ; ð2:14Þ

where Hμν is the field strength of Sμ defined as

Hμν ≡∇μSν −∇νSμ ¼ ∂μSν − ∂νSμ: ð2:15Þ

Let us note that

R̃½μν� ≡ 1

2
ðR̃μν − R̃νμÞ ¼ −2fHμν: ð2:16Þ

Similarly, one can define not a Weyl invariant but a Weyl
covariant scalar curvature:

R̃≡ gμν R̃μν ¼ R − 6f∇μSμ − 6f2SμSμ: ð2:17Þ

One finds that under Weyl gauge transformation, R̃ → R̃0 ¼
e−2ΛðxÞR̃ while Γ̃λ

μν; R̃μνρ
σ , and R̃μν are all invariant.

We close this section by discussing a spinor field as an
example of matter fields in Weyl geometry. As is well

known, to describe a spinor field it is necessary to introduce
the vierbein eaμ, which is defined as

gμν ¼ ηabeaμebν ; ð2:18Þ

where a; b;… are local Lorentz indices taking 0,1,2,3 and
ηab ¼ diagð−1; 1; 1; 1Þ. Now the metric condition (2.9)
takes the form

Dμeaν ≡Dμeaν þ ω̃a
bμebν − Γ̃ρ

μνeaρ ¼ 0; ð2:19Þ

where the general covariant derivative is extended to
include the local Lorentz transformation whose gauge
connection is the spin connection ω̃a

bμ of weight 0 in
Weyl geometry, and Dμeaν ¼ ∂μeaν þ fSμeaν since the vier-
bein eaμ has weight 1. Solving the metric condition (2.19)
leads to the expression of the spin connection in Weyl
geometry,

ω̃abμ ¼ ωabμ þ fecμðηacSb − ηbcSaÞ; ð2:20Þ

where ωabμ is the spin connection in Riemann geometry
and we have defined Sa ≡ eμaSμ. Then, the general covar-
iant derivative for a spinor field Ψ of weight − 3

2
reads

DμΨ ¼ DμΨþ i
2
ω̃abμSabΨ; ð2:21Þ

where DμΨ ¼ ∂μΨ − 3
2
fSμΨ and the Lorentz generator Sab

for a spinor field is defined as Sab ¼ i
4
½γa; γb�. Here we

define the gamma matrices to satisfy the Clifford algebra
fγa; γbg ¼ −2ηab. Since the spin connection ω̃a

bμ has
weight 0, the covariant derivative DμΨ transforms cova-
riantly under Weyl gauge transformation:

DμΨ → ðDμΨÞ0 ¼ e−
3
2
ΛðxÞDμΨ: ð2:22Þ

Then, the Lagrangian density for a massless Dirac spinor
field is of the form

L ¼ i
2
e eμaðΨ̄γaDμΨ −DμΨ̄γaΨÞ; ð2:23Þ

where e≡ ffiffiffiffiffiffi−gp
; Ψ̄≡Ψ†γ0, and DμΨ̄ is given by

DμΨ̄ ¼ DμΨ̄ − Ψ̄
i
2
ω̃abμSab: ð2:24Þ

Inserting Eqs. (2.21) and (2.24) into the Lagrangian density
(2.23), we find that

L ¼ i
2
e

�
eμa

�
Ψ̄γa∂μΨ − ∂μΨ̄γaΨþ i

2
ωbcμΨ̄fγa; SbcgΨ

�

þ i
2
fðηabSc − ηacSbÞΨ̄fγa; SbcgΨ

�
: ð2:25Þ
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The last term identically vanishes owing to the relation

fγa; Sbcg ¼ −εabcdγ5γd; ð2:26Þ
where we have defined γ5 ¼ iγ0γ1γ2γ3 and ε0123 ¼ þ1.
Thus, as is well known, the Weyl gauge field Sμ does not
couple minimally to a spinor field Ψ. Technically speaking,
it is the absence of imaginary unit i in the covariant
derivative DμΨ ¼ ∂μΨ − 3

2
fSμΨ that induced this decou-

pling of the Weyl gauge field from the spinor field. Without
the imaginary unit, the terms including theWeyl gauge field
cancel out each other in Eq. (2.23). In a similar manner, we
can prove that the Weyl gauge field does not couple to a
gauge field, i.e., the electromagnetic potential Aμ either. On
the other hand, the Weyl gauge field can couple to a scalar
field such as the Higgs field as well as a graviton.

III. CLASSICAL THEORY

We wish to consider a model of Weyl conformal gravity
in Weyl geometry. It is of interest to recall that without
matter fields we have a unique classical Lagrangian which
is invariant under the Weyl gauge transformation; the
Lagrangian must be of form of quadratic gravity:

LQG ¼ ffiffiffiffiffiffi
−g

p �
−

1

2ξ2
C̃μνρσC̃

μνρσ þ αR̃2

�
; ð3:1Þ

where ξ andα are dimensionless coupling constants, and C̃μνρσ

and R̃ are a generalization of conformal tensor and scalar
curvature in Weyl geometry, respectively. Note that the
Lagrangianof theEinstein-Hilbert typeor thehigher-derivative
terms involving more than quadratic terms are prohibited to
be present by Weyl gauge symmetry. The fatal defect of the
Lagrangian (3.1), however, is the existence of amassless ghost
that breaks unitarity in the quantum regime. Another unsat-
isfactory feature of the Lagrangian (3.1) is that it does not
reduce to Einstein’s general relativity at low energies which is
known to be a good description of the physics relevant to
gravitational phenomena at such long range scales.
Provided that we are allowed to use matter fields,5 the

situation changes and we can construct a scalar-tensor
gravity of the Einstein-Hilbert type which includes at most
the second-order derivatives of the metric tensor [4]:

LST ¼ ffiffiffiffiffiffi
−g

p 1

2
ξϕ2R̃; ð3:2Þ

where ϕ is a real scalar field.6 The most general classical
Lagrangian, which is invariant under Weyl gauge trans-
formation and is free of the massless ghost, reads

LG ¼ ffiffiffiffiffiffi
−g

p �
1

2
ξϕ2R̃ −

1

4
HμνHμν −

1

2
ϵgμνDμϕDνϕ −

λ

4!
ϕ4

þ η

�
1

12
ϕ2Rþ 1

2
gμν∂μϕ∂νϕ

��
; ð3:3Þ

where ξ, λ, η are all dimensionless constants and ϵ ¼ �1
depending on a normal field ϵ ¼ 1 or a ghost field ϵ ¼ −1.
In this article, we limit ourselves to the case 6ξþ ϵ ≠ 0
since the specific case 6ξþ ϵ ¼ 0 leads to the same
expression as the last term with the constant η, which is
called “Weyl invariant scalar-tensor gravity,” when surface
terms are ignored. Finally, the scalar field ϕ has the weight
−1 so the Weyl covariant derivative in (3.3) takes the form7

Dμϕ ¼ ∂μϕ − Sμϕ: ð3:4Þ

Since we have already analyzed the Weyl invariant scalar-
tensor gravity in Riemann geometry [18] and the quartic
potential term has no essential role in the BRST formalism,
we will put λ ¼ η ¼ 0. Thus, the classical Lagrangian that
is treated in this article reads

Lc ¼
ffiffiffiffiffiffi
−g

p �
1

2
ξϕ2R̃ −

1

4
HμνHμν −

1

2
ϵgμνDμϕDνϕ

�

¼ ffiffiffiffiffiffi
−g

p �
1

2
ξϕ2ðR − 6∇μSμ − 6SμSμÞ −

1

4
HμνHμν

−
1

2
ϵgμνð∂μϕ − SμϕÞð∂νϕ − SνϕÞ

�
: ð3:5Þ

IV. QUANTUM THEORY

The classical Lagrangian (3.5) is invariant under both
general coordinate transformation (GCT) and Weyl gauge
transformation. For a quantum theory we have to fix such
gauge symmetries by introducing suitable gauge-fixing
conditions. After introducing the gauge-fixing conditions,
the quantum Lagrangian is no longer invariant under the
gauge transformations, but as residual global symmetries
the quantum Lagrangian is invariant under two BRST
transformations, one of which is denoted as δB, corre-
sponding to the GCT, and is defined as

δBgμν¼−ð∇μcνþ∇νcμÞ¼−ðcα∂αgμνþ∂μcαgανþ∂νcαgμαÞ;
δBϕ¼−cλ∂λϕ; δBSμ¼−cλ∇λSμ−∇μcλSλ;

δBcρ¼−cλ∂λcρ; δBc̄ρ¼ iBρ; δBBρ¼0; ð4:1Þ
where cρ and c̄ρ are, respectively, the FP ghost and
antighost, and Bρ is the Nakanishi-Lautrup (NL) field.
For convenience, in place of the NL field Bρ we will
introduce a new NL field defined as [24]

5As explained in the previous section, fermions and the
conventional gauge fields do not couple to the Weyl gauge field,
but only the scalar field does.

6The extension to a complex scalar field or multiple scalar
fields is straightforward.

7In what follows, we will set f ¼ 1 for the coupling constant
for the noncompact Abelian gauge group.
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bρ ¼ Bρ − icλ∂λc̄ρ; ð4:2Þ

and its BRST transformation reads

δBbρ ¼ −cλ∂λbρ: ð4:3Þ

The other BRST transformation, which is denoted as δ̄B,
corresponding to the Weyl transformation is defined as

δ̄Bgμν ¼ 2cgμν; δ̄Bϕ ¼ −cϕ; δ̄BSμ ¼ −∂μc;

δ̄Bc̄ ¼ iB; δ̄Bc ¼ δ̄BB ¼ 0; ð4:4Þ

where c and c̄ are, respectively, the FP ghost and FP
antighost, and B is the NL field. Note that the two BRST
transformations are nilpotent, i.e.,

δ2B ¼ δ̄2B ¼ 0: ð4:5Þ

To complete the two BRST transformations, we have to
fix not only the GCT BRST transformation δB on c; c̄, and
B but also the Weyl BRST transformation δB on cρ; c̄ρ, and
bρ. The BRST transformations on these fields are fixed by
requiring that the two BRST transformations anticommute
with each other [18], that is,

fδB; δ̄Bg≡ δBδ̄B þ δ̄BδB ¼ 0: ð4:6Þ

Then, the resultant BRST transformations take the form

δBB ¼ −cλ∂λB; δBc ¼ −cλ∂λc; δBc̄ ¼ −cλ∂λc̄;

δ̄Bbρ ¼ δ̄Bcρ ¼ δ̄Bc̄ρ ¼ 0: ð4:7Þ

In this context, it is worthwhile to recall that the gauge
condition for the GCT must be invariant under Weyl gauge
transformation while the one for Weyl transformation
must be invariant under GCT in order for the two BRST
transformations to anticommute. In that case we can
consider the two BRST transformations separately. The
suitable gauge condition for the GCT is almost unique and
is called “the extended de Donder gauge” [18]8:

∂μðg̃μνϕ2Þ ¼ 0; ð4:8Þ
where we have defined g̃μν ≡ ffiffiffiffiffiffi−gp

gμν.
On the other hand, we have a few candidates for the

gauge-fixing condition for the Weyl transformation, which
must be invariant under the GCT, i.e., a scalar quantity. The
first one is the well-known “unitary gauge,” ϕ ¼ const,
which is taken to show that Weyl invariant scalar-tensor
gravity is equivalent to the Einstein-Hilbert term. The other
gauge condition is the Lorenz gauge, ∇μSμ ¼ 0, which is
usually adopted in quantum field theories. However, it turns
out that these gauge conditions are not so interesting in the
present context since they do not allow for conformal
symmetry to remain. Hence, we shall choose what we call
“the scalar gauge condition” [18]:

∂μðg̃μνϕ∂νϕÞ ¼ 0; ð4:9Þ
which can alternatively be written as

□ϕ2 ¼ 0: ð4:10Þ
After taking the extended de Donder gauge condition

(4.8) for the GCT and the scalar gauge condition (4.9) for
the Weyl transformation, the gauge-fixed and BRST
invariant quantum Lagrangian is given by

Lq ¼ Lc þ LGFþFP þ L̄GFþFP

¼ Lc þ iδBðg̃μνϕ2
∂μc̄νÞ þ iδ̄B½c̄∂μðg̃μνϕ∂νϕÞ�

¼ ffiffiffiffiffiffi
−g

p �
1

2
ξϕ2ðR − 6∇μSμ − 6SμSμÞ

−
1

4
HμνHμν −

1

2
ϵgμνDμϕDνϕ

�

− g̃μνϕ2ð∂μbν þ i∂μc̄λ∂νcλÞ
þ g̃μνϕ∂μB∂νϕ − ig̃μνϕ2

∂μc̄∂νc; ð4:11Þ
where surface terms are dropped.
From the Lagrangian Lq, it is straightforward to derive

the field equations by taking the variation with respect to
gμν; Sμ;ϕ; bν; B; cρ; c̄ρ; c, and c̄ in order:

1

2
ξϕ2Gμν−

1

2
ξð∇μ∇ν−gμν□Þϕ2−3ξϕ2

�
SμSν−

1

2
gμνSαSα

�
þ3ξϕðSμ∂νϕþSν∂μϕ−gμνSα∂αϕÞ−

1

2
HμαHν

αþ1

8
gμνH2

αβ

−
1

2
ϵ

�
DμϕDνϕ−

1

2
gμνðDαϕÞ2

�
−
1

2

�
Eμν−

1

2
gμνE

�
¼0; ð6ξþϵÞgμνϕDνϕ−∇νHμν¼0;

ξϕ2ðR−6∇μSμ−6SμSμÞþϵ
1ffiffiffiffiffiffi−gp ϕDμðg̃μνϕDνϕÞ−E−2gμνϕ∂μB∂νϕ−ϕ2

□B¼0;

∂μðg̃μνϕ2Þ¼0; ∂μðg̃μνϕ∂νϕÞ¼0; gμν∂μ∂νc̄ρ¼gμν∂μ∂νcρ¼gμν∂μ∂νc̄¼gμν∂μ∂νc¼0; ð4:12Þ

8Let us note that this gauge condition breaks the general coordinate invariance, but it is invariant under the general linear
transformation GLð4Þ. Thus, the quantum Lagrangian that is obtained shortly is also invariant under the GLð4Þ.
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where Gμν ≡ Rμν − 1
2
gμνR denotes the Einstein tensor,

while Eμν and E are defined as

Eμν ¼ ϕ2ð∂μbν þ i∂μc̄λ∂νcλÞ − ϕ∂μB∂νϕ

þ iϕ2
∂μc̄∂νcþ ðμ ↔ νÞ;

E ¼ gμνEμν: ð4:13Þ

Moreover, since g̃μνDνϕ has the weight 1, the Weyl
covariant derivative is defined as

Dμðg̃μνDνϕÞ ¼ ∂μðg̃μνDνϕÞ þ Sμg̃μνDνϕ: ð4:14Þ

When we introduce the dilaton σðxÞ by defining

ϕðxÞ≡ eσðxÞ; ð4:15Þ

the two gauge-fixing conditions in (4.12), or equivalently,
Eqs. (4.8) and (4.9), lead to a very simple d’Alembert-like
equation for the dilaton:

gμν∂μ∂νσ ¼ 0: ð4:16Þ

It is worthwhile to notice that it is not the scalar field ϕ but
the dilaton σ that satisfies this type of equation.
To show that the auxiliary field B also obeys the same

type of equation, let us take into account the trace part of
the Einstein equation, i.e., the first field equation in (4.12),
which gives us the equation

ξϕ2R − 6ξϕ2SαSα þ 12ξϕSα∂αϕ − ϵðDαϕÞ2 − E ¼ 0:

ð4:17Þ

Next, we can rewrite the field equation for ϕ, the third
equation in (4.12), as

ξϕ2R−6ξϕ2SαSαþ12ξϕSα∂αϕ−ϵðDαϕÞ2−E

−ð6ξþϵÞϕ2gμν∂μSν−2gμνϕ∂μB∂νϕ−ϕ2
□B¼0: ð4:18Þ

Using Eqs. (4.17) and (4.18), we can obtain the equation

gμν∂μ∂νBþ ð6ξþ ϵÞgμν∂μSν ¼ 0: ð4:19Þ

Now we are ready to prove

gμν∂μSν ¼ 0: ð4:20Þ

To do that, let us consider the field equation for Sμ in (4.12),
multiply by

ffiffiffiffiffiffi−gp
, and then operate the covariant derivative

consequently leading to

ffiffiffiffiffiffi
−g

p ∇μ∇νHμν ¼ ð6ξþ ϵÞ∇μðg̃μνϕDνϕÞ: ð4:21Þ

The left-hand side (LHS) of Eq. (4.21) is identically zero
and 6ξþ ϵ ≠ 0 by our assumption, and we find that

∇μðg̃μνϕDνϕÞ ¼ 0: ð4:22Þ

Using the formula

∇μðg̃μνAνÞ ¼ ∂μðg̃μνAνÞ; ð4:23Þ

which holds for an arbitrary covariant vector Aμ, Eq. (4.22)
is reduced to the form

∂μðg̃μνϕ∂νϕ − g̃μνϕ2SνÞ ¼ 0: ð4:24Þ

Then, using the gauge conditions (4.8) and (4.9), we can
reach Eq. (4.20). Hence, Eq. (4.19) implies that the
auxiliary field B obeys the equation

gμν∂μ∂νB ¼ 0: ð4:25Þ

Surprisingly enough, using the Weyl BRST transforma-
tion, we can show Eq. (4.25) in the simplest way. For this
aim, let us start with the field equation for c̄ in (4.12):

gμν∂μ∂νc̄ ¼ 0: ð4:26Þ

Operating δ̄B on this equation leads to

−2cgμν∂μ∂νc̄þ igμν∂μ∂νB ¼ 0: ð4:27Þ

The first term on the LHS is vanishing owing to (4.26), so
we can arrive at Eq. (4.25).
In a perfectly similar manner, we can show that the

Nakanishi-Lautrup auxiliary field bρ satisfies the
d’Alembert-like equation by either an explicit calculation
or using the BRST transformation for the GCT. Here we
present only the latter proof since the former one was given
in our previous paper [17].
Let us start with the field equation for c̄ρ in (4.12):

gμν∂μ∂νc̄ρ ¼ 0: ð4:28Þ

Taking the GCT BRST transformation of this equation
yields

ð−∂λgμνcλ þ gμα∂αcν þ gνα∂αcμÞ∂μ∂νc̄ρ þ igμν∂μ∂νBρ ¼ 0;

ð4:29Þ

where we have used the GCT BRST transformation (4.1).
Substituting the definition of bρ in Eq. (4.2) into (4.29), we
have the equation for bρ:
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igμν∂μ∂νbρ ¼ gμν∂μ∂νðcλ∂λc̄ρÞ
− ð−∂λgμνcλ þ 2gμα∂αcνÞ∂μ∂νc̄ρ: ð4:30Þ

With the help of Eq. (4.28) and the field equation for cρ in
(4.12), the right-hand side (RHS) is found to be vanishing
so we have the desired equation

gμν∂μ∂νbρ ¼ 0: ð4:31Þ

In other words, setting XM ¼ fxμ; bμ; σ; B; cμ; c̄μ; c; c̄g,9
XM turns out to obey the very simple equation

gμν∂μ∂νXM ¼ 0: ð4:32Þ

This fact, together with the gauge condition ∂μðg̃μνϕ2Þ ¼ 0
produces the two kinds of conserved currents:

PμM ≡ g̃μνϕ2
∂νXM ¼ g̃μνϕ2ð1∂↔νXMÞ;

MμMN ≡ g̃μνϕ2ðXM
∂

↔

νYNÞ; ð4:33Þ

where we have defined XM
∂

↔

μYN ≡ XM
∂μYN − ð∂μXMÞYN .

These conserved currents constitute a Poincaré-like
IOSpð10j10Þ supersymmetry as will be shown later.

V. CANONICAL QUANTIZATION AND EQUAL-
TIME COMMUTATION RELATIONS

In this section, after introducing the Poisson brackets,
we will evaluate various equal-time commutation relations

(ETCRs) among fundamental variables. To simplify vari-
ous expressions, we will obey the following abbreviations
adopted in the textbook of Nakanishi and Ojima [21]:

½A;B0� ¼ ½AðxÞ; Bðx0Þ�jx0¼x00 ; δ3 ¼ δðx⃗ − x⃗0Þ;

f̃ ¼ 1

g̃00
¼ 1ffiffiffiffiffiffi−gp

g00
; ð5:1Þ

where we assume that g̃00 is invertible. Here the above
brackets ½A;B0� symbolically describe the Poisson brackets
and the ETCRs.
First of all, let us set up the Poisson brackets of canonical

variables:

fgμν;πρλ0g gP¼
1

2
ðδρμδλνþδλμδ

ρ
νÞδ3; fϕ;π0ϕgP¼ δ3;

fSμ;πν0S gP¼ δνμδ
3; fcσ;π0cλgP¼fc̄λ;πσ0c̄ gP¼ δσλδ

3;

fB;π0BgP¼fc;π0cgP¼fc̄;π 0̄cgP¼ δ3; ð5:2Þ

where the other Poisson brackets vanish. Here the canoni-
cal variables are gμν;ϕ; Sμ; B; cρ; c̄ρ; c; c̄ and the corre-
sponding canonical conjugate momenta are πμνg ; πϕ; π

μ
S;

πB; πcρ; π
ρ
c̄; πc; πc̄, respectively, and the bμ field is regarded

as not a canonical variable but a conjugate momentum
of g̃0μ.10

To remove second-order derivatives of the metric
involved in R, we perform the integration by parts once
and rewrite the Lagrangian (4.11) as

Lq ¼ −
1

2
ξg̃μνϕ2ðΓσ

μνΓα
σα − Γσ

μαΓα
σν þ 6SμSνÞ − ξϕ∂μϕðg̃αβΓμ

αβ − g̃μνΓα
ναÞ þ 6ξg̃μνϕSμ∂νϕ

−
1

4

ffiffiffiffiffiffi
−g

p
HμνHμν −

1

2
ϵg̃μνDμϕDνϕþ ∂μðg̃μνϕ2Þbν − ig̃μνϕ2

∂μc̄ρ∂νcρ

þ g̃μν∂μBϕ∂νϕ − ig̃μνϕ2
∂μc̄∂νcþ ∂μVμ; ð5:3Þ

where we have also integrated by parts two terms with the linear Sμ and bμ, and a surface term Vμ is thus given by

Vμ¼ 1

2
ξϕ2ðg̃αβΓμ

αβ− g̃μνΓα
ναÞ−3ξg̃μνϕ2Sν− g̃μνϕ2bν: ð5:4Þ

Using this Lagrangian, the concrete expressions for canonical conjugate momenta become

9The conventional de Donder condition, ∂μg̃μν ¼ 0, can be rewritten as ∂μðg̃μν∂νxλÞ ¼ 0. This can also be described as gμν∂μ∂νxλ ¼ 0
by means of the de Donder condition. In other words, by adding the spacetime coordinates xμ to XM, we can consider the de Donder
condition as well.

10Taking the variation of (5.3) with respect to ∂0g̃0μ leads to the expression ϕ2bμ þ � � � where � � � does not involve the time derivative
of fields, which means that the bμ field is in essence a conjugate momentum of g̃0μ up to a factor of ϕ2.

BRST FORMALISM OF WEYL CONFORMAL GRAVITY PHYS. REV. D 106, 106007 (2022)

106007-7



πμνg ¼ ∂Lq

∂_gμν

¼−
1

4

ffiffiffiffiffiffi
−g

p
ξϕ2

�
−g0λgμνgστ−g0τgμλgνσ−g0σgμτgνλ

þg0λgμτgνσþg0τgμνgλσþ1

2
ðg0μgνλþg0νgμλÞgστ

�
∂λgστ

−
ffiffiffiffiffiffi
−g

p �
1

2
ðg0μgρνþg0νgρμÞ−gμνgρ0

�
ξϕ∂ρϕ

−
1

2

ffiffiffiffiffiffi
−g

p ðg0μgνρþg0νgμρ−g0ρgμνÞϕ2bρ;

πϕ¼
∂Lq

∂ _ϕ
¼−ϵg̃0μDμϕþ2g̃0μϕbμþξϕð−g̃αβΓ0

αβþ g̃0αΓβ
αβÞ

þ6ξg̃0μϕSμþ g̃0μϕ∂μB;

πμS¼
∂Lq

∂ _Sμ
¼−

ffiffiffiffiffiffi
−g

p
H0μ; πB¼

∂Lq

∂ _B
¼ g̃0μϕ∂μϕ;

πcσ ¼
∂Lq

∂_cσ
¼−ig̃0μϕ2

∂μc̄σ; πσc̄ ¼
∂Lq

∂ _̄cσ
¼ ig̃0μϕ2

∂μcσ;

πc¼
∂Lq

∂_c
¼−ig̃0μϕ2

∂μc̄; πc̄¼
∂Lq

∂ _̄c
¼ ig̃0μϕ2

∂μc; ð5:5Þ

where we have defined the time derivative, such as
_gμν ≡ ∂gμν

∂t ≡ ∂0gμν, and differentiation of ghosts is taken
from the right.
It can easily be seen that we have a primary constraint

Ψ1 ≡ π0S ¼ 0: ð5:6Þ

Let us recall that a secondary constraint comes from the
consistency under time evolution of the primary constraint:

Ψ2 ≡ _π0S ¼ fπ0S;HTgP ≈ 0; ð5:7Þ

where HT is the Hamiltonian of the system at hand, which
is defined as

HT ≡
Z

d3xHT

¼
Z

d3xðπμνg _gμν þ πϕ _ϕþ πμS _Sμ þ πB _Bþ πcμ _cμ

þ πμc̄ _̄cμ þ πc _cþ πc̄ _̄c − LqÞ: ð5:8Þ

To obtain the Hamiltonian, we have to express the time
derivatives of the canonical variables in terms of the
canonical conjugate momenta in (5.5). To do that, let us
first consider πB, which gives us the expression of _ϕ as

_ϕ ¼ f̃

�
1

ϕ
πB − g̃0i∂iϕ

�
: ð5:9Þ

Next, let us turn our attention to the ðklÞ components of πμνg ,
which take the form

πklg ¼ Âkl þ B̂klρbρ þ Ĉklmn _gmn þ D̂kl _ϕ; ð5:10Þ
where Âkl; B̂klρ; Ĉklmn, and D̂kl commute with gmn and are
defined as

Âkl ¼ −
1

4

ffiffiffiffiffiffi
−g

p
ϕ2

�
−g0mgklgστ − g0τgkmglσ − g0σgkτglm þ g0mgkτglσ þ g0τgklgmσ

þ 1

2
ðg0kglm þ g0lgkmÞgστ

�
∂mgστ −

ffiffiffiffiffiffi
−g

p
ξϕ

�
1

2
ðg0kglm þ g0lgkmÞ − gklg0m

�
∂mϕ;

B̂klρ ¼ −
1

2

ffiffiffiffiffiffi
−g

p
ϕ2ðg0kglρ þ g0lgkρ − g0ρgklÞ;

Ĉklmn ¼ −
1

4

ffiffiffiffiffiffi
−g

p
ξϕ2ð−g00gklgmn − g0ng0kglm − g0mgkng0l þ g00gknglm

þ g0ngklg0m þ g0kg0lgmnÞ;
D̂kl ¼ ffiffiffiffiffiffi

−g
p

ξϕðg00gkl − g0kg0lÞ: ð5:11Þ

Solving (5.10) with respect to _gkl together with Eq. (5.9)
leads to

_gkl¼ Ĉ−1
klmn

�
πmn
g − Âmn− B̂mnρbρ− D̂mnf̃

�
1

ϕ
πB− g̃0i∂iϕ

��
;

ð5:12Þ
where Ĉ−1

klmn is the inverse matrix of Ĉklmn given by

Ĉ−1
klmn ¼

2

ξϕ2
f̃ðgklgmn − gkmgln − gknglmÞ;

ĈklmnĈ−1
mnij ¼

1

2
ðδki δlj þ δliδ

k
jÞ: ð5:13Þ

Using the extended de Donder gauge condition (4.8), _g00
and _g0k are described as
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_g00 ¼
1

g00

�
gij _gij − 2gαi∂ig0α þ

4

ϕ
_ϕ

�

¼ 1

g00

�
gklĈ−1

klmn

�
πmn
g − Âmn − B̂mnρbρ − D̂mnf̃

�
1

ϕ
πB − g̃0i∂iϕ

��
− 2gαi∂ig0α þ

4

ϕ
f̃
�
1

ϕ
πB − g̃0i∂iϕ

��
;

_g0k ¼
1

g00

�
−g0j _gjk − gαi∂igαk þ

1

2
gαβ∂kgαβ þ

2

ϕ
∂kϕ

�

¼ 1

g00

�
−g0jĈ−1

jkmn

�
πmn
g − Âmn − B̂mnρbρ − D̂mnf̃

�
1

ϕ
πB − g̃0i∂iϕ

��
− gαi∂igαk þ

1

2
gαβ∂kgαβ þ

2

ϕ
∂kϕ

�
: ð5:14Þ

In a similar manner, based on πϕ; π
μ
S; πcσ; π

σ
c̄ ; πc, and πc̄

in Eq. (5.5), the time derivatives _B; _Sk; _S0; _̄cσ; _cσ; _̄c, and _c
can be expressed in terms of the canonical conjugate
momenta as follows:

_B¼ f̃
1

ϕ

�
πϕþϵ

1

ϕ
πB−ð6ξþϵÞg̃0μϕSμ−2g̃0μϕbμ− g̃0iϕ∂iB

�

−ξf̃fðg̃00gij− g̃0ig0jÞĈ−1
ijmn½πmn

g − Âmn− B̂mnρbρ

−ξf̃ðg̃00gmn− g̃0mg0nÞðπB− g̃0kϕ∂kϕÞ�
þðg̃0igαβ− g̃0αgiβÞ∂igαβg;

_Sk¼∂kS0þ f̃ð−gkjπjSþ g̃0jHkjÞ;
_S0¼−f̃fg̃0i½2∂iS0þ f̃ð−gijπjSþ g̃0jHijÞ�þ g̃ij∂iSjg;
_̄cσ¼ if̃ϕ−2πcσ− f̃g̃0i∂ic̄σ;

_cσ¼−if̃ϕ−2πσc̄− f̃g̃0i∂icσ;

_̄c¼ if̃ϕ−2πc− f̃g̃0i∂ic̄;

_c¼−if̃ϕ−2πc̄− f̃g̃0i∂ic; ð5:15Þ

where we have used Eq. (4.20) in deriving _S0.
Finally, we can also express the bμ field in terms of

canonical conjugate momenta. Since the bμ field is
regarded as a conjugate momentum of g̃0μ, we begin with
πα0g , which has a structure

πα0g ¼ Aα þ Bαβ
∂βϕþ Cαβbβ; ð5:16Þ

where Aα; Bαβ, and Cαβ ¼ − 1
2
g̃00gαβϕ2 do not include

_gμν, and Bαβ
∂βϕ does not have _ϕ. Solving this equation

with respect to bμ leads to

bμ ¼ −2f̃ϕ−2gμαπα0g −
1

2
ξf̃

�
δ0μ

�
g̃0τgλσ −

1

2
g̃0λgστ

�
∂λgστ

−
�
g̃0τg0σ −

1

2
g̃00gστ

�
∂μgστ

�

− ξϕ−1ð∂μϕ − δ0μf̃g̃0α∂αϕÞ: ð5:17Þ

Note that the RHS of this equation does not involve _gμν and
_ϕ as can be verified explicitly. Incidentally, the relation
(5.16) is utilized to derive some useful Poisson brackets
such as fgμν; b0ρgP.
Using the Hamiltonian HT , Eq. (5.7) provides us with a

secondary constraint:

Ψ2 ¼ ∂iπ
i
S þ ð6ξþ ϵÞðπB − g̃0μϕ2SμÞ ≈ 0; ð5:18Þ

which is just the same as the ð0μÞ components of the field
equation for Sμ in (4.12) and there are no more constraints
since we can show that11

_Ψ2 ¼ fΨ2; HTgP ¼ 0: ð5:19Þ

The Poisson bracket between the constraints is evaluated
to be

fΨ1;Ψ0
2gP ¼ ð6ξþ ϵÞg̃00ϕ2δ3 ¼ ð6ξþ ϵÞ 1

f̃
ϕ2δ3; ð5:20Þ

which implies that the constraints are the second-class
constraint so that they can be treated by means of the Dirac
bracket defined as

fA; B0gD ≡ fA; B0gP − fA;Ψ00
agPC−1

abfΨ00
b; B

0gP; ð5:21Þ

where Ψa (a ¼ 1, 2) are the second-class constraints and
C−1
ab is the inverse matrix of Cab ¼ fΨa;Ψ0

bgP. Concretely,
the matrix elements, C−1

ab , are given by

C−1
12 ¼−C−1

21 ¼−
1

6ξþϵ
f̃ϕ−2δ3; C−1

11 ¼C−1
22 ¼ 0: ð5:22Þ

As is well known, the canonical quantization can be
carried out by replacing ifA;B0gD with the equal-time
commutation relation ½A;B0�. After some calculations, we
can write down several important ETCRs, which are
needed for later calculations:

11A derivation of constraints is exhibited in Appendix.
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½_gρσ; g0μν� ¼ −
2

ξ
if̃ϕ−2½gρσgμν − gρμgσν − gρνgσμ þ

ffiffiffiffiffiffi
−g

p
f̃ðδ0ρδ0μgσν

þ δ0ρδ
0
νgσμ þ δ0σδ

0
μgρν þ δ0σδ

0
νgρμÞ�δ3;

½_gρσ;ϕ0� ¼ 0; ½_gρσ; B0� ¼ 2if̃ϕ−2gρσδ3;

½ϕ; b0ρ� ¼ ½B; b0ρ� ¼ ½B; _B0� ¼ ½ _ϕ;ϕ0� ¼ ½ _ϕ; S0μ� ¼ 0; ½ _ϕ; B0� ¼ −if̃ϕ−1δ3;

½S0; S0k� ¼ −
1

6ξþ ϵ
if̃ϕ−2

∂kδ
3; ½Sk; S0l� ¼ 0;

½S0; _S0k� ¼ −if̃g0kδ3; ½Sk; _S0l� ¼ −if̃gklδ3 þ
1

6ξþ ϵ
i∂kðf̃ϕ−2

∂lδ
3Þ;

½S0; b0μ� ¼ −if̃ϕ−2Sμδ3; ½S0; B0� ¼ −if̃ϕ−2δ3; ½Sk; b0ρ� ¼ ½Sk; B0� ¼ 0;

½ _S0; B0� ¼ 2if̃g̃0i∂iðf̃ϕ−2δ3Þ; ½ _Sk; B0� ¼ −i∂kðf̃ϕ−2δ3Þ;
f _̄cλ; cσ0g ¼ −f_cσ; c̄0λg ¼ −f̃ϕ−2δσλδ

3; f _̄c; c0g ¼ −f_c; c̄0g ¼ −f̃ϕ−2δ3;

½gμν; b0ρ� ¼ −if̃ϕ−2ðδ0μgρν þ δ0νgρμÞδ3; ½g̃μν; b0ρ� ¼ if̃ϕ−2ðg̃μ0δνρ þ g̃ν0δμρ − g̃μνδ0ρÞδ3;
½gμν; _b0ρ� ¼ if½f̃ϕ−2

∂ρgμν − ∂0ðf̃ϕ−2Þðδ0μgρν þ δ0νgρμÞ�δ3 þ ½ðδkμ − 2δ0μf̃g̃0kÞgρν
þ ðμ ↔ νÞ�∂kðf̃ϕ−2δ3Þg;
½ _ϕ; b0ρ� ¼ −if̃ϕ−2

∂ρϕδ
3; ½ _B; b0ρ� ¼ −if̃ϕ−2

∂ρBδ3;

½ _S0; b0μ� ¼ −if̃2ϕ−2½g̃0νð∂μSν þ ∂νSμÞ − g̃0iHμi�δ3 þ 2if̃g̃0i∂iðf̃ϕ−2Sμδ3Þ;
½ _Sk; b0μ� ¼ if̃ϕ−2Hkμδ

3 − i∂kðf̃ϕ−2Sμδ3Þ;
½bμ; b0ν� ¼ 0; ½bμ; _b0ν� ¼ if̃ϕ−2ð∂μbν þ ∂νbμÞδ3;
½bρ; cσ0� ¼ ½bρ; c̄0λ� ¼ ½bρ; c0� ¼ ½bρ; c̄0� ¼ 0;

½ _̄cλ; b0ρ� ¼ −if̃ϕ−2
∂ρc̄λδ3; ½_cσ; b0ρ� ¼ −if̃ϕ−2

∂ρcσδ3;

½ _̄c; b0ρ� ¼ −if̃ϕ−2
∂ρc̄δ3; ½_c; b0ρ� ¼ −if̃ϕ−2

∂ρcδ3: ð5:23Þ

These ETCRs can be obtained from the explicit calcula-
tions and/or the BRST transformations. For instance, we
will present a derivation of ½B; _B0� ¼ 0 by both methods.
First, let us focus on the explicit calculation via the Dirac
bracket:

fB; _B0gD ¼ fB; _B0gP − fB;Ψ00
2gPC−1

21 fΨ00
1; _B

0gP: ð5:24Þ

Since we can easily evaluate each Poisson bracket whose
result reads

fB; _B0gP ¼ fB; ð6ξþ ϵÞf̃ϕ−2π0BgP ¼ ð6ξþ ϵÞf̃ϕ−2δ3;

fB;Ψ0
2gP ¼ fB; ð6ξþ ϵÞπ0BgP ¼ ð6ξþ ϵÞδ3;

fΨ1; _B
0gP ¼ fπ0S;−ð6ξþ ϵÞf̃g̃0μS0μg ¼ ð6ξþ ϵÞδ3;

ð5:25Þ

the Dirac bracket becomes

fB; _B0gD ¼ ð6ξþ ϵÞf̃ϕ−2δ3

− ð6ξþ ϵÞC−1
21 ð6ξþ ϵÞδ3 ¼ 0: ð5:26Þ

Second, we will present a derivation by means of the
BRST transformation that is more general and elegant than
the above explicit calculation. The ETCR, ½B; π0c� ¼ 0,
leads to ½B; _̄c0� ¼ 0. Taking the Weyl BRST transformation
of this ETCR yields the equation

f½iQ̄B; B�; _̄c0g þ ½B; fiQ̄B; _̄c0g� ¼ 0: ð5:27Þ

Then, the Weyl BRST transformation (4.4) immediately
leads to ½B; _B0� ¼ 0.

VI. UNITARITY ANALYSIS

As in the conventional BRST formalism, the physical
state jphysi is defined by imposing two subsidiary con-
ditions [25]

QBjphysi ¼ Q̄Bjphysi ¼ 0: ð6:1Þ
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It is then well known that the physical S-matrix is unitary
under the assumption that all BRST singlet states have
positive norm. In this section, we would like to prove the
unitarity of the physical S-matrix in the present theory.
From the classical analysis we know that the gauge field
becomes massive via the Higgs mechanism. Thus, we wish
to understand how the Higgs mechanism is described in
terms of the BRST formalism.
In analyzing the unitarity, it is enough to take into

account the asymptotic fields of all the fundamental fields
and the free part of the Lagrangian. Let us first assume the
asymptotic fields as

gμν ¼ ημν þ φμν; ϕ ¼ ϕ0 þ ϕ̃; Sμ ¼ sμ;

bμ ¼ βμ; B ¼ β; cμ ¼ γμ; c̄μ ¼ γ̄μ;

c ¼ γ; c̄ ¼ γ̄; ð6:2Þ

where ημνð¼ ημνÞ is the flat Minkowski metric with the
mostly positive signature and ϕ0 is a nonzero constant. In
this section, the Minkowski metric is used to lower or raise
the Lorentz indices. Using these asymptotic fields, the free
part of the Lagrangian reads

Lq ¼
1

2
ξϕ2

0

�
1

4
φμν□φμν −

1

4
φ□φ −

1

2
φμν

∂μ∂ρφν
ρ þ 1

2
φμν

∂μ∂νφ

�
þ ξϕ0ϕ̃ð−□φþ ∂μ∂νφ

μνÞ

þ ð6ξþ ϵÞ
�
ϕ0sμ∂μϕ̃ −

1

2
ϕ2
0sμs

μ

�
−
1

4
h2μν −

1

2
ϵ∂μϕ̃∂

μϕ̃ −
�
2ημνϕ0ϕ̃ − ϕ2

0φ
μν þ 1

2
ϕ2
0η

μνφ

�
∂μβν

− iϕ2
0∂μγ̄ρ∂

μγρ þ ϕ0∂μβ∂
μϕ̃ − iϕ2

0∂μγ̄∂
μγ; ð6:3Þ

where □≡ ημν∂μ∂ν;φ≡ ημνφμν, and hμν ≡ ∂μsν − ∂νsμ.
Based on this Lagrangian, it is easy to derive the linearized
field equations:

1

2
ξϕ2

0

�
1

2
□φμν−

1

2
ημν□φ−∂ρ∂ðμφνÞρþ

1

2
∂μ∂νφþ

1

2
ημν∂ρ∂σφ

ρσ

�

þξϕ0ð−ημν□þ∂μ∂νÞϕ̃þϕ2
0∂ðμβνÞ−

1

2
ϕ2
0ημν∂ρβ

ρ¼0; ð6:4Þ

ϵ□ϕ̃þ ξϕ0ð−□φþ ∂μ∂νφ
μνÞ − ð6ξþ ϵÞϕ0∂μsμ

− 2ϕ0∂ρβ
ρ − ϕ0□β ¼ 0; ð6:5Þ

∂
νhμν þ ð6ξþ ϵÞϕ2

0

�
sμ −

1

ϕ0

∂μϕ̃

�
¼ 0; ð6:6Þ

∂μϕ̃ −
1

2
ϕ0

�
∂
νφμν −

1

2
∂μφ

�
¼ 0; ð6:7Þ

□ϕ̃ ¼ □γμ ¼ □γ̄μ ¼ □γ ¼ □γ̄ ¼ 0: ð6:8Þ

Here we have introduced the symmetrization notation
AðμBνÞ ≡ 1

2
ðAμBν þ AνBμÞ.

Now, operating ∂
μ on Eq. (6.7) and using Eq. (6.8), we

obtain

∂μ∂νφ
μν −

1

2
□φ ¼ 0: ð6:9Þ

Next, taking the trace of Eq. (6.4) with the help of Eqs. (6.8)
and (6.9) leads to

□φþ 4

ξ
∂ρβ

ρ ¼ 0: ð6:10Þ

Moreover, operating ∂
μ on Eq. (6.6), and using the identity

∂
μ
∂
νhμν ¼ 0 and Eq. (6.8), yields the Lorenz condition

∂μsμ ¼ 0: ð6:11Þ

As can been seen in Eq. (6.6), it is more convenient to
introduce ŝμ defined as

ŝμ ¼ sμ −
1

ϕ0

∂μϕ̃; ð6:12Þ

which also obeys the Lorenz condition owing to Eqs. (6.8)
and (6.11):

∂μŝμ ¼ 0: ð6:13Þ

With the new gauge field ŝμ and the corresponding field
strength ĥμν ≡ ∂μŝν − ∂νŝμ, the “Maxwell equation” (6.6)
can be cast to the form

∂
νĥμν þ ð6ξþ ϵÞϕ2

0ŝμ ¼ 0; ð6:14Þ

which clearly shows that the Weyl gauge field absorbs the
Nambu-Goldstone boson ϕ̃ associated with the spontane-
ous symmetry breakdown of the Weyl gauge symmetry,
thereby becoming massive with the mass squared
ð6ξþ ϵÞϕ2

0. (Here we assume 6ξþ ϵ > 0, which is con-
sistent with the positive Newton constant ξ > 0.) To put it
differently, after spontaneous symmetry breakdown of the
Weyl gauge symmetry, the Weyl gauge field ŝμ satisfies not
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only the Lorenz condition (6.13) but also the massive
Klein-Gordon equation

ð□ −m2Þŝμ ¼ 0; ð6:15Þ

where m2 is defined by

m2 ≡ ð6ξþ ϵÞϕ2
0: ð6:16Þ

Furthermore, with the help of Eqs. (6.8)–(6.11) and (6.5)
can be rewritten as

□β ¼ 0: ð6:17Þ

Moreover, acting ∂
μ on Eq. (6.4) yields

□βμ ¼ 0: ð6:18Þ

Finally, using various equations obtained thus far, the
“Einstein equation” (6.4) is reduced to the form

□φμν þ
4

ξ
∂ðμβνÞ ¼ 0; ð6:19Þ

which means that the field φμν is not a simple pole field but
a dipole field:

□
2φμν ¼ 0: ð6:20Þ

On the other hand, in addition to Eq. (6.15), the other fields
are all simple pole fields:

□ϕ̃¼□βμ¼□β¼□γμ¼□γ̄μ¼□γ¼□γ̄¼ 0: ð6:21Þ

Note that Eq. (6.21) corresponds to Eq. (4.32) in a curved
spacetime.
Following the standard technique, we can calculate the

four-dimensional (anti)commutation relations (4D CRs)
between asymptotic fields. The point is that the simple
pole fields, for instance, the Nakanishi-Lautrup field βμðxÞ,
can be expressed in terms of the invariant delta function
DðxÞ as

βμðxÞ ¼ −
Z

d3zDðx − zÞ∂↔ z
0βμðzÞ; ð6:22Þ

whereas the dipole field φμνðxÞ takes the form

φμνðxÞ¼−
Z
d3z½Dðx−zÞ∂

↔
z
0φμνðzÞþEðx−zÞ∂

↔
z
0□φμνðzÞ�

¼−
Z
d3z

h
Dðx−zÞ∂↔z

0φμνðzÞ−
4

ξ
Eðx−zÞ∂↔z

0∂ðμβνÞðzÞ
i
;

ð6:23Þ

where in the last equality we have used Eq. (6.19). Here the
invariant delta function DðxÞ for massless simple pole
fields and its properties are described as

DðxÞ¼−
i

ð2πÞ3
Z

d4kϵðk0Þδðk2Þeikx; □DðxÞ¼0;

Dð−xÞ¼−DðxÞ; Dð0; x⃗Þ¼ 0; ∂0Dð0; x⃗Þ¼ δ3ðxÞ;
ð6:24Þ

where ϵðk0Þ≡ k0
jk0j. Similarly, the invariant delta function

EðxÞ for massless dipole fields and its properties are
given by

EðxÞ¼−
i

ð2πÞ3
Z

d4kϵðk0Þδ0ðk2Þeikx; □EðxÞ¼DðxÞ;

Eð−xÞ¼−EðxÞ; Eð0;x⃗Þ¼∂0Eð0;x⃗Þ¼∂
2
0Eð0;x⃗Þ¼0;

∂
3
0Eð0;x⃗Þ¼−δ3ðxÞ; ð6:25Þ

where δ0ðk2Þ≡ dδðk2Þ
dk2 .

On the other hand, the Weyl gauge field ŝðxÞ obeys the
massive Klein-Gordon equation (6.15), so it needs to be
described in terms of the invariant delta function Δðx;m2Þ
for massive simple pole fields as

ŝμðxÞ ¼ −
Z

d3zΔðx − z;m2Þ∂↔ z
0ŝμðzÞ; ð6:26Þ

where Δðx;m2Þ is defined as

Δðx;m2Þ ¼ −
i

ð2πÞ3
Z

d4kϵðk0Þδðk2 þm2Þeikx;

ð□ −m2ÞΔðx;m2Þ ¼ 0;

Δð−x;m2Þ ¼ −Δðx;m2Þ; Δð0; x⃗;m2Þ ¼ 0;

∂0Δð0; x⃗;m2Þ ¼ δ3ðxÞ; Δðx; 0Þ ¼ DðxÞ: ð6:27Þ

It is easy to show that the RHS of Eqs. (6.22), (6.23), and
(6.26) is independent of z0. Thus, for instance, when we
evaluate the four-dimensional commutation relation
½φμνðxÞ;φστðyÞ�, we can put z0 ¼ y0 and use the three-
dimensional commutation relations among asymptotic
fields. After some manipulation, we find that the 4D
CRs are given by

½φμνðxÞ;φστðyÞ�

¼ −
2

ξ
iϕ−2

0 ½ðημνηστ − ημσηντ − ημτηνσÞDðx − yÞ

þ ðημσ∂ν∂τ þ ηνσ∂μ∂τ þ ημτ∂ν∂σ þ ηντ∂μ∂σÞEðx − yÞ�;
ð6:28Þ

½φμνðxÞ; βρðyÞ� ¼ −iϕ−2
0 ðημρ∂ν þ ηνρ∂μÞDðx − yÞ; ð6:29Þ
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½φμνðxÞ; βðyÞ� ¼ 2iϕ−1
0 ημνDðx − yÞ; ð6:30Þ

½ϕ̃ðxÞ; βðyÞ� ¼ −iϕ−1
0 Dðx − yÞ; ð6:31Þ

½ŝμðxÞ; ŝνðyÞ� ¼ i

�
ημν −

1

m2
∂μ∂ν

�
Δðx − y;m2Þ; ð6:32Þ

fγσðxÞ; γ̄τðyÞg ¼ ϕ−2
0 δστDðx − yÞ; ð6:33Þ

fγðxÞ; γ̄ðyÞg ¼ ϕ−2
0 Dðx − yÞ: ð6:34Þ

The other 4D CRs vanish identically.
Now wewould like to discuss the issue of the unitarity of

the physical S-matrix. To do that, it is convenient to
perform the Fourier transformation of Eqs. (6.28)–(6.34).
However, for the dipole field we cannot use the three-
dimensional Fourier expansion to define the creation and
annihilation operators. We therefore make use of the four-
dimensional Fourier expansion [21]12

φμνðxÞ ¼
1

ð2πÞ32
Z

d4pθðp0Þ½φμνðpÞeipx þ φ†
μνðpÞe−ipx�;

ð6:35Þ
where θðp0Þ is the step function. For any simple pole fields,
we adopt the same Fourier expansion, for instance,

βμðxÞ ¼
1

ð2πÞ32
Z

d4pθðp0Þ½βμðpÞeipx þ β†μðpÞe−ipx�:

ð6:36Þ
Thus, using Eqs. (6.22), (6.23), (6.35), and (6.36), for
instance, the Fourier transforms of, e.g., φμνðxÞ and βμðxÞ,
take the following expressions:

φμνðpÞ ¼
i

ð2πÞ32 θðp0Þ
Z

d3ze−ipz ∂
↔

z
0½δðp2ÞφμνðzÞ

þ δ0ðp2Þ□φμνðzÞ�;

βμðpÞ ¼
i

ð2πÞ32 θðp0Þδðp2Þ
Z

d3ze−ipz ∂
↔

z
0βμðzÞ: ð6:37Þ

Incidentally, for a generic simple pole field Φ with
a mass m, the three-dimensional Fourier expansion is
defined as

ΦðxÞ ¼ 1

ð2πÞ32
Z

d3p
1ffiffiffiffiffiffiffiffi
2ωp

p ½Φðp⃗Þeipx þΦ†ðp⃗Þe−ipx�;

ð6:38Þ

with ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
, whereas the four-dimensional

Fourier expansion reads

ΦðxÞ ¼ 1

ð2πÞ32
Z

d4pθðp0Þ½ΦðpÞeipx þΦ†ðpÞðpÞe−ipx�:

ð6:39Þ

Thus, the annihilation operatorΦðpÞ in the four-dimensional
Fourier expansion has a connection with the annihilation
operatorΦðp⃗Þ in the three-dimensional Fourier expansionvia

ΦðpÞ ¼ θðp0Þδðp2 þm2Þ ffiffiffiffiffiffiffiffi
2ωp

p
Φðp⃗Þ: ð6:40Þ

Based on these Fourier expansions, we can calculate the
Fourier transforms of Eqs. (6.28)–(6.34):

½φμνðpÞ;φ†
στðqÞ� ¼ −

2

ξ
ϕ−2
0 θðp0Þδ4ðp − qÞ½δðp2Þðημνηστ − ημσηντ − ημτηνσÞ

− 3δ0ðp2Þðημσpνpτ þ ηνσpμpτ þ ημτpνpσ þ ηντpμpσÞ�; ð6:41Þ

½φμνðpÞ; β†ρðqÞ�
¼ −iϕ−2

0 ðημρpν þ ηνρpμÞθðp0Þδðp2Þδ4ðp − qÞ; ð6:42Þ
½φμνðpÞ; β†ðqÞ� ¼ 2ϕ−1

0 ημνθðp0Þδðp2Þδ4ðp − qÞ; ð6:43Þ
½ϕ̃ðpÞ; β†ðqÞ� ¼ −ϕ−1

0 θðp0Þδðp2Þδ4ðp − qÞ; ð6:44Þ

½ŝμðpÞ; ŝ†νðqÞ� ¼ þ
�
ημν −

1

m2
pμpν

�

× θðp0Þδðp2 þm2Þδ4ðp − qÞ; ð6:45Þ

fγσðpÞ; γ̄†τðqÞg ¼ −iϕ−2
0 δστ θðp0Þδðp2Þδ4ðp − qÞ; ð6:46Þ

fγðpÞ; γ̄†ðqÞg ¼ −iϕ−2
0 θðp0Þδðp2Þδ4ðp − qÞ: ð6:47Þ

Next, let us turn our attention to the linearized field
equations. After Fourier transformation, Eq. (6.7) takes the
form

pνφμν −
1

2
pμφ ¼ 2ϕ−1

0 pμϕ̃: ð6:48Þ

If we fix the degree of freedom associated with ϕ̃, which
will be discussed later, this equation gives us four inde-
pendent relations on ten components of φμνðpÞ, thereby
reducing the independent components of φμνðpÞ to be six.

12For simplicity, the Fourier transform of a field is denoted by
the same field except for the argument p instead of x.
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To deal with six independent components of φμνðpÞ, it is
convenient to take a specific Lorentz frame such that p1 ¼
p2 ¼ 0 and p3 > 0, and choose the six components as
follows:

φ1ðpÞ¼
1

2
½φ11ðpÞ−φ22ðpÞ�; φ2ðpÞ¼φ12ðpÞ;

ω0ðpÞ¼−
1

2p0

φ00ðpÞ; ωIðpÞ¼−
1

p0

φ0IðpÞ;

ω3ðpÞ¼−
1

2p3

φ33ðpÞ; ð6:49Þ

where the index I takes the transverse components I ¼ 1, 2.
In this respect, it is worthwhile to consider the GCT

BRST transformation for these components. First, let us
write down the GCT BRST transformation for the Fourier
expansion of the asymptotic fields, which reads

δBφμνðpÞ¼−i½pμγνðpÞþpνγμðpÞ�; δBγ
μðpÞ¼ 0;

δBγ̄μðpÞ¼ iβμðpÞ;
δBϕ̃ðpÞ¼ δBβμðpÞ¼ δBβðpÞ¼ δBγðpÞ¼ δBγ̄ðpÞ¼ 0:

ð6:50Þ
Using this BRST transformation, the GCT BRST trans-
formation for the components in (6.49) takes the form

δBφIðpÞ ¼ 0; δBωμðpÞ ¼ iγμðpÞ;
δBγ̄μðpÞ ¼ iβμðpÞ; δBγμðpÞ ¼ δBβμðpÞ ¼ 0; ð6:51Þ

where p1 ¼ p2 ¼ 0 was used. This BRST transformation
implies that φIðpÞ could be the physical observable while a

set of fields, fωμðpÞ; βμðpÞ; γμðpÞ; γ̄μðpÞg, might belong to
the BRST quartet and thus are dropped from the physical
state by the Kugo-Ojima subsidiary condition,QBjphysi ¼
0 [25].13

Next, let us move on to the other BRST transformation,
which is the BRST transformation for the Weyl trans-
formation. The Weyl BRST transformation for the asymp-
totic fields is of the form

δ̄Bφμν¼ 2cημν; δ̄Bϕ̃¼−ϕ0γ; δ̄Bγ¼0; δ̄Bγ̄¼ iβ;

δ̄Bβ¼ δ̄Bβμ¼ δ̄Bγμ¼ δ̄Bγ̄μ¼ 0: ð6:52Þ

The Weyl BRST transformation of φI is vanishing,

δ̄BφI ¼ 0; ð6:53Þ

which means that together with δBφI ¼ 0, φI is truly the
physical observable. The four-dimensional commutation
relations among the fields fϕ̃; β; γ; γ̄g read

½ϕ̃ðpÞ; ϕ̃†ðqÞ� ¼ 0;

½ϕ̃ðpÞ; β†ðqÞ� ¼ −ϕ−1
0 θðp0Þδðp2Þδ4ðp − qÞ;

fγðpÞ; γ̄†ðqÞ� ¼ −iϕ−2
0 θðp0Þδðp2Þδ4ðp − qÞ: ð6:54Þ

As can also be seen in these 4D CRs, all the fields
fφI; ϕ̃; β; γ; γ̄g are massless simple pole fields. Via relation
(6.40) the three-dimensional commutation relations
½Φðp⃗Þ;Φ†ðq⃗Þg with Φðp⃗Þ≡ fφIðp⃗Þ; ϕ̃ðp⃗Þ; βðp⃗Þ; γðp⃗Þ;
γ̄ðp⃗Þg are of form

½Φðp⃗Þ;Φ†ðq⃗Þg ¼

0
BBBBBBBBBB@

2
ξ ϕ

−2
0 δIJ

0 −ϕ−1
0

−ϕ−1
0 0

−iϕ−2
0

þiϕ−2
0

1
CCCCCCCCCCA

× δðp⃗ − q⃗Þ: ð6:55Þ

Thus, φI is the physical observable while the set of fields
fϕ̃; β; γ; γ̄g consists of the BRST quartet and is the
unphysical mode by Kugo-Ojima’s subsidiary condition

[25]. Here it is worth mentioning that the Nambu-
Goldstone boson ϕ̃ associated with spontaneous sym-
metry breaking of the Weyl gauge symmetry is an
unphysical particle. In this context, let us recall that the
Nambu-Goldstone theorem never tells us whether the
Nambu-Goldstone boson is physical or unphysical.
From our analysis at hand, we can conclude that the
Nambu-Goldstone boson ϕ̃ is the unphysical mode,
which is absorbed into the longitudinal mode of the Weyl
gauge field sμðxÞ, and thereby the gauge field becomes
massive.

13The situation is, in fact, a bit complicated since βμðpÞ; γμðpÞ,
and γ̄μðpÞ are simple pole fields obeying p2βμðpÞ ¼
p2γμðpÞ ¼ p2γ̄μðpÞ ¼ 0, while φμνðpÞ is a dipole field satisfying
ðp2Þ2φμνðpÞ ¼ 0, so that a naive Kugo-Ojima’s quartet mecha-
nism does not work in a direct way. But this problem can be
remedied by introducing an operator that takes out a simple pole
from a dipole field. The detail can be shown in Ref. [18].
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Finally, let us focus on the Weyl gauge field ŝμ, which
satisfies the Lorenz condition (6.13) and the massive Klein-
Gordon equation (6.15). In a specific Lorentz frame

pμ ¼ ðm; 0; 0; 0Þ; ð6:56Þ

the Lorenz condition (6.13) produces

ŝ0ðpÞ ¼ 0: ð6:57Þ

With the Lorentz frame (6.56), it turns out that the spatial
components of ŝμ are invariant under both GCT and Weyl
BRST transformations:

δBŝiðpÞ ¼ δ̄BŝiðpÞ ¼ 0: ð6:58Þ

Moreover, using the relation (6.40) and Eq. (6.45), the
commutation relation between the three-dimensional anni-
hilation and creation operators reads

½ŝiðp⃗Þ; ŝ†jðq⃗Þ� ¼ δijδ
3ðp⃗ − q⃗Þ: ð6:59Þ

Together with the BRST invariance in Eq. (6.58), this
equation clearly shows that the spatial components ŝiðxÞ
are really genuine physical massive modes belonging to
BRST singlets with positive norm.

VII. CHORAL SYMMETRY

In the previous article [18], we have clarified the
existence of a huge global symmetry called “choral
symmetry,” which is the IOSpð10j10Þ symmetry, in
Weyl invariant scalar-tensor gravity in Riemann geometry.
We will show that the choral symmetry also exists in the
theory at hand. The existence of the choral symmetry is
expected from the fact that as shown in Sec. IV, a set of
fields (including the spacetime coordinates xμ) XM ≡
fxμ; bμ; σ; B; cμ; c̄μ; c; c̄g obeys a very simple equation,

gμν∂μ∂νXM ¼ 0: ð7:1Þ

It is worthwhile to note that this equation holds if and only
if we adopt the extended de Donder gauge condition (4.8)
for the GCT and the scalar gauge condition (4.9) for the
Weyl gauge transformation. Furthermore, Eq. (7.1) implies
that there should be many conserved currents defined in
Eq. (4.33) in the theory under consideration. In this section,
along the same line of argument as that in the previous
article [18,19], we will explicitly prove that there is the
choral symmetry IOSpð10j10Þ in Weyl conformal gravity
in Weyl geometry.
Let us start with the Lagrangian (4.11), which can be cast

to the form

Lq ¼
ffiffiffiffiffiffi
−g

p �
1

2
ξϕ2ðR−6∇μSμ−6SμSμÞ−

1

4
HμνHμν

−
1

2
ϵgμνð−2ϕ∂μϕSνþSμSνϕ2Þ

�
−
1

2
g̃μνϕ2Êμν; ð7:2Þ

where we have defined Êμν as

Êμν ¼
1

2
ϵ∂μσ∂νσ þ ∂μbν þ i∂μc̄λ∂νcλ − ∂μB∂νσ

þ i∂μc̄∂νcþ ðμ ↔ νÞ ð7:3Þ

and used the relation (4.15) between the scalar field ϕ and
the dilaton σ.
Next, let us focus our attention on the last term in

Eq. (7.2) and rewrite it into a more compact form:

LðEÞ
q ≡ −

1

2
g̃μνϕ2Êμν ¼ −

1

2
g̃μνϕ2ηNM∂μXM

∂νXN

¼ −
1

2
g̃μνϕ2

∂μXMη̃MN∂νXN: ð7:4Þ

Here we have introduced an IOSpð10j10Þ metric ηNM ¼
ηTMN ≡ η̃MN defined as [26]

ð7:5Þ

Let us note that this IOSpð10j10Þ metric ηNM, which is a
c-number quantity, has the symmetry property such that

ηMN ¼ ð−ÞjMj·jNjηNM ¼ ð−ÞjMjηNM ¼ ð−ÞjNjηNM; ð7:6Þ

where the statistics index jMj is 0 or 1 when XM is
Grassmann-even or Grassmann-odd, respectively. This
property comes from the fact that ηMN is “diagonal” in
the sense that its off-diagonal, Grassmann-even and
Grassmann-odd, and vice versa, matrix elements vanish,
i.e., ηMN ¼ 0 when jMj ≠ jNj, thereby being jMj ¼ jNj ¼
jMj · jNj in front of ηMN [26].
Now that (7.4) is expressed in a manifestly IOSpð10j10Þ

invariant form except for the Weyl invariant metric g̃μνϕ2,
which will be discussed later, there could exist an
IOSpð10j10Þ as a global symmetry in our theory. Note
that the infinitesimal OSp rotation is defined by

δXM ¼ ηMLεLNXN ≡ εMNXN; ð7:7Þ
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where ηMN is the inverse matrix of ηMN , and the infini-
tesimal parameter εMN has the following properties:

εMN ¼ð−Þ1þjMj·jNjεNM; εMNXL¼ð−ÞjLjðjMjþjNjÞXLεMN:

ð7:8Þ

To find the conserved current, we assume that the infini-
tesimal parameter εMN depends on the spacetime coordi-
nates xμ, i.e., εMN ¼ εMNðxμÞ.
Assuming for a while that the metric g̃μνϕ2 is invariant

under the OSp rotation (7.7), we find that (7.4) is trans-
formed as

δLðEÞ
q ¼ −g̃μνϕ2ð∂μεNMXM

∂νXN þ εNM∂μXM
∂νXNÞ: ð7:9Þ

It is easy to prove that the second term on the RHS vanishes
owing to the first property in Eq. (7.8). Thus, LðEÞ

q is
invariant under the infinitesimal OSp rotation. The con-
served current is then calculated to be

δLðEÞ
q ¼ −g̃μνϕ2

∂μεNMXM
∂νXN

¼ −
1

2
g̃μνϕ2

∂μεNM½XM
∂νXN − ð−ÞjMj·jNjXN

∂νXM�

¼ −
1

2
g̃μνϕ2

∂μεNMðXM
∂νXN − ∂νXMXNÞ

¼ −
1

2
g̃μνϕ2

∂μεNMXM
∂

↔

νXN

≡ −
1

2
∂μεNMMμMN; ð7:10Þ

with the conserved current MμMN for the OSp rotation
taking the form

MμMN ¼ g̃μνϕ2XM
∂

↔

νXN: ð7:11Þ

The above proof makes sense only under the assumption
that the metric g̃μνϕ2 and the other terms except for the last
term in (7.2) are invariant under the OSp rotation, but it is
obviously not the case. However, this problem is cured by
noticing that the OSp rotation includes a Weyl trans-
formation on the dilaton,

δσ ¼ ησLεLNXN ¼ −εBNXN ≡ −εðxÞ; ð7:12Þ

where we have used (7.5) and

�
ϵ −1
−1 0

�−1
¼

�
0 −1
−1 −ϵ

�
; ð7:13Þ

where we recall that the matrix ηML is the inverse matrix of
ηML. As for the scalar field ϕðxÞ, this transformation for the
dilaton can be interpreted as a Weyl transformation,

ϕ → ϕ0 ¼ e−εðxÞϕ: ð7:14Þ

Thus, simultaneously with the OSp rotation, if we
perform a Weyl transformation, which is denoted as δ0,
given by

δ0gμν ¼ 2εðxÞgμν; δ0Sμ ¼ −∂μεðxÞ; ð7:15Þ

and a local shift for the Nakanishi-Lautrup field B, which is
also denoted as δ0,14

δ0B ¼ ϵεðxÞ; ð7:16Þ

it turns out that under the (local)OSp rotation δ in (7.7) and
the additional transformation δ0, the quantum Lagrangian
Lq transforms as

ðδþ δ0ÞLq ¼ −
1

2
∂μεNMMμMN: ð7:17Þ

As a result, the conserved current MμMN for the OSp
rotation takes the form (7.11).
In a similar way, we can derive the conserved current for

the infinitesimal translation,

δXM ¼ εM; ð7:18Þ

and it turns out that the conserved current PμM for the
translation reads

PμM ¼ g̃μνϕ2
∂νXM ¼ g̃μνϕ2ð1∂↔νXMÞ: ð7:19Þ

From the conserved currents (7.11) and (7.19), the
corresponding conserved charges are given by

MMN ≡
Z

d3xM0MN ¼
Z

d3xg̃0νϕ2XM
∂

↔

νXN;

PM ≡
Z

d3xP0M ¼
Z

d3xg̃0νϕ2
∂νXM: ð7:20Þ

For instance, the BRST charges for the GCT and Weyl
transformation are, respectively, expressed as

QB ≡Mðbρ; cρÞ ¼
Z

d3xg̃0νϕ2bρ ∂
↔

νcρ;

Q̄B ≡MðB; cÞ ¼
Z

d3xg̃0νϕ2B∂

↔

νc: ð7:21Þ

We can then verify that using various ETCRs obtained so
far, the IOSpð10j10Þ generators fMMN; PMg generate an
IOSpð10j10Þ algebra:

14Under the OSp rotation, the B field is transformed as
δB ¼ ηBLεLNXN ¼ −εσNXN þ ϵε. The transformation (7.16) is
carried out independently of this OSp rotation.
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½PM; PNg ¼ 0;

½MMN; PRg ¼ i½PMη̃NR − ð−ÞjNjjRjPN η̃MR�;
½MMN;MRSg ¼ i½MMSη̃NR − ð−ÞjNjjRjMMRη̃NS

− ð−ÞjNjjRjMNSη̃MR þ ð−ÞjMjjRjþjNjjSjMNRη̃MS�; ð7:22Þ

where ½A; Bg denotes the graded commutator, which is the
anticommutator if both A and B are fermionic and the
commutator otherwise.
Finally, it is useful to compare our extended choral

symmetry IOSpð10j10Þ with the original choral symmetry
IOSpð8j8Þ in Einstein’s general relativity [21]. In our case,
the choral symmetry is extended in the sense that the GCT
is replaced with a larger symmetry, which consists of both
the GCT and the Weyl gauge transformation. Accordingly
the dilaton σ, the Nakanishi-Lautrup field B, ghost c, and
antighost c̄ are joined in the algebra. The choral symmetry
IOSpð10j10Þ therefore includes the dilaton or, equiva-
lently, the scalar field, which exists in the classical
Lagrangian and is closely related to a classical theory. In
contrast, the original IOSpð8j8Þ symmetry is purely a
symmetry among quantum fields, which are the NL field
and ghosts, so the symmetry is limited to the sector related
to the gauge-fixing procedure. From this viewpoint, we
expect that the extended IOSpð10j10Þ choral symmetry
might play an important role in clarifying the dynamics
peculiar to the classical theory.

VIII. GRAVITATIONAL CONFORMAL
SYMMETRY AND SPONTANEOUS SYMMETRY

BREAKDOWN

One of the most interesting features in the formalism at
hand is that as an analog of the well-known conformal
symmetry in a flat Minkowski spacetime, there is a
gravitational conformal symmetry which is a subgroup
of the choral symmetry, and its spontaneous symmetry
breakdown down to the Poincaré symmetry guarantees that
the graviton and the dilaton are exactly massless Nambu-
Goldstone particles [18]. This feature is so important for
future developments of quantum gravity that we would like
to explain the gravitational conformal symmetry and its
spontaneous symmetry breakdown in detail.
In particular, as already shown in Sec. VI, there is a

massiveWeyl gauge field in the spectrum, so at first sight it
appears to be strange that there is a conformal symmetry in
the present theory since it is usually thought that conformal
or scale symmetry exists in the theories with only massless
particles. With regard to this, it is worthwhile to recall that
the massless Weyl gauge field acquires the mass via
spontaneous symmetry breakdown (SSB) of Weyl gauge
symmetry and the SSB is the breakdown of symmetry at the
level of not field operators but the representation of field
operators in the sense that the symmetry cannot be realized
by a unitary transformation in the state vector space. Thus,

it is not strange that there is a conformal symmetry in the
present theory with the massive gauge field if the mass is
generated through the SSB. Moreover, this physical sit-
uation is also supported by the Zumino theorem [27] to
some degree since the theorem insists that theories invariant
under general coordinate transformation and Weyl trans-
formation at the same time should possess conformal
symmetry in a flat Minkowski background at least
classically.
As clarified in the previous paper [18], the extended de

Donder gauge condition (4.8) and the scalar gauge con-
dition (4.9) have a residual symmetry that corresponds to
the dilatation and the special conformal transformation in a
flat Minkowski spacetime. Indeed, the quantum Lagrangian
(4.11) is still invariant under the restricted Weyl trans-
formation [28]:

δgμν ¼ 2Λgμν; δϕ ¼ −Λϕ;

δSμ ¼ −∂μΛ; δbμ ¼ −∂μΛB; ð8:1Þ

where the infinitesimal transformation parameter Λ takes
the form

Λ ¼ λ − 2kμxμ; ð8:2Þ

with λ and kμ being infinitesimal constants corresponding
to a global scale transformation and the special conformal
transformation, respectively [18]. Note that Λ obeys the
equation gμν∂μ∂νΛ ¼ 0, which is a characteristic feature of
the restricted Weyl transformation. The whole global
symmetry in the theory under consideration should be
included in the extended IOSpð10j10Þ choral symmetry.
Actually, we can construct the generators corresponding to
the transformation parameters λ and kμ out of those of the
choral symmetry as

D0 ≡ −PðBÞ ¼ −
Z

d3xg̃0νϕ2
∂νB;

Kμ ≡ 2Mμðx; BÞ ¼ 2

Z
d3xg̃0νϕ2xμ ∂

↔

νB: ð8:3Þ

It is easy to verify that these generators generate the
symmetry (8.1) in terms of the ETCRs in (5.23).
Our theory is also invariant under the translation and the

general linear transformation GLð4Þ. Actually, we can
make the translation generator Pμ and GLð4Þ generator
Gμ

ν from the choral symmetry as

Pμ ≡ PμðbÞ ¼
Z

d3xg̃0νϕ2
∂νbμ;

Gμ
ν ≡Mμ

νðx; bÞ − iMμ
νðcτ; c̄τÞ

¼
Z

d3xg̃0λϕ2ðxμ ∂↔λbν − icμ ∂
↔

λc̄νÞ: ð8:4Þ
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For instance, based on the ETCRs in (5.23), we can check
that theGLð4Þ generatorGμ

ν correctly generates theGLð4Þ
transformation on the fields ϕ; Sρ, and gστ:

½iGμ
ν;ϕ� ¼ xμ∂νϕ; ½iGμ

ν; Sρ� ¼ xμ∂νSρ þ δμρSν;

½iGμ
ν; gστ� ¼ xμ∂νgστ þ δμσgντ þ δμτgνσ: ð8:5Þ

Finally, we can build a generator corresponding to the
dilatation in a flat Minkowski spacetime, which is closely
related to the generator D0 of the scale transformation in
(8.3). The construction of such a dilatation generator has
been explained in Ref. [18], so the result is given by

D≡Gμ
μ −D0: ð8:6Þ

It turns out that the algebra among the generators
fPμ; Gμ

ν; Kμ; Dg closes and takes the form

½Pμ; Pν� ¼ 0; ½Pμ; Gρ
σ� ¼ iPσδ

ρ
μ;

½Pμ; Kν� ¼ −2iðGρ
ρ −DÞδνμ; ½Pμ; D� ¼ iPμ;

½Gμ
ν; Gρ

σ� ¼ iðGμ
σδ

ρ
ν −Gρ

νδ
μ
σÞ;

½Gμ
ν; Kρ� ¼ iKμδρν; ½Gμ

ν; D� ¼ ½Kμ; Kν� ¼ 0;

½Kμ; D� ¼ −iKμ; ½D;D� ¼ 0: ð8:7Þ

To extract the gravitational conformal algebra in quan-
tum gravity, it is necessary to introduce the “Lorentz”
generator. It can be constructed from the GLð4Þ generator
and the flat Minkowski metric to be

Mμν ≡ −ημρGρ
ν þ ηνρGρ

μ: ð8:8Þ

In terms of the generator Mμν, the algebra (8.7) can be cast
to the form

½Pμ;Pν�¼ 0; ½Pμ;Mρσ� ¼ iðPρημσ−PσημρÞ;
½Pμ;Kν�¼−2iðGρ

ρ−DÞδνμ; ½Pμ;D�¼ iPμ;

½Mμν;Mρσ�¼−iðMμσηνρ−MνσημρþMρμησν−MρνησμÞ;
½Mμν;Kρ�¼ ið−Kμδ

ρ
νþKνδ

ρ
μÞ; ½Mμν;D� ¼ ½Kμ;Kν� ¼0;

½Kμ;D�¼−iKμ; ½D;D� ¼0; ð8:9Þ

where we have defined Kμ ≡ ημνKν. It is of interest that the
algebra (8.9) in quantum gravity, which we call “gravita-
tional conformal algebra,” formally resembles conformal
algebra in the flat Minkowski spacetime except for the
expression of ½Pμ; Kν� [29,30].15 This difference stems from
the difference of the definition of conformal dimension (or
weight) in both gravity and conformal field theory, for

which the metric tensor field gμν has weight 2 in gravity
while it has weight 0 in conformal field theory.
On the basis of the gravitational conformal symmetry, we

are able to show that the GLð4Þ symmetry is spontaneously
broken to the Poincaré symmetry whose Nambu-Goldstone
boson is the graviton [18]. The dilatation symmetry and the
special conformal symmetry are also spontaneously broken
and the corresponding Nambu-Goldstone bosons are the
dilaton and the derivative of the dilaton, respectively [18].
Interest here is that the Nambu-Goldstone boson associated
with the special conformal symmetry is not an independent
field in quantum gravity as in conformal field theory [31].

IX. CONCLUSION

In this article, we have presented a BRST formalism of a
Weyl conformal gravity in Weyl geometry. The essential
ingredient in our formalism is choosing suitable gauge
conditions for the general coordinate invariance and the
Weyl invariance. To implement two independent BRST
transformations δB and δ̄B corresponding to the GCT and
the Weyl transformation, respectively, i.e., fδB; δ̄Bg ¼ 0,
one has to select the gauge conditions in such a way that the
gauge condition for the GCT must be invariant under the
Weyl transformation and that for the Weyl transformation
must be so under the GCT [18].
In addition, both gauge conditions must give us a gauge

invariant measure in place of the conventional measureffiffiffiffiffiffi−gp
and ensure the masslessness of the dilaton.

Interestingly enough, such gauge conditions are almost
uniquely determined by the extended de Donder gauge
condition (4.8) for the GCT and the scalar gauge condition
(4.9) for the Weyl transformation. With the other gauge
conditions, we cannot construct the conserved currents for
the extended choral symmetry, and without the choral
symmetry we cannot ensure the gravitational conformal
algebra such that we cannot prove the masslessness of the
graviton and the dilaton. It is usually said that the gauge
conditions do not change the physical content of a theory,
but it is true that the existence of global symmetries seems
to critically depend on the gauge choice as seen in the
present study of Weyl conformal gravity.16

As for the future works, wewould like to present a BRST
formalism of quadratic conformal gravity (3.1) since this
theory is the unique theory that is invariant under Weyl
gauge transformation without matter fields.17 However, it is
known that higher-derivative gravities such as quadratic
gravity generally suffer from the existence of a massless or

15In the case of conformal algebra in the flat spacetime, the
expression is given by ½Pμ; Kν� ¼ −2iðδνμDþMμ

νÞ.

16Independence of the gauge conditions holds only in the case
of the absence of gauge anomalies, which might stem from the
Abelian gauge field Sμ. The issue of anomalies is one of the future
problems.

17Recently, spontaneous symmetry breakdown of conformal
symmetry in quantum quadratic gravity in Riemann geometry has
been investigated in [32].
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massive ghost which prevents a lower bound of energy at
the classical level and violates the unitarity at the quantum
level. Thus, we have to provide a recipe for nullifying such
a ghost. Since our choral symmetry is a huge global
symmetry including the gravitational conformal symmetry,
it might give us a useful tool for attacking various important
problems such as the ghost and renormalizability. The work
is currently in progress with partial affirmative results.
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APPENDIX: A DERIVATION OF CONSTRAINTS

In this appendix we present a derivation of the secondary
constraint (5.18) and show that the tertiary constraint is
vanishing as seen in Eq. (5.19).
Since the primary constraint (5.6) is given by π0S ≈ 0, the

terms involving S0 in the Hamiltonian density HT con-
tribute in the calculation of the secondary constraint. Thus,
the relevant part in HT is given by18

HT ∼ πμS _Sμ þ πB _B − Lq; ðA1Þ

where the relevant part in Lq reads

Lq ¼ −3ξg̃μνϕ2SμSν þ 6ξg̃μνϕSμ∂νϕ −
1

4

ffiffiffiffiffiffi
−g

p
HμνHμν

−
1

2
ϵg̃μνDμϕDνϕþ g̃μν∂μBϕ∂νϕ: ðA2Þ

Note that S0 in − 1
4

ffiffiffiffiffiffi−gp
HμνHμν can be expressed in terms

of πiS so this term can be ignored.

Using Eqs. (5.5), (5.9), and (5.15), the Hamiltonian
density takes the form

HT ∼ πiS∂iS0 þ 3ξg̃μνϕ2SμSν − 6ξπBS0 þ
1

2
ϵg̃μνDμϕDνϕ;

ðA3Þ
where _ϕ is defined by (5.9). Then, a straightforward
calculation of (5.7) gives us the secondary constraint
(5.18).
Next, let us evaluate the tertiary constraint which comes

from the time development of the secondary constraint
(5.18). For this purpose, let us calculate the Poisson bracket
between the total Hamiltonian and each term in the
secondary constraint (5.18). The method of the calculation
is similar to that of the derivation of the secondary
constraint; just write out the relevant terms in the
Hamiltonian density and then evaluate the Poisson bracket.
The results are presented in what follows:

fHT; ∂iπiSgP ¼ −ð6ξþ ϵÞ∂iðg̃iμϕDμϕÞ;
fHT; πBgP ¼ ∂iðg̃iμϕ∂μϕÞ;

fHT; g̃0μϕ2SμgP ¼ ∂iðg̃iμϕ2SμÞ: ðA4Þ
From these expressions, it is easy to see that the tertiary
constraint identically vanishes. As a remark, a direct
calculation of the last Poisson bracket is a bit complicated,
but instead we can make use of the relation between the
Hamiltonian and time derivative and the extended de
Donder gauge condition (4.8) and Eq. (4.20) as follows:

fHT; g̃0μϕ2SμgP ¼ −∂0ðg̃0μϕ2SμÞ
¼ −∂0ðg̃0μϕ2ÞSμ − g̃0μϕ2

∂0Sμ

¼ ∂iðg̃iμϕ2ÞSμ þ g̃iμϕ2
∂iSμ

¼ ∂iðg̃iμϕ2SμÞ: ðA5Þ
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