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We demonstrate strong evidence of entropy matching that rotating dyonic black holes in Einstein-
Maxwell-Dilaton-Axion theory is holographically dual to a 2D conformal field theory (CFT). We first
investigate the duality on a dyonic Kerr-Sen black hole with nonvanishing dilaton and axion charges. The
near-horizon geometry of extremal dyonic Kerr-Sen spacetime possesses the SLð2; RÞ × Uð1Þ isometry
where the asymptotic symmetry group method can be used to find the corresponding central charge.
We find two different branches of masses which correspond to CFT with two different central charges,
cL ¼ 12amþ and cL ¼ 12am−. The exact agreement between the Bekenstein-Hawking entropy and
entropy from CFT is then found also in two different branches of extremal entropy. Furthermore, we
demonstrate that this duality is robust insofar for nonzero anti–de Sitter (AdS) length. The duality holds for
both dyonic Kerr-Sen–AdS black hole and its ultraspinning counterpart. In both cases, we obtain the
expected entropy from CFT which matches exactly with the Bekenstein-Hawking entropy. Since dyonic
and axion charges are proportional to 1=m, we note that there are possibly more than two branches of the
central charge for nonzero AdS length in terms of mass. When we turn off dyonic charge, the axion charge
vanishes, giving the results of Kerr-Sen–AdS black hole. Moreover, when we assume the equal
electromagnetic charges, it recovers the results when the dilaton charge vanishes. Lastly, we compare
the results of a dyonic Kerr-Sen–AdS black hole and its ultraspinning counterpart to those of the dyonic
Kerr-Newman–AdS black hole and the ultraspinning counterpart. Depending on the dyonic charge
parameters, it is found that an extremal ultraspinning dyonic Kerr-Sen–AdS black hole is not always
superentropic.
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I. INTRODUCTION

It has been pointed out by Bekenstein and Hawking that
black holes must have an entropy to prevent the violation of
the second law of thermodynamics. It also corresponds to the
existence of radiation from the black holes with finite
temperature. These thermodynamic behaviors of black holes
indicate that there exists the underlyingmicrostructurewithin
the black holes. One big question then arises from this theory
questioning the explanation of the origin of the black hole
microstates. It has been a main curiosity for decades to
explain the Bekenstein-Hawking entropy from this micro-
scopic point of view. Nonetheless, there is yet no complete
answer to this question.However, for a large class of extremal

supersymmetric black holes, this question has been answered
in which the Bekenstein-Hawking entropy can be computed
also by counting the degeneracy of Bogomol’nyi-Prasad-
Sommerfield soliton bound states [1,2].
Another answer to the previous question is the Kerr/CFT

duality. This duality states that there is a correspondence
between the associated physical quantities of the extremal
four-dimensional Kerr black hole and almost similar
physical quantities in a chiral conformal field theory
(CFT) [3]. This statement is parallel to the general one
given by Brown and Hanneaux for AdS3 [4]. However, the
AdS3 spacetime is replaced by a near-horizon extremal
black hole metric. In the near-horizon region of extremal
black holes, it is shown that there is a conformal invariance
implying the presence of an anti–de Sitter (AdS) structure
on the spacetime with SLð2; RÞ ×Uð1Þ isometry. The
generalization of this correspondence to the other extremal
rotating black holes, in four and higher dimensions, and
beyond Einstein theory have been extensively studied
during the last decade [5–21]. The 2D chiral CFT has
been carried out by considering the asymptotic symmetry
group with some proposed boundary conditions, from
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which we can generate a class of diffeomorphisms of the
near-horizon Kerr geometry. After defining charges asso-
ciated with the diffeomorphisms and evaluating the Dirac
brackets of the charges, we can produce a Virasoro algebra
with nonvanishing (quantum) central charge which is the
extension of Uð1Þ isometry of the near-horizon extremal
black hole geometry. The entropy is then calculated using
Cardy’s growth of states for a 2D CFTwhich is the function
of central charge and temperature. The temperature can
then be calculated by assuming Frolov-Thorne vacuum.
From this duality calculation, the exact matching between
entropy from CFT and Bekenstein-Hawking entropy of
extremal Kerr black hole is established.
Interestingly, the Kerr/CFT correspondence may apply

not only to the extremal black holes, but also to nonex-
tremal black ones. The hidden conformal symmetry of the
Kerr black hole has been revealed for the first time in
Ref. [22]. The conformal symmetry appears on the solution
space of the scalar probe in the black hole background.
Further studies show that not only scalar probe, yet higher-
spin particles can also be the probe to reveal the hidden
conformal symmetry [23]. Similar to the Kerr/CFT in
extremal black holes, this also can be extended to various
black hole solutions in four and five dimensions, and also in
different gravitational theories [24–47]. The revelation of
the hidden conformal symmetry shows that in the near-
horizon region and low-frequency limit, the phase space
possesses SLð2; RÞ × SLð2; RÞ isometry similar to AdS3
spacetime. In these papers, the central charges are com-
puted using numerical observation in order to match the
Bekenstein-Hawking entropy with the Cardy entropy.
Another observation for nonextremal Kerr black hole is
that we can identify two sets of Virasoro diffeomorphisms
acting on the horizon leading to nonvanising left- and right-
moving central charges [48]. This remarkable calculation
fills the gap left from the first revelation of hidden
conformal symmetry in the nonextremal black hole.
Another intriguing result is provided in Ref. [49] that
one can also extend the conventional CFT to the warped
CFT in order to calculate the entropy for nonextremal Kerr
black holes. Therein, the nontrivial diffeomorphisms lead
to a Virasoro-Kac-Moody algebra with nontrivial central
extensions.
Inspired by the Kerr/CFT correspondence, it is natural to

extend the similar calculation to the family of black holes
in Einstein-Maxwell-Dilaton-Axion (EMDA) theory. We
want to study the thermodynamic properties of a dyonic
Kerr-Sen black hole, its gauged and ultraspinning counter-
parts. A nondyonic Kerr-Sen black hole has been inves-
tigated in Ref. [6] for an extremal case and in Ref. [41] for a
nonextremal case showing that the central charge of this
black hole is identical to a Kerr black hole which is the
solution to the Einstein vacuum-field equation, although
Kerr-Sen also possesses nonvanishing electric and dilaton
charges. The solution of the dyonic case is provided in

Ref. [50], which is the extension of Ref. [51] for the
nondyonic case, yet with nonzero cosmological constant
(AdS length). This black hole family emerges in the low-
energy heterotic string theory that includes dilaton and
axion. Since there exist scalar fields representing dilaton
and axion, this solution will differ from dyonic Kerr-
Newman (-AdS) black hole solution.
One fascinating limit of a gauged dyonic black hole is

the ultraspinning limit, i.e., the spin of the black hole is
boosted to the value of AdS length. In the ultraspinning
limit, the Kerr-Newman-AdS black hole solution possesses
a noncompact horizon and becomes superentropic. The
noncompact horizon occurs due to the presence of conical
singularity, while superentropic means that for a given
volume V, the entropy will be maximized [52]. So far, the
study for Kerr-Newman-AdS black hole has been done in
Ref. [16] in the context of Kerr/CFT correspondence. In the
present paper, it will be demonstrated that the Kerr/CFT
correspondence is also valid for the dyonic black hole
family in EMDA theory and indeed robust. First, we
consider a dyonic Kerr-Sen black hole and show that there
are similar features between dyonic and nondyonic cases.
This work is then extended to the gauged counterpart, then
in the situation where the cosmological constant is nonzero,
and finally when the ultraspinning limit is reached. It is
intriguing also to compare the results with the dyonic Kerr-
Newman-AdS black hole family.
The paper is organized as follows. After the Introduction,

we briefly review the dyonic Kerr-Sen black hole and its
thermodynamic properties in Sec. II. In Sec. IV, we
investigate the near-horizon extremal dyonic Kerr-Sen
black hole and derive its entropy using the Kerr/CFT
correspondence. In Secs. IV and V, we extend the work
from the previous section to the gauged dyonic Kerr-
Sen-AdS black hole and its ultraspinning counterpart,
respectively. In Sec. VI, we provide the comparison
between the dual CFT of dyonic Kerr-Sen-AdS and dyonic
Kerr-Newman-AdS black holes. Section VII concludes
our work.

II. DYONIC KERR-SEN BLACK HOLES

The dyonic NUT generalization of Kerr-Sen black hole
solution was first given in Ref. [53] in ungauged case.
However, in this paper, we set the Newman-Unti-
Tamburino (NUT) parameter to zero, and consider only
the dyonic Kerr-Sen black hole. The dyonic generalization
of the Kerr-Sen solution without the NUT parameter is
rewritten in Ref. [50] in a simpler form using certain
coordinate transformations. In Ref. [50], the gauged sol-
ution of EMDA theory is also provided in a simpler way
coming from the original derivation in Refs. [54,55]. In this
section, we will briefly review the spacetime metric of the
dyonic Kerr-Sen black holes which is given in Ref. [50].
The Lagrangian density of the EMDA theory that is
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considered to find a dyonic Kerr-Sen black hole is given by
[55,56]

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 1

2
e2ϕð∂χÞ2 − e−ϕF2

�

þ χ

2
ϵμνρλFμνFρλ ; ð2:1Þ

where ϵμνρλ is the Levi-Civita antisymmetric tensor density
in 4D. The dual of the gauge potential B is defined by
dB ¼ −e−ϕ⋆F − χF. The theory presented in Lagrangian
density (2.1) has an SLð2; RÞ global symmetry that can
transform the dyonic black hole to a purely electric or
magnetic black hole. The dyonic Kerr-Sen black hole
solution to that Lagrangian density is given in Eq. (4)
in Ref. [50].
However, as mentioned in Ref. [50], the dyonic Kerr-Sen

black hole spacetime metric can also be written in a
more symmetric way by shifting the radial coordinate as
r → rþ d. In this coordinate, the spacetime metric,
together with the electromagnetic potential, the dual-
electromagnetic potential, dilaton field, and axion field,
are given by

ds2 ¼ −
Δ
ϱ2

X̂2 þ ϱ2

Δ
dr̂2 þ ϱ2dθ2 þ sin2θ

ϱ2
Ŷ2; ð2:2Þ

A ¼ qðr̂þ d − p2=mÞ
ϱ2

X̂ −
p cos θ
ϱ2

Ŷ;

B ¼ pðr̂þ d − p2=mÞ
ϱ2

X̂ þ q cos θ
ϱ2

Ŷ; ð2:3Þ

eϕ ¼ ðr̂þ dÞ2 þ ðkþ a cos θÞ2
ϱ2

;

χ ¼ 2
kr̂ − da cos θ

ðr̂þ dÞ2 þ ðkþ a cos θÞ2 ; ð2:4Þ

respectively, where

X̂ ¼ dt̂ − asin2θdϕ̂;

Ŷ ¼ adt̂ − ðr̂2 − d2 − k2 þ a2Þdϕ̂;
ϱ2 ¼ r̂2 − d2 − k2 þ a2cos2θ;

Δ ¼ r̂2 − 2mr̂ − d2 − k2 þ a2 þ p2 þ q2: ð2:5Þ

We have to note that m; a; q; p; d; k are mass, spin, electric
charge, magnetic (dyonic) charge, dilaton charge, and
axion charge of the black hole, respectively. The dilaton
and axion charges clearly depend on the electric and
magnetic charges by the following relations:

d ¼ p2 − q2

2m
; k ¼ pq

m
: ð2:6Þ

One also can write

d2 þ k2 ¼
�
p2 þ q2

2m

�
2

: ð2:7Þ

This black hole possesses inner and outer horizons as
given by

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ d2 þ k2 − a2 − p2 − q2

q
: ð2:8Þ

The dyonic Kerr-Sen black hole satisfies the following
thermodynamic relation:

dM ¼ THdSþ ΩHdJ þΦHdQþΨHdP: ð2:9Þ

The quantities on above equation are given by

M¼m; J¼ma; Q¼ q; P¼p;

TH ¼ rþ−m
2πðr2þ−d2−k2þa2Þ ; SBH¼ πðr2þ−d2−k2þa2Þ;

ð2:10Þ

ΩH ¼ a
r2þ − d2 − k2 þ a2

; ΦH ¼ qðrþ þ d − p2=mÞ
r2þ − d2 − k2 þ a2

;

ΨH ¼ pðrþ þ d − p2=mÞ
r2þ − d2 − k2 þ a2

; ð2:11Þ

where those are mass, angular momentum, electric charge,
magnetic charge, Hawking temperature, Bekenstein-
Hawking entropy, angular velocity, electric potential, and
magnetic potential, respectively.
Now we consider the extremal limit of a dyonic Kerr-Sen

black hole. In this limit, m2 þ d2 þ k2 ¼ a2 þ p2 þ q2,
and both horizons in Eq. (2.8) coincide as r� ¼ m. Note
that one can also write d2 þ k2 in terms of q2 þ p2 to
reduce the number of parameters,

m2 ¼ a2 þ q2 þ p2 −
�
q2 þ p2

2m

�
2

: ð2:12Þ

Based on this relation, there are two branches of an
extremal dyonic Kerr-Sen black hole where the mass is
given by

m2 ¼ 1

2
ða2 þ p2 þ q2Þ

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
p2 þ q2

a2 þ p2 þ q2

�
2

s #
:

ð2:13Þ

We identify each branch mþð−Þ with the plus (minus) sign
of the square root in (2.13), respectively. For this extremal
black hole, the Hawking temperature in Eq. (2.10) vanishes
while other thermodynamic quantities that contain mass
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term remain nonzero and possess two branches. These
branches will reduce into one only when the spin
approaches zero. In this case, the black hole solution will
reduce to an extremal dyonic GMGHS (Gibbons-Maeda-
Garfinkle-Horowitz-Strominger) black hole with zero
entropy [57]. This condition is distinctive from the extremal
(dyonic) Reissner-Nordström solution which has nonzero
entropy. Zero entropy is related to zero central charge in
CFT. Vanishing cL is trivial and exactly denotes that the
Virasoro algebra reduces to the classical Witt algebra. In the
next section, we will study the thermodynamic properties
of this extremal dyonic Kerr-Sen black hole using the
Kerr/CFT correspondence.

III. CFT DUAL OF DYONIC KERR-SEN
BLACK HOLE

The main upshot of this section is to provide the
derivation of Cardy entropy [3],

SCFT ¼ π2

3
ðcLTL þ cRTRÞ; ð3:1Þ

for extremal black holes in EMDA theory given in this
paper. We will derive the corresponding central charges
ðcL; cRÞ using the asymptotic symmetry group (ASG) and
the temperatures ðTL; TRÞ in order to compute the Cardy
entropy of the black holes given in this paper. We apply the
Cardy entropy formula for the black hole solutions in this
paper for an extremal case. First, in order to apply the
asymptotic symmetry group calculation, we need to find
the near-horizon geometry satisfying the SLð2; RÞ ×Uð1Þ
isometry group. We will present explicitly the near-horizon
geometry of the extremal rotating dyonic Kerr-Sen black
hole. Then we will derive the nontrivial diffeomorphisms
which are associated with nonvanishing conserved surface
charges. It will be shown that the four-dimensional rotating
dyonic Kerr-Sen black hole belongs to phase space repre-
senting one copy of the Virasoro algebra with a particular
central charge. After finding the temperatures using the
generalized Frolov-Thorne vacuum, one can compute the
Cardy formula to match with the Bekenstein-Hawking
entropy for black holes.

A. Near-horizon extremal black hole metric

The near-horizon form of the spacetime metric can be
obtained using the specific coordinate transformation rep-
resenting near-horizon region approximation. First, we will
find the near-horizon geometry of the extremal dyonic Kerr-
Sen black hole. To find the near-horizon geometry of the
extremal dyonic Kerr-Sen black hole (2.2), we consider the
following coordinate transformations [5,58]:

r̂¼ rþ þ ϵr0r; t̂¼ r0
ϵ
t; ϕ̂¼ ϕþΩHr0

ϵ
t; ð3:2Þ

where r0 is a scaling constant where we may define
r20 ¼ r2þ − d2 − k2 þ a2. In the near-horizon limit, we have
ϵ → 0. We can obtain the near-horizon extremal metric of
Eq. (2.2), which is given by

ds2 ¼ ΓðθÞ
�
−r2dt2 þ dr2

r2
þ dθ2

�

þ γðθÞðdϕþ erdtÞ2; ð3:3Þ

where the metric functions are given by

ΓðθÞ ¼ ϱ2þ; γðθÞ ¼ r40sin
2θ

ϱ2þ
;

ϱ2þ ¼ m2 − d2 − k2 þ a2cos2θ; e ¼ 2am
r20

:

One can see that the AdS2 factor emerges in this near-
horizon metric denoting that the metric now has AdS2 × S2

structure. This is the origin of how we infer that the
AdS=CFT correspondence for black holes, namely
Kerr/CFT, may apply.
Since there exist several nonvanishing scalar and vector

fields, it is also applicable to use the near-horizon coor-
dinate transformation to those fields. In the near-horizon
limit, we find that the gauge field and its dual are given by

Aþ ¼ faðθÞðdϕþerdtÞþq½ðmþdÞ2þk2−a2−2p2�
eðm2−d2−k2þa2Þ dϕ;

ð3:4Þ

Bþ ¼ fbðθÞðdϕþerdtÞþp½ðmþdÞ2þk2−a2−2p2�
eðm2−d2−k2þa2Þ dϕ;

ð3:5Þ

where the functions fðθÞ for each field are given by

faðθÞ¼
q½2p2− ðmþdÞ2−k2þa2 cos2 θ�þ2apmcosθ

2amϱ2þ
r20;

ð3:6Þ

fbðθÞ¼
p½2p2− ðmþdÞ2−k2þa2cos2θ�−2aqmcosθ

2amϱ2þ
r20;

ð3:7Þ

where we can gauge away the second term on the
electromagnetic potential (3.4) and its dual (3.5).
Moreover, after finding the gauge field in the near-horizon
limit, we can also find the dilaton and axion field in this
limit, which are given as
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ϕþ ¼ exp

�ðmþ dÞ2 þ ðkþ a cos θÞ2
ϱ2þ

�
;

χþ ¼ 2
mk − da cos θ

ðmþ dÞ2 þ ðkþ a cos θÞ2 : ð3:8Þ

It is worth noting that these near-horizon forms of the fields
are needed in the calculation of the central charge.
However, basically their contribution will not appear
directly to the central term.
In order to find the isometry group of the near-horizon

extremal metric (3.3), one can apply the Killing equation
and solve it. In the end, by solving the Killing equation, it is
found that the spacetime metric (3.3) possesses SLð2; RÞ ×
Uð1Þ isometry group which are represented by the follow-
ing Killing fields:

ζ0 ¼ ∂ϕ; ð3:9Þ

which denote the rotational Uð1Þ isometry and

X1¼∂t; X2¼ t∂t−r∂r; X3¼
�

1

2r2
þ t2

2

�
∂t− tr∂r−

e
r
∂ϕ;

ð3:10Þ

which generates SLð2; RÞ. The Killing vectors (3.9) and
(3.10) fully denote an enhanced SLð2; RÞ ×Uð1Þ isometry
group. This isometry resembles the isometry of AdS2
spacetime, so the asymptotic symmetry group as used by
Brown and Henneaux [4] can be employed to compute the
central charge. Note that only Uð1Þ can be extended to a
Virasoro algebra while the SLð2; RÞ is taken to be frozen at
extremality [58]. Enticingly, for a nonextremal black hole,
one can construct similar SLð2; RÞ ×Uð1Þ isometry where
SLð2; RÞ isometry can be extended to Kac-Moody algebra
[49]. In this case, one can extend the calculation to the
entropy in warped CFT. However, we will not consider this
case within this paper.

B. Charges

The approach of Brown and Henneaux [4] can be
employed to find the central charge of the holographic
dual-CFT description of an extremal rotating black hole in
EMDA theory. To compute the charges that associate with
ASG of a near-horizon extremal dyonic Kerr-Sen black
hole, we should consider all possible contributions from
all different fields in the action. Nonetheless, it has been
pointed out by Compére [58] and also shown in Ref. [6] for
Kerr-Sen black hole that the contributions from electro-
magnetic and scalar fields, except gravity, are zero. Their
contributions emerge only through the black hole’s param-
eters in the central term from gravity part. So, asymptotic
symmetry of the general black hole family in EMDA theory
includes diffeomorphisms ξ that satisfy

δξgμν¼Lξgμν ¼ ξσð∂σgμνÞþgμσð∂νξσÞþgσνð∂μξσÞ; ð3:11Þ

where the metric deviation is denoted by δξgμν ¼ hμν. The
associated conserved charge is

Qξ ¼
1

8π

Z
∂Σ
kgζ½h; g�: ð3:12Þ

The given integral is over the boundary of a spatial slice.
The contribution of the metric tensor on the central charge
is given explicitly by

kgζ½h; g� ¼ −
1

4
ϵρσμν

�
ζνDμh − ζνDλhμλ þ

h
2
Dνζμ

− hνλDλζ
μ þ ζλDνhμλ

þ hλν

2
ðDμζλ þDλζ

μÞ
�
dxρ ∧ dxσ: ð3:13Þ

We should note that the last two terms in Eq. (3.13) vanish
for an exact Killing vector and an exact symmetry,
respectively. The charge Qζ generates symmetry through
the Dirac brackets. The ASG possesses algebra which is
given by the Dirac bracket algebra of the following
charges [59]:

fQζ; Qζ̄gDB ¼ 1

8π

Z
kgζ½Lζ̄g; g�

¼ Q½ζ;ζ̄� þ
1

8π

Z
kgζ½Lζ̄ḡ; ḡ�: ð3:14Þ

In order to employ the ASG, we need to specify the
boundary conditions on the metric deviations hμν. The
boundary conditions are imposed in order to produce finite
and integrable charges. There is not necessarily a unique
set of consistent boundary conditions. Therefore, we adopt
the boundary conditions such in most Kerr/CFT corre-
spondence articles. In the basis ðt; r; θ;ϕÞ, we impose the
following boundary conditions:

hμν ∼

0
BBBBB@

Oðr2Þ Oð 1r2Þ Oð1rÞ Oð1Þ
Oð 1r3Þ Oð 1r2Þ Oð1rÞ

Oð1rÞ Oð1rÞ
Oð1Þ

1
CCCCCA
: ð3:15Þ

The most general diffeomorphism symmetry that preserves
such boundary conditions (3.15) is generated by the
following Killing vector field:

ζ ¼ fct þOðr−3Þg∂t þ f−rϵ0ðϕÞ þOð1Þg∂r þOðr−1Þ∂θ
þ fϵðϕÞ þOðr−2Þg∂ϕ; ð3:16Þ

where ct is an arbitrary constant and the prime ð0Þ denotes
the derivative respect to ϕ. This ASG contains one

DUAL CFT ON A DYONIC KERR-SEN BLACK HOLE AND ITS … PHYS. REV. D 106, 106006 (2022)

106006-5



copy of the conformal group of the circle, which is
generated by

ζϵ ¼ ϵðϕÞ∂ϕ − rϵ0ðϕÞ∂r; ð3:17Þ

that will be the part of the near-horizon extremal metric. We
know that the azimuthal coordinate is periodic under the
rotation ϕ ∼ ϕþ 2π. Hence we may define ϵz ¼ −e−izϕ
and ζϵ ¼ ζϵðϵzÞ. By the Lie bracket, the symmetry gene-
rator (3.17) satisfies the Witt algebra:

i½ζy; ζz�LB ¼ ðy − zÞζyþz: ð3:18Þ

Then, by defining

Qζ ≡ Lz − xδz;0 ð3:19Þ

on (3.14), where x is a free parameter which will not change
the central charge, we obtain the conserved charges algebra
in quantum form, such that

½Ly; Lz� ¼ ðy − zÞLyþz þ
cL
12

ðy2 − 1Þδyþz;0: ð3:20Þ

From the algebra above, we can read off the value of the
left-moving central charge for the near-horizon extremal
dyonic Kerr-Sen black hole. It is obtained that

cL ¼ 12am ¼ 12J: ð3:21Þ

This result is identical to the central charge of Kerr-Sen [6]
and Kerr [3] black holes. However, we need to note that the
relation between mass, spin, and electromagnetic charges is
different from those of Kerr-Sen and Kerr black holes. For
an extremal dyonic Kerr-Sen black hole, the mass is given
in Eq. (2.13). Each branch corresponds to CFT with the
central charge cL ¼ 12am�, respectively. Recall that these
branches will reduce into one only when the spin
approaches zero denoting that cL also vanishes. This means
that the entropy from CFTwill also vanish. Vanishing cL is
trivial and exactly denotes that the Virasoro algebra reduces
to the classical Witt algebra.

C. Temperatures

Before going to match the entropies, it is required to
calculate the corresponding temperatures. In order to do so,
we need to employ the analog of the Hartle-Hawking
vacuum, i.e., Frolov-Thorne vacuum that has been used
in the Kerr/CFT correspondence [3] because the angular
momentum and other thermodynamic quantities are
included within this vacuum. Now, we may apply the
first law of black hole thermodynamics for rotating dyonic
Kerr-Sen black holes (2.9) where the extremal condition
satisfies

dM ¼ Ωex
H dJ þΦex

H dQþΨex
H dP; ð3:22Þ

since Tex
H ¼ 0. So, we can write

THdS¼−½ðΩH−Ωex
H ÞdJþðΦ−ΦexÞdQþðΨ−ΨexÞdP�:

ð3:23Þ

For such constrained variations (3.23), we may construct

dS ¼ dJ
TL

þ dQ
Tq

þ dP
Tp

: ð3:24Þ

For a Kerr black hole, it is considered a quantum scalar
field with eigenmodes of the asymptotic energy E and
angular momentum J which are given by the following
form:

Φ̃ ¼
X
E;J;s

ϕ̃E;J;se−iEt̂þiJϕ̂fsðr̂; θÞ: ð3:25Þ

In order to transform this to near-horizon quantities and
take the extremal limit, we note that in the near-horizon
coordinates (3.2) we have

e−iEt̂þiJϕ̂ ¼ e−iðE−Ωex
H JÞtr0=ϵþiJϕ ¼ e−inRtþinLϕ; ð3:26Þ

where

nR ¼ ðE − Ωex
H JÞr0=ϵ; nL ¼ J: ð3:27Þ

But, this is only suitable when there is no contribution of
other thermodynamical potentials. Using the fact that any
system possesses density of state ρ ¼ eS, where S is the
entropy and the fact that there are thermodynamic poten-
tials coming from electromagnetic fields, we may extend
Eq. (3.27) to

nR¼ðE−Ωex
H J−ΦexQ−ΨexPÞr0=ϵ; nL ¼ J: ð3:28Þ

The density matrix in the asymptotic energy, angular
momentum, electric charge, magnetic charge, and pressure
eigenbasis now has the Boltzmann weighting factor:

e−ð
E−ΩHJ−ΦexQ−ΨexP

TH
Þ ¼ e−

nR
TR
−nL
TL
− Q
Tq
− P
Tp : ð3:29Þ

When the trace over the modes inside the horizon is
taken, the Boltzmann weighting factor will be a diagonal
matrix. We can compare Eqs. (3.28) and (3.29) to obtain the
definition of the CFT temperatures, such that

TR ¼ THr0
ϵ

				
ex
; TL ¼ −

∂TH=∂rþ
∂ΩH=∂rþ

				
ex
;

Tq ¼ −
∂TH=∂rþ
∂Φ=∂rþ

				
ex
; Tp ¼ −

∂TH=∂rþ
∂Ψ=∂rþ

				
ex
: ð3:30Þ
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However, we only need TL and TR in order to compute the
Cardy entropy. It is obviously seen that TR ¼ 0 for
extremal black holes. We also have

TL ¼ m2 − d2 − k2 þ a2

4πam
: ð3:31Þ

We have obtained the left-moving temperatures for dyonic
Kerr-Sen. Moreover, as mentioned before that this extremal
black hole corresponds with two different branches of
central charge, 12am�, the left-moving temperature also

behaves the same, TL ¼ m2
�−d

2−k2þa2

4πam�
. From this temper-

ature, we can also obtain the left-moving temperature of a
Kerr-Sen black hole by setting k ¼ 0. When we turn off
both electromagnetic charges, the temperature for a Kerr
black hole is recovered [3].

D. Entropy matching

We have discussed the existence of an asymptotic
Virasoro algebra at the boundary in infinity of the near-
horizon extremal geometry. By following semiclassical
quantization rules, the operators that define quantum gravity
with the given boundary conditions form aVirasoro algebra.
We have also provided scalar quantum fields in the analog of
the Frolov-Thorne vacuum restricted to extremal excitations
having the nonvanishing left-moving temperature. Since we
identify the left sector with excitations along ∂ϕ and the
SLð2; RÞ isometry as the right sector is frozen, the states
are described by a thermal density matrix with temperatures
TL, Tq, and Tp. As mentioned in [58], Tq, Tp are better
interpreted as the CFT chemical potentials as μqL ¼ −TL=Tq

and μpL ¼ −TL=Tp.
Given all quantities that we need in the Cardy formula,

we can now compute it in (3.1). It is remarkable that,
surprisingly, using the left-moving central charge (3.21)
and temperature (3.31) reproduces the Bekenstein-
Hawking entropy (2.10) for an extremal dyonic Kerr-Sen
black hole:

SCFT ¼ πðm2 − d2 − k2 þ a2Þ ¼ SBH: ð3:32Þ

Note that for given values of a,p, q, there exist two branches
of an extremal black hole’s entropywithmassm� and central
charges 12am�. Simultaneously, we have also reproduced
the Bekenstein-Hawking entropy for a Kerr-Sen black hole
by turning off p. Again, when we assume that q ¼ p ¼ 0, it
reduces to the entropy of an extremal Kerr black hole. For
a → 0 but keeping p, q ≠ 0, this Cardy entropy will vanish,
showing the entropy of an dyonic GMGHS black hole. This
matching completes the conjecture of Kerr/CFT correspon-
dence for extremal dyonic Kerr-Sen black holes in EMDA
theory. This is clearly not a coincidence and shows that the
dyonicKerr-Sen black hole is dual to 2DCFTrepresented by
nonvanishing left-moving sector.

IV. KERR/CFT FOR GAUGED DYONIC
KERR-SEN BLACK HOLE

A. Spacetime metric and thermodynamics

For the gauged case, the corresponding Lagrangian
density of the EMDA theory (2.1) is given by [50,55,56]

Lgauged ¼ Lþ ffiffiffiffiffiffi
−g

p 4þ e−ϕ þ eϕð1þ χ2Þ
l2

: ð4:1Þ

The gauged version of the dyonic Kerr-Sen black
hole or the Kerr-Sen-AdS black is also presented in a
simple form in Ref. [50], which is also the solution
of the above Lagrangian density. In the shifted radial
coordinate, the spacetime metric including the electromag-
netic potential, its dual, dilaton field, and axion field, are
given by

ds2 ¼ −
Δ
ϱ2

X̂2 þ ϱ2

Δ
dr̂2 þ ϱ2

Δθ
dθ2 þ Δθ sin2 θ

ϱ2
Ŷ2; ð4:2Þ

A ¼ qðr̂þ d − p2=mÞ
ϱ2

X̂ −
p cos θ
ϱ2

Ŷ;

B ¼ pðr̂þ d − p2=mÞ
ϱ2

X̂ þ q cos θ
ϱ2

Ŷ; ð4:3Þ

eϕ ¼ ðr̂þ dÞ2 þ ðkþ a cos θÞ2
ϱ2

;

χ ¼ 2
kr̂ − da cos θ

ðr̂þ dÞ2 þ ðkþ a cos θÞ2 ; ð4:4Þ

respectively, where

X̂¼dt̂−asin2θ
dϕ̂
Ξ
; Ŷ¼adt̂−ðr̂2−d2−k2þa2Þdϕ̂

Ξ
;

Δ¼ðr̂2−d2−k2þa2Þ
�
1þ r̂2−d2−k2

l2

�
−2mr̂þp2þq2;

Δθ¼1−
a2

l2
cos2θ; Ξ¼1−

a2

l2
;

ϱ2¼ r̂2−d2−k2þa2cos2θ: ð4:5Þ

The dyonic Kerr-Sen-AdS black hole satisfies the
following thermodynamic relation:

dM ¼ THdSþ ΩHdJ þΦHdQþΨHdPþ VdP; ð4:6Þ

When cosmological constant or the gauge coupling con-
stant l arises as the vacuum expectation value, we can
include this parameter in the first law of thermodynamics
for black holes [60]. As common rotating AdS black holes,
the cosmological constant can be considered as the source
of the pressure on the black holes. Hence, it gives rise to
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another thermodynamic quantity. The quantities on the
above equations are given by

M ¼ m
Ξ
; J ¼ ma

Ξ
; Q ¼ q

Ξ
; P ¼ p

Ξ
;

TH ¼ rþð2r2þ − 2d2 − 2k2 þ a2 þ l2Þ −ml2

2πðr2þ − d2 − k2 þ a2Þl2 ; ð4:7Þ
SBH ¼ π

Ξ
ðr2þ − d2 − k2 þ a2Þ; ΩH ¼ aΞ

r2þ − d2 − k2 þ a2
;

ΦH ¼ qðrþ þ d−p2=mÞ
r2þ − d2 − k2 þ a2

; ð4:8Þ

ΨH¼pðrþþd−p2=mÞ
r2þ−d2−k2þa2

; V¼4

3
rþS; P¼ 3

8πl2
: ð4:9Þ

where those are mass, angular momentum, electric charge,
magnetic charge, Hawking temperature, Bekenstein-
Hawking entropy, angular velocity, electric potential,
magnetic potential, volume, and pressure.
Since there exists the cosmological constant, this black

hole possesses more than two horizons as we can see from
Δ, which is a quartic function. This means that there also
exists cosmological horizons. From this dyonic Kerr-Sen-
AdS black hole solution, we can find several solutions by
taking certain limits. In order to find a Kerr-Sen-AdS black
hole, one can turn off p ¼ 0 that will cause k ¼ 0. This
implies ΨH ¼ 0. When one consider equal charges q ¼ p,
this will result in d ¼ 0 or no dilaton charge. On the other
hand, we can find that ΦH ¼ ΨH. Another fascinating
property of this solution is we can find the superentropic
solution of a dyonic Kerr-Sen-AdS black hole by taking
a → l. Nevertheless, whether it is superentropic or not is
defined by the value of l2 over ðd2 þ k2Þ.
Next, we consider the extremal limit for the gauged

counterparts of the dyonic Kerr-Sen black hole with
Δ0 ¼ 0. We find

m ¼ rþ
l2

ð2r2þ − 2d2 − 2k2 þ a2 þ l2Þ: ð4:10Þ

As a result, the horizon is given by

r2þ ¼ 2d2 þ 2k2 − a2 − l2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x41 − 16x42 þ 2x43

p
6

; ð4:11Þ

where x41 ¼ a4 þ 16d4 þ 16k4 þ l4, x42 ¼ a2d2 þ a2k2 þ
d2l2 þ k2l2 − 2d2k2, and x43 ¼ 7a2l2 þ 6l2q2 þ 6l2p2.
All the horizons now coincide into one. Similar to the
ungauged case, the Hawking temperature vanishes while
other thermodynamic quantities remain nonzero. Hence,
there are possibly more than two branches of extremal
black holes corresponding to roots of (4.10) since
d; k ∼ 1=m. The physical conditions for the existence of
extremal black holes are x41 − 16x42 þ 2x43 ≥ 0; r2þ > 0

and m > 0.

B. Dual CFT of dyonic Kerr-Sen-AdS black hole

The near-horizon form of a dyonic Kerr-Sen-AdS black
hole can be obtained using similar transformation (3.2).
In order to study the near-horizon extremal region, we
need to approximate Δ in terms of event horizon rþ. In the
near-horizon of extremal black holes, the function Δ takes
the form [18]

Δ ¼ ðr̂ − rþÞ2υþOððr̂ − rþÞ3Þ; ð4:12Þ

where the function υ is given by

υ ¼ Δ00ðrþÞ
2

¼ 1þ 6r2þ − 2d2 − 2k2 þ a2

l2
: ð4:13Þ

We can obtain the near-horizon extremal metric of
Eq. (4.2). By additional scaling dt → dt=υ, the near-
horizon extremal metric is then given by

ds2¼ΓðθÞ
�
−r2dt2þdr2

r2
þαðθÞdθ2

�
þ γðθÞðdϕþerdtÞ2;

ð4:14Þ
where the metric functions are given by

ΓðθÞ ¼ ϱ2þ
υ
; αðθÞ ¼ υ

Δθ
; γðθÞ ¼ r40Δθsin2θ

ϱ2þΞ2
;

ϱ2þ ¼ r2þ − d2 − k2 þ a2cos2θ; e ¼ 2arþΞ
r20υ

: ð4:15Þ

In the near-horizon limit, we find that the gauge field and
its dual are given by

Aþ ¼ faðθÞðdϕþ êrdtÞ

þ q½ðrþ þ dÞ2 þ k2 − a2 − 2p2rþ=m�
êðr2þ − d2 − k2 þ a2Þ dϕ; ð4:16Þ

Bþ ¼ fbðθÞðdϕþ êrdtÞ

þ p½ðrþ þ dÞ2 þ k2 − a2 − 2p2rþ=m�
êðr2þ − d2 − k2 þ a2Þ dϕ;

ê ¼ 2arþΞ
r20

; ð4:17Þ

where the functions fðθÞ for each field are given by

faðθÞ¼
q½2rþp2

m −ðrþþdÞ2−k2þa2cos2θ�þ2aprþcosθ
2arþΞϱ2þ

r20;

ð4:18Þ

fbðθÞ¼
p½2rþp2

m −ðrþþdÞ2−k2þa2cos2θ�−2aqrþcosθ
2arþΞϱ2þ

r20;

ð4:19Þ
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where we can gauge away the second term on the
electromagnetic potential (4.16) and its dual (4.17).
Moreover, after finding the gauge field in the near-horizon
limit, we can also find the dilaton and axion field in this
limit, which are given as

eϕþ ¼ ðrþ þ dÞ2 þ ðkþ a cos θÞ2
ϱ2þ

;

χþ ¼ 2
krþ − da cos θ

ðrþ þ dÞ2 þ ðkþ a cos θÞ2 : ð4:20Þ

In order to compute the central charge of a dyonic Kerr-
Sen-AdS black hole, we can also employ the similar ASG
calculation to the near-horizon extremal metric (4.14) since
we obtain the identical metric form and isometry. From the
same lengthy calculation, we can obtain the left-moving
central charge for the near-horizon extremal dyonic Kerr-
Sen-AdS black holes from EMDA theory. It is obtained that

cL ¼ 12arþ
υ

; ð4:21Þ

where the event horizon υ and rþ are given in (4.13) and
(4.11), respectively. We can also recover the central charge
of Kerr-Sen-AdS and Kerr-Sen-AdS black holes with
vanishing axion charge by setting p ¼ 0 and p ¼ q,
respectively. It is also clear that by turning off p, q, we
can find the central charge of a Kerr-AdS black hole [7].
Similarly, before going to match the entropy, it is

required to calculate the corresponding temperatures. For
the gauged case, the presence of the cosmological constant
can be considered as the additional thermodynamic quan-
tity in the thermodynamic equation. Hence, we can write
the first law of black hole thermodynamics for this black
hole where the extremal condition satisfies

dM ¼ Ωex
H dJ þΦex

H dQþ Ψex
H dPþ VexdP; ð4:22Þ

since Tex
H ¼ 0. We are required to write that

THdS ¼ −½ðΩH − Ωex
H ÞdJ þ ðΦ −ΦexÞdQ

þ ðΨ − ΨexÞdPþ ðV − VexÞdP�: ð4:23Þ

For such constrained variations (4.23), we may construct

dS ¼ dJ
TL

þ dQ
Tq

þ dP
Tp

þ dP
TP

: ð4:24Þ

The last term in the above equation is related to the
cosmological constant.
Similar to the dyonic Kerr-Sen black hole, there exist

temperatures conjugate to electric and magnetic charges
aside from the right- and left-moving temperatures. The
existence of cosmological constant is related to the pres-
ence of another temperature conjugate to the cosmological
pressure which is defined as TP ¼ − ∂TH=∂rþ

∂V=∂rþ
jex, although

we only need the left-moving temperature in this case. The
explicit expression of the left-moving temperature is

TL ¼ υðr2þ − d2 − k2 þ a2Þ
4πarþΞ

: ð4:25Þ

From this temperature, we can recover the left-moving
temperatures for Kerr-Sen-AdS and Kerr-Sen-AdS with
vanishing axion charge similarly with the central charge.
When we turn off both electromagnetic charges, the
temperatures for Kerr-AdS black hole are then recovered.
We have calculated the quantities that we need in Cardy

formula; we can now compute it in (3.1). It is remarkably
found that an extremal dyonic Kerr-Sen-AdS black hole
possesses the following CFT entropy:

SCFT ¼ π

Ξ
ðr2þ − d2 − k2 þ a2Þ: ð4:26Þ

This result matches with the Bekenstein-Hawking entropy
for a dyonic Kerr-Sen-AdS black hole. The entropy of a
Kerr-Sen-AdS black hole and a Kerr-Sen-AdS black hole
with vanishing axion charge can also be found from this.
When we assume that q ¼ p ¼ 0, it reduces to the entropy
of an extremal Kerr-AdS black hole [7]. It is worth noting
that for Kerr-Newman-AdS black holes, there exists second
dual CFT [5] which can be studied when considering a → 0
and then proposing the electromagnetic field as the part of
the geometry. In this second dual CFT, the temperatures Tq

and Tp are useful to reveal the dual CFT of Reissner-
Nordström black hole family. Nonetheless, for black hole
solutions in EMDA theory, in this case the Kerr-Sen black
hole [41], the second dual CFT fails to be shown. Hence,
we will not further consider the second dual CFT for the
dyonic Kerr-Sen-AdS black hole family in this paper.

V. ULTRASPINNING DYONIC KERR-SEN-AdS
BLACK HOLE

A. Spacetime metric and thermodynamics

Another interesting spacetime we want to study is the
ultraspinning dyonic Kerr-Sen-AdS black hole. In this
circumstance, we consider ultraspinning limit a → l.
This metric has been given in Ref. [50], while herein we
consider the spacetime metric in shifted radial coordinate.
In order to find the ultraspinning version of the dyonic
Kerr-Sen-AdS black hole, we need to redefine the coor-
dinate ϕ̂ as ϕ̂ → ϕ̂Ξ to exclude the conical singularity after
taking the ultraspinning limit. Since the azimuthal coor-
dinate becomes noncompact, we need to compactify it as
ϕ̂ → ϕ̂þ μ where μ is not 2π and dimensionless. As
explained in Ref. [52], μ is proposed as another
thermodynamic quantity or the chemical potential. The
resulting metric, electromagnetic potential, dual of the
electromagnetic potential, dilaton, and axion fields are
given by
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ds2 ¼ −
Δ
ϱ2

X̂2 þ ϱ2

Δ
dr̂2 þ ϱ2

sin2 θ
dθ2 þ sin4 θ

ϱ2
Ŷ2; ð5:1Þ

A ¼ qðrþ d − p2=mÞ
ϱ2

X̂ −
p cos θ
ϱ2

Ŷ;

B ¼ pðrþ d − p2=mÞ
ϱ2

X̂ þ q cos θ
ϱ2

Ŷ; ð5:2Þ

eϕ ¼ ðr̂þ dÞ2 þ ðkþ lcos2θÞ
ϱ2

;

χ ¼ 2
kr̂ − dl cos θ

ðr̂þ dÞ2 þ ðkþ lcos2θÞ ; ð5:3Þ

respectively, where

X̂ ¼ dt̂ − lsin2θdϕ̂;

Ŷ ¼ ldt̂ − ðr̂2 − d2 − k2 þ l2Þdϕ̂:

Δ ¼ ðr̂2 − d2 − k2 þ l2Þ2
l2

− 2mr̂þ p2 þ q2;

ϱ2 ¼ r̂2 − d2 − k2 þ l2cos2θ:

For the ultraspinning black hole, the thermodynamic
quantities satisfy the following relation:

dM ¼ THdSþ ΩHdJ þΦHdQþΨHdPþ VdP þ Kdμ;

ð5:4Þ

where K is the conjugate of μ or the conjugate of chemical
potential. The thermodynamic quantities of this black hole
are given by

M ¼mμ

2π
; J ¼mlμ

2π
; Q¼ qμ

2π
;

P¼ pμ
2π

; TH ¼ 2rþðr2þ − d2 − k2 þ l2Þ−ml2

2πðr2þ − d2 − k2 þ l2Þl2 ; ð5:5Þ

SBH ¼ μ

2
ðr2þ − d2 − k2 þ l2Þ; ΩH ¼ l

r2þ − d2 − k2 þ l2
;

ΦH ¼ qðrþ þ d− p2=mÞ
r2þ − d2 − k2 þ l2

; ð5:6Þ

ΨH ¼ pðrþ þ d − p2=mÞ
r2þ − d2 − k2 þ l2

;

V ¼ 2μ

3
rþðr2þ − d2 − k2 þ l2Þ;

K ¼ m
l2 − ðr2þ − d2 − k2Þ

4πðr2þ − d2 − k2 þ l2Þ : ð5:7Þ

Again, the extremal limit can be found by using con-
ditions Δ ¼ 0 and Δ0 ¼ 0,

m ¼ 2rþ
l2

ðr2þ − d2 − k2 þ l2Þ: ð5:8Þ

The event horizon of this extremal ultraspinning version is
located at

r2þ ¼ d2 þ k2 − l2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l4 þ 4d4 þ 4k4 − 8l2d2 − 8l2k2 þ 8d2k2 þ 3l2q2 þ 3l2p2

p
3

: ð5:9Þ

In this extremal ultraspinning limit, the Hawking temper-
ature also vanishes. There are possibly more than two
branches of extremal ultraspinning black holes correspond-
ing to roots of (5.8). The physical conditions for the
existence of extremal black holes are 4l4þ4d4þ4k4−
8l2d2−8l2k2þ8d2k2þ3l2q2þ3l2p2≥0;r2þ>0 and m > 0.
For the ultraspinning version of the dyonic Kerr-Sen-

AdS black hole, the near-horizon coordinate transforma-
tions are identical. The near-horizon extremal geometry of
the ultraspinning dyonic Kerr-Sen-AdS black hole is given
by Eq. (4.14) with the following functions:

ΓðθÞ¼ ϱ2þ
υ
; αðθÞ¼ υ

sin2θ
; γðθÞ¼ r40sin

4θ

ϱ2þ
;

ϱ2þ ¼ r2þ−d2−k2þ l2cos2θ; υ¼ 2þ6r2þ−2d2−2k2

l2
;

e¼ 2lrþ
r20υ

: ð5:10Þ

The functions fðθÞ for the gauge field and its dual, dilaton,
and axion fields in near-horizon region are given by

faðθÞ¼
q½2rþp2

m −ðrþþdÞ2−k2þ l2cos2θ�þ2lprþcosθ
2lrþϱ2þ

r20;

ð5:11Þ

fbðθÞ¼
p½2rþp2

m −ðrþþdÞ2−k2þ l2cos2θ�−2lqrþcosθ
2lrþϱ2þ

r20;

ð5:12Þ

eϕþ ¼ ðrþ þ dÞ2 þ ðkþ l cos θÞ2
ϱ2þ

;

χþ ¼ 2
krþ − dl cos θ

ðrþ þ dÞ2 þ ðkþ l cos θÞ2 : ð5:13Þ

For this ultraspinning version, the near-horizon geometry
of the black hole with metric potential (5.10) also possesses
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SLð2; RÞ × Uð1Þ isometry group with similar Killing
vector fields (3.9) and (3.10).

B. Dual CFT of ultraspinning dyonic Kerr-Sen-AdS
black hole

By employing ASG calculation, for ultraspinning dyonic
Kerr-Sen-AdS, the central charge is given by

cL ¼ 6rþμl
πυ

; ð5:14Þ

which interestingly depends on chemical potential μ, where
υ and rþ are given in Eqs. (5.10) and (5.9). Even in this
ultraspinning case, there are possibly more than two
branches of extremal black holes related to the mass which
also correspond to CFTs with different central charges. For
ultraspinning black holes, since the thermodynamic rela-
tion is distinct from the normally spinning black hole
because there is a chemical potential, it is required to
employ the relation (5.4). Using the fact Tex

H ¼ 0 in (5.4)
for the extremal case, we can construct

THdS ¼ −½ðΩH −Ωex
H ÞdJþ ðΦ−ΦexÞdQþ ðΨ−ΨexÞdP

þ ðV −VexÞdP þ ðK −KexÞdμ�; ð5:15Þ

dS ¼ dJ
TL

þ dQ
Tq

þ dP
Tp

þ dP
TP

þ dμ
Tμ

: ð5:16Þ

The further analysis is identical with those when we do not
consider the ultraspinning case. So, we can also define
another temperature conjugate to the chemical potential,
Tμ ¼ − ∂TH=∂rþ

∂K=∂rþ
jex. Nevertheless, the most significant tem-

perature to compute the Cardy formula is TL as given by

TL ¼ υðr2þ − d2 − k2 þ l2Þ
4πlrþ

: ð5:17Þ

It is remarkable that one can also find the similar matching
for the ultraspinning version of a dyonic Kerr-Sen-AdS
black hole,

SCFT ¼ μ

2
ðr2þ − d2 − k2 þ l2Þ ¼ SBH: ð5:18Þ

This matching so far completes the conjecture of Kerr/CFT
correspondence for extremal dyonic black holes, especially
in EMDA theory. This is clearly not a coincidence and
shows that the dyonic Kerr-Sen black hole and its family
are dual to 2D CFT represented by nonvanishing left-
moving sector.

VI. DYONIC KERR-SEN-ADS AND KERR-
NEWMAN-AdS IN COMPARISON

Here, we will compare the properties from CFT of
the black holes in Einstein-Maxwell theory, i.e., dyonic

Kerr-Newman-AdS solution and black hole in EMDA
theory, i.e., dyonic Kerr-Sen-AdS black hole. The study
of superentropic black hole from rotating black holes with
nonvanishing cosmological constant has been proposed in
Ref. [52] using the Kerr-Newman-AdS black hole solution.
Furthermore, the same thermodynamical properties for
similar black hole solution from the Kerr/CFT duality
point of view have been proposed. Using the Kerr/CFT
method, authors in Ref. [16] calculated the entropy of
extremal ultraspinning Kerr-Newman-AdS black holes.
Both papers actually do not consider the existence of
dyonic solution or nonzero magnetic charge. However,
their results will not be so different from the dyonic
solution if we just change q2 → q2 þ p2, where p is the
magnetic charge. In this section, we will compare the
thermodynamical properties of the dyonic Kerr-Newman-
AdS and dyonic Kerr-Sen-AdS black holes including their
ultraspinning versions. Later on, we also compare with the
result when we consider asymptotically dS spacetime.

A. Kerr-Newman-AdS black hole
and its ultraspinning version

The dyonic Kerr-Newman-AdS black hole spacetime is
given by

ds2 ¼ −
Δ
ϱ2

X̂2 þ ϱ2

Δ
dr̂2 þ ϱ2

Δθ
dθ2 þ Δθ sin2 θ

ϱ2
Ŷ2; ð6:1Þ

A¼ −qr̂
ϱ2

X̂ −
pcosθ
ϱ2

Ŷ; B¼ −pr̂
ϱ2

X̂þ q cosθ
ϱ2

Ŷ; ð6:2Þ

where A and B are the electromagnetic potential and its
dual, respectively. Here, we have

X̂¼dt̂−asin2θ
dϕ̂
Ξ
; Ŷ¼adt̂−ðr̂2þa2Þdϕ̂

Ξ

Δ¼ðr̂2þa2Þ
�
1þ r̂2

l2

�
−2mr̂þp2þq2;

Δθ¼1−
a2

l2
cos2θ; Ξ¼1−

a2

l2
; ϱ2¼ r̂2þa2cos2θ: ð6:3Þ

The dyonic Kerr-Newman-AdS black hole satisfies the
identical thermodynamic relation (5.4) as the dyonic Kerr-
Sen-AdS black hole. The thermodynamic quantities for
above metric are given by

M ¼ m
Ξ
; J ¼ ma

Ξ
; Q ¼ q

Ξ
; P ¼ p

Ξ
;

TH ¼ rþð2r2þ þ a2 þ l2Þ −ml2

2πðr2þ þ a2Þl2 ; ð6:4Þ

SBH ¼ π

Ξ
ðr2þ þ a2Þ; ΩH ¼ aΞ

r2þ þ a2
;

ΦH ¼ qrþ
r2þ þ a2

; ΨH ¼ prþ
r2þ þ a2

; ð6:5Þ
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V ¼ 2π

3Ξ
ðr2þ þ a2Þð2r2þl2 þ a2l2 − r2þa2Þ þ a2l2ðq2 þ p2Þ

rþl2Ξ
;

ð6:6Þ

where those are mass, angular momentum, electric charge,
magnetic charge, Hawking temperature, Bekenstein-
Hawking entropy, angular velocity, electric potential,
magnetic potential, volume, and pressure. The event
horizon of a dyonic Kerr-Newman black hole is located at

r2þ ¼ −a2 − l2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ l4 þ 14a2l2 þ 12l2q2 þ 12l2p2

p
6

:

ð6:7Þ

The mass function can be written as

m ¼ rþ

�
1þ a2

l2
þ 2r2þ

l2

�
: ð6:8Þ

Using the Kerr/CFT correspondence, they have found that
the central charge and CFT temperature are given by

cL ¼
12arþ

1þ a2

l2 þ
6r2þ
l2

; TL ¼
ðr2þþa2Þð1þ a2

l2 þ
6r2þ
l2 Þ

4πarþΞ
: ð6:9Þ

The central charge and temperature above reproduce
exactly the Bekenstein-Hawking entropy of an extremal
dyonic Kerr-Newman-AdS black hole with the help of the
Cardy formula.
The next case is the ultraspinning version of a dyonic

Kerr-Newman-AdS black hole where the ultraspinning
limit is still given by a → l that yields the superentropic
black hole. The ultraspinning version possesses the follow-
ing thermodynamic volume and conjugate of the chemical
potential:

V ¼ 2μ

3
rþðr2þ þ l2Þ;

K ¼ ðl2 − r2þÞ½ðr2þ þ l2Þ2 þ l2ðq2 þ p2Þ�
8πrþðr2þ þ l2Þ : ð6:10Þ

We can write the mass and event horizon as

m ¼ 2rþ

�
r2þ
l2

þ 1

�
;

r2þ ¼ −l2 þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 þ 3q2 þ 3p2

p
3

: ð6:11Þ

Superentropic black holes violates the reverse isoperimetric
inequality (RII) [52], which asserts

R≡
�ðD − 1ÞV

ωD−2

� 1
D−1

�
ωD−2

A

� 1
D−1

≥ 1; ð6:12Þ

where A is the horizon area, D is the dimension, and

ωD ¼ μπ
D−1
2

ΓðDþ1
2
Þ : ð6:13Þ

For superentropic dyonic Kerr-Newman-AdS black holes,
we have

R ¼
�

r2þ
r2þ þ l2

�1
6

: ð6:14Þ

SinceR < 1, we know that this black hole is superentropic.
Using the Kerr/CFT method, for superentropic dyonic
Kerr-Newman-AdS black holes, it is found that

cL ¼ 3μrþl3

πð3r2þ þ l2Þ ; TL ¼ ðr2þ þ l2Þð3r2þ þ l2Þ
2πrþl3

; ð6:15Þ

which reproduces the Bekenstein-Hawking entropy for an
extremal ultraspinnning dyonic Kerr-Newman-AdS black
hole by employing the Cardy formula.

B. Comparison

In the previous subsection, we have considered the dyonic
Kerr-Newman-AdS black hole solution and its thermody-
namic quantities. The results for the ultraspinning version
from Kerr/CFT correspondence are also obtained. We
provide the comparison of central charge, temperature,
and entropy from CFT of both black holes in EMDA and
Einstein-Maxwell theories in Table I. It is clear that the main
difference is the presence of dilaton and axion charges in
these quantities. It is important to recall that rþ is also
different for both black holes. The existence of dilaton and
axion charge is important in the observation of the black
holes, for example to probe the existence of beyondEinstein-
Maxwell theory, in this case is EMDA theory. It is crucial
that for an extremal dyonic Kerr-Sen-AdS black hole,
m > 0; r2þ > 0; x41 − 16x42 þ 2x43 > 0. These conditions
lead to ð6r2þ þ a2 þ l2Þ=2> ð2r2þ þ a2 þ l2Þ=2> d2 þ k2,
implying that cL is always positive. Aside from the central

TABLE I. Comparison of CFT quantities of extremal spinning
dyonic black holes.

Quantity Dyonic Kerr-Sen-AdS Dyonic Kerr-Newman-AdS

cL
12arþ

1þ6r2þ−2d2−2k2þa2

l2

12arþ

1þ6r2þþa2

l2

TL
ð1þ6r2þ−2d2−2k2þa2

l2
Þðr2þ−d2−k2þa2Þ

4πarþΞ
ð1þ6r2þþa2

l2
Þðr2þþa2Þ

4πarþΞ

SCFT π
Ξ ðr2þ − d2 − k2 þ a2Þ π

Ξ ðr2þ þ a2Þ
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charge, parameters d, k also define the value of the left-
moving temperature and entropy as we can see in Table I.
With the same conditions as cL, it can be shown that these
quantities are always positive as well, similar to the dyonic
Kerr-Newman-AdS solution. Nonetheless, since d; k ∼ 1=m
in a dyonic Kerr-Sen-AdS black hole, it becomes the main
difference from the dyonic Kerr-Newman-AdS solution
because this leads to possibly more than two branches of
mass with its own dual CFT.
As explained in [52], an ultraspinning black hole might

produce a superentropic black hole. It means that black
holes have maximum upper entropy in superentropic
circumstance. We have shown that an ultraspinning dyonic
Kerr-Newman-AdS black hole always violates RII, like-
wise the Kerr-Newman-AdS black hole. However, it is
different from the ultraspinning dyonic Kerr-Sen-AdS
black hole where the violation depends on the value of
electromagnetic charges (or dilaton and axion charges),
mass, and AdS length. The RII is given by

R ¼
�

r2þ
r2þ − d2 − k2 þ l2

�1
6

: ð6:16Þ

Explicitly, if 0 ≤ q2 þ p2 < 2ml or 0 ≤ d2 þ k2 < l2,
RII will be violated; then, the black hole is superentropic.
Otherwise, if q2 þ p2 ≥ 2ml or d2 þ k2 ≥ l2, RII will not
be violated, and the black hole is subentropic. Notably, the
extremal and nonextremal ultraspinning Kerr-Sen-AdS
black holes [50] are not always superentropic depending
on the value of d, k. This is different from an extremal
ultraspinning dyonic Kerr-Newman-AdS black hole and its
nondyonic counterpart, which are always superentropic.
However, the similarity between the ultraspinning

dyonic black holes happens to be on the positivity of the
CFT quantities. Similar to the Kerr-Sen-AdS black hole
with general spin, we can observe from Table II that the
central charge for ultraspinning dyonic Kerr-Sen-AdS is
always positive. Since from the positivity of the mass we
have r2þ þ l2 > d2 þ k2, then the denominator of cL will
always be positive because 3r2þ þ l2 > r2þ þ l2 > d2 þ k2.
From Table II, since 3r2þ þ l2 > r2þ þ l2 > d2 þ k2, we can
conclude that the central charge, temperature, and entropy
of the extremal ultraspinning dyonic Kerr-Sen-AdS sol-
ution are always positive, similar to the extremal ultra-
spinning dyonic Kerr-Newman-AdS solution.

There is an interesting fact that central charge exactly can
be negative. However, it is not for this asymptotically AdS
black hole family. Yet, when we change the solution to have
positive cosmological constant (or asymptotically dS) by
l2 → −l2, cL can be negative. For this “dS” type, note that
we have the following relations:

m ¼ −
rþ
l2

ð2r2þ − 2d2 − 2k2 þ a2 − l2Þ;

r2þ ¼ 2d2 þ 2k2 − a2 þ l2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x41 − 16x42 þ 2x43

p
6

; ð6:17Þ

where x41 ¼ a4 þ 16d4 þ 16k4 þ l4, x42 ¼ a2d2 þ a2k2 −
d2l2 − k2l2 − 2d2k2, x43¼−7a2l2−6l2q2−6l2p2, m > 0,
and r2þ > 0. Negative cL can be obtained when
ð6r2þ þ a2 − l2Þ=2 > d2 þ k2. This is always valid as long
as a black hole exists, i.e., the quantity x41−16x42þ2x43>0

(when the square-root quantity is zero, exceptionally
cL → ∞). It is known that negative central charge exists
in nonunitary CFT which may appear in a ghost system
from string theory [61]. Moreover, there are possibly more
than two branches of mass for this black hole resulting in
more than two branches of CFT with different central
charges, just like in the AdS type. Notably, when we
consider RII for l2 → −l2 in (6.16) it is obvious that
R > 1, implying that a superentropic black hole cannot
be obtained.

VII. CONCLUSION

We have demonstrated that the Kerr/CFT correspon-
dence is explicitly well defined for a dyonic black hole
family in EMDA theory, i.e., dyonic Kerr-Sen black hole,
its gauged and ultraspinning counterparts. Our work
enlarges the family of metrics respecting Kerr/CFT corre-
spondence for dyonic black holes in EMDA theory. For a
dyonic Kerr-Sen black hole, we have obtained that the
central charge is identical to Kerr-Sen and Kerr black holes,
yet with different constraint on the mass parameter due to
the presence of dilaton and axion charges. Interestingly, due
to the presence of these charges, we have found that the
mass possesses two different branches leading also to the
central charge of the CFTs with two different branches.
The main upshot to prove that the entropy from CFT
matches with Bekenstein-Hawking entropy has succeeded
for this dyonic black hole family in EMDA theory.
We then extend the duality calculation to the gauged and

ultraspinning counterparts. Since there exist more than two
horizons, we have had to approximate the single event
horizon for its extremal case. Since for nongauged dyonic
Kerr-Sen black hole the central charge could have two
branches, we have argued that possibly there should be
more than two branches of the mass for the gauged case that
leads to more than two branches of the central charge and
entropy. We have found that finite central charges for both

TABLE II. Comparison of CFT quantities of extremal ultra-
spinning dyonic black holes.

Quantity Dyonic Kerr-Sen-AdS Dyonic Kerr-Newman-AdS

cL 3μrþl3

πð3r2þ−d2−k2þl2Þ
3μrþl3

πð3r2þþl2Þ

TL
ð3r2þ−d2−k2þl2Þðr2þ−d2−k2þl2Þ

2πrþl3
ðr2þþl2Þð3r2þþl2Þ

2πrþl3

SCFT
μ
2
ðr2þ − d2 − k2 þ l2Þ μ

2
ðr2þ þ l2Þ
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gauged and ultraspinning black hole solutions reproduce
Bekenstein-Hawking entropy. It has been proven also that
the central charge, temperature, and entropy for these black
holes are always positive. This extremal ultraspinning
dyonic black hole and its nonextremal counterpart cannot
always be superentropic in the ultraspinning limit depend-
ing on the value of d, k. We have also considered the
asymptotically dS solution with l2 → −l2 substitution.
Interestingly in this case, the central charge can be negative
unlike the AdS type. It is well known that negative central
charge might appear in nonunitary CFT, for example in
string theory. It will be interesting for future investigation.
In conclusion, our calculations have supported the Kerr/

CFT correspondence conjecture. This result suggests that

the extremal rotating dyonic black holes in EMDA theory
are holographically dual to 2D CFT represented by non-
vanishing left-moving central charge. For the future inves-
tigation, it would b e intriguing to explore the hidden
conformal symmetry from the nonextremal dyonic black
hole family in EMDA theory using the scalar field and
higher spin fields.
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