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We explore different limits of exactly solvable vector and matrix fermionic quantum mechanical models
with quartic interactions at finite temperature. The models preserve a U(1) x SU(N) x SU(L) symmetry at
the classical level and we analyze them through bosonization techniques introducing scalar (singlet) and
matrix (nonsinglet) bosonic fields. The bosonic path integral representations in the vector limits (N, 1)
and (1, L) are matched to fermionic Fock space Hamiltonians expressed in terms of quadratic Casimirs and
some additional terms involving the Cartan subalgebra, which makes explicit the symmetries preserved by
scalar and matrix bosonizations at the quantum level. For the case of nonsinglet bosonization we find an
equivalence between the vector model and the Polychronakos-Frahm spin model. Using this relation, we
compute the free energy. Finally, we compute the eigenvalue distribution in the large N, L limit with @ = ﬁ
fixed. The model displays a third order phase transition as we vary the temperature which, in the a > 1
limit, can be characterized analytically. We conclude finding the critical curve in the parameter space were

the eigenvalue distribution transitions from single to double cut.
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I. INTRODUCTION

The study of matrix models has provided fruitful insights
within a vast number of physical problems, some examples
are [1] heavy nuclei, quantum chaos, gauge theories, string
theory, and 2D quantum gravity (see [2] for a recent
review).

In the present paper we will focus on random matrix
theory with fermionic degrees of freedom (for previous
works along these lines see [3—6]). Our main concern will
be quantum mechanical models with fermionic d.o.f. trans-
forming in the bifundamental representation of SU(M) x
SU(N) symmetry at finite temperature. An important
motivation of our work is the discussion of the bosonization
technique, in particular, in relation to regularization ambi-
guities. As we will see, nonsingle bosonization will preserve
an Abelian subgroup of the classical symmetry group. On a
broad context, our models, being finite dimensional, serve
as nice playgrounds to study the proposal of a finite
dimensional Hilbert space description for the static patch
of a de Sitter universe [7—12]. The study of fermionic tensor
models has also recently gained attention due to two
reasons: on the one hand, a new large N solvable limit
was shown to exist for tensor models [13]; subsequently,
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these large N limits were further explored in [14] in
connection to the SYK model [15,16].

As is well known, since the original work of t* Hoofft,
significant simplifications occur when performing large N
limits. The importance of the models to be discussed in
the present work relies in their solvability; this allows us
to perform several limits with precise analytic control.
Previous work by one of the authors [6] established a
relation between the present models and the Chern-
Simmons matrix model. This relation was exploited in
[17], allowing us to solve the models analytically for
arbitrary N and L. As astonishing as this is, we still lack
a deeper understanding of important aspects as the large N,
L-] limits, the phases diagram and dualities with other
physical models, etc. This is the second motivation for our
work. We remark that the study of phase transitions in
matrix models has a long history starting with the seminal
work of Brézin, Itzykson, Paris, and Zuber [18] and Gross,
Wadia, and Witten [19] (see also [20-23] and the superb
lecture notes [24]). For some recent studies of phase
transitions in matrix models see [25].

The structure of the paper goes as follows: we start by
analyzing the vector model from a group theory perspective.
In Sec. II we bosonize the model performing the Hubbard-
Stratonovich trick and compute the partition function in
closed form. We then proceed to show that the vector model
spectrum can be reproduced, in operator formalism, in terms
of the quadratic Casimir of the SU(N) symmetry with
degeneracies matching the dimensions of SU(N) irreps.
In Sec. III we study the matrix model, obtained from a
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nonsinglet bosonization, for arbitrary L and N. We review
the results obtained in [6,17] and discuss in detail the L = 1
case. We will find that nonsinglet bosonization leads to a
(vector model) Hamiltonian which can be expressed as the
quadratic Casimir plus some additional terms belonging to
the Cartan subalgebra. In this way we identify precisely the
order ambiguities fixed by the bosonization. In Sec. IV we
further relate the Hamiltonian found in Sec. III B to a known
spin system [Frahm-Polychronakos (FP) model] computing
and plotting the entropy for arbitrary N. In Sec. V we study
several large N limits of the models. As an outcome, the
results of the previous section allows us to give a matrix
model description of the FP spin system. We also evaluate
the large N, L limit keeping @ = L/N constant, compute
the eigenvalue distribution, and find a third order phase
transition. The transition curve in parameter space is
evaluated numerically and plotted in Sec. V D. We close
with a summary and leave conventions and a review of the
Z,-symmetric quartic model to the Appendices.

II. FERMION VECTOR MODEL

To setup the notation, we start recalling that a quantum
mechanical fermionic partition function Z(f) = tr(e 1) is
described in the path integral formalism as

Z(8) =N / Dy Dige~ $ ¥ 1)
with anti periodic fermions w(z+f) =—y(z). (1)
Here y denote complex classical Grassmann variables
(' v/} = {wiw;} = {w'.y;} =0.

with ; = (/)" (i=1,...,N). We will consider the
classical Hamiltonian

H=J(py')? (2)

and discuss bosonizations of the model using the scalar
and matrix fields ¢ and A’;. Eventually we will express
the thermodynamic quantities rewriting the coupling as
J &« 1/7. Dimensional analysis tells us that fermion fields
are dimensionless, [p] =0, while auxiliary fields o, A
and the coupling constant have dimensions of energy,
[6] =[A] =[J] = E, [7)] = E”'. As a consequence, there
is a single dimensionless coupling on which the partition
function can depend, i.e., /7. Dimensionless bosonic fields
A, M will show up at intermediate steps; they are defined as
A= po,M = BA. A high temperature regime is equivalent
to large 7 coupling. Eventually we will compare the path
integral results with the Fock space perspective. Fermionic
creation (annihilation) operators will be denoted in upper
case P(P).

A. Bosonization with a singlet

We choose the coupling J to be negative and rewrite it as
J= —ﬁ < 0 with 7 > 0. The power of N in the denom-
inator will guarantee a sensible large N limit. The standard

Hubbard-Stratonovich trick
/ Doe §<N7"2+‘7V7ill/i) — efﬁﬂw%‘l” (3)

inserted in the partition function (2) gives, after integrating
out the fermions [6],

Zu(p/7) =N [ Dadet(o, + o) 74

O'() N )
zN/dao COShN?e Npeo

From this expression, we read the system energies

(N — 2k)?

E, =-— ,
k 16N7

k=0...[N/2]  (5)

and degeneracies

N odd: dk:2(]Z>, vk N even: dk:2<]Z>,

Vk#N/2, dyj, = <]Z) (6)
The factor of 2 in the degeneracies arises because (4) enjoys
a reflection k - N — k symmetry, reducing the number of
terms in the sum by half.
A few comments are in order:
(i) The normalization constant A/ in (4) was adjusted
so that in the infinite temperature limit we get the
dimension of the Hilbert space,

2N

Zy0) =2V w N = —————.
( ) f dGO e—NIL}(T%
(i) Gaussian fermions Yukawa coupled to ¢ have a local
reparametrization invariance

= f(7), o(t)=5=o(r), w(®)=y(z). (7)

f(@)
This (gauge) invariance erases all z dependence from
o, and fermion dynamics reduces to that of Matsu-
bara zero mode oy = § dro(z). This is the only

gauge invariant object that we can construct out
of o(7).
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(ii1)) The cosh in the second line of (4) arises from the
determinant computed on antiperiodic functions.
We have chosen to preserve a Z, symmetry, i.e.,
o — —o in (4) (cf. Appendix D in [26] for further
discussions).1

(iv) The N factor in J is tuned to have a competition, at
large N, between the Gaussian and cosh in the
second line of (4).

(v) The case J > 0 (7 < 0) can be obtained by integrat-
ing o over the imaginary axis ¢ — io.

Some particular cases are

a 2
Z,=2en+2 - 2
£3 b1 3
Z3=2e716 4 Gei* - 2
p b1
Zy=2er+8el+6 - 24
£s b9 £ 5
Zs =2e716 4 10e7% 4 20 e7% - 2
5 il b1 6
Ze="2er+12e7 4 30e7* +20 - 2
70— 266 1 14eRE 44267 4 706 77
= <€ e’ e’ e’ —
7 — —— ~
ground state highest energy state p—0

Fock space perspective: The energy spectrum (5) can be
obtained from the quantum Hamiltonian [6]

. N2
H = J(‘{lllpllpjlpj —_ lPi\PlN + T)
— (s —wwy Y
4N\ ! 4 )
i,j=1,...N (8)

acting on the Fock space built out of the Grassmann
operators

It is important to realize that in the transition to the
quantum theory, the coefficients of the last two terms in (8)
are ambiguous. As we show below, the bosonization
process fixes them so that the quantum Hamiltonian H
preserves the classical U(N) = U(1) x SU(N) symmetry
enjoyed by (2)

U(l): y' — ey
SUN): i > U with UeSUN).  (9)

'See [27] for related recent work.

Modulo a constant shift, A can be obtained by replacing the
classical Grassmann variables y' by operators W' in the
classically equivalent Hamiltonian

B. U(N) symmetry and Fock space decomposition

The Fock space of the N-fermion system consists of 2V
states build out from creation and annihilation operators
satisfying

{W.¥;} =6, ij=1,..N. (11)

As customary we define the vacuum state |0) as
Wi0) =0, Vi

and construct totally antisymmetric states

livigeiy) =W, .. W |0) = Jiyineiy..ilpy.. i)

:_|lllzlrnlnlk> \4 m,n. (12)

It is straightforward to see that there are IZ distinct states at

fixed k arising from index combinatorics.
U(1): we can classify the Fock states (12) by its U(1)
charge,

U(1) charge: Q = Z\i’i‘{’i. (13)

This charge counts the number of fermions acting on the
vacuum. Moreover, the Hamiltonian (8) can be written in
terms of the U(1) charge as

1 5 N?
_ 1 _ 2
=N (Q-N/2)% (14)

PI:

Since [H,Q] = 0, energy eigenstates have a fixed number
of fermions acting on the vacuum. We now turn to the
degeneracy issue.

SU(N): complex fermions ¥ transform under the
fundamental representation of SU(N) [cf. (9)]. Charges

Qa = qui(Ta)ij‘Pj’ (15)
i.j
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with T, the SU(N) generators in the fundamental repre-
sentation (see Appendix A for conventions), implement, at
the quantum level, the SU(N) transformations (9) as’

5P = —i[Q,. V.

The SU(N) action preserves the number of fermions in the
state, i.e.,

Q. Q.] =0.

Thus, in view of (14) we conclude that
[H,0,]=0.

Barring additional symmetries we expect energy levels
degeneracies to coincide with the dimensions of SU(N)
irreps.

Hamiltonian and Casimirs: Computing the quadratic
SU(N) Casimir (A8) for the charges (15) we find,
using (A3),

C? = Q0,07 = W,(T,) W/, (T*)k ¢!
N+1

= T () - N )
N+1

The final result is

H=-

47N 4
in terms of U(1) Casimir Q
o N
27(N + 1) 167
in terms of SU(N) Casimir C?). (17)

2
: (Qz-QN+N—)

)

Fermionic states at level k comprise a completely anti-
symmetric irrep consisting in a single column with k boxes,
hence, using (All),

1 k2 N+1
CY = (N + k=2 == ) = = (K* — kN).
) - N 2N ( )
Notice A; and Ay_; have the same Casimir. This analysis
shows that the Hilbert space can be decomposed in terms

of U(1) eigenstates, each of which is also a completely
antisymmetric SU(N) irrep

The anticommutation relations (11) imply that charges (15)
close the SU(N) algebra are the following: [Q,. Qp] = if” 430,

H

N
H=Ha =1+0+H +..+ : +1 (18)
k=0 0]

and each subspace has degeneracy d,, = [Z
Notice that among the set of general Hamiltonians
preserving U(1) x SU(N)

H' =aC? 4+ pQ* + cQ,

the regularization leading to (17) is singled out as being
invariant under Q — (N — Q).

C. Thermodynamics

The thermodynamics of the model was previously
studied in [6]. The model displays in the large N-limit a
confining/deconfining first order phase transition at §./7 =
8 with entropy S ~ O(1) at low temperature and S ~ O(N)
at high temperature. The order parameter for the phase
transition is the gauge invariant quantity oy,

In the formal large N limit, combining (5) and (6),
one finds the density of states as a function of energy
behaves as [6]

d(E) ~ e¥E.

This brings a 1/(T — T,)?* divergence in the specific heat

C,= T% = —T‘;% which results in a limiting (Hagedorn)
temperature for the model (see [28] for similar features in
recent work). The divergence in C, appears as a peak at

finite N as we approach f. = 8y (see Fig. 1)

III. FERMION MATRIX MODEL

We now turn to the fermion matrix model, built out of
N x L complex Grassmann variables

cv(B)
40|
— N=0
20/ — N=5
— N=10
20 +
— N=15
10} —
— Mi— - B
10 20 30 40
FIG. 1. Specific heat as a function of temperature: C, displays a

peak approaching . =8y as N grows (we set y = 1). The
divergence in C, as N — oo manifests a Hagedorn temperature
for the model.
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{y" i} =0
withi=1,....,Nand A=1,...,L and (y"*)" = {y4;. The
A, B... indices end up being spectators but provide an

additional parameter, L, to play with.
The classical Hamiltonian takes the form
1
47L

H= - (W™ waw’®). (19)

The L factor in the coupling will give rise to nontrivial
thermal properties in the large N, L limits. The model of
interest to be discussed below corresponds to the analytic
continuation 7 — —7.

A. Bosonization with a matrix

The model (19) is bosonized by writing the quartic term
(19) in terms of an auxiliary Hermitian matrix A’ jas

/ 55 [Lytr(A

Integrating out fermions, one obtains

—itr(Ayp)] — fﬁll’(l/"/_/ll/l/_’)_ (20)

e = / DA dett (9, + iA)e‘”f"Az.

The determinant is immediate to compute writing A(z) =
U(z)-A-U'(z) —iU(7)0,U'(r) with A = diag(4,, ...Ay)
7 independent and U € SU(N). The Jacobian for the
change of variables A — (4;,U) can be found in [29].
Performing an analytic continuation in the coupling
7 — y = —7 in standard fashion, rotating the A contour
to the imaginary axis [30,31], the partition function finally
reads [6]

Zusi(Bl7) = Ny, / Hdz Hsth( f)

J>i
Ai
x coshL<2>e i (21)

The normalization N By is chosen to be

2N><L

N, Br = (22)

_Lrya>

JTIY T sinh? () e

which in the high temperature limit gives’ Zy.,[0] =
2M<L = dim(H).

The solution of the model was found in [17], finding its
relation to the Chern-Simons (CS) matrix integral.

3Notice there is a typo in (4.13) in [6].

Performing the change of variables logy; = 4; + £ 1 + b 2Ly
one can rewrite the partition function as
(ﬂ/ ) e_/?}<NTZ+%)

Zyxr(P]r) = “Llog%y;

fHN— dyiHj>i(yi - yj)2€ Llog'y:

j>l
(23)

where a = —efrJ’ZNLﬁV

Through this reasoning [17], we found that the partition
function of the fermion matrix model coincides with the
expectation value of the Lth power of the characteristic
polynomial of an N x N Hermitian matrix M in the
Stieltjes-Wigert (SW) ensemble

Znxy = e TP (det(M — al)) gy, (24)

Here,

with SW potential given by

1 L
with = =-".
g P
The expectation value of products of characteristic
polynomials for Hermitian ensembles have been computed
in [32] in terms of orthogonal monic polynomials.

V(M) = gtr[aog My

Applying the formulas to the present case (see
Appendix B), the result is [17]
W2 v (—)E(E=1)/2
ZNXL = €_§(T+3T) ( ) ( ) det
[T (@Y
pw(a) pn+i(a) pyir-1(a)
py(a) Pisi(a) Piir-1(a)
X (25)

L-1 L-1 L-1
py @) Py (a) Py (a)

where
a = _e4y+2Ly
Here p,(x) are orthogonal monic polynomials for the SW

measure dy = e~ *dx (see Appendix B). Their explicit
expression is

106005-5
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N
N s .
pu(x) = (—)”q‘”z‘”zz(j) (=)ig"+ix  with
Jj=0 q

s
g=e9? =0,

The g-deformed binomial coefficient (% )q is defined as

<N> = ]rvzl(l_qr)
k) TLo(1=-a) DS (1-4")
k N—r+1
1- N
= Hq*r — < >; (26)
r=1 - q =1 k

it is a polynomial in gq.

B. L=1 fermion model

The partition function (25) for L = 1 reduces to a single
polynomial and corresponds to the bosonization of the
original model (2), albeit with opposite sign 7 — y = —7

. N . . _L
and with a matrix A'; instead of a singlet 6. Since ¢ = e 7,
|

we then have a = —g~N+1/2)_ The partition function in the

L =1 case takes the concise form

Zyxi = qN2+%N(—)NPN(—q_(N+l/2))

NN,
:q—N/SZ<j> g/ =N
q

Jj=0

X NN v
=gV /4—N/Sz ( ) q(/—N/2> . (27)
=0 \J/q

The exponent inside the sum is invariant under reflection
Jj+ (N —j) and so are the ¢ binomials. This implies again
that the number of terms in the sum effectively reduces by
half. As recognized in [17], since the number of distinct
energies in the partition function is polynomial ~N? while
the number of states is exponential ~2V, we expect an
exponential degeneracy growth.
Explicit examples are

A

50
Zy = e+ 3er L2
Zy = 260 4 261 + 4ot Lo
Zyx :e%+3e%+4e%+3e%+56% Lot
Zsuy = e + 211 + 67 + 6ertt + 6ot + detfs + 6o ~
Zo = &7 138 L4 1 0B 1 Lol s s L2 o)
p—0

We remark on the following features:
(1) The ground state is nondegenerate or doubly degen-
erate depending on N being even or odd.
(ii) The spectrum is equally spaced AE = f/2y.
(iii) The highest energy level value is E = —(f3/y)N/16.
(iv) The number of distinct energy levels is

N\ 2
N even: <E> + 1,

—1\2 -1
N odd: (N >+N

1.
2 2+

(v) The identity [33]

()= ()
J/q J)

allows us to reexpress the partition function (27) as

N /N
_ _-N/8
LN =4 Z(;)
Jj=0

q

C. Thermodynamic entropy

The partition function (27) allows us to compute the
entropy of the system from

S(p) = (1 = pop) log Z(p).

The entropy plots in Fig. 2 show either a single or doubly
degenerate ground state at low temperature and consistency
with the Hilbert space dimension 2V at high energy.

IV. L=1 AND FRAHM-POLYCHRONAKOS
MODEL

Modulo a normalization, which amounts to a zero point
energy, the partition function (27) coincides with that of

106005-6
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096 N=2
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B

o1 0.2 0.3 o4 0.5

FIG. 2. Entropy as a function of temperature. Left: At low temperature the ground state is nondegenerate for odd N (S — 0) and
doubly degenerate for even N (S — log 2). Right: In the high temperature limit entropy asymptotes S(0) = log(2"). Plots in the right

show a positive specific heat dS/dT > 0 as expected.

the SU(2) Frahm-Polychronakos anti ferromagnetic model
Zpp. The relation is

Zyx1 = C]_Nz/4_N/8 Zpp (29)

zero point energy

where [34,35]

(VY U 4
ZFP = Z ] q J , qg=ce 2,
q

J=0

The FP model is build from fundamental SU(2) spins on a

N-site chain with Calogero-type interactions. The
Hamiltonian can be written as [34]
1 N?
HFP = 2— —annk/ + Z(] - k)nk +_ )
YL sk k 4
>
kk=1,...,N (30)

with k, k' denoting the lattice site and the occupation
numbers n; =0, 1.

For later reference we quote the specific free energy of
the FP model in the large N limit. Defined as
Zpp = e PNIrr it reads [34]

2 ce
—Pfrp = Ter (% +2f(1+ e_ﬂe%)) where
x logy
7w = [y B G1)
1 -y
where the dimensionless quantity S = f/2y’. As men-
tioned at the beginning of Sec. Il A, and pointed out by
Frahm, a sensible large N limit requires a 1/N scaling in

the coupling J. Hence, (31) arises from the replacement
y = Ny’ in (30).

A. Fock space Hamiltonian: Casimirs
and SU(N) Cartans

We now find the Fock space Hamiltonian which gives
rise to the structure of energy levels of the L = 1 model. It
involves the SU(N) Casimir as well as some definite
chemical potentials for the SU(N) Cartan charges.

Mapping Frahm’s occupation numbers 7, to the fermion
flavor number, i.e., n, = P, ¥* (no sum), the U(1) charge
(13) in Frahm’s variables takes the form Q = 3", n,;. Then,

Q2 —NQ = annk/ —Nan

kK k
:n%+n%+--~+2n1n2+2n1n3+~--—Nan
N——— k
:ank

=2nny+2nn3+---— (N — I)an:2
k

X annk/ -(N-1)Q

K>k

(32)

in the second line we used n7 = n; since n; = 0, 1. From
the relation (16) we conclude

o Q-@
—E KMy =
kK'>k 2
N 1-N
= (2)
NP+ 5a (33)

This allows us to write the first term in (30) in terms of the
U(1) charge and SU(N) Casimir.

The term ZkN:] kn, in (30) can be decomposed in
Cartans H,, and Q as (see Appendix A for conventions)
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The solution for u coefficients is

1_1\/#_1 m __
=" 2

The Fock space Hamiltonian in terms of the SU(N)
Casimir and conserved charges Q and Q,, = ¥YH,,¥ =
¥(H,) W reads

1[N
— c@ 4
PP =2y [N—H +{

_1 2 N m N_2
_27[‘50 +<1—E>Q—M 0, + 4]. (34)

These expressions explicitly shows that nonsinglet boso-
nization of the vector model, contrary to singlet bosoniza-
tion (3), breaks U(N) — U(1)V.

N2
-MQ-w 0+

V. LARGE N

A. L=1 (vector) model at large N:
Eigenvalue distribution

It is clear from the eigenvalue integrals (21) or (23) that a
sensible large N limit, with the potential and Vandermonde
factor contributing at the same rate, can be obtained if we
rescale y = Ny'. This rescaling agrees with that for J in (2)
and also with the rescaling of energies done by Frahm in
[34] and mentioned below (31).

To perform the large N limit, we work in the represen-
tation given by (21). Our starting point is

2N
ZN><1 - . J
le ldlllHjNSlnhz( ) _N /1
/1 a
/ H di; l_Ismh2 < ) cosh <2> e~V

j>l

(35)

The cosh in this expression scales as ~O(N) and is
therefore subleading with respect to the ~O(N?) potential
and Vandermonde contributions. Disregarding the cosh, the
matrix model (35) corresponds to that of SU(N) Chern-
Simons theory on $3 [24]

zEsn /Hdﬂ Hsmh2( j)e W (36)

J>i

The CS eigenvalue distribution in the large N limit is
known to be given by [24,36,37],

e' — (cosh 1/2)?
coshA/2

1
1) = —arct 37
pes() = —arctan (37

This is a single-cut distribution supported on 1€
[—2 arcoshe’/?, 2 arcosh e'/?].

Hence, at large N, the expectation value of det(cosh%)
on the CS matrix model can be computed as

M cos
Znxl = 2N<det COShE> ~ 2N6N fSupp di log(co h(i/Z))Pcs(i)’
N - o (38)

where t = /2y = P.g. From this last equation we read the
“planar” specific free energy, fj(\(/)>)<1 =F 1(\(,21 /N,

T [4 A
A0 =In2+2x eff/ ln(cosh—>
T 0 2

/Pt — (cosh 1/2)?
cosh 1/2

X arctan

di (39)

where A = 2arcosh e’t/2. We have verified numerically
the agreement

ﬂ eff

Blna = Bfrp ==

as expected from (29).

B. Large N, L limit: Eigenvalue distribution
and thermal structure

We now consider a large N x L rectangular Fermionic
matrix in the limit @« = L/N = finite.

The matrix integral (21), in the large N, L > 1 limit, is
dominated by saddle point equations

—Zc th< >:a<2§/1,-

JFi
the left-hand side arises from the Vandermonde repulsion
and the right-hand side from the derivative of the effective
potential

1 :
-3 tanh %) . (40)

A
Veir(4) = a<§ 2% —log cosh 5) (41)

Figure 3 displays its relevant features. In the high temper-
ature regime (y/f > 1) the quadratic piece localizes the
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— High Tewperature

Low Temperature

FIG. 3. Effective eigenvalue potential (41) as a function of the
temperature. The figure illustrates symmetry breaking at low
temperatures. As we show in the text, a single- to double-cut
transition develops in the eigenvalue distribution.

eigenvalues near the origin, the cosh becomes irrelevant,
and the Vandermonde can be accurately approximated by

the standard one sinhz(l”%i") ~ (At

2
5%)". As temperature
decreases a double well potential develops, signaling
symmetry breaking. This phenomenon will show up in
the eigenvalue distribution as a transition from single to
double cut. Classically, the system becomes unstable

fory/p < 1/8.
Introducing the unit normalized eigenvalue distribution:

o) =y So-a). [pwai=1 @

allows us to write (40) in the form

1 A= vl 2
— th MNdN =2-)1——tanh=,
a][c“’(z)’)() pr T2

A€ C =supp(p). (43)

Here + denotes the principal value prescription and C
denotes a curve in complex space. As evident from this
expression, the spread of the eigenvalues over the cut is
measured by a. As @ — oo, the repulsion term on the lhs
becomes negligible and eigenvalues accumulate around the
minimum of the potential. a is customarily called a t” Hooft
coupling.

To solve the singular integral equation (43) we change
variables to u = ¢* so that the lhs in (43) becomes the
canonical Vandermonde repulsion. This modifies the nor-
malization condition (42) to

/C@p(u) _1. (44)

u

Here p(u) =p(logu), and now u € (0, 0). From the
A — —1 symmetry of the effective potential V¢ we expect
a symmetric distribution around the origin. Hence, in the
high temperature regime, the single-cut solution in u

variables satisfies u € [a,b] with ab = 1. Replacing
coth’ =~ = 1 + 2% into (43) one finds

pul) . 2ay
P = -2
][cu'—u TR

with § = a/4 + 1/2 a constant term. The 1/(u + 1) term
on the rhs arises from the cosh insertion in the matrix
integral (35) [cf. (4.4) in [36] ]; setting it to zero reduces
the problem to the Chern-Simons matrix integral.

1
gVii—a 15,

4
Yutl ueC (45)

C. Single-cut distribution

In the high temperature regime, i.e., y/f> 1/8, we
expect a single-cut eigenvalue distribution with support
C =[a,b],b > a > 0. Based on previous results [36,38],
we propose’

ﬁW)z%me4< O::?%{”ﬁ

w—axb—M} o)

u+1

+C2

Inserting this ansatz in (45) and using (C4) and (C7) fixes
¢y =2ay/pand c; = —a/(2+/(a+ 1)(b+ 1)). The equa-
tions determining the endpoints a and b are those fixing
the constant term 6 in (45) and the normalization condition
for p. The former is

+

at)(b+1) 4 “7)

1
2

2;]/10g<\/aj;\/l_)> +2 ( ¢

while the latter, obtained inserting (46) in (44) and using
(C1) and (C6), results in

2ay, (2\/%+a+b>_ a
p e\ avab 23/ (a+1)(b+1)
x(V(a+1)(b+1)=1-Vab)=1. (48)

It can be checked that (47) and (48) coincide when we set
a = 1/b. This relation is the expected relation for the
endpoints from the 1; - —4; symmetry in (41). In sum-
mary, the single-cut eigenvalue distribution for the model
(21) is

*The ansatz (46) can be guessed if we deform the contour
encircling the cut in (D4) to infinity. In this way we pick the pole
at 4 and an integral over the discontinuity across the log branch
cut, which suggests (46).
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a=1
PA)/ Puax
AApax
-1.0 -0.5 0.0 0.5 1.0
— vy/[B=0.2 — vy/Bf=0.25 — y/B=0.4

FIG. 4. One-cut eigenvalue distribution as a function of temper-
ature: The high temperature limit (green curve) of the eigenvalue
distribution (49) resembles the Wigner semicircle law. As
temperature decreases, the second term in (49) becomes relevant
and a dip develops around the origin (blue curve).

o) =1 [ijt <¢ (/= 1/b)(b~ el))

et +1
Vb /(& =1/b)(b= ¢
2(b+1) A+ } (49)

with b satistying

2. ((b+1)?\ (1-vb)?* 1
Flog( 4b )_2(b+1) =z 0

Numerical methods are very effective in solving (50).

As we diminish the repulsion, a > 1 [cf. (43)], eigen-
values locate near the potential minimum A =0 (u = 1).
In this regime the model effectively reduces to a quartic
potential

YIB=012¢6

PQ)/Pouax
1.0

-0.5 0.0 0.5

— a=3.44 =538 — a=16.8

FIG. 5.

Ve (A) = a(ght + pa?), a>1 (51)
with ¢ = 1/192 and u = y/f — 1/8. Then, the single-cut
endpoint can be found perturbatively in 1/a. Plugging
b =1+ € in (50) one finds

)

D. Phase transition and double-cut solution

We now discuss some relevant features of the single-cut
solution (49). The two terms in (46) have support in the
region (1/b, b); however, the first one is positive while the
second is negative. At high temperature (y/f# > 1) the first
term dominates and we effectively get the Chern-Simons
matrix integral with a Wigner semicircle-like connected
distribution (see Fig. 4). As we lower the temperature, the
second term becomes increasingly important creating a
dip in the semicircle (Figs. 4 and 5). For small enough
temperature, the dip at the origin touches the horizontal
axis. As a negative eigenvalue distribution is unacceptable,
this signals a split of the support, i.e., a single- to double-cut
transition (see Fig. 5 right).

For fixed a, the critical temperature 7'. below which the
single- to double-cut transitions occur can be found by
solving p(0) = 0. This equation gives a curve a(y) in the
(7, @) plane, which we display in Fig. 6. One concludes that
for y/p > 1/8 the distribution is connected irrespectively
of the value of a and for y/f < 1/4x the distribution is
disconnected irrespectively of a.

E. Order of the phase transition

The order of the phase transition can be analytically
studied in the a > 1 limit, where the system reduces to an

y/B=0.100
PQ)/Pax
1.0

-1.0 -0.5

AAax

0.0

a=9.04

0.5 1.0

— =344 @,=18.357 — a=21

Left: For y/ > 1/8 the eigenvalue distribution is connected (single-cut) irrespectively of a. Right: For y/f < 1/8 and large

enough a the distribution must be modified: As we increase a the dip reaches the origin and a disconnected (double-cut) eigenvalue

distribution develops.
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Log|a]

151
TWO CUT |
PHASE

10t y

i /‘/
st p _dd ONE CUT
- PHASE
— '// B
—
0.0F ‘ oAz‘aj o010 o011 012 013 vE

FIG. 6. Phase diagram. Critical line showing single- to double-
cut transitions in the eigenvalue distribution: To the left of the
blue curve (low 7) we have a disconnected (double-cut)
distribution, to the right (high 7) a connected (single-cut)
one. The right asymptote lies at the classical value for instability
y/p=1/8=0.125, the left asymptote at y/f=1/4n=~
0.0795775. The critical temperature for a square fermion matrix,
a =1, can be read from the critical line crossing the horizontal
axis; this happens at y/f =~ 0.0800517.

effective A* model (see Appendix D for a review of the
quartic model).

Considering the first derivative of the specific free
energy in the a > 1,

%0 _ yim LiaTemty = o / A p(2) 1.
dg c

N—oco

This expression can be easily computed by expressing the
integral in terms of a contour C surrounding the cut C

/C dp(h) (1) = 5 75 dzp(2) £ (2).

Then,
o 4(9g+a/42+m/0:2;42+142ga) u> . l-cut
= (Vau++/a>+12g) (52)
g %gig u<p. 2-cut

ofy { L (968 + 2060 gu + 8b*4?)
oa

From this expression one finds evaluating at the critical

value u, = —2+/g/a from both sides

o

dg
@fo
il
27

u

fo
og>

p=p

H=

44’

_ 9fy 5
=p 99 H=pg 49
B *fo 9
5.2 42
w09 Ly 4g
A fo 13
0F lymur 297

Alternatively one can compute y derivatives

9fo

o

The results are

2Va(8g+ap* +uy/ o +12ga)

« /C dip(2) 2.

> 1-cut
aa_fo = (Vap+/ o +12g)" o e (53)
u _% u<pu. 2-cut,
Ol _ %l _ [@
a:u y:ﬂj (3/1 H=Hc g’
*fo _ 0*fo __
o’ u=p¢ op? H=pec 29
’fo _ o Pfo =0
9 3 - 4 3/2° 0, 3 - e
W p=ui 9 =

The last result shows a third order phase transition.
Alternatively, one obtains the same behavior by comput-
ing a derivatives of the specific free energy

ofo _
Jda

The results are
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‘\ 1.0t

ONE CUT
\\ 0.5

No physical solution

-0.5 <

FIG.7. Phase diagram in (u, g) displaying the one- and two-cut
solutions.

ofof  _0f __3
oa |, 0a|,_, 4a’
*fo _f .
Wﬂzﬂ? _Wﬂ:ﬂi 4
P fo 1 3 f 1
W}Fﬂ? dd W}Fﬂz 2

These results agree with the expected third order behavior
originally recognized in [19]. We display the phase diagram
of the system in (u, g)-space in Fig. 7.

VI. SUMMARY

In this paper we have studied fermionic quantum
mechanical models with quartic interactions at finite
temperature. The fermions have matrix character trans-
forming as bifundamentals of SU(N) and SU(L). The
models can be solved exactly and several large N, L limits
were performed.

We have emphasized the role ambiguities play when
performing the bosonization technique. In particular, we
have shown that our regularization of the fermionic
determinant in the nonsinglet bosonization case breaks
the classical symmetry from U(N) — U(1)". In passing
we have written fermionic Fock space Hamiltonians (8) and
(34) showing that the spectrums found by bosonization in
fact describe the precise Fermionic system at the quantum
level with particular ambiguities being fixed.

For the finite NV, L case, the fermionic models were given
an alternative representation in terms of the vacuum
expectation values of characteristic polynomials in the
Chern-Simmons matrix model [17]. Using well-known
orthogonal polynomials techniques (Brézin-Hikami corre-
spondence formula [32]) the model can be solved The
vector model in nonsinglet bosonization shows an equi-
distant spectrum and can be related to the (integrable)
Polychronakos-Frahm model. It is important to highlight

that the bosonic matrix models we end up with incorporate
the temperature in a natural way, providing an alternative
viewpoint on the Chern-Simons matrix model. The results
have also shown that the intricacies of the bosonization fix
ambiguous normal terms to specific values in the Cartan
generators [cf. (34)].

The eigenvalue distribution for the models in large N, L
limits were solved. For the vector model case (L = 1) the
distribution coincides with the CS one and no phase
transition arises as we vary temperature. Naturally, cou-
pling constant had to be rescaled for a sensible limit
y — Ny. Fermionic matrices provide a new parameter
(column/row ratio) which we can play with, ie., a=
L/N finite for large N, L. The eigenvalue distribution in
the large temperature (one-cut) regime was found in closed
form [see (49)]. Its analysis shows, as expected, the
splitting of the cut as we lower the temperature due to
the competition of two terms. For large o > 1 the model
can be safely approximated by a quartic potential and well-
known results permit us to find the two-cut solution. One
can check that a third order phase transition transition
arises. We also found the critical curve in (a, y)-parameter
space where the phase transition occurs.

There are several avenues to explore in the model. The
bosonic representation of the FP model is novel to the
authors’ knowledge and we find this an interesting avenue
to explore. We can envisage studying the double scaling
limit along the y(a) curve to uncover the behavior of the
bosonization technique. A more ambitious project is to try
to study if the present fermionic models with finite Hilbert
spaces can be related to de Sitter gravity or string models as
elaborated in [39-43]. Finally we could study the L = 1
model in the ferromagnetic case and see whether the
transitions found in [25] take place in the present models.
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APPENDIX A: U(N) AND SU(N) CONVENTIONS

U(N):
uut =1.

SU(N): subset of U(N) satisfying detU = 1.

Fundamental representation: Writing U = e'4, genera-
tors A are N x N Hermitic matrices A = A",

set of N xN complex matrices U satisfying
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For SU(N), the condition detU = 1 ~ traceless gen-
erators: TrA = 0.

SU(N) generators: traceless + hermitic{T, }
a=1,...,N*—1

Appending the identity to this set we obtain

1
U(N)generators: hermitic {T,} =< T,,——Iy 7,
(Ve () = {Tu ot}
a=1,...,N?
Normalization: Fundamental generators are normalized as

1

Tr(TuTh) = Eaah. (Al)

Killing-Cartan metric:

Yab = 5ah,

Fierz identity: Fundamental irrep generators satisfy the

following identity:

UN): 67 (T,) (T,) = ~8ik, ij—1,..N. (A2
(N): (a)j( h)l—zljv Lj=1...0N. (A2)

Moving the identity generator in the lhs of this last
expression to the rhs we obtain

. 1/ .. 1 ..
SUN): (L) (1) = 5 (408 - o). a9

Proof of (A3): the unit matrix 1 and set T', form a basis
for the space of Hermitian N x N matrices, V A Hermitian

A = a1 + a°T,,.

Taking the trace on both sides we determine a”

Tr(A) = aON » ° = %Tr(A).

Multiplying by T and taking the trace we find a“

Tr(ATy) = aTr(Ty) + a“Tr(T,Tp) w a, = 2Tr(AT,)
—— N —

=0 :%ga/)'

where a, = g,pa”.

We conclude VA

A= %Tr(A)l +2Tr(ATYT,,

where T = ¢*’Tj. In components

1 '

ATy = AL+ 24 (2T (T,
A T

w Al <(T ViTa)'j + 550501 = 515 )

J

(A4)

This has to hold for arbitrary A, therefore the Fierz
identities, (A2) and (A3) follow.

SU(N) algebra: Structure constants are defined from
fundamental (normalized) irrep generators as

[T0. Ty) = ifopT,.

Multiplying by T7 and taking a trace, we can express the
structure constants in terms of traces of the fundamental
irrep as

ifp(l/)’ = Z[Tr(TpTaT/)’) - Tr<T/)T/3T(1)]' (AS)

SU(N) trace formulas: From (A3) we obtain

THT*X)TH(T,Y) = % {Tr(XY) — %Tr(X)Tr(Yﬂ (A6)

Tr(TeXT,Y) — % [Tr(X)Tr(Y) - %Tr(n)] (A7)

SU(N) quadratic Casimir for fundamental and adjoint
irreps: The quadratic Casimir is defined as

CY) = ¢PTLR)TH(R) = T*(RIT,(R).  (AS)
Fundamental irrep [I: (A3) gives
damental: ¢ = (o7, = V=15
Fundamental: C;’ = (T°T,) i =%
i,j=1,....N (A9)

Adjoint irrep: Fenerators are given by (7,)”, = if”,, then

Adjoint: Cjl = (T°T,)", = N&,
ap...=1,...,N*—1. (A10)

Proof:
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) = 6(if? o) (if"p,)
= 4[Tr(TPTaTy) — Tr(T/’TyTa)] [Tr(T'T°T,) — Tr(T'T,T*)]
= 2[T(T,1°T,T") - T«(T,T°T'T,) — To(T*T,T,T7) + Tr(T*T,T'T,)]

NZ—1 1
S +-—58| =N&
AN tan

—4

In going to the second line we used (AS5), in going to the third (A6), and in the fourth we replaced 77T, by C(Fz) and
used (A7).
The young tableaux corresponding to the adjoint irrep involves N boxes

H

adj = N — 1 rows
UJ

For completeness we quote the Casimir for a young tableaux Y with b boxes, row lengths p; and column lengths o; (see
Appendix A in [44])

@ 1 2 2 b
cy _E(bN+Zpi—§i:aj—N>. (Al1)

Cartan generators: For the fundamental representation of SU(N), these are N — 1 mutually commuting N X N traceless
matrices H,,(m =2,...,N). We choose 5

1 0 1

0 0 0 -N+1
with @, = 1/4/2m(m — 1). They satisfy the normalization condition (A1), i.e., Tr(H,H,) = 15,,,.

APPENDIX B: BREZIN-HIKAMI VACUUM EXPECTATION VALUES OF CHARACTERISTIC
POLYNOMIALS

Expectation values of products of characteristic polynomials for Hermitian ensembles with probability distribution
P(M) = %e—tFV(M) were computed in [32] in terms of orthogonal monic polynomials m,(x). These are orthogonal
polynomials for V(x) whose coefficients of the highest degree are equal to unity

/mn(x)mm (x) e™V™ dx = h,5,,, m,(x) = x" + lower degree.

The result is

my () my(A) o omyg(4)
(_)L(L—l)/2 miy(4) My 4 .. My g (4)

((det(2 = M))")y :Wdet : . (B1)
my ) m @) mL ()
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APPENDIX C: SOME USEFUL INTEGRALS

We compute and quote here a number of integrals necessary for obtaining the eigenvalue distribution in Sec. V B. They
are obtained by standard applications of the residue theorem. Where (45) is linear, the solution for p can be found by a
superposition of the sources on the rhs. Results (1) and (2). solve the 1/(u + 1) term, while results (3) and (4) solve the

log \/u term.

ey

(@)

3

“

1Ab@—v(—a(b—x V@t Db+ -Vab-1), 0<a<b. (C1)

b4 X x+1

Proof: The integrand in the lhs shows, in the complex plane, simple poles at z = 0, —1 and a cut joining 7 = A to
z = B. Let C be a clockwise contour surrounding the cut, then

%dz\/ﬁ /bdx Vi—a)b-x )

z z+1 x+1

Deforming the contour to infinity C,, we pick two (residue) contributions from z = —1 and z = 0. The result is

]4 aVEZab=3) o G B - Vab - 1), (C3)
C

L 4C+C L z+1

Equating (C2) and (C3) we obtain (C1).

1 /h dx Ja—a)b-x) _VatDb+D (C4)

T xX—y 1 +x N y+1

Proof: This integral is similar to (C1), but the pole at the origin is now located along the integration interval. Picking
the same contour as before, surrounding the cut in the clockwise sense, we have

7{ dz +/ z—a(b—z ][h dx +/(x—a)(b- x)' (©5)
C

ci—y z+1 I+x
Deforming the contour to infinity we now pick a single contribution from z = —1; the final result is (C4).
Assuming 0 < a < b are real numbers,
1 [bd —a)(b—- 2V ab b
! / B V=l =x) <—va+a+ ) (C6)
T ) X x ++ab 4v/ab
Assuming 0 < a < b are real numbers,
1 b d —a)(b—- 2
—— / T tan™! x-a)b-x) _ —log ( vy ) (C7)
T Jo Xx—Yy x++Vab Va++b

Proof: (3) and (4) are generalizations of well-known results of CS theory [24] after the change of variables x = e”.

They can be checked with simple numerical examples.
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APPENDIX D: QUARTIC MODEL [20,21,24,45]

The partition function for a Hermitian matrix model,
writing M = U - diag(4,, ...4y) - U7}, is

2 —NV&) (Dl)

Z= N/HCMH

Jj>i

In the large N limit the partition function is dominated by a
saddle point equation for the eigenvalue distribution p(1)
[cf. (42)]

pA)
2 dl =
][ A=A

The solution to this equation is found by introducing the
resolvent w(z) = 3 (Tr—;) with z € C, which in the large
N limit takes the form

wo(z) = /C 5 <_’12, ax.

V'(4), A€ C=supp(p). (D2)

Away from C (support of the distribution) this is an analytic
function. The resolvent satisfies three important condi-
tions [18,24]:

(i) p(d)=- 27”(600(/14—16) wy(A—ie)) for A € supp(p),

(i) @o(A+ ie) + wo(d —ie) = V'(4)

(iii) wy(4) =3+ O(3) as ,1 — 00.

This turns the integral equation (D2) into a Riemann-
Hilbert problem for w(4).

We are interested in analyzing the consequences of
symmetry breaking on the eigenvalue distribution. To this
end we consider the potential

V(2) = a(gi* + ui?) (D3)

and assume g > 0. Classically, the potential develops two

minima at Ay, = %+, /——g when u becomes negative.

These break the Z, symmetry of the potential. In the large

N limit, the instability develops below u, = —2+/g/a <0
when the distribution becomes disconnected (two-cut)
[20,21,45].

Explicitly, the quartic model requires us to solve

1 p
][Cf( j,dxl’:29/13+/4/1

Notice @ measures the strength of the eigenvalue repulsion
(Ihs). As a — oo the repulsion is negligible and eigenvalues
localize at the extrema of V(). Hence, the size of the cuts is
controlled by a.

1. One-cut solutions

The one-cut solution @}(z) for arbitrary V(1), sat-
isfying (i)—(iii) above, can be written in closed form as [46]
(see also [23])

o - L O (Coemn Y,

c2riz—w \(w—a)(w-

Here C is an anticlockwise contour encircling the (single)
cut C = [a,b], a < b.

The endpoints of the cut, a and b, become fixed upon
demanding the resolvent @ to satisfy property (iii).
Expanding the integrand in (D4) for z > w, condition
(iii) implies that

fd_w Vi) =0 and
¢2mi\/(w—b)(w—a)

L[ dw (w=(a+b)/2)V'(w)

2£2m' (w—a)(w=b) =1 (D3

Inserting

V'(w) = 2a(2gw?® + uw),

integrals (D5) can be easily calculated deforming the
contour C to infinity. The circulation at infinity picks
the coefficient of the 1/w-term in the expansion of the
integrand, i.e., residue at infinity. The results are

(a+b)((5a* —2ab +5b*)g+4u) =0  (D6)

L (a—bY2((15a + 18ab + 15b*)g + 8u) = 1.

64 (D7)

A. Symmetric solution: (D6) is immediately solved for
a = —b, which, inserted in (D7), gives

b = 4 . (D8)

ap + /a*u* + 12ag

As expected, the size of the cut reduces b — 0, when the
eigenvalue repulsion diminishes a — 0.
Deforming the contour C in (D4) to

b = f@, + fcw, one obtains

infinity,

0y¥"(2) = (292 + pz) — a2 = b2(2g2% + b2g + ).
(D9)

The first term comes from the pole at w = z and the second
from the circulation at infinity. In the limit g=0
the solution, (D8)—(D9), smoothly reduces to Wigner’s
semicircle.

The second term in (D9) is responsible for the disconti-
nuity required by property (i) above; hence, we immediately
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read the single-cut eigenvalue distribution for the quartic
model [18,20,21,24,45]

P (2) = % Vb = (298 + b*g + p)

for A€ C = [-b,b]. (D10)
This solution is consistent as long as p'$ > 0. For ¢ > 0, a
dip develops around the origin as y becomes negative
(cf. Fig. 4). At u, = —2+/g/a the distribution touches the
horizontal axis. For u < u,. the eigenvalue distribution
consists of two disconnected cuts; we recompute it below.

In summary, solution (D8)-(D9) makes sense for the

following:y > 0 w g > —”;—”22. This condition follows from

demanding b € R [18]. Amusingly, although the potential

becomes unbounded below for g < 0, as long as g > —%
the potential barrier prevents the eigenvalues from over-
flowing. At the critical point g = —ay? /12, the nonanalytic
behavior of p'$Y™(1) at the edge of the support changes
from |1 4 b|'/? to |4 £ b|*/2. This phenomenon is crucial in
2D quantum gravity and noncritical string theory.
Uu<0,g>0wu>pu.=-24/g/a or equivalently
g > {%2. The condition follows, demanding that p'$ > 0.
B. Asymmetric solution: For g > 0 and u < 0, Egs. (D6)
and (D7) allow for a single-cut solution centered close to

one of the minima A,;, = +,/— ZL‘(] Inserting @ = ¢ — 7 and
b =0+ 7 in (D6) and (D7) the solution is [20]

, T =RE =2 Y

o= 10g T 159

(D11)

As repulsion vanishes, a — oo, the “center” of the distri-
bution ¢ — A,;, and the width 7 — 0. The solution runs
away ¢ — oo as g — 0. Deforming the contour C in (D4) to
infinity one obtains

0y ™(2) = a(292’ +uz) —a/(z =0~ 1)z =0 + 1)

X (297% + 2gz0 + 290> + 72 + ). (D12)
The eigenvalue distribution reads
pem(2) = >l T =Di=0+7)
X (294% + 2gAc + 2g6* + 7> + u)
forreC=lo—-1,0+1]. (D13)

In summary, the asymmetric solution (D11)—(D13) exists
for the following: u <0~ 0 <g< "’1—”52 This condition
arises from o,7 € R.

Notice the asymmetric solution (D13) gives rise to
(TrM) # 0 as compared to (D10). For further discussions
see [20].

2. Two-cut solutions

For ¢ > 0, 4 <0 and u < p. the support of the distri-
bution becomes disconnected.

A. Symmetric solution: Multicut solutions can also be
written in closed form [24]. For even potentials
V(1) = V(—4), the (Z,-symmetric) two-cut solution takes
the form

w2—cut _ l d_WV’(w) (ZZ _ az)(zz _ bz) 12
o) =5 ¢ (( )) |

2 Je2miz—w \(W? —a*)(w? — b?

(D14)

Here, C is an anticlockwise circulation around the cuts
located symmetrically around the origin at —b < x < —a
and a < x < b with b > a > 0.

Demanding the resolvent to satisfy property (iii) one
obtains

}{dw V'(w)
¢ 2xi\/(w? — b?)(w? — a?)
lfd_w(w2 —(a®+b%)/2)V'(w) _q
c2mi /(W — a®)(w? - b?)

=0 and

2

Inserting the explicit expression for V'(w) and computing
the contour integral at infinity one finds

9% 2 12y2 2 H 1
T2 —p2)2 =1 __r__
4( ) A 29 Jag’
U 1
P =yt e (D15)

The two-cut Z,-symmetric solution shows two peaks
centered around the classical minima A2, = —2% with
widths scaling as 1/a. As we increase the eigenvalue
repulsion a — 0, the peaks widen and become eventually
connected for a < 4g/u’.

To find the resolvent we deform C to infinity. From the
pole at w =z and the residue at infinity in (D14) one
obtains

w2s(z) = a(292® + uz) — 290(\/(Z2 —a*) (2 - b?)z.
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The eigenvalues distribution follows from the second term

2
pPo(0) = 0 - ) - )

for A € c = [~b.~a] U [a, D). (D16)

APPENDIX E: FRAHM-POLYCHRONAKOS
MODEL

The Frahm-Polychronakos model arises from a particu-
lar limit of a Calogero-type spin system [47]. The FP model
consists of fundamental SU(n) spins positioned at the
equilibrium positions of a classical Calogero model, i.e.,
interacting through inverse-square exchange. In the present
paper, we will be concerned with the SU(2) case.

Start with an N-particles system on the line with the
Hamiltonian [48]

1
H=— 2 El
221‘:(1)[—’_60 +1Z<: x,—xj =
J
where M;; is the particle permutation operator
My=M;=M,  M},=1
M;;A; = AiM,;, M;jAy = AcM;;,  for k #1,j
where A; is any operator (including M;; themselves)

carrying one or more particle indices. This model was
shown to be integrable in [48]. Rescaling @ — lw, the
Hamiltonian naturally splits into Calogero and spin parts,
H = H¢+ Hg, with

:%Z(p%—f-ﬂ Z(x - X;)
:_IZ (x; — x;)

i<j

(E2)

In the strong coupling limit / — oo, the coordinate degrees
of freedom freeze and decouple from the spin ones. Setting
the coordinates to their static equilibrium positions

x_zzx—x

J#l

(E3)

we end up with a spin chain of fundamental SU(n) spins
lying at the equilibrium positions of the classical Calogero
system. The solutions x; of (E3) can be identified as the N
roots of the Hermite polynomial Hy(x) of degree N [49].
The Frahm-Polychronakos model relevant for this paper
is defined as the fermionic spin chain arising from the spin
part in (E2) with M;; — —o;;. Dropping the [ factor,

1

Hprp=—H,.
FP 2}/ K

The partition function for the fermionic SU(2) model was
guessed numerically in [34] and derived analytically in [35]

N—r+1

N k
’ _m _N l_q
2=ty g T

k=0 r=1

. _L
with g = e 7.

(E4)
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