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Orbifold singularities of M-theory constitute the building blocks of a broad class of supersymmetric
quantum field theories (SQFTs). In this paper we show how the local data of these geometries determine
global data on the resulting higher symmetries of these systems. In particular, via a process of cutting and
gluing, we show how local orbifold singularities encode the 0-form, 1-form, and 2-group symmetries of the
resulting SQFTs. Geometrically, this is obtained from the possible singularities that extend to the boundary
of the noncompact geometry. The resulting category of boundary conditions then captures these
symmetries and is equivalently specified by the orbifold homology of the boundary geometry. We
illustrate these general points in the context of a number of examples, including five-dimensional (5D)
superconformal field theories engineered via orbifold singularities, 5D gauge theories engineered via
singular elliptically fibered Calabi-Yau threefolds, as well as four-dimensional supersymmetric quantum
chromodynamics-like theories engineered via M-theory on noncompact G2 spaces.
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I. INTRODUCTION

Compactification provides a bridge connecting higher-
dimensional quantum gravity to low-dimensional quantum
field theories. In the context of M- and F-theory compac-
tification, the general procedure for obtaining interacting
quantum field theories necessarily involves the study of
localized singularities and branes. The degrees of freedom
of the resulting supersymmetric quantum field theory
(SQFT) are localized in a small neighborhood and can
be decoupled from bulk gravitational degrees of freedom.
In the limit where lower-dimensional gravity decouples,

global symmetries can emerge, and these serve to constrain
the dynamics of the resulting theories. Recently it has been
appreciated that in addition to the standard 0-form sym-
metries which act on local operators, higher-form sym-
metries acting on extended objects often provide additional
important topological data [1] (see also [2–4]). Especially in
D > 4 spacetime dimensions, geometry/brane constructions

are the only tool available for directly constructing the
resulting SQFTs, and in D ≤ 4 spacetime dimensions, the
resulting string constructions also provide invaluable tools
in studying nonperturbative phenomena. Given this, a
natural question is whether the geometry of the string
compactification can be used to extract this important
global data of the resulting SQFTs.
Recently much progress has been made in understanding

the spectrum of extended objects that behave as nondy-
namical defects in the resulting SQFT. For example, in the
case of six-dimensional (6D) superconformal field theories
(SCFTs) realized via F-theory on an elliptically fiber Calabi-
Yau threefold X → B, the defect group associated with
nondynamical strings results from D3-branes stretched on
noncompact 2-cycles in the base B [4].1 Similar consid-
erations hold for a wide class ofM-theory compactifications,
where stretched M2-branes and M5-branes can result in a
rich spectrum of extended objects (see, e.g., [7–9]). In all of
these cases, the general idea is that dynamical states
obtained from branes wrapped on compact cycles can
partially screen the nondynamical objects. The resulting
“defect group” is then obtained from the nondynamical
defects modulo such dynamical degrees of freedom.
In the context of M-theory, the SQFT limit necessarily

involves dealing with a noncompact geometry X which
will contain singularities in the internal geometry. These
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1See, e.g., [5,6] for recent reviews of 6D SCFTs.
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singularities can often be quite intricate and can also involve
nonisolated components that extend out to the boundary ∂X.
In such situations, reading off the structure of higher
symmetries is necessarily more delicate. One approach to
these issues is to explicitly resolve the singular geometry X.
This was used in [7,8,10] to explicitly construct the resulting
(relative) homology cycles, though it rapidly becomes quite
complicated to explicitly track all of these data. In [11] an
alternative approach was developed for five-dimensional
(5D) SCFTs obtained from the orbifold singularities C3=Γ
for Γ a finite subgroup of SUð3Þ. Instead of explicitly
performing any resolutions, the data of 1-form symmetries
were extracted from the adjacency matrix of the corre-
sponding 5D Bogomol’nyi-Prasad-Sommerfield quiver (see
[12]), as well as from the fundamental group for the
(possibly singular) boundary geometry S5=Γ. It was also
conjectured in [11] that the structure of candidate 2-group
symmetries is closely correlated with the abelianization
of Γ itself.
Broadly speaking, orbifold singularities comprise a large

class of geometries and also serve as the building blocks of
more general geometries with singularities. As such, they are
an excellent theoretical laboratory for the study of higher
symmetries. In this context it is worth noting that in local
M-theory models with a weakly coupled Lagrangian descrip-
tion, the topology of the resulting geometries can always be
viewed as glued together from various orbifold geometries.
For example, in the realization of four-dimensional (4D)
SQFTs via M-theory on a localG2 space, a three-manifold of
ADE singularities provides the gauge group and further
enhancement in the ADE type at points of the geometry
yields localized chiral matter (see, e.g., [13–16]). In many
cases, the study of higher symmetries reduces to under-
standing the analogous question for orbifolds and their
subsequent recombination into more general geometries.
Our aim in this paper will be to study the structure of

0-form, 1-form, and 2-group symmetries in systems with
localized orbifold singularities. More precisely, we focus on
geometries where the flavor group originates from “flavor
branes,” as generated by local singularities of the form

C2=ΓADE for ΓADE ⊂ SUð2Þ, a finite subgroup of SUð2Þ.
Our analysis will center on the non-Abelian contribution to
the flavor symmetry. We neglect other possible contribu-
tions to the 0-form symmetry such as those coming from the
R-symmetry as well as possible Uð1Þ global symmetries,
and other discrete symmetry factors.2 By itself, such an
orbifold singularity will realize a seven-dimensional (7D)
super Yang-Mills theory with gauge algebra of ADE type
(in the simply laced case).3 The global structure of the 7D
gauge group depends on the specification of a fractional
4-form flux, as captured in the boundary ∂C2=ΓADE ≅
S3=ΓADE [8,21]. One of our tasks will be to consider more
general configurations with multiple flavor brane factors,
and through a process of cutting and gluing, extract the
resulting global structure of the 0-form and 1-form sym-
metries directly from the boundary geometry. This process
of cutting and gluing also furnishes a precise prediction for
possible 2-group symmetries, as captured by a nontrivial
action of the 0-form symmetry on the 1-form symmetries.4

See Fig. 1 for a depiction of the general geometric setup.
Our strategy for reading off these data is as follows. For a

general M-theory model on X with flavor branes, even the
boundary is singular. The task of understanding higher
symmetries then amounts to understanding the category of
possible boundary conditions on ∂X. Now, in the boundary
geometry ∂X, the flavor branes are singularities localized
on (possibly topologically trivial) submanifolds K ⊂ ∂X.
Given multiple flavor branes wrapping the subspaces
K1;…; Kn, each one will contribute to the corresponding

FIG. 1. Depiction of an SQFT realized at a localized region of a noncompact geometry X, with boundary ∂X. Flavor branes can extend
out to infinity and intersect the boundary along a subspace K. Our procedure for extracting the global form of the flavor symmetry,
1-form symmetry, and possible 2-group structures involves working with ∂X∘ ¼ ∂XnTðKÞ, where TðKÞ is a tubular neighborhood of K.
The Mayer-Vietoris exact sequence then yields the relevant physical structures directly from geometry.

2There can in principle also be contributions to the 0-form
symmetry from isometries and “accidental” enhancements at
strong coupling, but in what follows we focus purely on localized
contributions. When such phenomena occur, additional restric-
tions apply.

3We can also treat nonsimply laced gauge groups and matter
enhancements by including suitable automorphism twists [17]
and/or frozen fluxes [18–20], but in what follows we mainly
focus on the simply laced case unless otherwise stated.

4For recent work on the physics of 2-groups, see, e.g.,
[11,22–34].
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0-form symmetry. The geometry provides important infor-
mation on the center of this candidate 0-form symmetry,
and we compute it by first deleting the flavor loci, namely
by considering the noncompact geometry ∂X∘ ¼ ∂XnK
with K ¼ K1 ∪ � � � ∪ Kn. Each local contribution has the
form of an ADE singularity fibered over Ki, and in this
patch we can independently specify a choice of fractional
G4 flux which in turn specifies the local structure of the 0-
form symmetry. Gluing these local contributions back
together via the Mayer-Vietoris sequence then specifies
the global 0-form symmetry, which we denote as

G≡ G̃=C; ð1:1Þ

with G̃ the “naive” flavor symmetry group that acts on both
genuine local operators as well as nongenuine local
operators, the latter of which are only defined as the end
points of line operators.5

Here, C is a subgroup of the center of G̃. In many cases,
G̃ ¼ G1 × � � � × Gn, with all Gi simply connected, though
in some cases the answer from geometry already anticipates
a less naive result.
By a similar token, the 1-form symmetriesA of an orbifold

geometry can be read off from a suitably defined notion of
H2ðX; ∂XÞ=H2ðXÞ ≅ Ab½π1ð∂XÞ�, even when the boundary
geometry has orbifold fixed points. More generally, we
can again use Mayer-Vietoris to determine the resulting
1-form symmetry when these orbifold singularities are glued
together to produce a more general boundary topology. The
specific technique for accomplishing this in the special case
of 5D orbifold SCFTs in terms of data associated purely with
the orbifold group action was introduced in [11].
Putting these pieces together, it is natural to ask whether

there is a 2-group structure, as obtained from a nontrivial
action of the 0-form symmetry on the spectrum of lines
(which are acted on by the 1-form symmetry). In general,
this is a challenging question, but for geometries that can be
decomposed into local orbifold singularities, we propose a
general prescription that passes several nontrivial checks, at
least in those cases where the geometry faithfully captures
the 0-form symmetry (no accidental enhancements). As
explained in [32,35], the 1-form symmetry group can be
extended by considering additional lines that become
equivalent upon quotienting by C. This yields a pair of
short exact sequences:

0 → C → ZG̃ → ZG → 0; ð1:2Þ

0 → A → Ã → C → 0; ð1:3Þ

where ZG and ZG̃ denote the respective centers of the groups
G and G̃. The first short exact sequence tells us the precise
quotient from the “naive” simply connected 0-form flavor
group G̃ and its quotient by a subgroup C of the center
ZG̃ ⊂ G̃. The second short exact sequence tells us the
structure of the 1-form symmetries: Ã denotes the “naive”
1-form symmetry where we neglect the possibility of lines
with end points charged under the 0-form symmetry, and A
is the true 1-form symmetry obtained by corrections
associated with the group C. Applying the Bockstein
homomorphism β∶H2ðBZG;CÞ→H3ðBZG;AÞ then yields
a corresponding Postnikov class. When the image is non-
trivial, this detects the presence of a nontrivial 2-group
structure. A sufficient condition for this to occur is that the
short exact sequence involving the 1-form symmetries does
not split, namely Ã ≠ A ⊕ C.6

From this perspective, identifying a 2-group symmetry
amounts to identifying the geometric origin of each of the
terms appearing in lines (1.2) and (1.3). Using the Mayer-
Vietoris exact sequence for the different contributions to the
singular cohomology, we provide a geometric interpreta-
tion for all the terms of this pair of short exact sequences.
This same structure can also be directly extracted from
orbifold (co)homology. For example, the 1-form sym-
metries are obtained via the orbifold homology short exact
sequence:

0 → Htwist
1 ð∂XÞ → Horb

1 ð∂XÞ → H1ð∂XÞ → 0; ð1:4Þ

where each term is to be identified with the terms in the
Pontryagin dual exact sequence:

0 → C∨ → Ã∨ → A∨ → 0; ð1:5Þ

with H∨ ¼ HomðH;Uð1ÞÞ the Pontryagin dual of a group
H. Another benefit of working directly in terms of the
orbifold (co)homology of the boundary geometry is that it
provides an efficient means of extracting the relevant higher
symmetries even when the associated orbifold singularities
result from non-Abelian group actions.
To test this general proposal, we present a number of

examples. As a first case, we return to the 5D orbifold
SCFTs recently considered in [11]. In this case, we are

5Note that all local operators that transform projectively are
nongenuine, since otherwise the G should be extended to act
faithfully on them, but the converse is not necessarily true. For
example, given QCD with Nf fundamental quarks, a quark is not
a genuine local operator since it is not gauge invariant but still
transforms faithfully under SUðNfÞ. Other than forming compo-
sites, one may attach a quark to a fundamental color Wilson line
to give a gauge-invariant configuration that displays what we
mean when we say that nongenuine operators only exist as ends
of line operators.

6In some cases it can happen that ZG is trivial even thoughG is
nontrivial. In such situations, the corresponding physical answer
is that the Postnikov class that detects a nonsplit 2-group is
captured by an element of H3ðBG;AÞ rather than H3ðBZG;AÞ.
This is still detected by the geometry precisely when the short
exact sequence for the true and naive 1-form symmetries of line
(1.3) is nonsplit.
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dealing with orbifold singularities of the form C3=Γ with Γ
a finite subgroup of SUð3Þ. In many cases, the boundary
geometry has nontrivial flavor brane loci, each of which is
locally defined by an ADE singularity. Using our general
prescription, we determine the resulting global 0-form
symmetry. Since the 1-form symmetry can also be read
off directly from the data of the orbifold group action [11],
we can read off all of these data, including the 2-group
symmetry directly from the geometry. We primarily focus
on the case of Γ an Abelian group, but we also show that the
orbifold (co)homology of the boundary geometry S5=Γ
naturally extends to the case of Γ non-Abelian as well.
As another class of examples, we consider 5D SQFTs

obtained from circle compactification of the partial tensor
branch of some 6D SCFTs. In these cases, the flavor brane
locus involves a corresponding singular elliptic fibration
which amounts to an affine extension of the intersecting
homology spheres for a flavor brane. We show that this has
no material effect on the resulting higher symmetries and
present explicit results in a number of cases. These include
the case of so gauge theories with an sp flavor symmetry
algebra and the case of conformal matter on a partial tensor
branch. In all these cases, the entire geometry can be
decomposed into a collection of orbifold singularities each
locally of the form C3=Zk for appropriate k.
As a more involved example, we also consider the case

of supersymmetric quantum chromodynamics (SQCD)-like
theories engineered via M-theory on a local G2 space.
Although an explicit construction of the corresponding
special holonomy space remains an outstanding open
question, the topological data associated with the boundary
geometry can be extracted by using the standard type IIA to
M-theory lift in which SUðNÞD6-branes wrapped on three-
manifolds are replaced by three-manifolds of A-type
singularities. Similar considerations apply for SO=Sp
gauge theories. Using some well-known realizations of
such field theories in type IIA brane systems [36,37], we
determine candidate 0-form, 1-form, and 2-group sym-
metries for these systems.
The rest of this paper is organized as follows. In Sec. II

we present our general strategy for extracting 0-form and
higher symmetries from orbifold geometries. In particular,
we show that the higher symmetry structure is encoded in
the relative homology of the boundary space itself. In
Sec. III we apply these general considerations in the case of
5D orbifold SCFTs C3=Γ. Section IV considers a class of
5D SQFTs obtained from elliptically fibered Calabi-Yau
threefolds with a singular elliptic fiber. Section V provides
a similar analysis in the case of SQCD-like theories
engineered from M-theory on local G2 spaces. We present
our conclusions and potential areas for future investigation
in Sec. VI. Appendix A presents some additional details on
the topological data of SQCD-like models realized via G2

spaces. Appendix B presents some additional aspects of
group actions by finite Abelian subgroups of SUð3Þ on C3.

II. SYMMETRIES VIA CUTTING AND GLUING
OF ORBIFOLDS

In this section we present our general prescription
for reading off symmetries of SQFTs engineered from
the gluing of orbifold singularities. We primarily consider
M-theory compactified on a space X which contains
various orbifold singularity loci that can potentially extend
out to the boundary ∂X. We assume that these are Kleinian
singularities C2=Γi, with Γi ⊂ SUð2Þ a finite subgroup. In
each local patch, the resulting flavor 6-brane specifies a
simply connected simple Lie group of ADE type Gi. For
now, we ignore the possibility of nonsimply laced Lie
groups, as can result from an outer automorphism twist
[17] and/or frozen fluxes [18–20], but we return to this
issue in Secs. IV and V.
Reading off the global 0-form symmetry for M-theory

compactified on X amounts to determining the appropriate
way to piece together these local data across all of ∂X.
Gluing together these building blocks follows directly from
an application of the Mayer-Vietoris long exact sequence in
singular homology [38,39]. The main idea is to work in the
boundary ∂X, excise the flavor brane loci, and then
determine possible identifications across multiple flavor
factors after taking account of such gluings. More precisely,
the Mayer-Vietoris sequence detects the appropriate way to
glue together the centers of the various Gi, as captured by
the abelianization Ab½π1ðS3=ΓiÞ�, and this is all we really
need to extract the global 0-form symmetry. Building on the
results of [11], this also allows us to read off the global
1-form symmetry, as well as candidate 2-group structures.
The rest of this section is organized as follows. We begin

by briefly reviewing the interplay between defects and
higher symmetries. After this, we show how to compute
these data using singular (co)homology and the Mayer-
Vietoris sequence. We next observe that precisely the
same data can also be read off from the local orbifold
(co)homology of the geometry.

A. Defects, symmetries, and 2-groups

To frame the analysis to follow, in this section we present
a brief review of defects and the action of various higher
symmetries on such structures. Recall that the defects of a
quantum field theory involve heavy nondynamical objects
that extend in some number of directions of the spacetime.
For each such extended object, there is a corresponding
p-form potential that couples to its world volume. Some of
this charge can be screened by dynamical states of the
theory, but importantly, this can leave behind an unscreened
remnant. The defect group

D ¼ ⨁
m
DðmÞ ð2:1Þ

consists of equivalence classes DðmÞ of mutually nonlocal
m-dimensional defects. Defects contributing to such classes
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are topological and invertible with the latter implying
an Abelian group structure for their fusion algebra. The
equivalence relation declares pairs of m-dimensional defects
equivalent whenever there exists an (m − 1)-dimensional
defect living at their junction, screening one into the other.
Defect groups were introduced in [4] within the context of
6D SCFTs and have been studied from the viewpoint of
geometric engineering in [7,8,10,11,21,33,40–53] and refer-
ences therein.
Turning to the specific case of M-theory on a supersym-

metry preserving background geometry X, we engineer a
corresponding SQFT T X. The defects of T X are constructed
by wrapping M2- and M5-branes on noncompact cycles of
the internal space X, and we can accordingly distinguish
two contributions to the group of m-dimensional defects

DðmÞ ¼ DðmÞ
M2 ⊕ DðmÞ

M5 : ð2:2Þ

Further, both these subgroups are equally characterized
by the noncompact cycles the respective branes wrap
and therefore are determined by singular homology groups
of X [7,8],

DðmÞ
M2 ¼ H3−mðX; ∂XÞ

H3−mðXÞ
≅ H3−m−1ð∂XÞjtrivial;

DðmÞ
M5 ¼ H6−mðX; ∂XÞ

H6−mðXÞ
≅ H6−m−1ð∂XÞjtrivial: ð2:3Þ

Here jtrivial restricts the group of torsion cycles to the
subgroup trivializing under the inclusion ∂X ↪ X with
the isomorphism taken from the long exact sequence in
relative homology for the pair ðX; ∂XÞ [7,8]. We remark that
in all cases we consider, the group is always a finite order
group; i.e., it is purely torsion.
Theories with nontrivial defect groups have phase ambi-

guities and a vector of partition functions. As such, they are
more properly viewed as relative theories [1,4,47,54–56].7
These same phase ambiguities also appear in the braid
relations between defect operators, as captured by the
Dirac pairing

h·; ·i∶ DðmÞ × Dðn−m−2Þ → R=Z; ð2:4Þ

where n ¼ dimX. Two defects are mutually local whenever
they pair trivially. Well-defined or absolute theories are
obtained by restricting the spectrum of defects to a maximal
subset P ⊂ D of mutually local defects. Such maximal sets
of mutually local defects are referred to as polarizations.
Geometrically the Dirac pairing takes the form of the
linking pairing on the boundary homology torsion groups
of Eq. (2.3). The choice of polarization P ⊂ D determines

the global structures of a theory by fixing its spectrum of
extended operators. The higher-form symmetry groups
Ahigher of such absolute theories are then determined by
the Pontryagin dual

Ahigher ¼ P∨: ð2:5Þ

In what follows, we shall mainly focus on the case of a
preferred electric polarization dictated by wrapped M2-
branes, and so will often keep the polarization data implicit.
This is to be contrasted with the case of 0-form global

symmetries which act on the local operators of the theory. If
we do not distinguish between genuine local operators and
those that simply specify the end points of line operators,
we get a “naive” flavor symmetry group G̃, with Lie algebra
g. There can in principle be additional discrete factors for
the global 0-form symmetry, but we neglect these as well as
possible Uð1Þ symmetry factors. For the most part, we also
neglect possible nontrivial mixing with the R-symmetry
(when present) of an SQFT. Now, it can often happen that
the actual flavor symmetry group is itself screened. This is
to be expected due to the presence of extended objects such
as line operators. Consequently, the actual flavor symmetry
may be a quotient of G̃ by a subgroup C ⊂ ZG̃ of the center
of G̃. The flavor symmetry is then given by [31,57]

G ¼ G̃=C: ð2:6Þ

Higher-form symmetries can intertwine to higher-group
structures, and in this work we focus on 2-groups, as
captured by a nontrivial interplay of between a 0-form
symmetry and a 1-form symmetry of the theory. The data of
a 2-group are specified by (see, e.g., [28])8

(i) Flavor symmetry group G,
(ii) 1-form symmetry group A,
(iii) Symmetry action ρ∶ G → AutðAÞ,
(iv) Postnikov class P ∈ H3ðBG;AÞ.

The Postnikov class P determines an obstruction to turning
on backgrounds for the flavor symmetry independently
from those of 1-form symmetries. Since the influence of G
on the 2-group structure is only through its discrete center,
it is often enough to restrict attention to just the center
ZG ⊂ G. This is all to the good because what we can
actually detect in the geometry is precisely ZG, with the rest
of G being obtained from physical (i.e., nongeometric)
ingredients such as wrapped M2-branes.
This 2-group structure can be packaged in terms of

various equivalence classes of line operators in T X. This is
detailed in Appendix A of [35] (see also [57]), which we
now briefly review, with a few specializations of importance
for our geometric analysis. In T X, let us define the following
sets that are Abelian groups under line operator fusion:

7One can view these theories as the edge modes of a bulk
topological quantum field theory that has a Hilbert space of states
which is nontrivial.

8For additional foundational work on 2-groups, see, e.g.,
[22–27,58–61].
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A∨ ≡ fline operators modulo local operator interfacesg;
Ã∨ ≡ fline operators modulo local operator interfaces with faithful action underGg;
C∨ ≡ kerðÃ∨ → A∨Þ:

By construction, we have the following short exact sequence for the Pontryagin dual objects9:

0 → C∨ → Ã∨ → A∨ → 0: ð2:8Þ

Note that the class of line operators in C∨ can be stated as10

C∨ ¼ fline ops which can end on local ops in a projective reps of ZGg; ð2:9Þ

where here ZG is the center of G and projective simply
means “not faithful.” One can then consider the smallest
extension of ZG such that projective representations of local
operators in T X transform in a faithful representation, and
this is simply ZG̃. This can be rephrased as the short exact
sequence

0 ⟶ C ⟶ ZG̃ ⟶ ZG → 0; ð2:10Þ

and we denote its extension class as w2 ∈ H2ðBZG̃; CÞ.
Taking the Pontryagin dual of the sequence (2.8), we can
collapse it with the sequence of line (2.10) to form

0 ⟶ A ⟶ Ã ⟶ ZG̃ ⟶ ZG → 0; ð2:11Þ

where the analogous extension class is given by
Bockðw2Þ ∈ H3ðBZG;AÞ where

β∶ H2ðBZG; CÞ → H3ðBZG;AÞ ð2:12Þ

is the Bockstein homomorphism associated with (the
Pontryagin dual of) (2.8). Observe that βw2 is then the
Postnikov class, P, mentioned earlier as a key defining
feature of a 2-group structure. As a final comment, the astute
reader will notice that in comparison with other discussions
in the literature, we have chosen to restrict attention to the
center of the Lie groups G and G̃. The only subtlety here is
that when ZG is trivial (and thus so is BZG), it can still
happen that BG is nontrivial. In such situations, what the
geometry provides is the correct answer for G, and we can
still, via physical considerations, determine the correspond-
ing 2-group structure. Indeed, in such situations the pre-
diction of a nonsplit 2-group follows from having a nonsplit

short exact sequence for the 1-form symmetries, namely
0 → A → Ã → C → 0. For all these reasons, it suffices to
restrict our analysis to the center of the flavor groups, and
this is what we can detect via geometry anyway.

B. Flavor symmetry and 2-groups
via singular homology

Having reviewed the interplay between defects, higher
symmetries, and 2-groups, we now turn to the core task of
extracting this information from a given M-theory back-
ground X. Our aim will be to extract both the global 0-form
symmetry, as well as the 1-form symmetry, and possible
intertwining due to the 2-group. We confine our discussion
to flavor symmetries localized on geometrized 6-branes,
i.e., M-theory singularities, which are locally of the form
C2=Γi for Γi a finite subgroup of SUð2Þ.
Our aim will be to determine these global structures

directly from the singular homology of the asymptotic
boundary ∂X, thereby complementing a similar analysis for
the 1-form symmetry presented in [7,8]. When cutting out
the orbifold loci,11 K ⊂ ∂X, there are several types of
(relative) homology cycles that one may consider. The goal
of this section is then to establish a dictionary between
these various homology groups and the equivalence classes
of T X-line operators by means of wrapped M2-branes. The
2-group structure and flavor symmetry12 then appear
naturally in the geometric definitions. We leave implicit
the extension to the case of wrapped M5-branes since it is
quite similar to the M2-brane analysis.
We begin by introducing notation. We denote the non-

compact components of each flavor brane locus on ∂X by
Ki and associate with each a flavor symmetry algebra gi of
simple Lie algebra type. For ease of exposition, we focus on
the case where this Lie algebra is of ADE type, but our
method naturally extends to further twists by outer auto-
morphisms, a point we return to in Secs. IV and V. The

9Working in terms of the original groups, we also have the
short exact sequence (all arrows reversed)

0 → A → Ã → C → 0: ð2:7Þ
10Equivalently, C∨ consists of those line operators that are

screened by local operators in projective representations of G.

11We take K to support an ADE singularity.
12Strictly speaking, this is not expected to capture 0-form

symmetry from isometries nor from flavor enhancements.
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boundary singularities ∂X ∩ Ki are assumed to be disjoint.
We further require the first homology group of X ∩ Ki to be
torsion-free. We define the smooth boundary to be

∂X∘ ¼ ∂Xn ∪i Ki ð2:13Þ

and denote a tubular neighborhood of the boundary
singularities by TðKÞ ¼ ∪iTðKiÞ ⊂ ∂X.
We now discuss some immediate consequences of these

restrictions. First, we note that ∂X∘ is connected. Next we
consider the lift of the embedding j∶ ∂X∘ ↪ ∂X to homol-
ogy and notice that the kernel of the map

j1∶ H1ð∂X∘Þ → H1ð∂XÞ ð2:14Þ

is a torsion subgroup of TorH1ð∂X∘Þ. By assumption, the
normal geometry of Ki is locally of the form C2=Γi for
Γi ⊂ SUð2Þ a finite subgroup, and therefore we have Ki

linked by S3=Γi. The only 1-cycles created by the excision
of Ki are therefore torsional. Finally, we note that the
tubular neighborhood TðKiÞ deformation retracts toKi, and
therefore also the first homology group of TðKiÞ is
torsion-free.
Together, these pieces can be packaged into the Mayer-

Vietoris sequence13

� � �⟶∂kþ1

Hkð∂X∘ ∩ TðKÞÞ⟶ιk Hkð∂X∘Þ
⊕ HkðTðKÞÞ⟶jk−lkHkð∂XÞ⟶

∂k � � � : ð2:15Þ

Our claim is that each term in this sequence admits a
physical interpretation in terms of the short exact sequences
of lines (2.8) and (2.10) and is introduced in our review of
defects, symmetries, and 2-groups. Consequently, we can
give a fully geometric interpretation of these structures. We
now give our proposal and then establish how it descends to
the 2-group structure of T X.

1. Flavor symmetry

We begin by showing how the geometry encodes the
global form of the flavor symmetry, namely how the short
exact sequence (2.10) can be defined using the boundary
geometry of ∂X. The simplest of the three objects to
identify in (2.10) is the center ZG̃. For each component
Ki of the flavor symmetry locus, we have already seen that
there is a linking with an S3=Γi. The naive center of each
factor is then

Zi ¼ TorH1ð∂X∘ ∩ TðKiÞÞ∨: ð2:16Þ

Indeed, it is well-known that the geometry detects the
center of the corresponding simply laced Lie group Gi via
the abelianization Ab½π1ðS3=ΓiÞ� ¼ Ab½Γi�. In many cases,
then, the naive flavor group will just be a product of these
simply connected Lie group factors. We note that in some
cases, the linking of flavor branes in the geometry already
detects a “slightly less naive” answer than the one obtained
from simply taking the product of simply connected flavor
symmetry factors, a point we return to in Secs. IVand V. In
any case, the center of the naive flavor group is

ZG̃ ¼ Z1 ⊕ � � � ⊕ Zn; ð2:17Þ

and we have the geometric identification

Z∨̃
G
¼ ⨁

i
TorH1ð∂X∘ ∩ TðKiÞÞ: ð2:18Þ

How is this encoded in the M-theory degrees of freedom?
Physically, an M2-brane wrapped on a cycle γi ∈
TorH1ð∂X∘ ∩ TðKiÞÞ for a given i is part of the twisted
sector of the ADE locus labeled by i. This implies that it is
part of a representation of Zi. If the world volume of the
M2-brane is

fConeðγiÞg × L; ð2:19Þ

where L is a line in the spacetime of the SQFT, and
ConeðγiÞ amounts to extending the cycle γi in ∂X to the
interior singularity where the SQFT is localized. These M2-
branes are then (center) flavor Wilson lines with the center
representation specified by its geometric definition. Each of
these flavor Wilson lines can be screened by a local
operator in a representation of Zi, which is clear geomet-
rically by taking the world volume of the M2 to be

ConeðDÞ × ½0;∞Þ=∼; ð2:20Þ

where ∼ identifies Coneð∂DÞ as a fiber over ð0;∞Þ and
ConeðDn∂DÞ as a fiber over f0g. This is illustrated by the
gray disk on the left-side of Fig. 2. Considering the entirety
of ∂X, there may be other disks with boundary γi that are in
trivial representations of Zi and possibly nontrivial repre-
sentations of ⨁i≠jZj. This motivates calling ⨁iZi the
center of the naive flavor group because all nongenuine
local operators built this way from M2 branes transform
faithfully under ⨁iZi, and we generally expect that a
subgroup will transform projectively under a finite quotient
⨁iZi=C which coincides with the center of the true flavor
symmetry ZG. Our goal then is to give a geometric
interpretation to this quotient and understand how it
connects with our discussion of different equivalence
relations of line operators.

13Here we have defined the following inclusions: l∶ TðKÞ ↪
∂X, ιA∶ ∂X∘ ∩ TðKÞ ↪ ∂X∘, and ιB∶ ∂X∘ ∩ TðKÞ ↪ TðKÞ. We
further define ι ¼ ðιA; ιBÞ.
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We claim that (the Pontryagin dual of) the subgroup C ⊂
ZG̃ of the center of G̃ is encoded in the geometry via

C∨¼TorH1ð∂X∘∩TðKÞÞ=kerðι1Þ¼Tor kerðj1Þ; ð2:21Þ

where here, we have the “gluing maps” of the Mayer-
Vietoris sequence ι1∶ H1ð∂X∘ ∩ TðKÞÞ → H1ð∂X∘Þ and
j1∶ H1ð∂X∘Þ → H1ð∂XÞ. Indeed, the second equality fol-
lows from the general way in which a long exact sequence
can be repackaged in terms of a collection of short exact
sequences.14 To interpret this physically, we will study
Tor kerðj1Þ, which means torsion elements ofH1ð∂X∘Þ that
trivialize upon the inclusion j∶ ∂X∘ ↪ ∂X. So similar to
our discussion of the naive center flavor symmetry, given a
class γ ∈ Tor kerðj1Þ we can wrap an M2-brane on
fConeðγÞg × L to get a (true) flavor Wilson line operator
in T X.
To establish Eq. (2.21), it then suffices to demon-

strate that
(i) An M2-brane wrapped on a cycle in Tor kerðj1Þ

should become, in T X, a line operator that cannot be
screened by a ⊕i Zi singlet local operator, but must
be able to be screened by a local operator that is in a
nontrivial representation of ⊕i Zi.

For elements in Tor kerðj1Þ, the corresponding line oper-
ators cannot be screened by naive flavor singlet local
operators, but must be screened by a local operator that
is in a nontrivial representation of ⊕i ZFi

. Such a local
operator, Oproj, would then not transform faithfully under
the true flavor symmetry, because if it did, then we could
multiply the end point of the line by some genuine local
operator Ogen:loc. to obtain a singlet under ZG̃ ¼ ⊕iZi

which contradicts the hypothesis. Pictorially, the gray disk

on the left side of Fig. 2 must always pass through the ADE
singularity; i.e., the local operator screening the flavor
Wilson line maintains its ZG̃ ¼⊕i Zi charge. Since cycles
in Tor kerðj1Þ are only of this form, we recover the
claim above.
Moving on to our geometric proposal for the flavor

symmetry, we can already see from the first equality in
(2.21) and the Pontryagin dual of the short exact sequence
(2.10) that the center of the flavor symmetry is15

Z∨
G ¼ Tor kerðι1Þ; ð2:22Þ

that is, this is the center flavor symmetry that survives after
quotienting by G̃ by C∨.

2. 1-form symmetry and 2-group

Let us now turn to the higher symmetries of the system.
For ease of exposition we focus on the “electric” contri-
bution to the 1-form symmetries, i.e., those coming from
M2-branes wrapped on boundary 1-cycles.16 Now, from
our previous discussion, we expect to get line operators in
T X from M2-branes wrapped on 1-cycles of the boundary
geometry. The (Pontryagin dual of the) “naive” collection
of line operators Ã is then simply

Ã∨ ¼ TorH1ð∂X∘Þ: ð2:23Þ

Next we note that the number of connected components of
TðKÞ agrees with those of ∂X∘ ∩ TðKÞ. The Mayer-
Vietoris sequence (2.15) is therefore exact in degree zero.
Using general properties of long exact sequences (see
footnote 14), one extracts two short exact sequences:

0 ⟶ kerðι1Þ ⟶ H1ð∂X∘ ∩ TðKÞÞ

⟶
H1ð∂X∘ ∩ TðKÞÞ

kerðι1Þ
→ 0; ð2:24Þ

0 ⟶
H1ð∂X∘ ∩ TðKÞÞ

kerðι1Þ
⟶
ι1 H1ð∂X∘Þ

⊕ H1ðTðKÞÞ ⟶
j1−l1 H1ð∂XÞ → 0: ð2:25Þ

Our interest, of course, is in the restriction of the above short
exact sequences to short exact sequences of their torsion
subgroups, which is possible due to our assumption that
TðKÞ is torsion-free. Note that ι1 is a group homomorphism
mapping torsion subgroups onto torsion subgroups. In the
present context, the (electric) 1-form symmetry is [7,8]

FIG. 2. On the left, we depict ∂X with various orbifold
singularities (stars) and an element in C∨ (black loop). The gray
disk bounds an element of C∨ and shows that this element is
topologically trivial under the inclusion of the orbifold loci back
into ∂X∘. This motivates the identification Tor kerðj1Þ ¼ C∨. On
the right, we depict an element in A with a black loop and
illustrate a gray disk to highlight that the topological equivalence
relation inherent in H1ð∂XÞ is the same as that of A∨ when
wrapping M2-branes.

14In a long exact sequence � � �!f1A1!f2A2!f3 � � �, we can always
write down an associated short exact sequence for each element.
For example, for A1 this is 0 ⟶ K1 ⟶ A1 ⟶ K2 ⟶ 0
where Ki ¼ kerðfiþ1Þ ¼ imðfiÞ ¼ cokerðfi−1Þ (the last equality
is true only for Abelian groups).

15Again, this neglects symmetry enhancements and isometries.
16This subtlety is not much of an issue in 5D SQFTs, but

it does make an important appearance in D ≤ 4 spacetime
dimensions.

CVETIČ, HECKMAN, HÜBNER, and TORRES PHYS. REV. D 106, 106003 (2022)

106003-8



A ≅ ðTorH1ð∂XÞÞ∨: ð2:26Þ

Collapsing the two short exact sequences (2.24) and (2.25),
we have the following long exact sequence:

0 ⟶ kerðι1Þ ⟶ H1ð∂X∘ ∩ TðKÞÞ ⟶ H1ð∂X∘Þ
⊕ H1ðTðKÞÞ ⟶j1−l1 H1ð∂XÞ → 0; ð2:27Þ

which fully characterizes the 2-group geometrically. Indeed,
the 2-group structure (including the global form of the flavor
symmetry and 1-form symmetry) is given by the long exact
sequence of line (2.11):

0 ⟶ A ⟶ Ã ⟶ ZG̃ ⟶ ZG → 0: ð2:28Þ

The extension class of this sequence is classified by
the Postnikov class βw2 ∈ H3ðBG;AÞ ≃H3ðBZG;AÞ,
where w2 is the extension class of the short exact sequence
(2.24), and β is the Bockstein homomorphism associated
with (2.25).
Summarizing, we have now given a geometric charac-

terization of the 0-form, 1-form, and 2-group symmetries.

C. Comparison with orbifold homology

In the previous subsection we gave a general prescription
for how to read off the flavor group and higher symmetries
of T X directly from the singular homology of ∂X. Rather
than directly performing such excisions in the boundary
geometry, it is natural to ask whether we can replace some
of these structures by a suitable notion of an orbifold (co)
homology theory. Our goal will be to show why this is to be
expected on general grounds, as well as highlight an
example. We will present a more involved example that
makes use of orbifold homology in Sec. III. These examples
will explicitly show that the first orbifold homology group
carries important physical data, which in case of wrapping
M2 branes gives the naive 1-form symmetry, and leave a
more detailed study of the physics of the higher orbifold
(co)homology groups for future work.
Recall that when ∂X is smooth, the (electric) 1-form

defect group is obtained from wrapped M2-branes:

Dð1Þ
elec ¼ TorH1ð∂XÞjtrivial: ð2:29Þ

The presence of orbifold singularities in ∂X introduces an
interplay between this group and the 0-form flavor sym-
metry G. A priori, when the (n − 1)-manifold ∂X has
orbifold singularities, there are two natural modifications
that one can consider. The first is to excise the singularity
and assign appropriate boundary conditions to fields along
the (n − 2)-dimensional manifold which surrounds the
singular locus. This was the guiding principle of the
previous section. The second is to generalize H1 to a
suitable orbifold homology, Horb

1 , which captures quotient

data in addition to the standard topological 1-cycles. One
could then ask what new information such an “orbifold
defect group,”

Dð1Þ
orb ¼ TorHorb

1 ð∂XÞ; ð2:30Þ

would contain? In quite general terms, this latter approach
would be assigning a geometric engineering Hilbert space to
the (n − 1)-dimensional orbifold boundary manifold, while
the former approach (i.e., that of the previous subsection)
would be assigning a geometric engineering category of
boundary conditions to the (n − 1)-boundary manifold,
which itself has a (n − 2)-boundary. One then gets a
geometric engineering Hilbert space by choosing boundary
conditions appropriate for a given orbifold.17 Therefore,
seeing how these two approaches might complement each
other is clearly of interest.
To understand what we mean by orbifold homology,

let us first consider how to define it for the case when the
orbifold is a global quotient,X=H, what Thurston refers to as
a “good” orbifold [62],whereX is a space acted on by a finite
group H. We then have the following definition18:

Hequiv
� ðX=HÞ≡H�ðEH ×H XÞ; ð2:31Þ

although the left-hand side is often referred to as Hequiv
� ðXÞ,

this notation makes the comparison to orbifold homology
clearer. Now from the natural projection EH ×H X → X=H,
we have a projection on first homology groups,

p∶ Hequiv
1 ðX=HÞ → H1ðX=HÞ; ð2:32Þ

and dually an inclusion in first cohomology, H1
equiv ↪

H1ðX=HÞ. We define

Htwist
1 ≡ ker p ð2:33Þ

as the twisted (i.e., fractional) cycles. One can then rephrase
(2.32) as the short exact sequence

0 → ker p → Hequiv
1 ðX=HÞ → H1ðX=HÞ → 0: ð2:34Þ

By inspection, this is quite similar to the exact sequence of
line (2.25) in singular homology,whichwe reproduce here for
the convenience of the reader:

17In categorical language, this would be a Hom-vector space
between two objects in a category labeled by (n − 2)-manifolds
with boundary conditions.

18To explain the notation, EH is the universal principle
H-bundle over BH. Since the action of H on X induces a map
X → BH, both X and EH are equipped with natural maps to BH
so ×H simply means their relative product with respect to these
maps.
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0 ⟶
H1ð∂X∘ ∩ TðKÞÞ

kerðι1Þ
⟶

ι1 H1ð∂X∘Þ

⊕ H1ðTðKÞÞ⟶
j1−l1 H1ð∂XÞ → 0: ð2:35Þ

In fact, these two sequences turn out to be equivalent thanks
to unpublished work by Thurston, which can be used to
define an appropriate orbifold homotopy group πorb1 .
Moreover, these definitions carry over to the case when
the orbifold singularities are not globally defined quotients,
precisely the situation we need for the present work (see [62]
as well as page 12 of [63]).
A key result is that for an orbifold, ∂X, with orbifold loci

K that have codimensions greater than 2, πorb1 has the
presentation πorb1 ð∂XÞ ¼ π1ð∂X∘Þ where ∂X∘ ≡ ∂XnK. Note
that there is an orbifold version of Hurewicz theorem,
Ab½πorb1 � ¼ Horb

1 , which relates orbifold homology to sin-
gular homology (see [64]):

Horb
1 ð∂XÞ ¼ H1ð∂X∘Þ: ð2:36Þ

An important application of this relation is when ∂X is a
global quotient of a simply connected space by some group
Γ, where instead of understanding how to cut out singular
loci and computing via the Mayer-Vietoris sequence, one
can simply use the fact that Horb

1 ð∂XÞ ¼ Ab½Γ�.
We finish with discussing a simple example. Consider an

isolated singularity of the form Cn=Γ where Γ ∈ SUðnÞ
(n ≥ 2). From the relation to equivariant homology,
Horb

1 ðCn=ΓÞ ¼ H1ðBΓÞ ¼ Ab½Γ�, where the last equality
is a standard result which follows from the assumption that
the group action of Γ is fixed point–free. This agrees with
H1ððCn=ΓÞnf0gÞ since

ðCn=ΓÞnf0g ≅ R × S2n−1=Γ ð2:37Þ

and H1 of the right-hand side is Ab½Γ�.
When Γ has a fixed point locus, suitable modifications of

these expressions are required, but they can again be
handled using orbifold homology. We now turn to some
examples of this sort in the context of 5D SCFTs engi-
neered via orbifold singularities.

III. 5D SCFTs FROM C3=Γ

Having presented a general prescription for reading off
symmetries via cutting and gluing of orbifold singularities,
we now turn to some explicit examples. In this section we
consider 5D SCFTs T X engineered in M-theory by the
Calabi-Yau threefold X ¼ C3=Γ with finite Γ ⊂ SUð3Þ.
Recently, the higher-form symmetries of such 5D orbifold
SCFTs were studied in [10,11] (see also [7,8]). Our aim will
be to show how the considerations of Sec. II recover these
structures and also enable us to extract the global form of the
flavor symmetry localized on 6-branes and the intertwined

2-group structure. As a general comment, the orbifold C3=Γ
may also include contributions to the flavor symmetry from
isometries, as well as possible nontrivial mixing between
flavor symmetries and the SUð2Þ R-symmetry of the SCFT.
Our analysis will not include such subtleties, but it would be
interesting to study them in the present framework. For
various aspects of flavor symmetries in 5D SCFTs, see, e.g.,
[10–12,31,44,45,65–74].
To frame the discussion to follow, we first recall that the

1-form symmetry is captured by the singular homology
group H1ð∂XÞ. The group H1ð∂XÞ has already been
computed in [11] as the abelianization of π1ð∂XÞ, which
was in turn computed using a theorem by Armstrong [75]:
Let Γ be a discontinuous group of homeomorphisms of a

path connected, simply connected, locally compact metric
space Y, and let H be the normal subgroup of Γ generated
by those elements which have fixed points. Then the
fundamental group of the orbit space Y=Γ is isomorphic
to the factor group Γ=H.
Orbifold homology provides a streamlined way to

access this, as well as the other contributions to the
candidate 2-group structure. Indeed, as already noted in
Sec. II, the “naive” 1-form symmetry A, the true 1-form
symmetry, and the central quotienting subgroup C all
descend from appropriate orbifold homology groups. In
terms of the short exact sequence for 1-form symmetries

0 → C∨ → Ã∨ → A∨ → 0; ð3:1Þ

each term is given by

0→Htwist
1 ðS5=ΓÞ→Horb

1 ðS5=ΓÞ→H1ðS5=ΓÞ→ 0 ð3:2Þ

or, in terms of the data of the group, we have the
identifications

Ã ¼ Ab½Γ�; ð3:3Þ

A ¼ Ab½Γ=H�; ð3:4Þ

C ¼ Ab½Γ�=Ab½Γ=H�: ð3:5Þ

Note in particular that the orbifold homology computation
is directly sensitive to the fixed point locus specified by the
groupH, and this is precisely where the flavor 6-branes are
localized in the boundary geometry. Now, precisely when
the exact sequence of line (3.2) does not split, we expect to
get a nontrivial 2-group structure, precisely as conjectured
in [11].
Of course, it is also important to directly verify this

structure using our procedure of “cutting and gluing.” Our
aim in the remainder of this section will be to present a
general analysis of this in the special case where Γ is
Abelian. This provides a complementary way to isolate the
individual contributions to the flavor symmetry, and also
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serves as a cross-check on our orbifold homology calcu-
lation. While it would be interesting to also consider the
same singular homology computation for non-Abelian Γ,
this is somewhat more involved, and we defer this task to
future work.
Restricting now to the special case of Γ Abelian, our aim

will be to directly extract via singular homology the
geometric origin of each of the terms appearing in the
pair of short exact sequences:

0 → C → ZG̃ → ZG → 0; ð3:6Þ

0 → C∨ → Ã∨ → A∨ → 0: ð3:7Þ

As already stated, our analysis of the global form of the
flavor symmetry will center on the piece coming from
localized 6-brane contributions.
The rest of this section is organized as follows. We begin

by specifying in more detail the orbifold singularitiesC3=Γ.
In this case, methods from toric geometry provide a
convenient way to encode possible singular loci in the
boundary geometry. With this in place, we then turn to the
case of Γ ¼ Zn, where we divide our analysis according to
the number of singular loci in the boundary geometry. We
then turn to a similar analysis for Γ ¼ Zn × Zm. In this
case, the structure of the flavor symmetry has a nontrivial
dependence on n and m, but the 1-form symmetry and
2-group structure is always trivial. We also present, when
available, some examples that have a gauge theory phase,
since one can in principle cross-check our geometric
answer using such methods. In some cases, however, no
known gauge theory phase is available, but the answer from
geometry is unambiguous.

A. Abelian Γ ⊂ SUð3Þ
We now turn to the toric geometry of the Calabi-Yau

orbifold singularities X ¼ C3=Γ with Γ ⊂ SUð3Þ a finite
Abelian subgroup. Precisely because the group action
embeds in the maximal torus of SUð3Þ, this group action
is compatible with the torus action on C3 and as such all of
these examples are toric manifolds. This was exploited in
[7,8,10] to perform explicit resolutions of the singular
geometry, and thus determine the 1-form symmetry. Our
goal here will be to avoid doing any blowups and instead
directly obtain the symmetries from a suitable cutting and
gluing of orbifold singularities.
There are two general choices for an Abelian subgroup,

as given by Γ ¼ Zn and Γ ¼ Zn × Zm with m dividing n;
see Appendix B for a detailed discussion of possible
subgroups. The resulting group actions admit the following
parametrizations:
(1) Γ ¼ Zn: The action on C3 is ðz1; z2; z3Þ ∼

ðωk1z1;ωk2z2;ωk3z3Þ where ω is a primitive nth root
of unity and the ki are positive integers satisfying

k1 þ k2 þ k3 ¼ n. Define qi ¼ n= gcdðn; kiÞ. We
require the group action to be faithful, which is
the case precisely when lcmðq1; q2; q3Þ ¼ n. We
shall sometimes use the notation 1

n ðk1; k2; k3Þ to
indicate this group action.
ð1Þ0 Γ ¼ ZN × ZM ¼ ZNM: Subclass of actions

with gcdðN;MÞ ¼ 1 and ðz1; z2; z3Þ∼ ðωz1; ηz2;
ðωηÞ−1z3Þ with ω, η primitive Nth and Mth roots
of unity and n ¼ NM.

(2) Γ ¼ Zn × Zm: The action on C3 is ðz1; z2; z3Þ ∼
ðωk1z1;ωk2z2;ωk3z3Þ ∼ ðz1; ηz2; η−1z3Þ with ω and η
primitive nth and mth roots of unity and integers ki
constrained as above in case (1) and n ¼ mm0. We
further require a trivial intersection between Zn and
Zm realized by restricting to actions with gcdðn; k1Þ
and m coprime. When n ¼ m, we can chose gen-
erators as ðz1; z2; z3Þ ∼ ðωz1; ηz2; ðωηÞ−1z3Þ.
ð2Þ0 Γ ¼ ZN × ZM: Subclass of actions with

gcdðN;MÞ ¼ g ≥ 2 and ðz1; z2; z3Þ∼ ðωz1; ηz2;
ðωηÞ−1z3Þ with ω, η primitive Nth and Mth roots
of unity. The integers n, m follow upon regrouping
prime factors of N, M.

These unitary group actions restrict to the asymptotic
boundary ∂X that is modeled on an S5 with unit radius
acted on by Γ. The fixed point loci of these two actions
are noncompact and their intersection with the boundary,
denoted K, admit the following characterization accord-
ing to jKj, the number of connected components of the
fixed locus.
(1) Γ ¼ Zn: The locus K consists of a circle’s worth of

Agi−1 singularities located at jzij ¼ 1 where
gi ¼ gcdðn; kiÞ. The Zgi subgroup folding the sin-
gularity is generated by ωn=gi. We can have jKj ¼ 0,
1, 2, 3 depending on the group action.
ð1Þ0 Γ ¼ ZN × ZM ¼ ZNM: Subclass with

jKj ¼ 2 and an AM−1; AN−1 singularity along
circles jz1j; jz2j ¼ 1, respectively.

(2) Γ ¼ Zn × Zm: The locus K consists of three circles’
worth of Ag0i−1 singularities located at jzij ¼ 1. Here
g0i ¼ m gcdðm0; kiÞ where n ¼ mm0. In all cases
g0i ≥ m, we therefore have jKj ¼ 3 independent of
the group action. When n ¼ m, we have g0i ¼ n and
three circles’ worth of An−1 singularities.
ð2Þ0 Γ ¼ ZN × ZM: Subclass with an AM−1; AN−1;

Ag−1 singularity along circles jz1j; jz2j; jz3j ¼ 1,
respectively.

The components Ki are always circles and located at the
vanishing locus of two coordinates. They are therefore
conveniently parametrized by standard toric coordinates.
For C3 these read pi ¼ jzij2 and θi ¼ argzi with three-torus
fiber

T3 ¼ fðθ1; θ2; θ3Þg: ð3:8Þ
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This fibration restricts to the boundary five-sphere of C3

with triangle base

Δ ¼ fp1 þ p2 þ p3 ¼ 1g ð3:9Þ

whose corners Pi and edges Ejk are labeled as shown in
Fig. 3. Along edges and at corners the three-torus fiber
degenerates to a two-torus and circle, respectively. The
Abelian actions preserve the torus fiber T3, and both the
quotient X ¼ C3=Γ and its boundary inherit this fibration,
which for the boundary reads

T3
Γ ↪ ∂X ⟶ πΔ: ð3:10Þ

Here T3
Γ ¼ T3=Γ are three-tori as Γ is a subgroup of a

continuous Abelian action on T3. The orbifold locus now
clearly projects to the corners

πðKÞ ⊂ fP1; P2; P3g: ð3:11Þ

The smooth boundary ∂X∘ is therefore fibered over ΔnπðKÞ
which deformation retracts onto a one-dimensional subspace

G ⊂ Δ. We denote the induced deformation retract of the
total space by ∂X∘

r and therefore

H�ð∂X∘Þ ≅ H�ð∂X∘
rÞ: ð3:12Þ

The subspace G is an interval when jπðKÞj ¼ 1, 2, and a
Y-shaped graph when jπðKÞj ¼ 3. See Fig. 4.
We now discuss the topology of ∂X∘

r for these different
cases. First, we treat the different cases associated with
Γ ¼ Zn and then turn to the cases with Γ ¼ Zn × Zm.

1. Γ =Zn and jKj= 0
Consider first the case that there are no fixed loci in the

boundary geometry, namely jKj ¼ 0. The boundary geom-
etry is a generalized lens space S5=Γwith a fixed point–free
action on the S5. This occurs whenever the ki are all
relatively prime to n. For such orbifold group actions, there
is no orbifold fixed point locus on ∂X to speak of, since
the orbifold group action on S5 is, by definition, fixed
point–free. In this case, A∨ ≅ π1ðS5=ZnÞ ¼ Zn and C ¼
ZG̃ ¼ ZG ¼ 0 in the pair of exact sequences

0 → C → ZG̃ → ZG → 0; ð3:13Þ

0 → C∨ → Ã∨ → A → 0: ð3:14Þ

As an example of this sort, consider Γ ¼ Z3 with group
action 1

3
ð1; 1; 1Þ, in the obvious notation. This results in the

celebrated E0 Seiberg theory [76] as obtained from a
collapsing CP2 in the local geometry Oð−3Þ → CP2 (see
also [77,78]). Let us also comment that in this case, there is
indeed an additional contribution to the 0-form symmetry
since we can permute the three holomorphic coordinates.
This generates a Z3 global symmetry. Thankfully, however,
this decouples from the higher symmetries [8].

FIG. 4. Sketches of the deformation retracts for the base Δ. In the first, second, and third configurations the orbifold locus projects to
P3; P1, P2; and P1, P2, P3; respectively. The T3=Γ fibration then deformation retracts to a fibration over the graphs G marked red.
We depict a decomposition of G into intervals I� with one end point on the boundary of Δ.

FIG. 3. Sketch of the base Δ of the torus fibration π∶ ∂X → Δ.
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2. Γ =Zn and jKj= 1
Consider next the case of one fixed locus for the orbifold

group action, namely jKj ¼ 1. Now, in this case, we can
always choose coordinates such that the fixed locus
projects to the corner πðKÞ ¼ P3. The smooth boundary
∂X∘ then deformation retracts to a fibration over the edge
E12 resulting in a lens space

∂X∘
r ¼ S3=Γ; ð3:15Þ

where Γ acts on S3 with order n and without fixed points
because ðz1; z2; 0Þ ∼ ðzk11 ; zk22 ; 0Þ. Let K support an Ag−1
singularity, and then we find overall

TorH2ð∂XÞ ¼ 0;

TorH1ð∂X∘ ∩ TðKÞÞ ¼ Zg;

TorH1ð∂X∘Þ ¼ Zn;

TorH1ð∂XÞ ¼ Zn=g; ð3:16Þ

where the first line follows from results in [79]. This
determines the maps,

ι1∶ TorH1ð∂X∘ ∩ TðKÞÞ → TorH1ð∂X∘Þ; ð3:17Þ

j1∶ TorH1ð∂X∘Þ → TorH1ð∂XÞ; ð3:18Þ

to be multiplication by n=g (for ι1) and modding by n=g (for
j1). In particular, we have kerðι1Þ ¼ 0; therefore, in the pair
of exact sequences

0 → C → ZG̃ → ZG → 0; ð3:19Þ

0 → C∨ → Ã∨ → A∨ → 0; ð3:20Þ

we have

0 → Zg → Zg → 0 → 0; ð3:21Þ

0 → Zg → Zn → Zn=g → 0: ð3:22Þ

In particular, we can now extract the global 0-form
symmetry and the 1-form symmetry:

G ¼ SUðgÞ=Zg;A ¼ Zn=g: ð3:23Þ

The short exact sequence characterizing 2-groups becomes

0 ⟶ Zg ⟶ Zn ⟶ Zn=g → 0: ð3:24Þ

This sequence is nonsplit whenever n=g is divisible by any
prime factor of g, and in these cases we have a nontrivial
2-group.

As an important special case, consider Γ ¼ Z2n with
group action 1

2n ð1; 1; 2n − 2Þ (note that we have rescaled n
by a factor of 2 to match the presentation commonly found
in the literature). In this case, we have a fixed point locus
along z1 ¼ z2 ¼ 0, and a flavor 6-brane supporting an A1

singularity. From our general considerations presented
above, we have A ¼ Zn, and we also find C ¼ Z2.
So in these cases, we also expect a flavor group
G ¼ SOð3Þ ¼ SUð2Þ=Z2. Moreover, there is a nontrivial
2-group when n is even since in that case Z2n ≠ Zn ⊕ Z2.
The case of n even has a 5D description in terms of
SUðnÞn gauge theory, and the corresponding gauge theory
analysis of [31] is in accord with our results.

3. Γ =Zn and jKj= 2
Consider next the case with Γ ¼ Zn and jKj ¼ 2; namely

we have two separate flavor 6-branes extending out to the
boundary. In this case, it is convenient to choose coor-
dinates such that the orbifold locus projects to πðKiÞ ¼ Pi
and sets gi ¼ gcdðn; kiÞ for i ¼ 1, 2. Observe that since
we require the group action to be faithful, we have
gcdðg1; g2Þ ¼ 1; i.e., g1 and g2 are coprime, as otherwise
by the condition k1 þ k2 þ k3 ¼ n the integer k3 would
share divisors with k1, k2.
The smooth boundary deformation retracts to a fibration

over the interval I ¼ I12 ∪ I3. Here I12 and I3 are intervals
ending on E12 and at P3, respectively (see Fig. 4). We
therefore have the covering

∂X∘
r ¼ π−1ðI12Þ ∪ π−1ðI3Þ: ð3:25Þ

The intervals I12 and I3 retract to a point on the edge E12

and the corner P3, respectively, and lifting these retractions
to the full space we find π−1ðI12Þ and π−1ðI3Þ to retract
to the fibers above these, denoted T2

12 and S13, respectively.
The intersection of π−1ðI12Þ ∩ π−1ðI3Þ ¼ T3

Γ is a copy of
the three-torus fiber. We now apply the Mayer-Vietoris
sequence to the covering (3.25). The sequence is exact in
degree zero and has no 2-cycles [79]; therefore, we find the
short exact sequence

0→H1ðT3
ΓÞ⟶H1ðT2

12Þ⊕H1ðS13Þ→H1ðX∘
rÞ→0: ð3:26Þ

We now denote the maps into the central factors by

ι11∶ H1ðT3
ΓÞ → H1ðT2

12Þ;
ι12∶ H1ðT3

ΓÞ → H1ðS13Þ; ð3:27Þ

and now reparametrize the fiber T3
Γ following the coor-

dinate change ðz1; z2; z3Þ → ðz01; z02; z03Þ ¼ ðz1; z2; z1z2z3Þ
which splits the fiber as T3

Γ ¼ T2
Γ × S1. Here S1 is the

diagonal circle that is not acted on by Γ ⊂ SUð3Þ. We see
that ι11 is surjective while ι12 is multiplication by n.
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With this we find overall

TorH2ð∂XÞ ¼ 0;

TorH1ð∂X∘ ∩ TðKÞÞ ¼ Zg1g2 ≅ Zg1 × Zg2 ;

TorH1ð∂X∘Þ ¼ Zn;

TorH1ð∂XÞ ¼ Zn=g1g2 ; ð3:28Þ

where in the second line we used the fact that g1 and g2 are
coprime. This determines the maps

ι1∶ TorH1ð∂X∘ ∩ TðKÞÞ → TorH1ð∂X∘Þ; ð3:29Þ

j1∶ TorH1ð∂X∘Þ → TorH1ð∂XÞ; ð3:30Þ

where j1 is therefore modding out by n=g1g2 and
kerðι1Þ ¼ 0. In our pair of short exact sequences,

0 → C → ZG̃ → ZG → 0; ð3:31Þ

0 → C∨ → Ã∨ → A∨ → 0; ð3:32Þ

we now have

0 → Zg1g2 → Zg1g2 → 0 → 0; ð3:33Þ

0 → Zg1g2 → Zn → Zn=g1g2 → 0: ð3:34Þ

In particular, the global form of the flavor symmetry and the
1-form symmetry are

G ¼ SUðg1Þ=Zg1 × SUðg2Þ=Zg2 ;A ¼ Zn=g1g2 ; ð3:35Þ

where we have used the fact that g1 and g2 are coprime.
Finally, the short exact sequence characterizing 2-groups is
controlled by the second short exact sequence

0 ⟶ Zg1g2 ⟶ Zn ⟶ Zn=g1g2 → 0: ð3:36Þ

This sequence is nonsplit whenever n=g1g2 is divisible by
any prime factor of either gi and in these cases we have a
nontrivial 2-group.
Let us now turn to a few examples. Consulting Table 5 of

Ref. [10], we see that some such orbifold group actions also
have a gauge theory phase, which can be used as a cross-
check on our proposed higher symmetries. Consider Γ ¼ Z6

with group action 1
6
ð1; 2; 3Þ. This theory has a gauge theory

phase consisting of an SUð2Þ gauge group and two flavors in
the fundamental representation, denoted as SUð2Þ − 2F. In
particular, it has naive flavor group G̃ ¼ SUð2Þ × SUð3Þ.
From our analysis, we have g1 ¼ 2 and g2 ¼ 3 so we expect
the global form of the flavor symmetry is SUð2Þ=Z2 ×
SUð3Þ=Z3, and that it has trivial 1-form symmetry (and thus
trivial 2-group as well).

We now give some examples of such 5D SCFTs with a
gauge theory phase of the subclass type ð1Þ0. Following
Table 6 of [10], consider the case Γ ¼ Z5 × Z2, which is
equivalent to Γ ¼ Z10 generated by 1

10
ð4; 5; 1Þ. The gauge

theory phase of this case is given by SUð2Þ0 − SUð2Þ − 2F.
From our general considerations, the global form of the
flavor symmetry is then given by SUð5Þ=Z5 × SUð2Þ=Z2.
As another example, consider the case Γ ¼ Z12 with

group action 1
12
ð1; 2; 9Þ. This has a gauge theory phase

SUð4Þ4 − SUð2Þ0, and G̃ ¼ SUð2Þ × SUð3Þ. From our
analysis, we have g1 ¼ 2 and g2 ¼ 3. Here, we expect G ¼
SUð2Þ=Z2 × SUð3Þ=Z3 and a nontrivial 1-form symmetry
A ¼ Z2. In this case, the sequence (3.47) does not split
because 12=6 ¼ 2 is divisible by g1 ¼ 2, so we also expect
a nontrivial 2-group.

4. Γ =Zn and jKj= 3
The last case with Γ ¼ Zn has jKj ¼ 3, i.e., three

boundary flavor components. This can occur when n has
at least three distinct prime factors and gcdðki; nÞ ¼ gi ≥ 2
and all gi coprime. In this case, the orbifold locus projects
to πðKiÞ ¼ Pi and the smooth boundary deformation
retracts to I12 ∪ I23 ∪ I31. See Fig. 4.
Let us consider the T3 fibration (3.8) prior to taking the

quotient by Γ ¼ Zn. It is straightforward to see that this
fibration restricted to any interval I ¼ I12 ∪ I23 is topo-
logically S1 × S3 and that the factor of S1 collapses along
the edge E13. We then glue in the fibers projecting to I13
using the Mayer-Vietoris sequence and find a simply
connected space with no fixed points under the Zn action.
Now we can apply Armstrong’s theorem and find

H1ðX∘
rÞ ¼ Zn: ð3:37Þ

With this result we now identify the subspaces of X∘
r

projecting to pairs of intervals

U1 ¼ π−1ðI31 ∪ I12Þ ¼ S11 × S3=Zg1 ;

U2 ¼ π−1ðI12 ∪ I23Þ ¼ S12 × S3=Zg2 ;

U3 ¼ π−1ðI23 ∪ I31Þ ¼ S13 × S3=Zg3 ; ð3:38Þ

where the rightmost equalities follow from the fact that
π−1ðIij ∪ IjkÞ can be identified with the boundary of a local
neighborhood of the ADE singularity projecting to Pj. Any
pair of Ui constitutes a covering of X∘

r, and from the
corresponding Mayer-Vietoris sequence it follows that the
torsional 1-cycles in H1ðUiÞ embed nontrivially into
H1ðX∘

rÞ ¼ Zn. This implies that the map

ι1∶ TorH1ð∂X∘ ∩ TðKÞÞ → TorH1ð∂X∘Þ ð3:39Þ

has trivial kernel. With this we find overall
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TorH2ð∂XÞ ¼ 0;

TorH1ð∂X∘ ∩ TðKÞÞ ¼ Zg1g2g3 ≅ Zg1 × Zg2 × Zg3 ;

TorH1ð∂X∘Þ ¼ Zn;

TorH1ð∂XÞ ¼ Zn=g1g2g3 ; ð3:40Þ

where in the second line we used the fact that the gi are all
coprime. This determines the map ι1 to be multiplication by
g1g2g3 and the map

j1∶ TorH1ð∂X∘Þ → Tor H1ð∂XÞ; ð3:41Þ

where j1 is therefore modding out by n=g1g2g3. In our pair
of short exact sequences

0 → C → ZG̃ → ZG → 0; ð3:42Þ

0 → C∨ → Ã∨ → A∨ → 0; ð3:43Þ

we now have

0 → Zg1g2g3 → Zg1g2g3 → 0 → 0; ð3:44Þ

0 → Zg1g2g3 → Zn → Zn=g1g2g3 → 0: ð3:45Þ

In particular, the global forms of the flavor symmetry and
the 1-form symmetry are

G ¼ SUðg1Þ=Zg1 × SUðg2Þ=Zg2

× SUðg3Þ=Zg3 ; A ¼ Zn=g1g2g3 ; ð3:46Þ

where we have used the fact that the gi are coprime. Finally,
the short exact sequence characterizing 2-groups is con-
trolled by the second short exact sequence

0 ⟶ Zg1g2g3 ⟶ Zn ⟶ Zn=g1g2g3 → 0: ð3:47Þ

This sequence is nonsplit whenever n=g1g2g3 is divisible by
any prime factor of any of the gi, and in these cases we have
a nontrivial 2-group.
For this class of examples we are unaware of a known

gauge theory phase that we can use to possibly cross-check
our statements. Nevertheless, we can still specify example
group actions which have Γ ¼ Zn and jKj ¼ 3. To illus-
trate, we can take Z30 with group action 1

30
ð2; 3; 25Þ. For

this case the greatest common divisors gi ¼ gcdðki; nÞ are
g1 ¼ 2, g2 ¼ 3, g3 ¼ 5 so we expect a flavor symmetry
group SUð2Þ=Z2 × SUð3Þ=Z3 × SUð5Þ=Z5, and trivial
1-form symmetry and 2-group.
Similar considerations hold for other choices, and one

way to generate examples is simply to require n to be
divisible by three distinct prime factors. To get a nontrivial
1-form symmetry, the multiplicity of one of these prime
factors must be greater than one, and this needs to correlate

with the choice of ki. As an example which has a nontrivial
1-form symmetry, we can take n ¼ 60 ¼ 2235 so that
Γ ¼ Z60. We specify the orbifold group action by
1
60
ð2; 3; 55Þ. In this case, G ¼ SUð2Þ=Z2 × SUð3Þ=Z3 ×

SUð5Þ=Z5 and the 1-form symmetry is A ¼ Z2. Since the
short exact sequence for 1-form symmetries does not split,
we also see that there is a 2-group present.

5. Γ =Zn × Zm and jKj= 3
The final case to consider is Γ ¼ Zn × Zm with jKj ¼ 3,

namely three distinct components for the flavor locus.
We begin by analyzing the subclass ð2Þ0 of these actions,
which are parametrized as Γ ¼ ZN × ZM with g ¼ gcd
ðN;MÞ ≥ 2. In this case the smooth boundary deformation
retracts to a fibration over I12 ∪ I23 ∪ I31. See Fig. 4. We
consider the open sets

U1 ¼ π−1ðI31 ∪ I12Þ ¼ S11 × S3=ZM;

U2 ¼ π−1ðI12 ∪ I23Þ ¼ S12 × S3=ZN;

U3 ¼ π−1ðI23 ∪ I31Þ ¼ S13 × S3=Zg; ð3:48Þ

where the rightmost equalities follow from the fact that
π−1ðIij ∪ IjkÞ can be identified with the boundary of a local
neighborhood of the ADE singularity projecting to Pj.
Applying the Mayer-Vietoris sequence to the cover
∂X∘

r ¼ U1 ∪ U2, we find the sequence

0 → H1ðT2
12Þ ⟶ H1ðU1Þ ⊕ H1ðU2Þ → H1ð∂X∘

rÞ → 0:

ð3:49Þ

The generators of H1ðT2
12Þ map onto S11; S

1
2 and the torsion

factors in the lens spaces are inherited by H1ð∂X∘
rÞ so we

find

H1ð∂X∘Þ ¼ ZN ⊕ ZM: ð3:50Þ

Returning to the map ι1∶ TorH1ð∂X∘ ∩ TðKÞÞ → TorH1

ð∂X∘Þ, we see that ker ι1 ¼ Zg, which sits diagonally in
ZG̃ ¼ ZN × ZM × Zg. Since the 1-form symmetry for all
these cases is trivial (see, e.g., [7,8,10,11]), it suffices to
specify the global form of the flavor symmetry. Returning to
our short exact sequence for the centers,

0 → C → ZG̃ → ZG → 0; ð3:51Þ

we have

0→
ZN ×ZM ×Zg

Zg
→ ZN ×ZM ×Zg → Zg → 0: ð3:52Þ

As a consequence, the global flavor symmetry extracted
from geometry is
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G ¼ SUðNÞ × SUðMÞ × SUðgÞ
ZN × ZM

; ð3:53Þ

where the Zg embeds in the common diagonal [since
g ¼ gcdðN;MÞ].
Let us now turn to some examples. Consider the special

case Γ ¼ ZN × ZN . This generates the 5D TN theory [80]
which has a manifest suðNÞ3 flavor symmetry algebra. Our
general considerations indicate that the global form of the
flavor symmetry is SUðNÞ3=ZN × ZN . As a piece of
corroborating evidence for our proposal, we note that upon
compactification on a circle, we obtain the 4D Tn theories
introduced in [81], as can be obtained from compactification
of nM5-branes on the trinion (thrice-punctured sphere). The
global 0-form symmetry for these 4D theories was recently
investigated in Ref. [57], where it was argued on different
grounds that the global form of this flavor symmetry is
(again we are neglecting possible effects from mixing with
R-symmetry) SUðNÞ3=ZN × ZN . Let us also note that for
N ¼ 3 there is an additional enhancement in the flavor
symmetry algebra to e6, and the expectation from [57] is that
the non-Abelian flavor group in this case is E6=Z3. While
our geometric analysis does not directly detect such an
enhancement, we can indeed see that this additional quotient
by Z3 should be in operation since E6=Z3 contains the
subgroup SUð3Þ3=Z3 × Z3. As a final comment on this
example, we note that the T3 theory also has a gauge theory
phase given by SUð2Þ gauge theory coupled to five flavors
in the fundamental representation [76].
We now turn to discuss the general case for Γ ¼ Zn ×

Zm with n ¼ mm0 and g0i ¼ m gcdðm0; kiÞ. Homology

computations as in the previous subsections are more
involved here, and we instead make use of the prescription
(3.3) which we argued for on general grounds via orbifold
homology.
First, we consider the subgroup H ⊂ Γ generated by

elements with fixed points. This is given by (see Appendix B
for details)

H¼Zm gcdðm0;k1Þgcdðm0;k2Þgcdðm0;k3Þ×Zm ⊂Zn×Zm: ð3:54Þ

The 1-form symmetry is therefore isomorphic to19

A ≅ Zm0= gcdðm0;k1Þ gcdðm0;k2Þ gcdðm0;k3Þ ð3:55Þ

byArmstrong’s theorem. In our pair of short exact sequences

0 → C → ZG̃ → ZG → 0; ð3:56Þ

0 → C∨ → Ã∨ → A∨ → 0; ð3:57Þ

we now have

0 → Zmg00 × Zm → Zg0
1
× Zg0

2
× Zg0

3

→ ðZg0
1
× Zg0

2
× Zg0

3
Þ=ðZmg00 × ZmÞ → 0; ð3:58Þ

0 → Zmg00 × Zm → Zn × Zm → Zm0=g00 → 0: ð3:59Þ

Here we introduced g00 ¼ gcdðm0; k1Þ gcdðm0; k2Þ×
gcdðm0; k3Þ. Expanding out, the flavor symmetry takes
the form

G ¼ SUðm gcdðm0; k1ÞÞ × SUðm gcdðm0; k2ÞÞ × SUðm gcdðm0; k3ÞÞ
Zm gcdðm0;k1Þ gcdðm0;k2Þ gcdðm0;k3Þ × Zm

: ð3:60Þ

The embedding of C ≅ Zm gcdðm0;k1Þ gcdðm0;k2Þ gcdðm0;k3Þ × Zm
into the center ZG̃ ¼ ZG̃1

× ZG̃2
× ZG̃3

is characterized in
terms of the generators ω, η of Zn, Zm, respectively. We
have

ZG̃i
≅ Zm gcdðm0;kiÞ ¼ hωciηc

0
ii;

C ¼ hωc1ηc
0
1 ;ωc2ηc

0
2 ;ωc3ηc

0
3i ð3:61Þ

with integers ci; c0i computed in Appendix B. Owing
to our specific parametrization of the group action we have

c1 ¼ n= gcdðn; k1Þ and c01 ¼ 1. Therefore Zm gcdðm0;k1Þ ¼
Zgcdðm0;k1Þ × Zm ⊂ Zn × Zm generated by ωc1 ; η. We can
therefore redefine generators as

C ≅ hωc1ηc
0
1 ;ωc2ηc

0
2 ;ωc3ηc

0
3i

¼ hωc1 ;ωc2 ;ωc3i × hηi ¼ hωm0=g00 i × hηi; ð3:62Þ

where the final step follows from (B17):

gcdðc1; c2; c3Þ ¼ m0= gcdðn; k1Þ gcdðn; k2Þ
gcdðn; k3Þ ¼ m0=g00: ð3:63Þ

This parametrization explicitly gives the embedding, fixed
by mapping generators as

19The integers gcdðm0; kiÞ are pairwise coprime for if any pair
were to share a factor larger than one, then it would follow from
the relation k1 þ k2 þ k3 ¼ n ¼ mm0 that all ki share a common
factor. The group action would then not be faithful violating the
assumption that we are describing an action by an Abelian group
of order nm.
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C → ZG̃ ¼ ZG̃1
× ZG̃2

× ZG̃3
;

ðωm0=g00 ; ηÞ ↦ ðωc1ηc
0
1 ;ωc2ηc

0
2 ;ωc3ηc

0
3Þ: ð3:64Þ

For this class of examples we are unaware of a known
gauge theory phase not already occurring within the pre-
viously analyzed subclasses. Nevertheless, we can check for
consistency with previous expressions. Consider, for exam-
ple, the case Γ ¼ ZN × ZM whereM dividesN belonging to
ð2Þ0. We compute g00 ¼ N=M, and we find trivial one-form
symmetry A, further C ≅ ZN × ZM matching (3.53).
As an explicit example not contained in the subclass of

cases ð2Þ0 consider Z9 × Z3 with generators 1
9
ð1; 1; 7Þ;

1
3
ð0; 1; 2Þ. We compute H ≅ Z3 × Z3 and A ≅ Z3, and

the sequences (3.58) take the form

0 → Z3 × Z3 → Z3 × Z3 × Z3

→ ðZ3 × Z3 × Z3Þ=ðZ3 × Z3Þ → 0; ð3:65Þ

0 → Z3 × Z3 → Z9 × Z3 → Z3 → 0: ð3:66Þ

Here C ≅ Z3 × Z3 ¼ hω3; ηi and Zm gcdðm0;giÞ ≅ Z3 ¼
hηi; hω3η2i; hω3ηi. In (3.64) we have explicitly ci ¼ 0, 3,
3 and c0i ¼ 1, 2, 1. For this example we also have a
nontrivial 2-group.

IV. ELLIPTICALLY FIBERED
CALABI-YAU THREEFOLDS

In the previous section we focused on the special case
where the M-theory background X is defined by a global
orbifold. Since the prescription of Sec. II involves cutting
and gluing the data of localized orbifold singularities, we
expect it to apply to more general backgrounds. In this
section we consider the special case of SQFTs obtained
from M-theory on X → B an elliptically fibered Calabi-
Yau threefold with sections. In the closely related context
of F-theory on an elliptically fibered Calabi-Yau threefold
[82–84], we get a 6D theory. Degenerations in the elliptic
fiber provide a method for engineering gauge theories
coupled to matter in different representations [17,85].
Moreover, compactification of F-theory on an elliptic
X → B with a canonical singularity provides a general
template for engineering 6D SCFTs [86,87]. Starting from
such a 6D theory, compactification on a circle leads, in the
limit of small circle size, to a corresponding M-theory
background on the same Calabi-Yau at large volume for
the elliptic fiber. In this limit, we get a 5D SQFTwhen X is
noncompact. Moreover, further decoupling limits in the
moduli space provide a general way to realize 5D SCFTs
from compactification of 6D SCFTs [65]. More generally,
a fruitful way to analyze 6D F-theory backgrounds is to
instead treat their M-theory avatars since in this limit the
blowup modes of the singular fiber are part of the 5D
physical moduli space.

Now, the singular elliptic fibers occur at components of
the discriminant locus of a Weierstrass model, which in
affine coordinates can be written as

y2 ¼ x3 þ fxþ g: ð4:1Þ

Over codimension one subspaces of the base B, there is a
Kodaira classification of possible degenerations in the
elliptic curve, as specified by the order of vanishing of
f, g, and the discriminant locusΔ (see, e.g., [17,83,84]), and
in F-theory terms these specify a 7-brane. In the geometry of
the singular fiber, this can be seen in terms of an affine
Dynkin diagram of ADE type, the additional node indicat-
ing that we are dealing with a singular elliptic curve. Upon
reduction on a circle, these flavor 7-branes descend to flavor
6-branes of the M-theory background.
Precisely because this is so close to the case of an orbifold

singularity, we expect that our prescription of Sec. II carries
over to this case as well, where here, the flavor branes
originate from noncompact singular Kodaira fibers. The
main technical complication is how to properly treat the
additional contribution from the elliptic fiber class. An
additional benefit of treating this case in detail is that it will
illustrate how we can also incorporate additional structures
in flavor symmetries such as nonsimply laced flavor groups.
In the elliptically fibered model, this arises through the
rearrangement of cycles in the singular fiber due to mono-
dromy around some components in the base B (see, e.g.,
[17]). We do not treat the case of “frozen” singularities
[18,20,88] but expect that a suitable notion of gluing in
singular homology and/or orbifold homology can also be
extended to this case as well.
In the remainder of this section we show how our general

prescription from Sec. II applies to the case of X → B an
elliptically fibered Calabi-Yau. We begin by showing how
to generalize the prescription of Sec. II to the case with
singular elliptic fibers. We then turn to some examples of
5D SQFTs as obtained from the dimensional reduction on a
circle of certain 6D SCFTs where the B consists of a single
linear chain of collapsing curves. The special case of the 5D
SQFT obtained from reduction of 6D ðG;GÞ conformal
matter is treated next. As a final example, we consider a case
where the flavor symmetry algebra is not simply laced.

A. Cutting and gluing elliptic singularities

We now show how to extend the prescription of Sec. II to
the case where we have singular elliptic fibers. In an
elliptically fibered threefold X → B, the corresponding
discriminant locus decomposes into a collection of com-
plex codimension one subspaces in B which can possibly
intersect further. To begin, then, we focus on the case of
complex codimension one, which we can essentially treat
by working with a twofold, and then we turn to how these
building blocks fit together in a threefold.
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As a warm-up, we first treat the case of a single smooth
component of the discriminant locus in an elliptically fibered
noncompact twofold π∶ Y → C and a marked point 0 at
which the elliptic fiber degenerates. Our interest will be in
the fiber E0 ¼ π−1ð0Þ. The fiber E0 ¼ π−1ð0Þ is a degenerate
elliptic curve with singular point p ∈ E0. Even though E0 is
not smooth, we can still speak of a singular homology group
H1ðE0Þ. Our main condition for counting such cycles is
simply to require that in passing it around the geometry, a
candidate 1-cycle does not shrink to zero size. Based on this,
the Kodaira classification of singular elliptic fibers tells us
that only fibers of type In contain a nontrivial 1-cycle
(the circle of the affine Ân−1 Dynkin diagram). Labeling the
Kodaira fiber type as Φ, we have

H1ðE0Þ ¼
�
0; Φ ≠ In
Z; Φ ¼ In

: ð4:2Þ

In more detail, this follows from crepant resolution of Y
where the singular fiber is blown up to a collection of
rational curves, which contain a 1-cycle only in the case of In
singularities. When Φ ≠ In, the fiber E0 is topologically a
sphere, and when Φ ¼ In, it is a pinched torus. This also
implies that if we now delete the singular point p from E0,
then we have

H1ðE0npÞ ¼
�
0; Φ ≠ In
Z; Φ ¼ In

; ð4:3Þ

where if the second case in (4.2) is generated by the b-cycle
of E0, then the second case in (4.3) is generated by the
conjugate a-cycle.20

Next we compare YnE0 and Ynp. The former deforma-
tion retracts onto a smooth elliptic fibration over a circle
linking the origin of C. Note that the homology groups of a
manifold X → S1 fibered over a circle with fiber Z are
determined by the short exact sequence

0→ cokerðMn−1Þ→HnðXÞ→kerðMn−1−1Þ→0; ð4:4Þ

whereMn∶ HnðZÞ → HnðZÞ is the monodromy map about
the base circle lifted to n-cycles. We use this sequence
repeatedly throughout this section, and applied to the
configuration at hand, we have

0 → cokerðMn − 1Þ → HnðYnE0Þ → ker ðMn−1 − 1Þ → 0;

ð4:5Þ

where Mn∶ HnðEÞ → HnðEÞ are the monodromy map-
pings on smooth fibers, of which only M1 is nontrivial.
The first homology group of YnE0 is thus given by

H1ðYnE0Þ ¼ Z ⊕ cokerðM1 − 1Þ

¼
�
Z ⊕ Ab½ΓΦ�; Φ ≠ In
Z2 ⊕ Znþ1; Φ ¼ In

; ð4:6Þ

where ΓΦ ⊂ SUð2Þ, a finite subgroup of ADE type asso-
ciated with the ADE singularity C2=ΓΦ supported at p. The
torsion cycles appearing in (4.6) are the same as those in
the link of the ADE singularity. So as anticipated, for the
case of flavor branes generated by singular elliptic fibers we
can read off the torsional 1-cycle determined by the ADE
type of the singularity from YnE0.
To explain this point in more detail, let T denote a tubular

neighborhood of E0np in Ynp. Then, ðYnE0Þ ∩ T is a
fibration over a circle with fibers homologous to E0np.
Therefore,

H1ððYnE0Þ ∩ TÞ ¼ H1ðS1Þ ⊕ H1ðE0npÞ

¼
�
Z; Φ ≠ In
Z2; Φ ¼ In

; ð4:7Þ

where we have made use of the fact that (4.3) is generated
by the monodromy invariant a-cycle when the fiber
Φ ¼ In. Note that all these groups fit into the Mayer-
Vietoris sequence for Ynp ¼ ðYnE0Þ ∪ ðE0npÞ, which
reads

0 → H1ððYnE0Þ ∩ TÞ → H1ððYnE0ÞÞ
⊕ H1ðTÞ → H1ðYnpÞ → 0; ð4:8Þ

where H1ðTÞ ¼ H1ðE0npÞ and H1ðYnpÞ ¼ Ab½ΓΦ�, as
follows from the contractibility of T to E0np and the point
p supporting an ADE singularity. We have further used the
fact that both components of the covering are connected
and that H2ðYnpÞ ¼ 0 for ADE singularities.
With this building block in place, we now turn to the

case of X, a noncompact elliptically fibered Calabi-Yau
threefold. Consider the elliptic Calabi-Yau threefold
π∶ X → B with discriminant locus Δ and singular fibers
F ¼ π−1ðΔÞ. We leave the compactly supported compo-
nents implicit and denote the intersection of the non-
compact components with the boundary by ∂Δi; Ki; ∂Fi
with i ¼ 1;…; N. Here, we recall that Ki denotes the locus
of the flavor brane in the boundary geometry. Next note the
nested inclusion

Ki ⊂ ∂Fi ⊂ ∂X; ð4:9Þ
20This is simply because in deleting p, we have destroyed the

original b-cycle, but we can now consider a new noncontractible
1-cycle which encircles p.
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which gives three complements on the boundary

∂XF ¼ ∂Xn ∪i ∂Fi; ∂X∘ ¼ ∂Xn ∪i Ki;

∂F∘ ¼ ∪i ð∂FinKiÞ: ð4:10Þ

Denoting by TðKÞ a tubular neighborhood of K in ∂X, we
have the following coverings:

∂X ¼ ∂X∘ ∪ TðKÞ; ∂X∘ ¼ ∂XF ∪ Tð∂F∘Þ: ð4:11Þ

We first consider the Mayer-Vietoris sequence for the latter
covering in degree one. It takes the form

…⟶
∂2 H1ð∂XF ∩ Tð∂F∘ÞÞ⟶ι1 H1ð∂XFÞ
⊕ H1ðTð∂F∘ÞÞ ⟶j1−l1 H1ð∂X∘Þ⟶∂1 0: ð4:12Þ

The intersection ∂XF ∩ Tð∂F∘Þ projects to the base, with
fibers homologous to ∂F∘. In the base we can split the
geometry into parts tangential and normal to the discrimi-
nant. Then, restricting ∂XF ∩ Tð∂F∘Þ to the normal com-
ponent, we observe that the local geometry near each
component of the discriminant locus is precisely of the
form already discussed in the special case of a twofold
Y → C, but in which we fibered over a (boundary) circle.
From (4.7) it now follows that for the different fiber types
Φ, we have

H1ð∂XF ∩ Tð∂F∘
i ÞÞ ¼

8><
>:

Z2; Φ ≠ Ism; Insm
Z3; Φ ¼ Ism
Z2 ⊕ Z2; Φ ¼ Insm

; ð4:13Þ

where there is a universal factor of Z2 generated by a torus
enclosing πð∂FiÞ ¼ ∂Δi in the base. The remaining factor
of Z or Z2 is generated by an a-cycle in the local geometry.
Now, observe that Tð∂F∘

i Þ deformation retracts to ∂F∘
i . We

therefore have

H1ð∂XF ∩ Tð∂F∘
i ÞÞ ≅ H1ðTð∂F∘

i ÞÞ ⊕ Z ≅ H1ð∂F∘
i Þ ⊕ Z

ð4:14Þ

with the factor of Z generated by a circle linking the
boundary discriminant component πð∂FiÞ in the base. We
can therefore remove a copy of H1ð∂F∘

i Þ from the Mayer-
Vietoris sequence by exactness and find

� � � ⟶ ZN⟶
ι1 H1ð∂XFÞ ⟶ H1ð∂X∘Þ ⟶ 0: ð4:15Þ

This is a useful simplification and allows us to compute
H1ð∂X∘Þ from H1ð∂XFÞ. The latter is more easily com-
puted from the elliptic fibration. Now (4.15) immediately
implies

TorH1ð∂X∘Þ ¼ TorH1ð∂XFÞ ⊕ TorH1ð∂BÞ; ð4:16Þ

where the cycles TorH1ð∂BÞ are understood as torsional
cycles in the total space by lifting them via the section.
At this point it should be clear that the prescription of

Sec. II does indeed extend to the case of elliptically fibered
Calabi-Yau spaces with suitable noncompact components
of the discriminant locus serving as flavor brane loci. We
now apply this to some specific examples.

B. Generalized A-type bases

We now apply this formalism in a large class of examples
where the base of the elliptically fibered threefold X → B
consists of a single spine of curves, intersecting according
to a generalized A-type Dynkin diagram, but where we do
not necessarily require all curves to have self-intersection
−2. This situation occurs in the vast majority of 6D SCFTs
engineered via F-theory [86,87], but can also include more
general 6D theories SQFTs and their reduction to 5D
SQFTs [89] (see also [90]).
In what follows, we focus on the case where the

geometry of the base is taken to be of generalized A-type:

ð4:17Þ

Here the dots denote a linear chain of N rational curves of
self-intersection −ki. We have also indicated the flavor
symmetry algebra associated with a noncompact compo-
nents of the discriminant locus by their corresponding Lie
algebra gi. We further allow for noncompact discriminant
loci Δi, which we assume to intersect the boundary along
Hopf circles

∂B ∩ Δi ¼ ∂Δi ¼ S1i : ð4:18Þ

Part of our task will be to extract the global form of
the flavor symmetry group directly from the boundary
geometry.
Now, for generalized A-type bases, the linking boundary

geometry is always of the form
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∂B ¼ S3=Zp; ð4:19Þ

where the specific value of p as well as the choice of group
action 1

p ð1; qÞ is obtained from the Hirzebruch-Jung con-
tinued fraction [91–93]

p
q
¼ k1 −

1

k2 − � � � 1
kN

: ð4:20Þ

The base is permitted to contain any number of compact
curves, supporting arbitrary gauge algebras consistent with
anomaly cancellation, i.e., the existence of an elliptic
fibration. The possible Calabi-Yau geometries of this sort
were classified in [86,87].
Let us now turn to the 1-form symmetry of these systems.

Geometrically, we are interested in noncompact 2-cycles
that can extend out to the boundary. There is, of course, the
contribution from noncompact 2-cycles supported purely in
the base, and this will always contribute a factor ofZp to the
1-form symmetry. The main challenge is to properly track
the profile of the flavor components of the discriminant
locus. To this end, we divide our discussion into two
separate cases. First, we consider the case where we have
no noncompact In-type fibers. We then turn to the case
where there are possible In fibers. We shall refer to a
nontrivial identification in the basis of resolution cycles as a
“nonsplit” fiber and the case of no identification as a “split”
fiber, as in [17].
The first general comment is that the existence of any

fiber that is not of In-type means that its corresponding
H1ðEfiberÞ is trivial. Consequently, we can use this fact to
trivialize additional candidate 1-cycles in the boundary
geometry. On the other hand, if all the fibers are of In-type,
then there is the possibility that there is an additional
contribution to the 1-form symmetry. In this case, there is
again at most one nontrivial representative, so we conclude
that the flavor symmetry could potentially contribute an
additional Zd factor, where d depends on the details of the
geometry in question.
We now explain this general point in more detail.

Suppose first that the flavor locus has no In-type fibers.
We claim that in this case, the 1-form symmetry of theories
of type (4.17) is [94]

A ¼ Zp; ∃Φi ≠ Isni ; I
ns
ni ; ð4:21Þ

where the superscripts s and ns refer to a split or nonsplit
Kodaira fiber. Here, the Zp is generated by the noncompact
cycle of the base generatingH1ð∂BÞ ¼ Zp lifted to the total
space by the section of the elliptic fibration. The absence of
any other fibral contributions to the 1-form symmetry
follows directly from Eq. (4.2). Indeed, consider a non-
compact 2-cycle of the bulk intersecting the boundary in a
fibral 1-cycle. This cycle projects a semi-infinite line in the

base and intersects the base boundary in a single point.
Whenever there exists a noncompact discriminant compo-
nent S1i supporting a component of the discriminant with
singular fiber Φi ≠ Isni ; I

ns
ni , we can continuously deform this

intersection point to that locus. The 1-cycle fibering the
noncompact 2-cycle then necessarily collapses as the sin-
gular fibers have no 1-cycles of their own. Consequently, the
noncompact 2-cycle is trivial in relative homology to begin
with and does not contribute to A. Note that all that is
required to perform this analysis is that we have at least one
fiber which is not of In-type. For a more detailed discussion
on such structures see [94].
Suppose now that there are only flavor loci supporting

In-type singular fibers. Whenever the S1i exclusively sup-
port singularities of the types Isni and Insni , we find [94]

A ¼ Zp ⊕ Zd; ∀ Φi ¼ Isni ; I
ns
ni ð4:22Þ

by the same arguments used above, since at least one
1-cycle of the elliptic fiber still collapses somewhere on the
boundary. Next note that in both cases the base contribution
Zp does not arise in the geometry from an ADE locus. It
cannot be detected restricting to their tubular neighbor-
hoods. Following our characterization (2.21) we see that it
does not participate in 2-group structures. Theories of line
(4.21) therefore have no 2-group, but there is a chance that
a 2-group will appear in theories of line (4.22).
As an additional comment, we note that for more general

bases of the form C2=ΓUð2Þ with ΓUð2Þ a finite subgroup of
Uð2Þ, we can also extract the contribution to the 1-form
symmetry from the base geometry [4]. Indeed, this con-
tribution will simply be Ab½ΓUð2Þ�. The subtlety here is
that whereas the boundary geometry for the generalized
A-type bases retain a simple characterization in terms of a
Hopf fibration (which we used to analyze the flavor
discriminant), in the more general setting there are some
additional technical complications. Nevertheless, it is quite
natural to expect that in this case as well, the existence of
any fiber which is not of Il-type would immediately
trivialize any additional fibral contributions to the 1-form
symmetry.
Having illustrated some general properties of models

with a generalized A-type base, we now turn to the explicit
computation of the various higher symmetries in some
specific examples. To this end, it will be helpful to note that
for generalized A-type bases, we can write Eq. (4.16) as

TorH1ð∂X∘Þ ¼ TorH1ð∂XFÞ ⊕ Zp: ð4:23Þ

As far as characterizing the global form of the flavor
symmetry and possible 2-group structures, the base is
largely a spectator. Instead, all of this structure is dictated
by the geometry ∂XF.
We now proceed to some examples.
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C. 5D conformal matter

Let us now turn to some examples involving 5D
conformal matter [65], as obtained from the circle reduction
of the partial tensor branch deformation of 6D conformal
matter [95,96]. This is realized by an elliptically fibered
Calabi-Yau threefold with partial resolution given by

½gL�2
g
� � � 2

g
½gR�; ð4:24Þ

namely we have a collection of −2 curves intersecting
according to an A-type Dynkin diagram. Over each curve
we have a singular Kodaira fiber that yields a correspond-
ing Lie algebra of type g of ADE type. Further blowups in
the base are needed to get all fibers into Kodaira-Tate form,
but this will not be needed in the discussion to follow.
As a general comment, it is well-known in the context of

6D SCFTs that there can be various enhancements in the
flavor symmetry, and this often occurs when we have a low
number of −2 curves. For our purposes here, however, we
are primarily interested in these systems as 5D SQFTs, so
we expect that various irrelevant operators generated by the
explicit string compactification will lead to agreement
between the answer we get from geometry and what we
expect from bottom up considerations. That being said, one
can expect that in the limit where these irrelevant operators
decouple from the physics, there could be additional
enhancements. It is also well-known that such “accidents”
do not occur when the number of −2 curves is sufficiently
large, but they certainly do arise at low rank gauge groups
and at low numbers of −2 curves.
Indeed, it will prove simplest to first treat the case where

we have no interior −2 curves; i.e., the base B blows down
to just C2. Using this building block, we can then quickly
extend this analysis to the more general situation where
B ¼ C2=Zp, i.e., the case of N ¼ p − 1 curves of self-
intersection −2.

1. ∂B=S3

With this in mind, we first treat the case of ðG;GÞ
conformal matter where G is of ADE type, and where the
base is just B ¼ C2 ≡ C1 × C2 so that ∂B ¼ S3. The flavor
locus arises from singularities tuned on C1 × f0g and
f0g × C2. These intersect transversely and give a Hopf
link in the boundary three-sphere. We view the boundary
three-sphere as torus fibered over the interval

T2 ↪ S3 → I: ð4:25Þ

The singularities ΦL;R supported on Hopf fibers project to
the ends of the interval I. Deleting these, we obtain a torus
fibration over an open interval. This space deformation
retracts onto the torus fiber T2 ¼ S1L × S1R. Here S

1
L;R links

the circles supporting ΦL;R, respectively. The deformation
retraction of ∂XF is therefore fibered as

E ↪ ∂XðrÞ
F → S1L × S1R: ð4:26Þ

We now repeatedly apply (4.4) by first flipping either of the
base circles into the fiber to define fibrations by three-
manifolds

YL
3 ↪ ∂XðrÞ

F → S1R;

YR
3 ↪ ∂XðrÞ

F → S1L; ð4:27Þ

where YL;R
3 are themselves fibered over S1L;R. Now to

compute the homology groups of ∂XðrÞ
F we first compute

the homology groups of YL;R
3 using the short exact sequence

0→ cokerðML;R
n − 1Þ→HnðYL;R

3 Þ→ ker ðML;R
n−1 − 1Þ→ 0;

ð4:28Þ

which follows from the Mayer-Vietoris sequence for spaces
fibered over circles. Here

ML;R
n ∶ HnðEÞ → HnðEÞ ð4:29Þ

are the monodromy mappings about S1L;R. We have

H1ðYL;R
3 Þ ¼ Z ⊕ cokerðML;R

1 − 1Þ: ð4:30Þ

Nowwe repeat for the remaining circle. The sequence reads

0 → cokerðMR
n − 1Þ → HnðYL

3 Þ → ker ðMR
n−1 − 1Þ → 0;

ð4:31Þ

and we derive the key formula

H1ð∂XFÞ ¼H1ð∂XðrÞ
F Þ ¼Z2 ⊕

Z2

ImðML
1 − 1Þ ∪ ImðMR

1 − 1Þ ;

ð4:32Þ

where we have written out the cokernels and which is
symmetric upon interchanging L ↔ R. Note analogous
considerations determine the homology group in (2.21) to

TorH1ð∂X∘ ∩ TðKÞÞ ¼ Tor ðcokerðML
1 − 1ÞÞ

⊕ Tor ðcokerðMR
1 − 1ÞÞ; ð4:33Þ

and consequently the torsion subgroup in (4.32) sits
diagonally in (4.33). That is, we have

ι1∶ TorH1ð∂X∘ ∩ TðKÞÞ → TorH1ð∂XFÞ; ð4:34Þ

which acts on the factors labeled by L, R via quotienting by
the images of MR;L

1 − 1. We now make these maps explicit
in a number of examples.
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Transversely intersecting In, Im.—This setup engineers a
hypermultiplet in the bifundamental representation of
suðnÞ × suðmÞ. The theory of the hypermultiplet consists
of its kinetic terms as well as additional irrelevant operator
interactions that explicitly break the “accidental” enhance-
ment back to suðnþmÞ. In this case we have

TorH1ð∂XFÞ ¼ Zgcdðn;mÞ; ð4:35Þ

and the map

ι1∶Zn ⊕ Zm → Zgcdðn;mÞ ð4:36Þ

acts on the first (respectively, second) factor by modding
out by m (respectively, n). We have

TorH1ð∂X∘Þ ¼ Zgcdðn;mÞ ð4:37Þ

and

C∨ ¼ Zgcdðn;mÞ: ð4:38Þ

We find the non-Abelian flavor symmetry

Gnon−ab ¼
SUðnÞ × SUðmÞ

Zgcdðn;mÞ
; ð4:39Þ

where Zgcdðn;mÞ embeds diagonally in the two factors. This
is expected because bifundamental matter fields do not
transform under this common diagonal sector.
The short exact sequences

0 → C → ZG̃ → ZG → 0; ð4:40Þ

0 → C∨ → Ã∨ → A∨ → 0 ð4:41Þ

now respectively take the form

0 → Zgcdðn;mÞ → Zn ⊕ Zm →
Zn × Zm

Zgcdðn;mÞ
→ 0; ð4:42Þ

0 → Zgcdðn;mÞ → Zgcdðn;mÞ → 0 → 0: ð4:43Þ

In particular, we note that A is trivial, and so there is no
1-form symmetry, or possible 2-group.
As a final comment on this case, we note that we have

omitted the contribution from the uð1Þ flavor symmetry
factor (see [97] for further discussion). On the other hand,
since we have now determined the non-Abelian flavor
symmetry to be

Gnon−Ab ¼
SUðnÞ × SUðmÞ

Zgcdðn;mÞ
; ð4:44Þ

we can piece together that the full flavor group is
compatible with

G ¼ S½UðnÞ ×UðmÞ�: ð4:45Þ

Note also that the same considerations will clearly apply
in the case of conformal matter with A-type flavor
symmetries.

ðg; gÞ Conformal matter.—Consider conformal matter
arising in the collision of two identical singularities Φ ¼
ΦL ¼ ΦR individually associated with the Lie algebra g.
Again, this is really to be viewed as the theory of 5D
conformal matter deformed by a collection of irrelevant
operators which in the g ¼ su; so cases explicitly breaks
any low rank “accidental” enhancements.
By considerations analogous to those in the previous

example we have

TorH1ð∂X∘Þ ¼ TorH1ð∂XFÞ ¼ Ab½ΓΦ�; ð4:46Þ

where we model the flavor brane as a C2=ΓΦ singularity. In
this case, the short exact sequences

0 → C → ZG̃ → ZG → 0; ð4:47Þ

0 → C∨ → Ã∨ → A∨ → 0 ð4:48Þ

now respectively take the form

0→ Ab½ΓΦ�→ Ab½ΓΦ�×Ab½ΓΦ�→
Ab½ΓΦ�×Ab½ΓΦ�

Ab½ΓΦ�diag
→ 0;

ð4:49Þ

0 → Ab½ΓΦ� → Ab½ΓΦ� → 0 → 0; ð4:50Þ

where in the first line, Ab½ΓΦ�diag embeds diagonally in
Ab½ΓΦ� × Ab½ΓΦ�. Summarizing, the non-Abelian flavor
group extracted from geometry is just

non-Abelian flavor ¼ GL ×GR

Zdiag
; ð4:51Þ

where Zdiag is just the diagonal flavor symmetry in the two
factors of GL ¼ GR.

2. ∂B=S3=Zp

Let us now turn to the more general case of higher rank
5D conformal matter, as obtained by taking multiple −2
curves. In this case, the base B has boundary S3=Zp as
dictated by the group action ðz1; z2Þ ↦ ðωz1;ω−1z2Þ, with
ω a primitive pth root of unity. From our general
considerations presented earlier, we know that there is
now a contribution to the 1-form symmetry, and in all
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cases it is just A ¼ Zp. Indeed, even in the case of
ðSU; SUÞ conformal matter, we just saw that the fibers
did not generate any contributions. Moreover, we also
know from our previous discussion that this contribution
to the 1-form symmetry from the base is essentially a
spectator, so again, we know that the 2-group structure is
trivial.
Turning next to the center flavor symmetry, we observe

that in a configuration with a collection of −2 curves, we
can consider a limit in which the leftmost curve in the
configuration

½gL�2
g
� � � 2

g
½gR� ð4:52Þ

expands to large volume. In this case, we get two 5D
conformal matter systems, and we can pass back to the
original configuration by gauging a diagonal subgroup. By
induction, we conclude that since the geometrically deter-
mined C is just the common center of ½g� − ½g� conformal
matter (with no −2 curves), then the process of gluing back
together (i.e., by gauging a common diagonal) must retain
this factor. Putting this together, we see that the analysis
presented in the special case of no −2 curves carries
through unchanged, and we can again read off the center
flavor symmetry,

non − Abelian flavor ¼ GL ×GR

Cdiag
; ð4:53Þ

where Cdiag is just the diagonal center flavor symmetry in
the two factors of GL ¼ GR.

3. so8+ 2m on a − 4 curve

As a final example, we also consider the special case
of a single −4 curve supporting an so8þ2m gauge
algebra, with matter in the fundamental representation.
The flavor symmetry algebra is of sp-type, which is of
interest precisely because it is nonsimply laced. Our
formalism captures such situations as well, as we now
demonstrate.
To engineer this case, we consider the elliptic threefold X

given by a base with a single curve of self-intersection −4.
Over the −4 curve we take an I�;sm fiber, realizing an so8þ2m
gauge theory. To obtain an anomaly free spectrum, we
couple this to 2m hypermultiplets in the vector representa-
tion of the gauge group. We can arrange for these to be
collected into a single Ins4m fiber, realizing a manifest sp2m
flavor symmetry.21 The local geometry takes the form

so8þ2m

4 — ½sp2m�
: ð4:54Þ

Let us now turn to the boundary geometry. To begin,
we note that the base B ¼ OP1ð−4Þ, with boundary
B ¼ S3=Z4, as induced by the group action on C2 given
by ðz1; z2Þ ↦ ðωz1;ωz2Þ with ω a primitive 4th root of
unity. The boundary of X fibers as

∂X → S3=Z4 ¼ ∂B: ð4:55Þ

The flavor brane is supported on the fiber class of OP1ð−4Þ
and intersects the base boundary on a single circle S1K of the
∂B, as discussed in [94]. The base boundary is a smooth
lens space and is fibered as

S1 ↪ S3=Z4 → S2; ð4:56Þ

and therefore deleting the singular fibers from ∂X deletes a
copy of the Hopf fiber S1K from ∂B ¼ S3=Z4. The base is
now fibered over a punctured two-sphere that deformation
retracts to a point. The deformation retract of ∂XF is
therefore fibered as

E ↪ ∂XðrÞ
F → S1H; ð4:57Þ

where S1H is a Hopf circle linking the orbifold locus S1K in
∂B. Now note that S1H also links the P1 in the bulk B as it
too is the boundary of a fiber class ofOP1ð−4Þ. The elliptic
monodromy action along S1H is therefore that of an I�m and
I4m which read22

MI�m ¼
�−1 −m

0 −1

�
; MI4m ¼

�
1 4m

0 1

�
; ð4:58Þ

and the total monodromy is

M ¼
�−1 −5m

0 −1

�
: ð4:59Þ

We therefore have

H1ð∂XFÞ ¼ Z ⊕
�
Z2 ⊕ Z2; m ∈ 2Z

Z4; m ∈ 2Zþ 1
; ð4:60Þ

and we conclude by (4.23)

TorH1ð∂X∘Þ ¼
�
Z2 ⊕ Z2 ⊕ Z4; m ∈ 2Z

Z4 ⊕ Z4; m ∈ 2Zþ 1
: ð4:61Þ

Now note for the boundary we have [94]

21In our conventions sp1 ≃ su2, and the matter fields trans-
form as half hypermultiplets under the sp2m symmetry.

22Recall that the condition of split versus nonsplit does not
impact the SLð2;ZÞ monodromy (see, e.g., [17]).
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TorH1ð∂XÞ ¼ Z2 ⊕ Z4; ð4:62Þ

where Z2 and Z4 are base and fiber contributions, respec-
tively. The factor of Z2 follows from the nonsplit Insm locus.
It is generated by the b-cycle, which does not collapse at the
discriminant locus (4.2). However, due to the fiber being
nonsplit we have b → −b upon traversing S1K . Therefore b
is a Z2 1-cycle, and we have (4.22) with p ¼ 2. With this
the sequence

0 → C∨ → Ã∨ → A∨ → 0 ð4:63Þ

takes the form

0 → Z2 → Z4 ⊕ Z4 → Z2 ⊕ Z4 → 0 ð4:64Þ

for even m, which we can split into base and fiber
contributions, respectively,

0 → 0 → Z4 → Z4 → 0;

0 → Z2 → Z4 → Z2 → 0: ð4:65Þ

For odd m the analogous sequences take the form

0 → 0 → Z4 → Z4 → 0;

0 → Z2 → Z2 × Z2 → Z2 → 0: ð4:66Þ

In the first case we have a 2-group and in the second case
we do not.
From the discussion we further see that in the map

ι1∶ H1ð∂X∘ ∩ TðKÞÞ → H1ð∂X∘Þ ⊕ H1ðTðKÞÞ, we have
ker ι1 ¼ 0; therefore the sequence

0 → C → ZG̃ → ZG → 0 ð4:67Þ

takes the form

0 → Z2 → Z2 → 0 → 0; ð4:68Þ

and we find the global symmetry group

G ¼ Spð2mÞ=Z2: ð4:69Þ

The quiver (4.54) engineers 5D soð8þ 2mÞ gauge theory
with half hypermultiplets in the bifundamental representa-
tion of so8þ2m × sp2m. Choosing a purely electric polari-
zation, the gauge group is Spinð8þ 2mÞ and we match the
results presented in [52]. In Sec. V we turn to a closely
related example of this sort in the context of 4D N ¼ 1
theories engineered on local G2 spaces.

V. SQCD-LIKE THEORIES FROM G2 SPACES

Having studied some 5D examples, we now turn to 4D
N ¼ 1 SQFTs engineered fromM-theory on a noncompact
G2 space. In this setting as well, the field theory content of
the system is dictated by the geometry of local orbifold
singularities. As such, this “geometrized” version of
type IIA realizations of SQFTs provides another arena to
apply the techniques of Sec. II.
Now, a well-known difficulty in this regard is that the

explicit construction of G2 spaces remains a challenging
problem, in part because we do not have the analog of Yau’s
theorem in the Calabi-Yau case. Nevertheless, physical
considerations provide strong evidence that various IIA
backgrounds with branes and orientifolds all have lifts to
the G2 setting.23 These G2 spaces, whose G2-holonomy
metric is conjectured to exist by IIA/M-theory duality, are
circle fibrations over a noncompact Calabi-Yau threefold
base with field strength24 F ¼ dC1. Importantly, we can
determine the topology of these circle bundles, meaning
that we can then apply our Mayer-Vietoris procedure of the
previous sections in this case as well.
Our main focus will be on the case of SQCD-like theories

with gauge group given by either SUðNcÞ or Spinð2NcÞ,
with matter in the fundamental representation.25 There are
well-known type IIA constructions of SQCD-like theories,
including their realizations in terms of D6-branes wrapping
special Lagrangian manifolds in a noncompact Calabi-Yau
threefold. Since SQCD has a vectorlike matter spectrum,
there can in principle be different ways to engineer the
relevant matter content, and these lead to different boundary
geometries. One possibility is to directly engineer a vector-
like pair of matter fields, as in the IIA construction of [36],
as well as possible orientifolds of that construction. The G2

lift of this case corresponds to gauge and flavor groups
localized on codimension 4 subspaces (i.e., 3-cycles) and
matter localized on codimension 6 subspaces (i.e., 1-cycles).
The other possibility is to directly engineer chiral matter, as
in the IIA constructions of [37,102], for example. In this
case, the G2 lift has matter localized on codimension 7
subspaces (i.e., points). In both cases, we can make some of
the resulting flavor symmetry manifest by coalescing all of
the flavor branes at the same location. For example, in the
case of SUðNcÞ gauge theory with Nf flavors, the two
possibilities result in the geometrized flavor symmetries:

23See, e.g., [98–101] for some examples of such lifts in the
context of string-based particle physics constructions.

24Mathematicians also refer to the cohomology class of F as
the Euler class of the fibration, denoted by e.

25As in [35], one can in principle take other choices for the
global form of the gauge group associated with the spinð2NcÞ
Lie algebra, but we defer the analysis of such possibilities to
future work.
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ð1Þ suðNfÞvec ðcodimension 6 singularitiesÞ; ð5:1Þ

ð2Þ suðNfÞL × suðNfÞR ðcodimension7 singularitiesÞ;
ð5:2Þ

and similar considerations apply in the case of Spinð2NcÞ
gauge theory, where in the IIA construction we include
suitable orientifold planes. The G2 lift amounts to including
a suitable quotient by a geometric automorphism and/or
monodromy action on the orbifold loci. The different ways
of engineering SQCD-like theories are associated with
distinct manifest symmetries realized in geometry. This
can occur because different compactification effects can
explicitly break some symmetries that may only emerge in
flowing deep into the IR. Turning the discussion around, our
analysis of higher symmetries provides a diagnostic in
detecting the presence of such breaking terms in the first
place. Indeed, this also suggests that in a limit where we
have not yet reached the deep infrared, the two theories are
distinguishable.
Our aim in this section will be to compute the 0-form,

1-form, and 2-group symmetries for these 4D SQFTs
directly from geometry. As in earlier sections, we primarily
focus on the contributions from non-Abelian flavor sym-
metries, so we neglect, for example, the baryonic Uð1Þ
global symmetry and Uð1Þ R-symmetry present SUðNcÞ
SQCD-like theories. Additionally, in what follows, we focus
on the electric polarization of the 1-form defect group, as
captured by M2-branes wrapping noncompact 2-cycles in
the geometry. There can also be M5-branes wrapped on
noncompact 4-cycles, which contribute to the magnetic
1-form symmetry. Our techniques extend to this case as
well, but we leave a full analysis of magnetic symmetries to
future work.
Having extracted the 0-form, 1-form, and possible

2-group symmetries, we can match these data across
Seiberg dual pairs of theories for su and so groups with
fundamental flavors.26 In some sense, this just follows
from the general realization of such dualities as deforma-
tions that do not alter the boundary topology, and as such
are irrelevant deformations to the IR physics.
The rest of this section is organized as follows. We begin

by discussing the G2 lift of type IIA realizations of 4D
SQFTs. In particular, our aim will be to track the topology
of the boundary geometry after performing this lift. Next,
we consider the case of SQCD-like theories with SUðNcÞ
gauge theory and matter engineered on a codimension 6
singularity. We then turn to the related case with matter
engineered on codimension 7 singularities. With these
results in place, we introduce the G2 lifts of orientifolds
to analyze the symmetries of Spinð2NcÞ gauge theories. In

Appendix A we provide some additional details on real-
izing SQCD-like geometries via G2 spaces.

A. Lifting IIA D6=O6− configurations to M-theory

We now state our procedure for determining the topology
of the IIA dilaton circle fibration on a noncompact Calabi-
Yau threefold, X6, via a Gysin sequence modified to the
case where the circle fibers can become singular. The
characterizing field strength of this circle bundle is the RR-
flux F ¼ dC1, which is sourced by 6-branes on some loci
K, and the important data for us will be the topological
class ½F� ∈ H2ðX6nKÞ as well as ½F�j∂X6

∈ H2ð∂X6n∂KÞ.27
Recall that we denote X°

6 ¼ X6nK and ∂X°
6 ¼ ∂X6n∂K. We

will denote the M-theory geometry as X7, which is
expected to be a G2 orbifold, while its boundary, ∂X7, is
expected to be a nearly Kähler manifold (possibly with
singularities from flavor branes). For backgrounds with
D6-branes but no O6-planes, our procedure is as follows:
(1) Excision of flavor branes: We compute the homol-

ogy groups H2ð∂X°
6Þ, and denote its generators by

βj. Then the field strength F ¼ dC1 determines the
Euler class of the M-theory circle fibration. It is
helpful to convert this 2-form field strength into a
cycle in the geometry. To accomplish this, we
consider a deformation retract of ∂X°

6 to a compact
4-manifold. On this four-manifold, we can take the
Poincaré dual of F, resulting in 2-cycles. We write
this as

FPD ¼
X
j

njβj; ð5:3Þ

where “PD” refers to Poincaré dual in the sense just
defined and the integers nj give the D6-brane flux
through the 2-cycle βj.

(2) Boundary homology: We fix a circle fibration

∂X°
7 → ∂X°

6 ð5:4Þ

with Euler class e ¼ F. The homology groups of
∂X°

7 then follow from the Gysin sequence

… → Hkð∂X°
7Þ → Hk−1ð∂X°

6Þ⟶
e∧

Hkþ1ð∂X°
6Þ

→ Hkþ1ð∂X°
7Þ → � � � : ð5:5Þ

(3) Gluing flavor branes: We complete ∂X°
7 to ∂X7 by

gluing back the flavor branes. This can be done
using the Mayer-Vietoris sequence and the local
model for each flavor brane.

26See [35] for a field theory analysis of higher symmetries in
the so case.

27It might perhaps be more useful to characterize F as a class
in differential cohomology which essentially extends these data
of a cohomology class by a flat 1-form connection. See, e.g.,
[52,103–108] for more details.
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(4) Bulk homology: The seven-manifold X7 is fibered by
a circle X7 → X6, and its homology groups follow
from deformation retraction on the noncompact X6.
See Appendix A for an example.

This procedure determines the homology groups of the G2

space X7 and its boundary ∂X7. We can then addO6-planes
since the orientifold action, σ, lifts to a Z2 action on X7,
which is locally of the form ðS1; X6Þ ↦ ð−S1; σðX6ÞÞ.
With these geometric preliminaries in place, we now turn

to the study of explicit SQCD-like theories.

B. SUðNcÞ gauge theories with Nf flavors

In this section we consider SQCD-like theories with an
SUðNcÞ gauge group. Our starting point will be a IIA
configuration of branes, which we then lift to a G2 space.
Again, since we only need the boundary topology of the
construction, the physical expectation that a G2 structure
exists will largely suffice for many purposes.
As already mentioned, we shall be interested in two

related constructions of SQCD-like theories: one with
vectorlike matter localized on the same cycle, and one
with chiral matter localized at distinct points in the
geometry. In the IIA setting, our construction follows
the one given in Ref. [36]. The main idea is to start with
a deformed conifold, X6, presented as

X6∶ x2 þ y2 ¼ W; ð5:6Þ
v2 þ t2 ¼ b −W; ð5:7Þ

which is a C�
xy × C�

vt fibration over the complex plane CW .
Here b is a constant that sets the volume of the S3 zero
section in X6 ≃ T�S3. The boundary is ∂X6 ¼ S3 × S2, the
simplest example of a Brieskorn space. This zero section
projects to the line segment ½0; b� in the W-plane and can
engineer an suðNcÞ gauge theory by wrapping Nc D6-
branes on it.28

The zero section is a special Lagrangian (sLag) cycle, as
can be seen from the presentation X6 ≃ T�S3, but we review
now the condition for a three-manifold to be a sLag in this
geometry more generally. The holomorphic 3-form on X6

in the given coordinates is

Ω3;0 ¼ dW ∧ dx ∧ dv
4yt

; ð5:8Þ

where we have used the fact that dx
2y is the global invariant

1-form on C�
xy.

29 The initial color stack wraps the interval

½0; b� ∈ ReW times fx2R þ y2R ¼ Wg × fv2R þ t2R ¼ b −Wg
where the subscript R denotes the “real part.” The color
stack is then special Lagrangian with respect to ReðeiθΩ3;0Þ
for θ ¼ 0, so additional flavor branes must also be calibrated
with respect to ReðΩ3;0Þ to preserve 4D N ¼ 1 supersym-
metry. Note that for, say, the C�

xy fiber over a point W, the
solution

x ¼ eArgðWÞ=2jxj; y ¼ eArgðWÞ=2jyj ð5:9Þ

is calibrated with respect to Reðdx
2yÞ. More generally, we can

define noncompact lines Lϕ ⊂ C�
xy which are calibrated

with respect to eiϕ dx
2y. If we parametrize such a path as xðsÞ,

then we are left to solve the differential equation (see, e.g.,
[36,109])

dx
ds

¼∓ 2eiϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W − x2

p
; ð5:10Þ

which leads to a solution

xðsÞ ¼
ffiffiffiffiffi
W

p
sinð∓ eiϕð2sþ A0ÞÞ ð5:11Þ

for each choice of ϕ, whereA0 is an integration constant. We
see that if eiϕ ≠ �1, then Lϕ is noncompact inside C�

xy.

1. Matter engineered from codimension 6 singularities

We now turn to an SQCD-like theory with matter
localized on codimension 6 singularities of the correspond-
ing G2 space. In this case, we expect that the geometry can
capture an suðNfÞvec vectorlike flavor symmetry. Our task
will be to extract directly from the geometry the global form
of this 0-form symmetry, as well as possible 1-form
symmetries and 2-group structures.
Returning to the IIA background, we add Nf D6-branes

along the locus

½b;þ∞�×fx2Rþy2R¼Wg×fv2I þ t2I ¼ b−Wg; ð5:12Þ

where I denotes the “imaginary” part. This is special
Lagrangian since dv

2t ¼ idvI
i2tI

¼ dvI
2tI

is real. This intersects
the color stack along a circle that leads to a vectorlike
pair of bifundamental chiral multiplets, which together
transform as

ðN̄c;NfÞ ⊕ ðNc; N̄fÞ ð5:13Þ

under suðNcÞ × suðNfÞ. See Fig. 5 for an illustration of
this brane geometry.
The boundary of the deformed conifold, ∂X6 ¼ S2 × S3,

has a color brane along S2 along with a flavor brane along a
null-homologous T2. Then ∂X°

6 ¼ S3 × S2nT2, and we can

28The overall Uð1Þ in UðNcÞ realized in perturbative string
theory decouples due to the generalized Green-Schwarz/
Stuckelberg mechanism [101].

29One derives this by evaluating the holomorphic form of the
ambient C2, dx ∧ dy, on the normal vector field ∂

∂f, where
f ¼ x2 þ y2 −W.
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determine its homology using a Mayer-Vietoris sequence to
calculate

H�ð∂X°
6Þ ¼ fZ; 0;Z2;Z3; 0; 0g: ð5:14Þ

H2 is generated by the bulk S2c of the original S2 × S3, and
by another S2f which links the flavor T2 locus. Meanwhile,
H3 is generated by the bulk S3, as well as two 3-cycles
of the form S2f × S1A;B where the two choices are over the
a- and b-cycle of the T2. H4 is empty because the S2 × T2

that surrounds the flavor locus is contractible in the same
way the fundamental group of a sphere with one puncture is
trivial.
We are now ready to apply the Gysin sequence to

calculate H�ð∂X°
7Þ. The key piece of the long exact

sequence is

0 → H1ð∂X°
7Þ → H0ð∂X°

6Þ⟶
eNf;Nc

H2ð∂X°
6Þ → H2ð∂X°

7Þ → 0;

ð5:15Þ
where the Gysin map is

eNf;Nc
∶H0ð∂X°

6Þ→H2ð∂X°
6Þ; α↦ ðαNf;αNcÞ: ð5:16Þ

The Gysin map follows from the fact that the flux is
F ¼ NcvolS2Nf

þ NfvolS2Nc
. The resulting cohomology

groups are

H�ð∂X°
7Þ ≅ fZ; 0;Z × Zg;Z5;Z3; 0; 0g; ð5:17Þ

where g≡ gcdðNc; NfÞ, and after applying Poincaré dual-
ity and the universal coefficient theorem,30 we have the
homology groups

H�ð∂X°
7Þ ≅ fZ;Zg;Z;Z5;Z3; 0; 0g: ð5:18Þ

We can also apply the Gysin sequence on the boundary of
the tubular neighborhood of the flavor branes to obtain
∂X°

7 ∩ TðKÞ ¼ T2 × S3=ZNf
, so we now know the follow-

ing groups:

Ã ¼ Zg; ZG̃ ¼ ZNf
: ð5:19Þ

We can solve for A by the following piece of the Mayer-
Vietoris sequence:

→ H1ð∂X°
7 ∩ TðKÞÞ ⟶im¼Zg

H1ð∂X°
7Þ ⟶

ker¼Zg
H1ð∂X7Þ → 0;

ð5:20Þ

which implies A ¼ 0. One can then read off from our two
main short exact sequences

0 → C → ZG̃ → ZG → 0; ð5:21Þ

0 → C∨ → Ã∨ → A → 0 ð5:22Þ

that

C ¼ Zg; ZG ¼ ZNf=g: ð5:23Þ

So in other words, the global form of the non-Abelian
flavor symmetry is

Gnon−Ab ¼ SUðNfÞ=Zg: ð5:24Þ

Summarizing, we see that for our SQCD-like theory
engineered with codimension 6 matter, there is no 1-form
symmetry and ZG ¼ ZNf=g. We further note that the naive
1-form symmetry is indeed Ã ¼ Zg, but that this is fully
screened by the quotienting group C. This is to be expected
since the matter fields transform in the bifundamental
representation. As a final comment, we note that the
non-Abelian part of the global 0-form symmetry as well
as the 1-form symmetry both agree with the results
expected for Nf massive Dirac fermions in Ref. [110].
This mass term explicitly breaks the suðNfÞL × suðNfÞR
to a diagonal flavor symmetry.31 In this sense, one can also
view our model with codimension 6 singularities as
obtained from a limit where all diagonal mass terms have
been switched off.

FIG. 5. Sketch of the IIA setup of type (1) with “vectorlike”
flavor symmetry. The total geometry is T�S3 with Nc color
D6-branes (black) wrapped on the compact S3 and Nf flavor
D6-branes (red) wrapped on T2 ×Rþ intersecting the S3 in a
circle and the boundary in T2.

30Technically speaking, we are performing this step on a
deformation retraction of ∂X°

7 to a compact four-manifold.

31As already stated, we have also neglected various uð1Þ
symmetry factors, including baryonic and R-symmetry factors.
In Ref. [110] the flavor symmetry for the massive Dirac fermion
case is presented as UðNfÞ=ZNc

. Decomposing Nc ¼ gcd
ðNc; NfÞ × N0

c, the match to geometry follows.
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2. Matter engineered from codimension 7 singularities

We now turn to a different construction of an SQCD-like
theory, with matter fields localized at codimension 7
singularities of the local G2 space. We again describe
the geometry by prescribing a circle fibration over a type
IIA background. For a top-down construction that repre-
sents the resulting geometry as glued from two Acharya-
Witten cones see Appendix A.
The IIA background we consider here is once more the

deformed conifold T�S3 with a stack of Nc color D6-branes
wrapped on the compact S3. However, we now consider
two flavor stacks of Nf D6-branes each intersecting the
color stack in points rather than circles. We take these
points to be the north and south poles of the three-sphere. In
this case the supersymmetric cycles supporting the flavor
branes are

½b;þi∞� × fL−π=2g × fjvj2 þ jtj2 ¼ jb −Wjg ð5:25Þ
and

½0;−i∞� × fL−π=2g × fjvj2 þ jtj2 ¼ jWjg; ð5:26Þ

each topologically a copy of R3. Here the intervals denote
vertical rays in theCW plane and Lϕ is a noncompact line in
C� discussed in the beginning of this section. These loci are
special Lagrangian since the angles of the first two factors
cancel as π=2 − π=2 ¼ 0 while they are identical for the
last. Each intersection leads to chiral matter, but in
conjugate representations:

ðN̄c;Nf; 1Þ ⊕ ðNc; 1; N̄fÞ ð5:27Þ

under the symmetry algebra suðNcÞ × suðNfÞL×
suðNfÞR.
Geometrically, the flavor loci at the boundary consist of

two two-spheres KL;R ≅ S2; see Fig. 6. The boundary is
simply S2 × S3, and excising KL;R we delete two copies of
S2 at fixed points of S3. This twice punctured S3 deforma-
tion retracts to a two-sphere S2Nc

while full geometry ∂X°
6

retracts to

∂X∘
6;Retract ¼ S2Nc

× S2Nf
; ð5:28Þ

where the S2Nf
are boundary 2-cycles. The two-sphere S2Nc

links both flavor loci. The two-sphere S2Nf
lives in the fiber

of the deformed conifold and therefore links the three-
sphere supporting the color stack. Consequently these
two two-spheres are threaded by D6-brane flux, and
we have

F ¼ NcvolS2Nf
þ NfvolS2Nc

; ð5:29Þ

which determines a circle bundle over X∘
6;Retract via fixing

the Euler class e ¼ F. Again, using the Gysin sequence we
compute the homology groups of this circle bundle. The
sequence gives

H0ð∂X°
7Þ ≅ H5ð∂X°

7Þ ≅ Z ð5:30Þ

and further splits as

0 → H1ð∂X∘
7Þ → H0ðS2Nc

× S2Nf
Þ

→ H2ðS2Nc
× S2Nf

Þ → H2ð∂X∘
7Þ → 0;

0 → H3ð∂X∘
7Þ → H2ðS2Nc

× S2Nf
Þ

→ H4ðS2Nc
× S2Nf

Þ → H4ð∂X∘
7Þ → 0; ð5:31Þ

where the central maps are wedging with the Euler class of
the fibration. These are only nontrivial in an even degree,
and there we have

e0 ∧∶ Z → Z2; k ↦ ðkNf; kNcÞ;
e2 ∧∶ Z2 → Z; ðn;mÞ ↦ nNf þmNc: ð5:32Þ

This gives the cohomology groups

H�ð∂X°
7Þ ≅ fZ; 0;Z ⊕ ZgcdðNf;NcÞ;Z;ZgcdðNf;NcÞ;Zg;

ð5:33Þ

and dualizing to homology32 we find

H�ð∂X°
7Þ ≅ fZ;ZgcdðNf;NcÞ;Z;Z ⊕ ZgcdðNf;NcÞ; 0;Zg:

ð5:34Þ

FIG. 6. Sketch of the IIA setup of type (2) with chiral pairs. The
total geometry is again T�S3 with Nc color D6-branes wrapped
on the compact S3 (black) and two stack of Nf flavor D6-branes
(red) wrapped on two copies of R3 intersecting the S3 in the
north and south poles. These intersect the boundary in two
two-spheres KL;R.

32Again, we are performing this step on the contraction of ∂X°
7

to a compact five-manifold.
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Now we glue the two flavor loci, topologically two two-
spheres, back into ∂X°

7, completing it to ∂X7, via an
application of the Mayer-Vietoris sequence. This follows
because the intersection of the tubular neighborhoods of the
flavor loci in ∂X7 with ∂X°

7 are simply copies of ∂X°
7. We

therefore find

H�ð∂X7Þ≅ fZ;0;Z⊕ZgcdðNf;NcÞ;0;Z⊕ZgcdðNf;NcÞ;0;Zg:
ð5:35Þ

We remark further on the tubular neighborhoods. The local
geometry of the orbifold loci is C2=ZNf

→ S2 and therefore

the tubular neighborhoods are fibered as S3=ZNf
→ S2

where the Hopf circle of the Lens space is the M-theory
circle. Now S2 links the color stack and is threaded by Nc

units of D6 flux, twisting the M-theory circle over S2.
The overall geometry has a torsional 1-cycle of order
g ¼ gcdðNc; NfÞ as correctly computed in (5.34). This
implies

Ã ¼ Zg; ZG̃ ¼ Zg × Zg; ð5:36Þ
with g ¼ gcdðNc; NfÞ. The 1-form symmetry follows from
the Mayer-Vietoris sequence, which gives

→ H1ð∂X°
7 ∩ TðKÞÞ ⟶

im¼Zg
H1ð∂X°

7Þ ⟶
ker¼Zg

H1ð∂X7Þ → 0:

ð5:37Þ
This implies a trivial 1-form symmetryA ¼ H1ð∂X7Þ∨ ¼ 0.
It further follows that leftmost map takes the form ι1∶ Z2

g →
Zg mapping ðk; kÞ ↦ k. By our general formalism we
now find

C ¼ Zg; ZG ¼ Zg: ð5:38Þ
The pair of short exact sequences

0 → C → ZG̃ → ZG → 0; ð5:39Þ

0 → C∨ → Ã∨ → A∨ → 0 ð5:40Þ

therefore takes the form

0 → Zg → Zg × Zg → Zg → 0; ð5:41Þ

0 → Zg → Zg → 0 → 0: ð5:42Þ

The 1-form symmetry is trivial, and consequently there is no
2-group. The naive global symmetry derived from geometry
has center ZG̃. We therefore find

G̃ ¼ SUðNfÞ=ZNf=g × SUðNfÞ=ZNf=g; ð5:43Þ

which is corrected to the global symmetry

G ¼ SUðNfÞ=ZNf=g × SUðNfÞ=ZNf=g

Zg
: ð5:44Þ

As a comment, when comparing with the related field
theory analysis in [110] one should keep in mind that we
are dealing with SQCD as opposed to QCD. Indeed, we
also have a global uð1Þ R-symmetry. For SQCD in
the conformal window, the R-charge of all the squarks
is Rsquark ¼ ðNf − NcÞ=Nf, and so we explicitly see that
g ¼ gcdðNc; NfÞ cancels out of this ratio. This appears to
match with expectations from geometry, though we leave
a more complete analysis for future work.

C. Spinð2NcÞ gauge theories with 2Nf -flavors

We now consider an example where we engineer an
soð2NcÞ gauge algebra with 2Nf flavors in the fundamen-
tal representation. As noted in Ref. [35], an interesting
feature of this class of examples is that it can also exhibit a
2-group structure, which can in principle be matched across
Intriligator-Seiberg duality. As before, we begin with a IIA
construction, which we then lift to a G2 space. Again, we
emphasize that for our present purposes, we primarily only
need to know the topology of the boundary space rather
than the explicit form of the G2 metric in the interior.
We now study placing a O6−-plane along the zero

section of X6 ¼ T�S3 to engineer Spinð2NcÞ SQCD with
2Nf chiral mutliplets in the vector representation. From the
G2 point of view, this will appear as a suitable Z2 quotient,
so we can simply adapt our results from the previous
section to extract the 0-form, 1-form symmetry, and will
now see a 2-group structure emerge.
The difference in flavor algebras in the codimension 6

and codimension 7 cases comes from the IIA perspective
by how a D6-brane intersects an O6. Explicitly, we study
the following action on X6 (see, e.g., [99,111]):

σ∶ ðx; y; t; v; zÞ ↦ ðx�; y�; t�; v�; z�Þ; ð5:45Þ

which maps the flavorD6 stack to itself in the codimension
6 case, and to an image brane stack in the codimension 7
case. One can then use string perturbation theory to show
that the former case yields an sp algebra while the latter
retains an su algebra (see, e.g., [101] for a review).
In the left of the geometry with orientifolds, we expect

Spin-type gauge groups to originate from a D-type singu-
larity, while the flavor stack will originate from A-type
singularities. Much as in our discussion from Sec. IV, the
sp factor originates from an Aeven-type singularity with
monodromy (i.e., quotienting by an outer automorphism).
This implies that the action of σ on the ∂X7 geometry for the
SU case either does (sp flavor) or does not (su flavor) act
on the torsional 1-cycles. In what follows, we refer to this
new G2 space as Y7 and its boundary as ∂Y7. Even though
we cannot obtain Y7 as a Z2 quotient of X7, the topology of
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the boundary can be viewed in this way, and this greatly
simplifies the analysis to come.

1. Matter engineered from codimension 6 singularities

We now extract the flavor and 2-group structure for the
Spinð2NcÞ gauge theory with spðNfÞ flavor algebra from
the geometry. Our approach will be to compute π1 for the
various manifolds of interest, which come from the SU case
after quotienting by σ. We define ∂Y7 ≡ ∂X7=σ, then
because ∂X7 is simply connected and the action of σ is
free (it only has fixed points in the bulk), we know that

π1ð∂Y7Þ ¼ Z2; ð5:46Þ

which implies that the 1-form symmetry isA ¼ Z2. This is
expected from the field theory because chiral multiplets in
the vector representation screen some of the gauge Wilson
lines but not the ones in a spinor representation.33 This
opens up the possibility to have a nontrivial 2-group.
Moving on to π1ð∂Y°

7Þ, this is of the general form
Zg ⋊ Z2 where the precise Z2 action can be motivated
as follows. Our setup has σ turning the color locus in the
bulk from an A-type singularity to a D-type singularity,
while keeping the flavor locus to be of A-type. We can
rewrite π1ð∂X°

7Þ ¼ Zg as ZNc
=ðyNf ∼ 0Þ, with the geo-

metric interpretation being that torsional 1-cycles coming
from the Hopf fibers of the color stack can trivialize in Nf

bunches along the flavor loci. Then quotienting by σ
to produce a D-type singularity for the color locus34 implies
that we introduce an element δ into π1ð∂Y°

7Þ such that it has
the presentation

x2Nc ¼ 1; δ2 ¼ xNc; δxδ¼ x−1; x2Nf ¼ 1: ð5:47Þ
The first three relations of (5.47) are precisely the defining
relations of a D-type finite subgroup of SUð2Þ, while the
last one imposes the trivialization condition we had before
quotienting by σ. Note that because 2Nf is even, the
abelianization of the group (5.47) will be invariant under
2Nf. Additionally, this same reasoning can be repeated for
π1ð∂Y°

7 ∩ TðKÞÞ to see that it is Zg ⋊ Z2 with the same
semidirect product structure as π1ð∂Y°

7Þ. After taking
abelianizations, we arrive at the homology groups of
interest. This produces

ZG̃ ¼ Ã ¼
�
Z2 × Z2; if 2Nc ≡ 0 mod 4

Z4; if 2Nc ≡ 2 mod 4
; ð5:48Þ

which further implies that ZG ¼ C ¼ Z2 for both cases. In
this case, we have a flavor group

G ¼ SpðNfÞ=Z2; ð5:49Þ

and we observe that there is a nontrivial 2-group structure
when Nc is odd, which agrees with the pattern found for
Spinð2NcÞ SQCD in Ref. [35].

2. Matter engineered from codimension 7 singularities

We next consider X7 with codimension 7 singularities
and its cousin Y7 obtained from the G2 lift of the
corresponding IIA model. Since again ∂X7 is simply
connected and the action of σ is free, ∂Y7 ¼ ∂X7=σ has
a fundamental group of Z2. Thus again we have A ¼ Z2.
We also again know the general form π1ð∂Y°

7 ∩ TðKÞÞ ¼
Zg ⋊ Z2 since σ turns the color loci into a D-type
singularity and keeps the flavor loci as an A-type singu-
larity. It has the same semidirect product structure as the
codimension-7 case. So we now regain the result

ZG̃ ¼ Ã ¼
�
Z2 × Z2; if 2Nc ≡ 0 mod 4

Z4; if 2Nc ≡ 2 mod 4
; ð5:50Þ

along with ZG ¼ C ¼ Z2. In this case we get a flavor group

G ¼ SUð2NfÞ=Z2: ð5:51Þ

The 2-group structure dependence on Nc again agrees
with what was found in [35] for SQCD with gauge
group Spinð2NcÞ and 2Nf flavors in the fundamental
representation.

VI. CONCLUSIONS

In this paper we have studied the structure of 0-form,
1-form, and 2-group symmetries in SQFTs engineered via
glued orbifold singularities. We have shown that all of these
can be extracted purely from the boundary geometry. This
is encoded in a category of boundaries and is also captured
by orbifold homology. We exhibited this general structure
in the case of 5D orbifold SCFTs, 5D gauge theories
obtained from elliptically fibered Calabi-Yau threefolds, as
well as local G2 spaces engineering 4D SQCD-like
theories. In the remainder of this section we discuss some
further avenues for investigation.
Our analysis has primarily focused on the global form of

the continuous non-Abelian flavor symmetry. There can
also be additional Uð1Þ factors, as well as possible discrete
factors that would all be interesting to investigate further.
For some recent discussion of higher symmetries and their
mixing with Uð1Þ factors in the context of string compac-
tifications, see, e.g., [21].
We have mainly studied global structures with singu-

larity types dictated by orbifold singularities. This covers a
broad class of examples, but there are well-known cases
where this is not the case. It would be interesting to see

33Wilson lines with either spinor chirality are equivalent if
there are dynamical fields in the vector representation.

34Note that our charge conventions imply a rescalingNc → 2Nc
and Nf → 2Nf .
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whether the same structure of cutting and gluing could be
extended to such situations.
An important subtlety in our analysis involves the issue

of possible “accidental” flavor enhancements/reductions as
one passes to a regime of strong coupling. Such effects are
known to occur in a variety of SCFTs, so it is natural to ask
whether geometry can provide a guide and/or a constraint
on such phenomena. Turning the question around, the
appearance of such accidental symmetries may suggest a
quantum generalization of cutting and gluing of M-theory
background geometries.
Clearly, it would also be of interest to study further

examples involving elliptically fibered Calabi-Yau three-
folds. A rather natural class of examples in this regard is the
F-theory backgrounds which realize certain “small instan-
ton” 6D SCFTs, which in M-theory terms are obtained
from the world volume theory of M5-branes probing an
ADE singularity wrapped by an E8 nine-brane [87,95,112].
Upon compactification on a circle, this also gives rise to a
rich class of 5D SQFTs. A related class of questions
concerns the behavior of the global flavor symmetry under
Higgs branch flows. In many cases, these can be charac-
terized by group theoretic data associated with a nilpotent
orbit of the flavor symmetry algebra (as in the case of
conformal matter) [87,113,114], or a finite group homo-
morphism (in the case of orbi-instanton theories) [87,115].
Since this process often involves the decoupling of various
flavor branes, it is natural to suspect that this can be isolated
via a procedure of cutting and gluing along the lines used in
this work.
We expect that higher structures such as 3-groups will

arise when excision of the flavor branes still results in a
singular space. It would be interesting to investigate this
possibility further.
The main emphasis in this paper has been on the

development of a set of computational techniques for
extracting the higher symmetries directly from geometry.
Given this, it would seem important to extract further
details, as captured by topologically robust quantities such
as anomalies. Perhaps this can be calculated along the lines
of Ref. [52] (see also [40]).
Finally, the main thrust of our analysis has been in the

context of SQFTs engineered on a noncompact geometry
X. For X compact, gravity is again dynamical and we
expect that these symmetries either are explicitly broken
by compactification effects or are instead gauged, with
anomaly inflow from the rest of the bulk geometry.35 Since
we now have an explicit way to cut and glue local
contributions to such symmetries, it is natural to apply
this same method of analysis in this broader setting as well.
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APPENDIX A: G2 SPACES FOR
SQCD-LIKE THEORIES

The G2 spaces in Sec. V are presented as circle fibrations
with Calabi-Yau threefold bases. In this appendix we give a
top-down construction for the model described in Sec. V B 2
as the gluing of two Acharya-Witten cones. Related con-
structions were recently considered in [117] where the
resulting space was described as Taub-Newman-Unti-
Tamburino spaces fibered over a collection of intersecting
associative submanifolds.

1. Gluing Acharya-Witten cones

The cones of Acharya and Witten [13] describe the
M-theory lift of two stacks of D6-branes wrapping distinct
supersymmetric three-planes in R6 and filling spacetime.
We distinguish the color and flavor stack which support Nc
and Nf branes, respectively. The M-theory lift is the purely
geometric background

XNc;Nf
¼ C2=ZNc

× C2=ZNf

Uð1Þ ; ðA1Þ

where the Uð1Þ acts with charges �1 on the two ADE
singularities, respectively. The seven-manifold XNc;Nf

is
conjectured to admit a G2 holonomy metric. We now
describe their basic features and describe parametrizations
favorable for the gluing of two such cones.
Let us parametrize the first and second factors of C2 by

complex coordinates u1, u2 and v1, v2, respectively. These
then parametrize XNc;Nf

up to the equivalence [13]

ðu1; u2; v1; v2Þ ∼ ðωNfu1;ω−Nfu2;ωNcv1;ω−Ncv2Þ ðA2Þ

with phases ω ¼ expðiψ=NcNfÞ ∈ Uð1Þ. Next we intro-
duce radii on the ADE singularities (A1)

35For a recent example of this sort of analysis for 8D and 7D
vacua, see, e.g., [21,116].
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u1ū1 þ u2ū2 ¼ RNf
; v1v̄1 þ v2v̄2 ¼ RNc

ðA3Þ

and denote their sum by R ¼ RNf
þ RNc

. The link of the
cone (A1) is a slice of constant R and was argued in [13] to
be the quotient of a weighted projective space

∂XNc;Nf
¼ CP3

nc;nc;nf;nf=Zg ðA4Þ

with g ¼ gcdðNc; NfÞ and gðnc; nfÞ ¼ ðNc; NfÞ. Note that
XNc;Nf

is fibered over the quadrant parametrized by RNc
and

RNf
and consequently ∂XNc;Nf

is fibered over an interval.
See Fig. 7. The topology of this boundary remains
unaltered if we instead place it at constant values of RNc

and RNf
, respectively, as depicted in Fig. 8.

We now take two Acharya-Witten cones and glue these
along their boundaries with constant RNc

as depicted in
Fig. 9 and denote the resulting space by X7. The gluing
identifies the fibers

ΠNc;Nf
¼ ðS3=ZNc

× S3=ZNf
Þ=Uð1Þ ðA5Þ

over this locus and is therefore well-defined only when the
values of Nc, Nf match for both of the glued cones. This is
equivalent to anomaly cancellation. Let us discuss the
geometry of the resulting space. Note first that the locus

RNf
¼ 0, which is a copy of R3 in each cone, is

compactified to a three-sphere where the northern/southern
hemispheres are thought of as belonging to either of the
gluing blocks. The space X7 therefore contains an S3 worth
of ANc−1 singularities. The loci RNc

¼ 0 in each building
block remain separated, and we therefore find two loci,
topologically copies of R3, supporting ANf−1 singularities.
The singularities intersect in two points thought of as the
north/south pole of the S3 cycle.
We now study the homology groups of X7 and its

boundary and match the result (5.35). First, note that X7

deformation retracts to a three-sphere which follows
immediately from Fig. 9 and determines its homology
groups. The homology groups of the boundary ∂X7 are
computed via an application of the Mayer-Vietoris
sequence. We decompose

∂X7 ¼ ∂XðnÞ
7 ∪ ∂XðsÞ

7 ; ðA6Þ

where each factor is the set of fibers ΠNc;Nf
fibered over

constant RNc
in each gluing block. These project onto the

top and bottom halves of the dashed line in Fig. 9,
respectively. These two sets intersect in a copy of the fiber

ΠNc;Nf
¼ ∂XðnÞ

7 ∩ ∂XðsÞ
7 ðA7Þ

and individually deformation retract onto a two-sphere. To
evaluate the Mayer-Vietories sequence we therefore require
the homology groups of ΠNc;Nf

.
The fiber itself is circle fibered,

S1 ↪ ΠNc;Nf
→ S2Nc

× S2Nf
; ðA8Þ

where the S1 is the diagonal of the Hopf circles of the Lens
spaces. The Euler class of the fibration is therefore

FIG. 8. Alternative parametrization for the boundary of an
Acharya-Witten cone.

FIG. 9. Gluing of two Acharya-Witten cones along a common
subset of their boundary (dotted line). The boundary of the new
space is fibered over the dashed line.

FIG. 7. Sketch of an Acharya-Witten cone as a fibration over
the quadrant RNc

; RNf
≥ 0. The fibers are copies of

ðS3=ZNc
× S3=ZNf

Þ=Uð1Þ. Whenever RNc
; RNf

¼ 0 fibers de-
generate to two-spheres. The link of the cone at radius R projects
to the dashed line.
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e ¼ NfvolS2Nc
þ NcvolS2Nf

: ðA9Þ

The Gysin long exact sequence applied to this circle
fibration gives

H0ðΠNf;Nc
Þ ≅ H5ðΠNf;Nc

Þ ≅ Z ðA10Þ

and further splits as

0 → H1ðΠNf;Nc
Þ → H0ðS2Nc

× S2Nf
Þ

→ H2ðS2Nc
× S2Nf

Þ → H2ðΠNf;Nc
Þ → 0;

0 → H3ðΠNf;Nc
Þ → H2ðS2Nc

× S2Nf
Þ

→ H4ðS2Nc
× S2Nf

Þ → H4ðΠNf;Nc
Þ → 0; ðA11Þ

where the central maps are wedging with the Euler class of
the fibration

e ∧ ∶ H�ðS2Nc
× S2Nf

Þ → H�þ2ðS2Nc
× S2Nf

Þ: ðA12Þ

These are only nontrivial in an even degree, and there we
have

e0 ∧∶ Z → Z2; k ↦ ðkNf; kNcÞ;
e2 ∧∶ Z2 → Z; ðn;mÞ ↦ nNf þmNc: ðA13Þ

This gives the cohomology groups

H�ðΠNf;Nc
Þ ≅ fZ; 0;Z ⊕ ZgcdðNf;NcÞ;Z;ZgcdðNf;NcÞ;Zg;

ðA14Þ
and dualizing to homology we find

H�ðΠNf;Nc
Þ ≅ fZ;ZgcdðNf;NcÞ;Z;Z ⊕ ZgcdðNf;NcÞ; 0;Zg;

ðA15Þ
which were already computed in (5.34).
With these results we return to computing the homology

groups of ∂X7. The Mayer-Vietoris sequence for the
covering (A6) now takes the form

� � � ⟶∂kþ1

HkðΠNf;Nc
Þ⟶ιk HkðS2Nf

Þ

⊕ HkðS2Nf
Þ ⟶jk−lk Hkð∂X7Þ⟶

∂k � � � ; ðA16Þ

and it follows straightforwardly

H�ð∂X7Þ≅ fZ;0;Z⊕ZgcdðNf;NcÞ;0;Z⊕ZgcdðNf;NcÞ;0;Zg;
ðA17Þ

which are the same homology groups computed in (5.35)
from uplifting the D6-brane setup described in Sec. V B 2.

Here we make no claims regarding metric data and, as
already for the case of the Acharya-Witten cones, rely on
M-theory in conjecturing that a space of the above topology
should admit a G2 holonomy metric.

2. Reduction to IIA

We now substantiate our claim that the seven-manifold
X7 constructed in Appendix A 1 is topologically identical
to the circle bundle constructed in Sec. V B 2, by determin-
ing the IIA background X7=Uð1ÞM. The M-theory circle
Uð1ÞM is taken to act on each C2 factor in the Acharya-
Witten cone (A1) by phase rotations with the same charge
þ1 on the two ADE factors. It is therefore contained in the
fiberΠNc;Nf

as the diagonal Hopf circle; this is precisely the
circle fiber of (A8). Consequently

ΠNc;Nf
=Uð1ÞM ¼ S2Nc

× S2Nf
; ðA18Þ

which determines the boundary ∂X7=Uð1ÞM to be fibered
over an interval as

S2Nc
× S2Nf

↪ ∂X7=Uð1ÞM → I: ðA19Þ

At the ends of the interval S2Nc
collapses—it traces out a

three-sphere S3. We therefore find

∂X7=Uð1ÞM ¼ S3 × S2Nf
: ðA20Þ

Varying the radius of S2Nf
in ∂X7=Uð1ÞM sweeps out the

six-manifold X7=Uð1ÞM, and therefore

X7=Uð1ÞM ¼ T�S3: ðA21Þ

The fixed point locus of the Uð1ÞM action restricts on the
boundary to two copies of S2Nf

located at the north/south

pole of the S3. Here the orbits of Uð1Þ in (A1) and Uð1ÞM
coincide and consequently the M-theory circle Uð1ÞM
must collapse. By identical arguments the central S3 of the
bulk is also a fixed point locus, and overall we determine
the D6-brane content to two stacks of noncompact Nf

D6-branes, topologically R3, intersecting one stack of Nc

D6-brane transversely, wrapped on S3. This is topologi-
cally precisely the IIA background we took as the starting
point in Sec. V B 2.
Finally we comment on the construction of the above IIA

backgrounds. These appear naturally as the local models of
the geometries discussed in [37] of which we now discuss a
simple example. Consider the local Calabi-Yau threefold
X6 with hypersurface equation

Pðx1; x2; x3; x4; fμkgÞ ¼ x21 þ x22 þ x23 þ x44 þ μ2x24

þ μ3x4 þ μ4 ¼ 0; ðA22Þ
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which describes a T�S2 fibration over the x4-plane. The
polynomial Fðx4Þ ¼ x44 þ μ2x24 þ μ3x4 þ μ4 vanishes for
four values x4 ¼ li with i ¼ 1;…; 4. The fibral two-sphere
traces out a three-sphere over any path connecting two of
these values. Of these three-spheres three are independent
in homology with volumes controlled by the parameters μk.
There are no other compact cycles in the geometry. The
holomorphic top form of the Calabi-Yau threefold takes the
standard form

Ω ¼ dx1 ∧ dx2 ∧ dx3
∂P=∂x4

: ðA23Þ

We require the generators of the homology groups in
degree three to be calibrated with respect to Ω; i.e., ImΩ
vanishes restricted to the three three-spheres. This con-
strains the parameters μk [37]. We can study this constraint
locally at the intersection between the three-spheres.
Locally near x4 ¼ li, we have the geometry

x21 þ x22 þ x23 þ x̃4 ¼ 0; ðA24Þ

where we have redefined x4 via shifts and rotations to x̃4.
Two three-spheres intersecting at x̃4 ¼ 0 project to intervals
in the x̃4-plane. We require these to intersect at an angle of
θ ¼ �2π=3 to ensure that both are calibrated with respect
to ImΩ locally near li. Indeed, in this case the two
calibrated loci are mapped onto each other by a phase
rotation by∓ 2π=3 on x1, x2, x3, respectively, which leaves
Ω in variant. Schematically we have the setup

ðA25Þ

where each interval connecting li to liþ1 lifts to a three-
sphere. We denote the three-sphere connecting li to lj

by S3ij.
We now wrap Nf D6-branes on S312; S

3
34, and Nc

D6-branes on the three-sphere S323. The two stacks of Nf

D6-branes each intersect the stack of Nc D6-branes trans-
versely once. We next take a local limit centered on the
central three-sphere. The two stacks of Nf D6-branes are
demoted to flavor stacks. This limit sends l1, l4 in (A25) to
infinity. The resulting geometry Xloc

6 is topologically the
deformed conifold whose compact cycle is a single compact
three-sphere S323. The constraints on angles now simply
amount to the standard constraint for D6-branes intersecting
at angles to preserve supersymmetry.

In IIA string theory this setup engineers 4D N ¼ 1
SQCD with gauge algebra g ¼ suðNcÞ and Nf flavors in
the fundamental representation.

APPENDIX B: FINITE ABELIAN SUBGROUPS
OF SUð3Þ

In this appendix we characterize the finite Abelian
subgroups of the special unitary group SUð3Þ. We begin
with the following structure theorem [118]:
Every finite Abelian subgroup Γ ⊂ SUð3Þ is isomorphic

to Zn × Zm with m dividing n and

n ¼ max
γ∈Γ

ordðγÞ: ðB1Þ

First, notice that for all γ ∈ Γ we have γn ¼ 1. For if
there were to exist a σ ∈ Γ of order l with σn ≠ 1, then σϵg

is of order lcmðn; lÞ > n which yields a contradiction. Here
ϵ ∈ Γ is the order n element guaranteed to exist by (B1) and
g ¼ gcdðl; nÞ < l as l does not divide n. We can therefore
define ω ¼ expð2πi=nÞ and every element in Γ now has the
form

γkl ¼ diagðωk;ωl;ω−k−lÞ: ðB2Þ

Therefore Γ is a subgroup of Zn × Zn generated by
diagðω; 1;ω−1Þ and diagð1;ω;ω−1Þ. Next consider the
prime decomposition n ¼ pr1

1 � � �prs
s and conclude by the

structure theorem on Abelian groups that

Zn × Zn ≅ ðZp
r1
1
× Zp

r1
1
Þ ×… × ðZprs

s
× Zprs

s
Þ: ðB3Þ

The structure theorem on subgroups of Abelian groups now
implies

Γ≅ ðZp
u1
1
×Zp

v1
1
Þ×…× ðZpus

s
×Zpvs

s
Þ≅Zu×Zv ðB4Þ

with integers 0 ≤ ui ≤ vi ≤ ri where transposition in rela-
tion to (B3) are made in order to realize ui ≤ vi. Here
u ¼ pu1

1 � � �pus
s , v ¼ pv1

1 � � �pvs
s , u ≤ v, and u divides v. We

know of an order n subgroup, therefore v ¼ n, and we
finish by setting u ¼ m.
Next we derive canonical representations for generators.

First, consider the case Γ ≅ Zn. Then the generator ω of Γ
acts as follows on C3, parametrized by coordinates
ðz1; z2; z3Þ,

ω∶ ðz1; z2; z3Þ ↦ ðωk1z1;ωk2z2;ωk3z3Þ: ðB5Þ

Here ω is the primitive nth root of unity and
0 ≤ ki ≤ n − 1. Now k1 þ k2 þ k3 ¼ 0 mod n and there-
fore the ki sum to n or 2n. In the latter case we instead
consider the generator ω−1 which implies the redefinition
ki → n − ki. Without loss of generalization we can there-
fore assume k1 þ k2 þ k3 ¼ n.
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Next we note that the group action (B5) is necessarily
faithful when assumed to be of order n. Define
qi ¼ n= gcdðn; kiÞ. The subgroup generated by ωqi does
not act on the coordinate zi. Faithfulness then amounts to
requiring ωq to generate the trivial subgroup; that is, we
impose q ¼ n, where

q ¼ lcmðq1; q2; q3Þ: ðB6Þ

With this we arrive at the following result: the generators of
subgroups of SUð3Þ with Γ ≅ Zn are characterized by
triples ðk1; k2; k3Þwhere 0 ≤ ki ≤ n − 1, k1 þ k2 þ k3 ¼ n,
and q ¼ n. We often denote the generator of Γ charac-
terized in this way as 1

n ðk1; k2; k3Þ. These triples are, of
course, not unique.
Now consider the case Γ ≅ Zn × Zm with m dividing n.

We write n ¼ mm0 and denote the generator of Zn and Zm

by ω ¼ 1
n ðkiÞ and η ¼ 1

m ðbiÞ, respectively. A subgroup
Zm × Zm is generated by ρ, η where ρ ¼ ωm0 ¼ 1

m ðaiÞ.
Here 0 ≤ ai ≤ m − 1, ai ¼ ki mod m, and a1 þ a2 þ a3 ¼
m (whenever the sum equates to 2m we redefine ρ → ρ−1).
By construction 1

m ðaiÞ describe a group action of order m,
and therefore (B6) evaluates to m. We therefore have two
copies of Abelian subgroups of ordermwith generators ρ, η
canonically represented as in the previous paragraph.
We now argue that redefinitions allow us to put the

generators of the Zm × Zm subgroup into the form

ρ ¼ 1

m
ð1; 0; m − 1Þ; η ¼ 1

m
ð0; 1; m − 1Þ: ðB7Þ

For this note that there exists index i0 such that ai0 > bi0 ,
we now take successive differences. We begin by making
the redefinition of generators

ðρ;ηÞ→ ðρ1;ηÞ; ρ1 ¼ ρη−t1 ¼ 1

m
ðað1Þ1 ;að1Þ2 ;að1Þ3 Þ; ðB8Þ

where t1 is the largest integer such that 0 ≤ að1Þi0
< bi0 with

að1Þi0
¼ ai0 − t1bi0 . Then we redefine generators as

ðρ1;ηÞ→ ðρ1;η1Þ; η1¼ ηρ−s11 ¼ 1

m
ðbð1Þ1 ;bð1Þ2 ;bð1Þ3 Þ; ðB9Þ

where s1 is the largest integer such that 0 ≤ bð1Þi0
< að1Þi0

with

bð1Þi0
¼ bi0 − s1a

ð1Þ
i0
. We iterate this alternating redefinition

of generators either 2r − 1 or 2r times until either aðrÞi0
¼ 0

or bðrÞi0
¼ 0, respectively. These redefinitions are invertible,

and therefore each step yields a pair of generators of the full
Zm × Zm subgroup.
Let us assume for concreteness i0 ¼ 2. If the process

terminates after an odd number of iterations, we have

ρr ¼ 1
n ð1; 0; m − 1Þ (possibly after replacing the generator

with its inverse). We can now make the final redefinition

ðρr; ηr−1Þ → ðρr; η0r−1Þ; η0r−1 ¼ ηr−1ρ
−bðr−1Þ

1
r ðB10Þ

to achieve the form (B7). For η0r−1 the entries 1; m − 1 are
also possibly transposed, and in this case replace the
generator with its inverse. Other values of i0 and the case
in which the redefinition terminates after an even number of
iterations are treated similarly.
We conclude that generators for Γ ¼ Zn × Zm can be

taken to be of the form

ω ¼ 1

n
ðk1; k2; k3Þ; η ¼ 1

m
ð0; 1; m − 1Þ; ðB11Þ

where (B6) evaluates to n, 0 ≤ ki ≤ n − 1, and k1 þ k2þ
k3 ¼ n. Further we require gcdðn; k1Þ and m to be coprime
as otherwiseZm andZn have a nontrivial intersection when
generated by (B11), which would violate our assumption of
describing a subgroup of order jΓj ¼ nm. The result (B7)
immediately implies that whenever n ¼ m we can improve
our choice of generators to

ω ¼ 1

n
ð1; 0; n − 1Þ; η ¼ 1

n
ð0; 1; n − 1Þ: ðB12Þ

Let us discuss the fixed point loci. An element γ ∈ Γ
fixes z ∈ C3 whenever it preserves all of its coordinates
γ · zi ¼ zi which is satisfied whenever zi ¼ 0 or expanding
γ ¼ ωl1ηl2 ¼ 1

n ðγ1; γ2; γ3Þ we have γi ¼ 0 mod n. We have
γ1 þ γ2 þ γ3 ¼ 0 mod n so the latter condition can only be
realized for a single coordinate and the other coordinates
are necessarily set to vanish. Fixed point sets therefore
consist of planes Fij characterized by zi ¼ zj ¼ 0 where
ði; jÞ ¼ ð1; 2Þ; ð2; 3Þ; ð3; 1Þ and are necessarily ADE sin-
gularities of type A for if a single γi vanishes, the remaining
entries must be equal and opposite.
We consider the two cases in more detail and begin with

Γ ≅ Zn generated by 1
n ðk1; k2; k3Þ. Setting all but zi to zero,

it can be seen that the subgroup generated by ωqi with
qi ¼ n= gcdðn; kiÞ acts trivially on this hyperplane.
Therefore the fixed point locus consists of three planes
of Agcdðn;kiÞ−1 singularities intersecting at the origin of C3.
Now consider Γ ≅ Zn × Zm with generators (B11). We

immediately conclude that there is a Zgcdðn;k1Þ × Zm ¼
Zm gcdðn;k1Þ ¼ Zm gcdðm0;k1Þ ⊂ Zn × Zm acting trivially on
the plane F23, which follows from gcdðn; k1Þ and m being
coprime. Next we conclude Zgcdðn;k2Þ ⊂ Zn acts trivially on
F13. However, there exists a diagonal subgroup in Zn × Zm
which also fixes F13, and it is determined by requiring
phase rotations on z2 to cancel

c2k2 þ c02m
0 ¼ 0 ðmod nÞ ðB13Þ
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with integers c2; c02. This is solved by c2 ¼ m0= gcdðm0; k2Þ
and c02 ¼ −k2= gcdðm0; k2Þmod n. We conclude that ωc2ηc

0
2

generate a subgroup of elements with fixed points and with
order

n
m0= gcdðm0; k2Þ

¼ m gcdðm0; k2Þ: ðB14Þ

This follows as ηc
0
2 raised to that power is trivial. Now we

argue that this subgroup contains Zgcdðn;k2Þ described above
as a subgroup. We raise the generator ωcηc

0
to the power

ðn= gcdðn; k2ÞÞ=ðm0= gcdðm0; k2ÞÞ and find ωn= gcdðn;k2Þ
which is the generator of Zgcdðn;k2Þ ⊂ Zn. The fixed locus
F12 is analyzed similarly introducing the integers c3; c03.
The subgroups of Γ ¼ Zn × Zm and their fixed loci are

therefore, where n ¼ mm0,

Zm gcdðm0;k1Þ; F23 ¼ fz2 ¼ z3 ¼ 0g;
Zm gcdðm0;k2Þ; F31 ¼ fz1 ¼ z3 ¼ 0g;
Zm gcdðm0;k3Þ; F12 ¼ fz1 ¼ z2 ¼ 0g: ðB15Þ

As a check of (B15), consider the case n ¼ m with
generators (B12). We find three copies of An−1 singularities.
Next we study the subgroup H of Zn × Zm with fixed

points. It is generated by

H ¼ hωn= gcdðn;k1Þ; η;ωc2ηc2
0
;ωc3ηc3

0 i
¼ hωn= gcdðn;k1Þ;ωc2 ;ωc3i × hηi ðB16Þ

and is therefore isomorphic to Zn=k × Zm where, recalling
the definition of ci,

k ¼ gcd

�
n

gcdðn; k1Þ
;

m0

gcdðm0; k2Þ
;

m0

gcdðm0; k3Þ
�

¼ gcd
�

n
gcdðm0; k1Þ

;
m0

gcdðm0; k2Þ
;

m0

gcdðm0; k3Þ
�

¼ gcd

�
n;

m0

gcdðm0; k1Þ gcdðm0; k2Þ gcdðm0; k3Þ
�

¼ m0

gcdðm0; k1Þ gcdðm0; k2Þ gcdðm0; k3Þ
; ðB17Þ

where the final result is integral because the individual
gcd’s are pairwise coprime. Overall we find

H ¼ Zm gcdðm0;k1Þ gcdðm0;k2Þ gcdðm0;k3Þ × Zm

¼ hωm0= gcdðm0;k1Þ gcdðm0;k2Þ gcdðm0;k3Þ; ηi; ðB18Þ

and therefore

Γ=H ¼ Zm0= gcdðm0;k1Þ gcdðm0;k2Þ gcdðm0;k3Þ ¼ hωi: ðB19Þ
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Poincaré 22, 2451 (2021).

[47] S. Gukov, P.-S. Hsin, and D. Pei, Generalized global
symmetries of T½M� theories. I, J. High Energy Phys. 04
(2021) 232.

[48] A. P. Braun, M. Larfors, and P.-K. Oehlmann, Gauged
2-form symmetries in 6D SCFTs coupled to gravity, J. High
Energy Phys. 12 (2021) 132.

[49] M. Cvetič, J. J. Heckman, E. Torres, and G. Zoccarato,
Reflections on the matter of 3D N ¼ 1 vacua and local
Spin(7) compactifications, Phys. Rev. D 105, 026008
(2022).

[50] A. Debray, M. Dierigl, J. J. Heckman, and M. Montero,
The anomaly that was not meant IIB, arXiv:2107.14227.

[51] C. Closset, S. Schäfer-Nameki, and Y.-N. Wang, Coulomb
and Higgs branches from canonical singularities, part 1:
Hypersurfaces with smooth Calabi-Yau resolutions, J. High
Energy Phys. 04 (2022) 061.

[52] F. Apruzzi, F. Bonetti, I. Garcia Etxebarria, S. S. Hosseini,
and S. Schafer-Nameki, Symmetry TFTs from string
theory, arXiv:2112.02092.

[53] L. Bhardwaj, S. Giacomelli, M. Hübner, and S. Schäfer-
Nameki, Relative defects in relative theories: Trapped
higher-form symmetries and irregular punctures in class
S, arXiv:2201.00018.

[54] E. Witten, AdS=CFT correspondence and topological field
theory, J. High Energy Phys. 12 (1998) 012.

[55] N. Seiberg and W. Taylor, Charge lattices and consistency
of 6D supergravity, J. High Energy Phys. 06 (2011) 001.

[56] D. S. Freed and C. Teleman, Relative quantum field theory,
Commun. Math. Phys. 326, 459 (2014).

[57] L. Bhardwaj, Global form of flavor symmetry groups in 4d
N ¼ 2 theories of class S, SciPost Phys. 12, 183 (2022).

[58] T. Pantev and E. Sharpe, GLSM’s for Gerbes (and other
toric stacks), Adv. Theor. Math. Phys. 10, 77 (2006).

0-FORM, 1-FORM, AND 2-GROUP SYMMETRIES VIA … PHYS. REV. D 106, 106003 (2022)

106003-37

https://doi.org/10.1007/JHEP03(2019)199
https://doi.org/10.1007/JHEP03(2019)199
https://doi.org/10.1103/PhysRevD.101.026015
https://doi.org/10.1016/S0550-3213(96)90131-5
https://doi.org/10.1016/S0550-3213(96)90131-5
https://doi.org/10.1088/1126-6708/1998/02/006
https://doi.org/10.4310/ATMP.2000.v4.n5.a1
https://doi.org/10.1007/JHEP06(2016)128
https://doi.org/10.1103/PhysRevD.104.126019
https://arXiv.org/abs/math/0504123
https://doi.org/10.1007/978-3-7643-8736-5_17
https://doi.org/10.1007/s00220-012-1510-3
https://doi.org/10.1007/s00220-012-1510-3
https://doi.org/10.4310/ATMP.2012.v16.n1.a5
https://doi.org/10.4310/ATMP.2014.v18.n2.a1
https://arXiv.org/abs/1309.4721
https://doi.org/10.1007/JHEP03(2019)118
https://doi.org/10.1007/JHEP03(2019)118
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP04(2021)252
https://doi.org/10.21468/SciPostPhys.13.2.024
https://doi.org/10.21468/SciPostPhys.12.5.152
https://doi.org/10.21468/SciPostPhys.12.5.152
https://doi.org/10.21468/SciPostPhys.12.3.098
https://arXiv.org/abs/2201.02190
https://arXiv.org/abs/2201.02190
https://doi.org/10.1007/JHEP10(2021)114
https://doi.org/10.1007/JHEP10(2021)114
https://doi.org/10.1016/S0550-3213(97)00304-0
https://doi.org/10.4310/ATMP.2008.v12.n3.a2
https://doi.org/10.1007/BF02307601
https://doi.org/10.1007/BF02307601
https://doi.org/10.1007/BF01696765
https://doi.org/10.1007/BF01696765
https://doi.org/10.1007/JHEP05(2018)120
https://doi.org/10.1007/JHEP10(2019)169
https://doi.org/10.1007/JHEP10(2020)173
https://doi.org/10.1007/JHEP10(2020)173
https://doi.org/10.21468/SciPostPhys.12.2.047
https://doi.org/10.1007/JHEP09(2021)186
https://doi.org/10.1007/JHEP04(2021)221
https://doi.org/10.1007/JHEP04(2021)232
https://doi.org/10.1007/JHEP04(2021)232
https://doi.org/10.1007/JHEP12(2021)132
https://doi.org/10.1007/JHEP12(2021)132
https://doi.org/10.1103/PhysRevD.105.026008
https://doi.org/10.1103/PhysRevD.105.026008
https://arXiv.org/abs/2107.14227
https://doi.org/10.1007/JHEP04(2022)061
https://doi.org/10.1007/JHEP04(2022)061
https://arXiv.org/abs/2112.02092
https://arXiv.org/abs/2201.00018
https://doi.org/10.1088/1126-6708/1998/12/012
https://doi.org/10.1007/JHEP06(2011)001
https://doi.org/10.1007/s00220-013-1880-1
https://doi.org/10.21468/SciPostPhys.12.6.183
https://doi.org/10.4310/ATMP.2006.v10.n1.a4


[59] T. Pantev and E. Sharpe, Notes on gauging noneffective
group actions, arXiv:hep-th/0502027.

[60] T. Pantev and E. Sharpe, String compactifications on
Calabi-Yau stacks, Nucl. Phys. B733, 233 (2006).

[61] E. Sharpe, Notes on generalized global symmetries in QFT,
Fortschr. Phys. 63, 659 (2015).

[62] W. P. Thurston, The Geometry and Topology of Three-
Manifolds, http://library.msri.org/books/gt3m/PDF/13.pdf.

[63] M.W. Davis, Lectures on orbifolds and reflection groups,
https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-
preprint.pdf.

[64] I. Moerdijk and D. A. Pronk, simplicial cohomology of
orbifolds, arXiv:q-alg/9708021.

[65] M. Del Zotto, J. J. Heckman, and D. R. Morrison, 6D
SCFTs and phases of 5D theories, J. High Energy Phys. 09
(2017) 147.

[66] P. Jefferson, H.-C. Kim, C. Vafa, and G. Zafrir, Towards
classification of 5d SCFTs: Single gauge node, arXiv:1705
.05836.

[67] P. Jefferson, S. Katz, H.-C. Kim, and C. Vafa, On geo-
metric classification of 5d SCFTs, J. High Energy Phys. 04
(2018) 103.

[68] F. Apruzzi, L. Lin, and C. Mayrhofer, Phases of 5d SCFTs
from M-/F-theory on non-flat fibrations, J. High Energy
Phys. 05 (2019) 187.

[69] C. Closset, M. Del Zotto, and V. Saxena, Five-dimensional
SCFTs and gauge theory phases: An M-theory/type IIA
perspective, SciPost Phys. 6, 052 (2019).

[70] F. Apruzzi, C. Lawrie, L. Lin, S. Schafer-Nameki, and
Y.-N. Wang, 5d superconformal field theories and graphs,
Phys. Lett. B 800, 135077 (2020).

[71] F. Apruzzi, C. Lawrie, L. Lin, S. Schafer-Nameki, and
Y.-N. Wang, Fibers add flavor, part I: Classification of 5d
SCFTs, flavor symmetries and BPS states, J. High Energy
Phys. 11 (2019) 068.

[72] F. Apruzzi, C. Lawrie, L. Lin, S. Schafer-Nameki, and
Y.-N. Wang, Fibers add flavor, Part II: 5d SCFTs, gauge
theories, and dualities, J. High Energy Phys. 03 (2020)
052.

[73] F. Apruzzi, S. Schafer-Nameki, and Y.-N. Wang, 5d SCFTs
from decoupling and gluing, J. High Energy Phys. 08
(2020) 153.

[74] L. Bhardwaj, P. Jefferson, H.-C. Kim, H.-C. Tarazi, and
C. Vafa, Twisted circle compactification of 6d SCFTs,
J. High Energy Phys. 12 (2020) 151.

[75] M. A. Armstrong, The fundamental group of the orbit
space of a discontinuous group, Math. Proc. Cambridge
Philos. Soc. 64, 299 (1968).

[76] N. Seiberg, Five-dimensional SUSY field theories, non-
trivial fixed points and string dynamics, Phys. Lett. B 388,
753 (1996).

[77] D. R. Morrison and N. Seiberg, Extremal transitions and
five-dimensional supersymmetric field theories, Nucl.
Phys. B483, 229 (1997).

[78] M. R. Douglas, S. H. Katz, and C. Vafa, Small instantons,
Del Pezzo surfaces and type I-prime theory, Nucl. Phys.
B497, 155 (1997).

[79] T. Kawasaki, Cohomology of twisted projective spaces and
lens complexes, Math. Ann. 206, 243 (1973).

[80] F. Benini, S. Benvenuti, and Y. Tachikawa, Webs of five-
branes and N ¼ 2 superconformal field theories, J. High
Energy Phys. 09 (2009) 052.

[81] D. Gaiotto, N ¼ 2 dualities, J. High Energy Phys. 08
(2012) 034.

[82] C. Vafa, Evidence for F theory, Nucl. Phys. B469, 403
(1996).

[83] D. R. Morrison and C. Vafa, Compactifications of F theory
on Calabi-Yau threefolds. 1, Nucl. Phys. B473, 74 (1996).

[84] D. R. Morrison and C. Vafa, Compactifications of F theory
on Calabi-Yau threefolds. 2., Nucl. Phys. B476, 437 (1996).

[85] S. H. Katz and C. Vafa, Matter from geometry, Nucl. Phys.
B497, 146 (1997).

[86] J. J. Heckman, D. R. Morrison, and C. Vafa, On the
classification of 6D SCFTs and generalized ADE orbifolds,
J. High Energy Phys. 05 (2014) 028; 06 (2015) 017(E).

[87] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa,
Atomic classification of 6D SCFTs, Fortschr. Phys. 63,
468 (2015).

[88] L. Bhardwaj, D. R. Morrison, Y. Tachikawa, and A.
Tomasiello, The frozen phase of F-theory, J. High Energy
Phys. 08 (2018) 138.

[89] D. R. Morrison and W. Taylor, Classifying bases for 6D
F-theory models, Central Eur. J. Phys. 10, 1072 (2012).

[90] L. Bhardwaj, M. Del Zotto, J. J. Heckman, D. R. Morrison,
T. Rudelius, and C. Vafa, F-theory and the classification of
little strings, Phys. Rev. D 93, 086002 (2016).

[91] H. W. E. Jung, Darstellung der Funktionen eines algebra-
ischen Körpers zweier unabhängiger Veränderlicher x, y in
der Umgebung einer Stelle x ¼ a, y ¼ b, J. Reine Angew.
Math. 1908, 289 (1908).

[92] F. Hirzebruch, Über vierdimensionale Riemannsche Flä-
chen mehrdeutiger analytischer Funktionen von zwei
komplexen Veränderlichen, Math. Ann. 126, 1 (1953).

[93] O. Riemenschneider, Deformationen von Quotientensin-
gularitäten (nach zyklischen Gruppen), Math. Ann. 209,
211 (1974).

[94] M. Hubner, D. R. Morrison, S. Schafer-Nameki, and Y.-N.
Wang, Generalized symmetries in F-theory and the top-
ology of elliptic fibrations, SciPost Phys. 13, 030 (2022).

[95] M. Del Zotto, J. J. Heckman, A. Tomasiello, and C. Vafa,
6d conformal matter, J. High Energy Phys. 02 (2015) 054.

[96] J. J. Heckman, More on the matter of 6D SCFTs, Phys.
Lett. B 747, 73 (2015).

[97] F. Apruzzi, M. Fazzi, J. J. Heckman, T. Rudelius, and H. Y.
Zhang, General prescription for global Uð1Þ’s in 6D
SCFTs, Phys. Rev. D 101, 086023 (2020).

[98] M. Cvetič, G. Shiu, and A. M. Uranga, Chiral four-
dimensional N ¼ 1 supersymmetric type 2A orientifolds
from intersecting D6 branes, Nucl. Phys. B615, 3 (2001).

[99] M. Cvetič, G. Shiu, and A.M. Uranga, Chiral type II
orientifold constructions as M theory on G(2) holonomy
spaces, in Proceedings of the 9th International Conference
on Supersymmetry and Unification of Fundamental Inter-
actions (SUSY01) (2001), pp. 317–326, arXiv:hep-th/
0111179.

[100] M. Cvetič, G. Shiu, and A. M. Uranga, Three Family
Supersymmetric Standard—Like Models from Intersecting
Brane Worlds, Phys. Rev. Lett. 87, 201801 (2001).

CVETIČ, HECKMAN, HÜBNER, and TORRES PHYS. REV. D 106, 106003 (2022)

106003-38

https://arXiv.org/abs/hep-th/0502027
https://doi.org/10.1016/j.nuclphysb.2005.10.035
https://doi.org/10.1002/prop.201500048
http://library.msri.org/books/gt3m/PDF/13.pdf
http://library.msri.org/books/gt3m/PDF/13.pdf
http://library.msri.org/books/gt3m/PDF/13.pdf
http://library.msri.org/books/gt3m/PDF/13.pdf
https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-preprint.pdf
https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-preprint.pdf
https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-preprint.pdf
https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-preprint.pdf
https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-preprint.pdf
https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-preprint.pdf
https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-preprint.pdf
https://arXiv.org/abs/q-alg/9708021
https://doi.org/10.1007/JHEP09(2017)147
https://doi.org/10.1007/JHEP09(2017)147
https://arXiv.org/abs/1705.05836
https://arXiv.org/abs/1705.05836
https://doi.org/10.1007/JHEP04(2018)103
https://doi.org/10.1007/JHEP04(2018)103
https://doi.org/10.1007/JHEP05(2019)187
https://doi.org/10.1007/JHEP05(2019)187
https://doi.org/10.21468/SciPostPhys.6.5.052
https://doi.org/10.1016/j.physletb.2019.135077
https://doi.org/10.1007/JHEP11(2019)068
https://doi.org/10.1007/JHEP11(2019)068
https://doi.org/10.1007/JHEP03(2020)052
https://doi.org/10.1007/JHEP03(2020)052
https://doi.org/10.1007/JHEP08(2020)153
https://doi.org/10.1007/JHEP08(2020)153
https://doi.org/10.1007/JHEP12(2020)151
https://doi.org/10.1017/S0305004100042845
https://doi.org/10.1017/S0305004100042845
https://doi.org/10.1016/S0370-2693(96)01215-4
https://doi.org/10.1016/S0370-2693(96)01215-4
https://doi.org/10.1016/S0550-3213(96)00592-5
https://doi.org/10.1016/S0550-3213(96)00592-5
https://doi.org/10.1016/S0550-3213(97)00281-2
https://doi.org/10.1016/S0550-3213(97)00281-2
https://doi.org/10.1007/BF01429212
https://doi.org/10.1088/1126-6708/2009/09/052
https://doi.org/10.1088/1126-6708/2009/09/052
https://doi.org/10.1007/JHEP08(2012)034
https://doi.org/10.1007/JHEP08(2012)034
https://doi.org/10.1016/0550-3213(96)00172-1
https://doi.org/10.1016/0550-3213(96)00172-1
https://doi.org/10.1016/0550-3213(96)00242-8
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/S0550-3213(97)00280-0
https://doi.org/10.1016/S0550-3213(97)00280-0
https://doi.org/10.1007/JHEP05(2014)028
https://doi.org/10.1007/JHEP06(2015)017
https://doi.org/10.1002/prop.201500024
https://doi.org/10.1002/prop.201500024
https://doi.org/10.1007/JHEP08(2018)138
https://doi.org/10.1007/JHEP08(2018)138
https://doi.org/10.1103/PhysRevD.93.086002
https://doi.org/10.1515/crll.1908.133.289
https://doi.org/10.1515/crll.1908.133.289
https://doi.org/10.1007/BF01343146
https://doi.org/10.1007/BF01351850
https://doi.org/10.1007/BF01351850
https://doi.org/10.21468/SciPostPhys.13.2.030
https://doi.org/10.1007/JHEP02(2015)054
https://doi.org/10.1016/j.physletb.2015.05.046
https://doi.org/10.1016/j.physletb.2015.05.046
https://doi.org/10.1103/PhysRevD.101.086023
https://doi.org/10.1016/S0550-3213(01)00427-8
https://arXiv.org/abs/hep-th/0111179
https://arXiv.org/abs/hep-th/0111179
https://doi.org/10.1103/PhysRevLett.87.201801


[101] R. Blumenhagen, M. Cvetič, P. Langacker, and G. Shiu,
Toward realistic intersecting D-brane models, Annu. Rev.
Nucl. Part. Sci. 55, 71 (2005).

[102] F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz, and C. Vafa,
A geometric unification of dualities, Nucl. Phys. B628, 3
(2002).

[103] D. S. Freed, Dirac charge quantization and generalized
differential cohomology, Surv. Diff. Geom. 7, 129
(2002).

[104] M. J. Hopkins and I. M. Singer, Quadratic functions in
geometry, topology, and M theory, J. Diff. Geom. 70, 329
(2005).

[105] D. S. Freed, G. W. Moore, and G. Segal, Heisenberg
groups and noncommutative fluxes, Ann. Phys. (Amster-
dam) 322, 236 (2007).

[106] D. S. Freed, G. W. Moore, and G. Segal, The uncertainty of
fluxes, Commun. Math. Phys. 271, 247 (2007).

[107] J. Simons and D. Sullivan, Axiomatic characterization of
ordinary differential cohomology, J. Topol. 1, 45 (2008).

[108] J. Davighi, B. Gripaios, and O. Randal-Williams, Differ-
ential cohomology and topological actions in physics,
arXiv:2011.05768.

[109] A. D. Shapere and C. Vafa, BPS structure of Argyres-
Douglas superconformal theories, arXiv:hep-th/9910182.

[110] P.-S. Hsin and H. T. Lam, Discrete theta angles, sym-
metries and anomalies, SciPost Phys. 10, 032 (2021).

[111] S. Kachru and J. McGreevy, M theory on manifolds of
G(2) holonomy and type IIA orientifolds, J. High Energy
Phys. 06 (2001) 027.

[112] P. S. Aspinwall and D. R. Morrison, Point—like instantons
on K3 orbifolds, Nucl. Phys. B503, 533 (1997).

[113] J. J. Heckman, T. Rudelius, and A. Tomasiello, 6D RG
flows and nilpotent hierarchies, J. High Energy Phys. 07
(2016) 082.

[114] J. J. Heckman, T. Rudelius, and A. Tomasiello, Fission,
fusion, and 6D RG flows, J. High Energy Phys. 02 (2019)
167.

[115] D. D. Frey and T. Rudelius, 6D SCFTs and the classi-
fication of homomorphisms ΓADE → E8, Adv. Theor.
Math. Phys. 24, 709 (2020).

[116] M. Cvetič, M. Dierigl, L. Lin, and H. Y. Zhang, One loop
to rule them all: Eight and nine dimensional string vacua
from junctions, Phys. Rev. D 106, 026007 (2022).

[117] M. Del Zotto, J. Oh, and Y. Zhou, Evidence for an algebra
of G2 instantons, J. High Energy Phys. 08 (2022) 214.

[118] P. O. Ludl, Comments on the classification of the finite
subgroups of SU(3), J. Phys. A 44, 255204 (2011); 45,
069502(E) (2012).

0-FORM, 1-FORM, AND 2-GROUP SYMMETRIES VIA … PHYS. REV. D 106, 106003 (2022)

106003-39

https://doi.org/10.1146/annurev.nucl.55.090704.151541
https://doi.org/10.1146/annurev.nucl.55.090704.151541
https://doi.org/10.1016/S0550-3213(02)00078-0
https://doi.org/10.1016/S0550-3213(02)00078-0
https://doi.org/10.4310/SDG.2002.v7.n1.a6
https://doi.org/10.4310/SDG.2002.v7.n1.a6
https://doi.org/10.4310/jdg/1143642908
https://doi.org/10.4310/jdg/1143642908
https://doi.org/10.1016/j.aop.2006.07.014
https://doi.org/10.1016/j.aop.2006.07.014
https://doi.org/10.1007/s00220-006-0181-3
https://doi.org/10.1112/jtopol/jtm006
https://arXiv.org/abs/2011.05768
https://arXiv.org/abs/hep-th/9910182
https://doi.org/10.21468/SciPostPhys.10.2.032
https://doi.org/10.1088/1126-6708/2001/06/027
https://doi.org/10.1088/1126-6708/2001/06/027
https://doi.org/10.1016/S0550-3213(97)00516-6
https://doi.org/10.1007/JHEP07(2016)082
https://doi.org/10.1007/JHEP07(2016)082
https://doi.org/10.1007/JHEP02(2019)167
https://doi.org/10.1007/JHEP02(2019)167
https://doi.org/10.4310/ATMP.2020.v24.n3.a4
https://doi.org/10.4310/ATMP.2020.v24.n3.a4
https://doi.org/10.1103/PhysRevD.106.026007
https://doi.org/10.1007/JHEP08(2022)214
https://doi.org/10.1088/1751-8113/44/25/255204
https://doi.org/10.1088/1751-8113/45/6/069502
https://doi.org/10.1088/1751-8113/45/6/069502

