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We investigate inhomogeneous chiral condensation under rotation considering finite size effects and
boundary conditions in the holographic QCD model. The rotational suppression effect determined by Ωr is
confirmed in the holographic model which is not influenced by the boundary conditions. For chiral
condensation at the center, it is found that under Neumann boundary condition the finite size exhibits two
opposite effects, i.e., catalysis at high temperatures and inverse catalysis at low temperatures. In contrast,
under Dirichlet boundary condition, the effect of finite size on condensation is inverse catalysis, and small
size induces a phase transition from inhomogeneous to homogeneous phase. The temperature-angular
velocity phase diagrams of QCD are obtained for different boundary conditions and sizes, and it is found
that the critical temperature decreases with angular velocity.
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I. INTRODUCTION

The rotating matter is widespread in nature and can
exhibit interesting properties and phenomena which are
different from those of ordinary matter. For Bose-Einstein
condensates or ultracold atom systems, the inhomogeneous
lattice patterns of quantized vortices are formed in a rapidly
rotating superfluid [1,2]. In astrophysics, a spinning milli-
second pulsar produces continuous gravitational waves,
which can be detected by LIGO and Virgo [3–5]. In
noncentral heavy-ion collision (HIC) experiments, relativ-
istic rotating quark-gluon plasmas (QGP) can be created
with about 104–105ℏ angular momentum [6–8], and the
well-known chiral vortical effect [9–11] and chiral vortical
wave [12] may occur in the chiral fluids due to anomalous
transport phenomena induced by rotation.
The QGP fireballs are produced by the HIC, which can

be under extreme environments such as high temperature
and/or density. For the noncentral collision case, the strong
magnetic field and the high vorticity can be produced in the
early stage of QGP, and the local angular velocity can reach
0.2 GeV with a relatively long lifetime according to the

transport model [13–15] and hydrodynamic [16] simula-
tions. It is known that magnetic fields yield interesting
effects on QCD phase diagram, e.g., magnetic catalysis
[17–19] and inverse magnetic catalysis [20–22]. It is
expected that analogous to magnetic fields, the rotation
will also have some impact on the chiral condensation thus
on the phase structure of QCD. As opposed to the magnetic
field, the rotation not only affects the fermion pairing but
also presses the matter toward the edge of the system. In
analogy to the Tolman-Ehrenfest effect in the noninertial
frame, the condensation under rotation is considered
inhomogeneous, for example, the formation of vortices
is a general feature in rotating trapped Bose-Einstein
condensates [23,24].
For inhomogeneous chiral condensation formed by

rotation, two factors are worth paying attention to: the
spatial distribution of rotational speed and the finite size
effect from the speed-of-light limit. Under the local density
approximation, the angular velocity Ω of the system can be
considered uniform, and in this case Refs. [25–29] studied
radial coordinate r dependent chiral condensation. These
literatures pointed out that the rotation can be interpreted as
an effective chemical potential, manifesting as a local
suppression effect. Except near the boundary, the variation
of condensation with radial direction is mild, which verifies
the soundness of the approximation. In addition, Ref. [30]
identified another inhomogeneous effect, namely, the
centrifugal-like effect, which appears only in the nonuni-
form-Ω case and comes from the contribution of ∂rΩ.
The temperature-rotation T − Ω phase diagram of chiral

condensation was explored as shown in Refs. [26,31].
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Similar to the temperature-chemical potential phase dia-
gram of QCD, the T −Ω diagram contains a new critical
end point located at TCEP ≃ 0.020 and ΩCEP ≃ 0.644 GeV,
which connects the crossover at high temperature and the
first-order phase transition at low temperature. In Ref. [26],
the effective model with four-fermion interactions was used
to describe the pairing phenomena and its corresponding
Hamiltonian includes the angular velocity Ω and angular
momentum J coupling terms Ω · J. Not surprisingly, the
acting of the angular velocity Ω and the chemical potential
μ are pretty comparable, owing to the similarity of the terms
Ω · J and the chemical potential-conserved charge coupling
term μ · N.
The finite size effect under rotation must be taken into

account, and the results are sensitive to the choice of
boundary conditions. The effect of finite size on phase
transitions without rotation has been extensively studied
[32–43]. As in Ref. [42], chiral condensation exhibits either
catalysis or inverse catalysis for different boundary con-
ditions and shows a quantized first-order phase transition in
the case of periodic boundary condition. The boundary
effects for the spatial profile of condensation under rotation
have been discussed in Ref. [27], and it was found that the
condensation shows as a plateau away from the boundary
and oscillating near the boundary.
The nonperturbative characteristics of QCD in the infra-

red (IR) region give a great challenge in solving hadron
physics and QCD phase structure. Various nonperturbative
methods, such as lattice QCD [44–47], Dyson-Schwinger
equations [48,49], and functional renormalization group
equations [50–52], are applied to solve this problem. At the
end of the 20th century, the discovery of the anti–de Sitter/
conformal field theory (AdS=CFT) correspondence or
gauge/gravity duality [53–55] provided a new insight for
handling nonperturbative problems. According to the holo-
graphic principle, a D-dimensional field theory is dual to
the (Dþ 1)-dimensional gravitational theory, and the extra
dimensions can be understood as renormalization group
flows [56]. Starting from string theory, various top-down
models, such as the D3 −D7 model [57], the Witten-Sakai-
Sugimoto model [58,59], and the STU model [60–62] have
been widely studied to detect the properties of strongly
coupled theories. Another method known as bottom-up
approach, such as the hard-wall model [63,64], the soft-
wall model [65], the Gubser model [66–69], the improved
holographic QCD model [70–72], the refined model [73],
the Dudal model [74], and the dynamical holographic QCD
model (DhQCD) [75–78] have extensively studied hadron
spectra, thermodynamic and transport properties of QCD
matter, and QCD phase transitions.
There are usually three ways to introduce rotation effects

in holography as follows. The first is to study it in the
rotating Kerr black hole background as in Refs. [79–83].
The second is to do a coordinate transformation to a
static black hole as in Refs. [84–87]. The confinement/

deconfinement phase transition of QCD under rotation is
studied in this way in Refs. [88,89]. The third one is to
introduce rotation in the gauge field and solve it under the
probe approximation, as in Refs. [90–94]. In this paper, the
third scenario is chosen since the chiral phase transition of
QCD under rotation is investigated.
The paper is organized as follows. First, the five-dimen-

sional holographic model is introduced in Sec. II. Next, the
profile of chiral condensation under rotation is investigated
in Sec. III. Again, the effect of finite size on condensation
is considered in Sec. IV. Then, the temperature-angular
velocity phase diagram is obtained in Sec. V. Finally, a
short summary and discussion is presented in Sec. VI.

II. 5D SETUP

The soft wall AdS/QCD model [65] offers a good
scenario to study the chiral phase transition, and it is quite
convenient to extend the system to study the transition
under rotation. This holographic model could successfully
describe the chiral first-order phase transition, second-
order phase transition, and crossover, e.g., as shown in
Refs. [95–97], by mapping a complex matrix-valued scalar
field Xαβ to the 4D operator hqαqαi, with α, β the flavor
indexes. In the model, the phase transition is realized by
adding nonlinear terms in the potential and introducing a
proper profile of the dilaton field Φ. Since the rotation
destroys spatial homogeneity, in principle, the metric and
fields should depend on the four-dimensional spacetime
coordinates xμ. However, due to the complexity of the full
numerical solution of general relativity, one might take the
probe approximation, i.e., neglecting the backreaction to
the background metric and considering the rotational effect
on the flavor sector only. Furthermore, we would assume
that the rotating axis is fixed. Then, it is natural to take the
cylindrical coordinate.
Taking the above consideration, we take the AdS-

Schwarzschild metric as the following:

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dr2 þ r2dθ2 þ dx23

�
; ð1Þ

where L is the AdS radius, and fðzÞ ¼ 1 − ð zzhÞ4 is the
blackening factor with the black hole horizon zh. In the case
of flat boundary, L will be cancelled in the equation of
motion, so we set it to be 1. According to the holographic
dictionary, the temperature of the 4D system is mapped to
the Hawking temperature of the background black hole,
i.e., T ¼ 1

πzh
. Here we take the notation in which z is the

fifth dimension, x3 is the direction of the angular velocityΩ
and r is the distance to the rotating axis.
One of the main advantages of the soft wall AdS/QCD

model is that it promotes the 4D global SUðNfÞ × SUðNfÞ
chiral symmetry to a 5D gauge symmetry and the map of
the 4D operators to the 5D field contents is clear in this
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way. It could also be extended by adding an extra Uð1Þ
to consider the full global symmetry Uð1Þ × SUðNfÞ×
SUðNfÞ. The conserved current Oa

μ ¼ hqγμτaqi (with τa

the generator of the group considered) of the 4D symmetry
would be mapped to the corresponding gauge field
Aa
μðz; xÞ, though they are usually neglected when consid-

ering the medium background only. Different from the
static equilibrium, when considering a rotating system, it is
quite natural to expect nonvanishing currents in the
medium. Here, for simplicity, we focus on theUð1Þ current.
Finally, the probe action is given as

SM ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p
e−ΦðzÞ

�
Tr½ðDMXÞ†ðDMXÞ

þ VXðjXjÞ� þ
1

4
FMNFMN

�
; ð2Þ

where g is the determinant of metric, ΦðzÞ is the dilaton
field, the covariant derivative is defined as DMX ¼
∂MX − iAMX, and the field strength is written as
FMN ¼ ∂MAN − ∂NAM. In this work, we will focus on
the scalar background and Uð1Þ current, so the SU(2)
gauge field in the original soft wall model has been
neglected. Furthermore, the nonvanishing component of
the Uð1Þ gauge field AM, which is dual to the current
operator Oμ ¼ hq̄γμqi, is taken to the time component At

and the polar orientation component Aθ. Since they
describes the (local) charge density and the polar orienta-
tion current Oθ ¼ hq̄γθqi, which is expected to be nonzero
in a rotating system.
According to Refs. [95,96], the chiral phase transition

can be described by the following form of dilaton field

ΦðzÞ ¼ −μ1z2 þ ðμ1 þ μ0Þz2 tanhðμ2z2Þ: ð3Þ

Following Refs. [75,76,95,96], the values of the three para-
meters μ0, μ1, μ2 would be taken as μ0 ¼ ð0.43 GeVÞ2;

μ1 ¼ ð0.83GeVÞ2; μ2 ¼ ð0.176GeVÞ2, by fitting the Regge
slopes of light mesons, the vacuum value of the condensate
and the transition temperature of the chiral phase transition.
The spontaneous breaking of the SUðNfÞL × SUðNfÞR

symmetry to the SUðNfÞV subgroup is realized by the
nonvanishing vacuum expectation value X0 ¼ χffiffiffiffiffiffi

2Nf

p INf×Nf

of the complex scalar field X, with number of flavors Nf

and identity matrix I. In this work, we would focus on the
case with Nf ¼ 2. According to the AdS=CFT dictionary,
the UV asymptotic behavior of the scalar field χ has the
form mqζzþ � � � þ σ

ζ z
3 with quark mass mq, quark con-

densation σ and the normalization constant ζ ¼
ffiffi
3

p
2π [98]. In

the chiral limitmq ¼ 0, the potential term VðχÞ of the scalar
field determines transition order of the phase transition,
which could be first or second order. Therefore, the
following potential term VðχÞ is considered in the paper:

VðχÞ≡ Tr½VXðjXjÞ� ¼
m2

5

2
χ2 þ υ3χ

3 þ υ4χ
4; ð4Þ

and the phase transition is implemented by selecting
the appropriate parameters. In the potential, the five-
dimensional mass square is m2

5 ¼ −3, based on the holo-
graphic dictionary, while a nonzero value of the cubic
coupling υ3 in Eq. (4) yields the first-order phase transition.
Moreover, the quartic coupling υ4 in Eq. (4) determines
the value of the quark condensation at zero temperature.
In the paper, as in Refs. [95,96], two cases are chosen as
ðυ3; υ4Þ ¼ ð0; 8Þ and ðυ3; υ4Þ ¼ ð−3; 8Þ, where the first one
generates a second-order phase transition and the last one
gives a first-order phase transition in the chiral limit.
By taking proper values of the model parameters and

solving the equation of motion, one could obtain the chiral
condensate as a function of temperature. The panel (a) and
panel (b) of Fig. 1 show the results for ðυ3; υ4Þ ¼ ð−3; 8Þ
and ðυ3; υ4Þ ¼ ð0; 8Þ, respectively. In Fig. 1(a), the purple

(a) (b)

FIG. 1. The chiral condensation as a function of temperature T with the scalar potential in Eq. (4). In panel (a), the parameters are
chosen as ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ, where the blue solid line, red dashed line, and purple dashed line represent the thermodynamic
stable, metastable, and unstable states of the first-order phase transition, respectively. The results of the second-order phase transition
and crossover are shown in panel (b) with parameters of ðυ3; υ4Þ ¼ ð0; 8Þ, where the black solid and black dashed lines represent the
quark masses are 0 and 7 MeV, respectively.
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dashed line indicates the metastable solution and the red
dashed line denotes the unstable solution. In Fig. 1(b), the
difference between the black solid and dashed lines is the
selection of the quark masses, which are 0 and 7 MeV,
respectively. It can be shown that the critical temperature
Tc ≃ 173.4 MeV for the first-order phase transition, and
Tc ≃ 150 MeV for the second-order phase transition and
crossover. For Fig. 1, they are specifically described in
Refs. [95,96] and will not be further clarified here.
Considering a rotating system in which the direction of

angular velocity Ω is fixed, both the scalar field χ and the
gauge field AM depend on the fifth dimensional coordinate
z and radial coordinate r, yet independent of the polar
coordinate θ and height coordinate x3, i.e.,

χ ¼ χðz; rÞ; AM ¼ AMðz; rÞ: ð5Þ

Here, we consider a rotating system, which is stable and
independent of time. In such a status, one might expect a
rotation symmetry in the θ direction. Therefore, we have
assumed that both the scalar and gauge fields do not depend
on the polar coordinate θ. In addition, for simplicity, we
take the length of the system in x3 direction as infinity, and
all the fields are homogeneous in this direction. (Of course
for a real system, this is not true and we will leave the full
study in the future.) In the Az ¼ 0 gauge, the only nonzero
component of the gauge field is Aθ, which is dual to the
polar current operator hq̄γθqi. To maintain the conservation
of the vector current jμ ¼ q̄γμq of the system, q̄γrq ¼ 0
and q̄γx3q ¼ 0 are chosen, i.e., the system is in the
steady state and no radial and vertical flows exist. And
the nonzero polar direction component Aθ is an effective
polarization term Ω⃗ · J⃗ in the dual field theory with angular
momentum J⃗. Therefore, the equations of motion of the
action Eq. (2) are

∂zðf∂zχÞ − f

�
1

z
þΦ0

�
∂zχ þ ∂

2
rχ þ

∂rχ

r

þ
�
3

z2
þ f0

z
−
3f
z2

−
fΦ0

z
−
3υ3χ

z
− 4υ4χ

2 −
A2
θ

r2

�
χ ¼ 0;

ð6Þ

∂zðf∂zAθÞ − f

�
1

z
þΦ0

�
∂zAθ þ ∂

2
rAθ −

∂rAθ

r
− χ2Aθ ¼ 0;

ð7Þ

where χ is replaced by zχ.
As in Refs. [90–92,94], the appropriate boundary con-

ditions are chosen in the following form to solve the
equations of motion. At the AdS conformal boundary, the
boundary conditions of the χ and Aθ fields are

χjz¼0 ¼ mqζ; Aθjz¼0 ¼ ΩðrÞr2; ð8Þ

where the angular velocity ΩðrÞ is not necessarily constant,
but spatially dependent. In general,ΩðrÞmight be solved in a
full backreaction model when choosing proper initial con-
ditions. However, since we are working in probe limit due to
the complexity of getting the full solution, we will take
certain phenomenological configurations of ΩðrÞ instead.
In this paper, three possible cases of angular velocity

configurations ΩðrÞ are investigated: (i) Ω ¼ constant;
(ii) ΩðrÞ ¼ ω0ðexp½c0ðr − r0Þ2� þ 1Þ−1; (iii) ΩðrÞ ¼
ω0ðexp½ðr − r0Þ� þ 1Þ−1. The cases (ii) and (iii) are from
Ref. [30], where ω0, r0 and c0 are parameters. Since the
selection of parameters does not changes the qualitative
conclusions, the parameters are selected as ω0 ¼ 0.18 GeV,
c0 ¼ 1.5GeV2 for case (ii) and ω0 ¼ 0.01 GeV, r0 ¼
10GeV−1 for case (iii). Among them, case (i) considers
the rigid rotation of the system with a constant angular
velocity; case (ii) is a vortexlike angular velocity distribu-
tion; case (iii) is an angular velocity distribution concen-
trated at the center. For the sake of causality, the polar
direction is restricted to a finite size, i.e., the radius R of the
system. Therefore, at the edges of the system, the boundary
conditions are taken as

∂rχjr¼R ¼ 0 ðNeumannÞ or χjr¼R ¼ 0 ðDirichletÞ;
Aθjr¼R ¼ ΩðRÞR2; ð9Þ
where χ is regarded as two possible boundary conditions,
i.e., Neumann or Dirichlet boundary condition. The
Neumann boundary condition is chosen such that the order
parameter is independent of r in the region away from the
angular velocity distribution. If the system is bounded in a
box, the Dirichlet boundary condition can be taken into
account. At the center of the polar direction, the following
boundary conditions are considered

∂rχjr¼0 ¼ 0; Aθjr¼0 ¼ 0; ð10Þ
which guarantee the smoothness of the field configuration
at the center. With the above equations of motion and
boundary conditions, the profile of the chiral condensation
under rotation can be obtained.
By comparing the free energy of the inhomogeneous and

homogeneous phases, the steady state of the system can be
determined. According to the holographic principle, the
partition functions of the gravitation and the boundary field
theory are equivalent ZQCD ¼ Zgravity, so the free energy of
the system can be extracted from the on-shell action

F ¼
Z

R

0

dr
Z

zh

0

dz
ffiffiffiffiffiffi
−g

p
e−Φ

�
−
1

2
υ3χ

3 − υ4χ
4 þ 1

4
F2

�

−
Z

zh

0

dz
1

2

� ffiffiffiffiffiffi
−g

p
e−Φχ∂rχÞjR0

−
Z

R

0

dr
1

2
ð ffiffiffiffiffiffi

−g
p

e−Φχ∂zχjzh0
�
: ð11Þ
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III. CHIRAL CONDENSATION UNDER ROTATION

In this section, the spatial profile of the chiral conden-
sation under rotation is discussed. As mentioned in the
previous section, due to the rotation of the system, nonzero
polar orientation current hq̄γθqi is induced, which further
leads to spatially dependent chiral condensation. It is worth
stating that different spatial distribution of angular velocity
ΩðrÞ will lead to different configurations of chiral con-
densation. Therefore, the three cases (i),(ii), and (iii) intro-
duced before are considered, i.e., uniform angular velocity,
vortexlike distribution of rotational speed and centered
distribution. Of course, the selection of parameters for cases
(ii) ΩðrÞ ¼ ω0ðexp½1.5ðr − r0Þ2� þ 1Þ−1 and (iii) ΩðrÞ ¼
ω0ðexp½ðr − r0Þ� þ 1Þ−1 need to satisfy the causality con-
straint. Again as a consequence of the causality require-
ment, the system is restricted to the radius R. Hence, in
this section, the radius is fixed to the typical quark gluon
plasma scale 4 fm, i.e., 20 GeV−1, so as to avoid the finite
size effect, which will be discussed in the next section.
Furthermore, two possible boundary conditions for the
scalar field χ as stated in Eq. (9) are illustrated in Secs. III A
and III B, respectively.

A. Neumann boundary condition

In this subsection, chiral condensation as a function
of radial coordinate r is studied. Since it is insignificant
whether the phase transition is first-order, second-order or
crossover on the qualitative results, the example is illus-
trated in the form of the potential term Eq. (4) with the
parameter ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ chosen.
For the temperature T ¼ 170 MeV and the uniform

angular velocity Ω ¼ 0.01 GeV, the configuration of the
condensation σðrÞ in space is shown in Fig. 2. Among
them, the left panel is a three-dimensional plot, while the
right two-dimensional plot with the horizontal coordinate r
from 0 to 4 fm. As can be seen in the figure, the
condensation is largest at the center and decreases with

increasing radial coordinate r, similar to a swelling. The
condensation has a maximum value of 0.0626 GeV3 ≃
ð0.397GeVÞ3 at the center, and it gradually decreases to
0.0564 GeV3 ≃ ð0.383GeVÞ3 with increasing r. It is worth
noting that even at the center, the value of the condensation
does not reach the nonrotational value 0.0628 GeV3 ≃
ð0.398GeVÞ3. It arises from the combined effect of rotation
and finite size of the system. For the effect of finite size,
it will be explained in the next section. Furthermore, the
concrete shape of the condensation depends on the form of
the angular velocity function and the boundary conditions
of the scalar field at the edges. The Neumann boundary
condition (NBC) is chosen here, while the Dirichlet
boundary condition (DBC) will be shown in the next
subsection.
The deformation of condensation by different dis-

tributions of angular velocity is shown in Fig. 3(a) with
the case (ii) ΩðrÞ ¼ 0.18ðexp½1.5ðr − 3Þ2� þ 1Þ−1 and case
(iii) ΩðrÞ ¼ 0.01ðexp½ðr − 10Þ� þ 1Þ−1. The dashed and
solid lines in the figure indicate the variation of angular
velocity and condensation with radial coordinate r, respec-
tively. From the red line, it can be seen that the angular
velocity takes a maximum value at radial r ¼ 0.6 fm,
meanwhile the condensation obtains a minimum value.
At the center and the edge R, the angular velocity tends to 0
and the condensation goes to a stable value. The results
suggest that for the case (ii), the bigger the angular velocity,
the more noticeable the suppression of condensation, in
agreement with Ref. [30]. This conclusion can be seen from
A2
θ

r2 in Eq. (6). As the angular velocity increases, the term
A2
θ

r2

becomes more crucial, which is equivalent to increasing the
five-dimensional mass m2

5 and thus reducing the chiral
condensation. In Ref. [30], it pointed out that it is Ωr
instead of the angular velocity Ω that determines the
suppression effect, and this conclusion is also reproduced
in the holographic model. As shown in Fig. 3(b), the
condensation profile for case (ii) with different parameters
r0 are exhibited. It can be seen that although the distribution

(a) (b)

FIG. 2. 3D and 2D plots of chiral condensation as a function of radial r at T ¼ 170 MeV and Ω ¼ 0.01 GeV with NBC and
ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ. In (b), the black line indicates the value of condensation at the same temperature without rotation and
finite size.
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of the angular velocity is similar except for shifting the
center, the condensation decreases significantly as the
radial r becomes larger. It can be further seen from

Eq. (6) that the term
A2
θ

r2 is converted to Ω2r2 when Aθ ≃
Ωr2 is considered, then it is Ωr rather than the angular
velocity Ω that increases the five-dimensional mass.
For the green line, the shape of the condensation with

radial coordinate r is similar to that of the red line, both
getting a minimum at a particular position and reaching a
stable value at the center and the edges. The difference is
that the angular velocity in case (iii) is approximately
nonzero constant near the center, so the suppression effect
is similar to case (i). However, near the edges, the green line
converges to the red line. It should be noted that this result
of case (iii) is not consistent with Ref. [30], where the
enhancement of condensation by the first derivative of the
angular velocity is not exhibited in the holographic model.
In the following, returning to the case of uniform angular

velocity, the role of different temperatures and angular
velocities on condensation is investigated. The shape of
condensation with radial r is taken in Fig. 4(a) for fixing the
angular velocity to 0.01 GeVand varying the temperature to
110, 130, 150, 170, and 190 MeV. It can be seen from the
figure that the shape of the condensation tends to be the same
at different temperatures and that the change in condensation
is small as r increases. The value at the center increases

from 0.0626 GeV3 ≃ ð0.397GeVÞ3 to 0.094 GeV3 ≃
ð0.454GeVÞ3 as the temperature decreases from 170 to
110 MeV. And for the red line in the figure, i.e., when the
temperature reaches 190 MeV, the system enters into the
homogeneous chiral symmetric phase. Consequently, it can
be expected that as the temperature increases, there exists a
certain critical temperature Tc, across which the system will
enter the homogeneous chiral restoration state and the
condensation will no longer depend on space. Further, at
least for first- and second-order phase transitions, the phase
transition can be defined in this inhomogeneous phase, i.e.,
when the condensation at the full space or center enters into
chiral restoration, and thus the T −Ω phase diagram of the
chiral condensation can be drawn.
Here, fixing the temperature at 170 MeVand varying the

angular velocity at 0.001, 0.002, 0.005, 0.01, and 0.05 GeV,
the variation of the shape of the condensation with the
angular velocity is explored and the results are shown in
Fig. 4(b). It can be obtained that the increasing angular
velocity suppresses the condensation, especially at the
edges. As the angular velocity increases from 0.001 to
0.01 GeV, the change at the center is negligible and the con-
densation decreases from 0.0626 GeV3 ≃ ð0.397GeVÞ3 to
0.0564 GeV3 ≃ ð0.383GeVÞ3 at the edges. The greater
angular velocity means greater deformation for condensa-
tion. Similar to the chemical potential, the angular velocity

(a) (b)

FIG. 4. The chiral condensation as a function of radial coordinate rwith NBC and ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ. Here, Fig. (a) and Fig. (b)
indicate the fixed angular velocity Ω ¼ 0.01 GeV and temperature T ¼ 170 MeV, respectively.

(a) (b)

FIG. 3. The chiral condensation as a function of radial r at T ¼ 170 MeVwith NBC and ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ, where the solid and
dashed lines denote the profile of the condensation and the distribution of the angular velocity, respectively. In (a), the three cases of
angular velocity distribution are (i) Ω ¼ 0.01, (ii) ΩðrÞ ¼ 0.18ðexp½1.5ðr − 10Þ2� þ 1Þ−1, and (iii) ΩðrÞ ¼ 0.01ðexp½ðr − 10Þ� þ 1Þ−1.
(b) Case (ii) ΩðrÞ ¼ 0.18ðexp½1.5ðr − r0Þ2� þ 1Þ−1 with r0 ¼ 0.6, 1, 1.6, and 2 fm.
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plays the inverse catalysis effect. It is worth remarking here
that simply reducing the angular velocity does not allow the
condensation value to reach the no-rotation case, because
the finite size effect also remains. And for the red line in the
figure, i.e., when the angular velocity reaches 0.05 GeV, the
system enters the homogeneous chiral restoration phase
and the value of condensation in space is 0, which is
analogous to the previous assertion.

B. Dirichlet boundary condition

In this subsection, chiral condensation as a function of
radial r is discussed when the scalar field at the edge takes
the DBC. Similar to the previous subsection, The potential
term Eq. (4) with the parameters ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ is
selected as an example for illustration.
For a temperature of 170 MeVand an angular velocity of

0.01 GeV, the 3D and 2D plots of the spatial profile of the
condensation are shown in Fig. 5. From the figure, it can be
observed that the value of condensation changes very
slowly at radial coordinate less than 2 fm, while at radial
coordinate greater than 2 fm, it decreases rapidly until 0.
The shape of the condensation on the space is similar
to a drum, which is distinct from the NBC. At the center,

the value of condensation is about 0.0625 GeV3 ≃
ð0.396GeVÞ3, which is comparable to the results of
NBC. Again, this phenomenon arises from the finite size
effect of the system. Therefore, for angular velocity is not
so large, the value of condensation near the center does not
depend significantly on the boundary conditions at the
edge. The plateau profile of condensation near the center is
consistent with Ref. [27], further demonstrating the validity
of the local density approximation, while holography does
not find oscillating behavior at the edges R.
The deformation of the angular velocity function on the

condensation when the parameters of cases (ii) and (iii) are
chosen as in the previous subsection is shown in Fig. 6.
For the red line, the condensation yields a local minimum at
the maximum angular velocity, but it tends to 0 near the
edge R. This is not essentially different from the conclusion
of the NBC, and the behavior at the edges is driven by
the boundary condition. As can be seen in Fig. 6(b), the
suppressive effect of Ωr is also seen in DBC, consistent
with NBC. For the green line, its behavior near the center is
similar to that of the blue line, while near the edge is similar
to that of the red line. It is worth mentioning that the
centrifugal-like effect of condensation does not appear in
the holographic model for either Neumann or Dirichlet

0

0.02

0.04

0.06

(a) (b)

FIG. 5. 3D and 2D plots of chiral condensation as a function of radius r at T ¼ 170 MeV and Ω ¼ 0.01 GeV with DBC and
ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ. (b) The black line indicates the value of condensation at the same temperature without rotation and finite size.

(a) (b)

FIG. 6. The chiral condensation as a function of radial r at T ¼ 170 MeVwith DBC and ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ, where the solid and
dashed lines denote the profile of the condensation and the distribution of the angular velocity, respectively. In (a), the three cases of
angular velocity distribution are (i) Ω ¼ 0.01, (ii) ΩðrÞ ¼ 0.18ðexp½1.5ðr − 10Þ2� þ 1Þ−1, and (iii) ΩðrÞ ¼ 0.01ðexp½ðr − 10Þ� þ 1Þ−1.
(b) Case (ii) ΩðrÞ ¼ 0.18ðexp½1.5ðr − r0Þ2� þ 1Þ−1 with r0 ¼ 0.6, 1, 1.6, and 2 fm.
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boundary conditions, inconsistent with Ref. [30]. The
possible reason for this is that the introduction of rotation
in the holographic model comes from the gauge field,
which acts analogous to the chemical potential and there-
fore causes the system to tend to chiral restoration, reducing
the value of condensation.
The condensation functions for different temperatures

at fixed angular velocity Ω ¼ 0.01 GeV are displayed
in Fig. 7(a). As we can see in the figure, the value at the
center increases from 0.0625 GeV3 ≃ ð0.396GeVÞ3 to
0.093 GeV3 ≃ ð0.453GeVÞ3 as the temperature decreases
from 170 to 110 MeV. The special feature is that the
“surface” of the “drum” condensation shrinks as the temper-
ature increases. The plateau surface is about 1.5 fm for a
temperature of 170 MeV, while the surface expands to 3 fm
for a temperature of 130 MeV. Therefore, it can be expected
that at 0 temperature, the condensation is approximately
“homogeneous” except near the edges. In turn, it can be
predicted that, similar to NBCs, DBCs also have phase
transitions, and their effects on theT −Ω phase diagramwill
be mentioned in Sec. V.
When the temperature is fixed at 170 MeV, condensation

with different angular velocities is shown in Fig. 7(b).
Similarly, the angular velocity does not change much for
condensation at the center, but the variation can reach
0.01 GeV3 near the edges. It is noteworthy that at an
angular velocity of 0.05 GeV, the system recovers to a state
of chiral symmetry, which is similar to the NBC.

IV. FINITE SIZE EFFECT

In the previous section, the chiral condensation under
rotation, including various angular velocities and temper-
atures, was discussed. There the size of the system was
fixed to R ¼ 4 fm ≃ 20GeV−1, which is comparable to the
size of the fireball created in the current experiments. As
mentioned above, in a rotating system, the size effect might
be important. The finite size effect should be considered
both physically and numerically. Numerically, we cannot
deal with infinitely large systems and necessarily introduce
finite size for calculation. Physically, the speed of light and

the actual size of the QGP require that the system be finite
sized. And, the chiral symmetry breaking can be impacted
by finite size effect. Also, the exact size of the fireball is
hard to be extracted. Thus, in this section, we will study the
finite-size effect on condensation. It is common knowledge
that the thermal and dense quark matter produced in heavy
ion collisions is bounded in a finite volume at the nuclear
scale. Consequently, it is highly essential to recognize the
effect of finite size on the QCD matter and phase structure,
which has been extensively studied during the past decades
[31–43,99]. As shown in the research of Ref. [42], under
suitable boundary conditions, the catalysis or inverse
catalysis of chiral symmetry breaking occurs as the size
of the system decreases. Of course, these studies did not
consider the inhomogeneous chiral condensation on the
spatial coordinate x. Therefore, the effect of finite size
on the spatially dependent condensation, induced by the
rotation of the system, would be an interesting issue.
The profile of chiral condensation under rotation has been

obtained in the holographic model. The results show that the
effect of rotation, similar to the chemical potential, is inverse
catalysis, regardless of NBC or DBC, while the boundary
conditions only affect the condensation near the edges.
Nevertheless, when finite size effects are included, different
boundary conditionswill produce different results, which are
also comparable to the NJL model. In the NJL model, as in
Ref. [42], periodic and antiperiodic boundary conditions
enhance symmetry breaking and restore chiral symmetry,
respectively, as the system size decreases. In this paper,
the possible numerical uncertainty comes from the choice
of boundary condition. Therefore, we chose two different
boundary conditions, i.e., the Neumann boundary condition
and Dirichlet boundary condition, which are usually used in
the literature. As to which result is correct, it can only be
answered by experiment. Therefore, in the following, NBC
andDBCwill be chosen to evaluate the effect of finite size on
the chiral condensation and phase structure.

A. Catalysis and inverse catalysis

In this subsection, the effect of finite size on the
condensation is investigated, considering NBC at the

(a) (b)

FIG. 7. The chiral condensation as a function of radial coordinate rwith DBC and ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ. Here, Fig. (a) and Fig. (b)
indicate the fixed angular velocity Ω ¼ 0.01 GeV and temperature T ¼ 170 MeV, respectively.
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edges. Here, the five different radii of the system are taken
into account as 1–5 fm, i.e., 5–25 GeV−1, and marked with
the colors red, orange, green, blue, and purple, respectively.
As in the previous section, the potential Eq. (4) with
ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ is exhibited as an example.
At an angular velocity of 0.01 GeV and a temperature

T ¼ 170 MeV close to the phase transition temperature Tc,
the condensation as a function of the radial coordinate r for
various sizes R is shown in Fig. 8(a). It can be seen from the
figure that the variation of radius R has little modification
on the condensation profile under NBC. As the size of the
system decreases, the condensation is enhanced both at the
center and the edges. Therefore, it can be concluded that
the decrease of the system radius catalyses the chiral
symmetry breaking, similar to the periodic boundary
condition in the NJL model. The enlarged portion of
Fig. 8(a) shows the value of condensation at the center
as a function of radius R. From Fig. 8(a) it can be obtained
that the catalysis effect of finite size is pretty weak
under NBC.
When the temperature of the system is apparently below

the critical temperature Tc, the catalysis effect of finite size
will be converted to inverse catalysis in case of NBC. At the
angular velocity of 0.01 GeV and temperature of 50 MeV,
the condensation as a function of the radial coordinate r
is plotted in Fig. 8(b). As can be seen in Fig. 8(b), the
condensation diminishes with the decrease of the system

size except near the edges. The behavior at the edges is
from the role of boundary conditions. For the enlarged
portion of Figs. 8(a) and 8(b), it is clear that at the center,
the condensation value of the smaller size is higher than that
of the larger size at high temperature, whereas the opposite
is true at low temperature. The condensation value at
the center becomes smaller as the system size decreases,
which is the opposite of what happens at high tempera-
ture. Furthermore, no matter the catalysis effect or inverse
catalysis effect of the finite size, they are quite weak under
NBC and have little change on the condensation value.
From the results in Fig. 8, it is found that for the

condensation at the center, the finite size exhibits two
totally opposite effects, i.e., catalysis at high temperature
and inverse catalysis at low temperature, in case of NBC.
It can be further deduced that the condensation value at
the center may strengthen or weaken as the system size
changes due to the combination of the two effects when the
temperature is neither high nor low.

B. Phase transition induced by finite size

In this subsection, the effect of finite size on chiral
condensation is studied with DBC at the edges. Instead of
the choices in the previous subsection, the five radii R are
selected here as 2.2, 2.4, 3, 4, and 5 fm. The reason for
such choices is that for the radius R ¼ 1 fm, the system
does not have inhomogeneous chiral condensation at the

(a) (b)

FIG. 8. The figures show the profiles of condensation for different radii with NBC, ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ and Ω ¼ 0.01. Among
them, (a) and (b) are at T ¼ 170 and T ¼ 50 MeV, respectively.

(b)(a)

FIG. 9. (a) The results of chiral condensation with different radii R, at T ¼ 170 MeV and Ω ¼ 0.01 GeV with DBC and
ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ. (b) The value of condensation at the center as a function of the radius R.
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temperature of 170 MeV and the angular velocity of
0.01 GeV with ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ.
The chiral condensation as a function of the radial co-

ordinate r with DBC is presented in Fig. 9. Figure 9(a)
shows the condensation of the five radii selected and
Fig. 9(b) gives the value of condensation at the center as
a function of radius R. From the figure, it can be concluded
that the condensation in all spaces diminishes as the size of
the system decreases and the value of it near the center has a
significant decrease when the radius of the system is less
than 3 fm. This suggests that, for DBC, the effect of finite
size on condensation is inverse catalysis. Thus, it can be
conjectured that when the system size is small enough, the
condensation will not have inhomogeneous solutions, and
the results of numerical calculations prove it. When setting
the radius R ¼ 1 fm, the condensation of the full space is 0,
i.e., the system is restored to the chiral symmetric phase. So
it can be further postulated that as the size decreases, the
system will suffer a phase transition from the inhomo-
geneous phase (its presence at a point in space where the
chiral condensation is not zero) to the homogeneous phase
(chiral symmetric phase).
This postulation that the reduction of the system size

induces a phase transition can be verified by comparing the
difference between the free energy of the inhomogeneous

and homogeneous phases. The free energy difference
between the two phases is shown in Fig. 10(c), and it
can be noted that the difference is positive with Rc ≲
2.8 fm and negative with Rc ≳ 2.8 fm. Therefore, the
homogeneous phase is more stable when the system size
is less than the critical size Rc ≃ 2.8 fm, and conversely, the
inhomogeneous phase is preferred. Since the condensation
is maximum at the center, the value here is chosen to
determine whether the system is in the symmetric phase.
The value of the condensation at the center is shown as a
function of the size R in Fig. 10(a), where the blue solid and
purple dashed lines indicate the stable and metastable
phases, respectively. When the parameters of the potential
term Eq. (4) are chosen as ðmq; υ3; υ4; Þ ¼ ð7 MeV; 0; 8Þ,
i.e., the case of crossover, the phase transition induced by
the finite size turns into crossover and the pseudocritical
size is around Rc ≃ 1 fm as in Fig. 10(b). Consequently, the
order of the phase transition induced by the finite size is
determined by the form of the potential term Eq. (4). For
the case where the potential parameters are the first-order
phase transition, the finite size induces a first-order phase
transition, and so forth. In summary, the system size R acts
similarly to the inverse of temperature 1=T, inducing a
phase transition from the inhomogeneous to the homo-
geneous phase.

(a) (b)

(c)

FIG. 10. (a) and (b) The results of chiral condensation at the center of the system as a function of radius R. Here, (a) shows the results
with ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ at T ¼ 170 MeV and Ω ¼ 0.01 GeV, while (b) is the results with ðmq; υ3; υ4Þ ¼ ð7 MeV; 0; 8Þ at
T ¼ 115 MeV, and Ω ¼ 0.01. (c) The difference in free energy between the inhomogeneous and homogeneous phases as a function of
radius R for ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ.
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V. PHASE DIAGRAM WITH THE ANGULAR
VELOCITY Ω

In this section, the phase diagram of chiral transition on
the temperature-angular velocity plane will be discussed. It
should be emphasized that the condensation values are
different in all points of the space due to the rotation of
the system. In order to study the T −Ω phase diagram,
following the previous section, the condensation value at
the center σr¼0 is chosen as the order parameter of the
system. In addition, it is known from the above that the
finite size has an impact on the phase diagram, especially
when the DBC is selected. Hence, the size of the system is
fixed to 2 or 4 fm, which are the typical sizes of the fire
balls created in the current heavy ion collisions, in order to
compare the finite size effect.
In Sec. III, it has been shown that with the parameters

ðmq; υ3; υ4Þ ¼ ð0;−3; 8Þ, when the temperature or angular
velocity increases to certain critical values, the inhomo-
geneous solutions becomes disfavored and the chiral
symmetry is restored everywhere. Thus, the system under-
goes the chiral phase transition at those critical values.
Further, the critical temperature Tc and the critical angular
velocityΩc of the phase transition can be determined by the
difference of the free energy between the inhomogeneous
and homogeneous phases. The free energy difference and
the condensation at the center as a function of temperature

T or angular velocity Ω are shown in Fig. 11. In particular,
Fig. 11(a) shows the condensation at the center as a
function of temperature T for Ω ¼ 0.01 GeV and R ¼
4 fm with NBC; Fig. 11(b) shows condensation at the
center as a function of angular velocity for T ¼ 170 MeV
and R ¼ 4 fm with NBC. And the free energy difference as
a function of temperature and angular velocity is shown
in Figs. 11(c) and 11(d), respectively. Here, the blue solid
and purple dashed lines denote the stable and metastable
phases, respectively. As can be seen from the figure, the
critical temperature Tc ≃ 172.5 MeV for Ω ¼ 0.01 GeV
drops about 1 MeV compared to that without rotation,
which is not a big modification. As for the fixed temper-
ature, the condensation at the center varies little for small
angular velocities and the system returns to homogeneous
phase when the critical angular velocityΩc ≃ 0.016 GeV is
reached.
When the parameters of the model are set to

ðmq; υ3; υ4Þ ¼ ð7 MeV; 0; 8Þ, the phase transition of the
chiral condensation at the center is also converted to
crossover and is shown in Fig. 12. Figure 12(a) shows
the condensation at the center as a function of temperature
at Ω ¼ 0.05 GeV and R ¼ 4 fm with NBC, and Fig. 12(b)
shows the condensation at the center as a function of
angular velocity at T ¼ 150 MeV and R ¼ 4 fm with
NBC. It is easy to see that σr¼0 decreases slowly at low
T and small Ω, and it decreases fast near the transition

(a) (b)

(c) (d)

FIG. 11. (a) and (b) The chiral condensation at the center as a function of temperature T or angular velocity Ω are shown. Here, the
solid blue line indicates the stable state while the purple dashed line denotes the metastable state. (c) and (d) The difference in free energy
between the inhomogeneous and homogeneous phases as a function of temperature T or angular velocity Ω.
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temperature, showing a typical behavior of crossover in a
narrow range of T orΩ. Usually, one can define the pseudo-
transition temperature where the slope reaches its maxi-

mum, i.e., d2σr¼0

dT2 or d2σr¼0

dΩ2 ¼ 0.
With the above discussion, for each temperature one can

get a critical Ω and the phase diagram of the chiral phase
transition in T −Ω space can be obtained. In heavy ion
collisions, the rotation of hot dense matter may have
measurable consequences for chiral symmetry restora-
tion/breaking. Therefore, the study of the T − Ω phase
diagram of QCD matter can demonstrate the possible
influences. In the case of Nf ¼ 2, the chiral phase transi-
tion from the lattice QCD simulation is crossover, so the
model parameters are chosen to be ðmq; υ3; υ4Þ ¼
ð7 MeV; 0; 8Þ in which the phase transition temperature
is close to 150 MeV and the vacuum value of σ is about
ð0.320 GeVÞ3. Furthermore, as previously discussed, the
finite size affects the phase diagram and phase structure, so
the radii of the system are chosen to be 4 and 2 fm for
comparison. In both cases, the value of the uniform angular
velocity is limited to 0.05 and 0.1 GeV, in order not to
violate the causality. The final results for the phase diagram
are shown in Fig. 13, where the red line and the blue line
correspond to the radii R ¼ 2 and R ¼ 4 fm, respectively.

In the holographic model, the boundary conditions of the
scalar field χ can be selected as NBC and DBC at the edges,
and the results are listed in Fig. 13 with dashed line and
dotted line, respectively. As can be seen from the figure,
the critical temperature would decrease with the angular
velocity, and such a T − Ω phase diagram is similar to the
T − μ phase diagram, which is also consistent with the
previous conclusion that the angular velocity is analogous
to the chemical potential. If the system size decreases, the
shifting of the phase boundary depends on the choice of
boundary conditions, for NBC the boundary line moves
outward, while for DBC the boundary line moves inward.
This is consistent with the effect of finite size on con-
densation for different boundary conditions, i.e., near the
critical temperature, NBC and DBC behave as catalysis
and inverse catalysis, respectively. For NBC, the phase
boundary line is slightly higher than the case of DBC. In
summary, the T −Ω phase diagrams are only slightly
different even when considering the boundary conditions
and system size. If we consider the angular velocity of
about 0.01 GeV produced by heavy ion collision, the
temperature of phase transition is about 128 MeV, which
shows a significant effect of the rotation.
In Ref. [26], the first-order phase transition occurs at low

temperature high angular velocity with critical end point
located at TCEP ≃ 0.02 and ΩCEP ≃ 0.644 GeV. Since the
phase structure depends on the radius R, to produce an
angular velocity of 0.65 GeVeither limit the system size to
less than 1.5 GeV−1 or consider the angular velocity of the
vortex configuration. For the former, the radius of the
system is so small that the finite size has a large impact on
the final result. For the latter, the uncertainty of the phase
diagram for different configurations cannot be estimated.
For these reasons, phase diagram for large angular velocity
is not included in this paper.

VI. CONCLUSION AND DISCUSSION

In this paper, the configuration of chiral condensa-
tion under rotation considering finite size and boundary

(a) (b)

FIG. 12. (a) and (b) The chiral condensation values at the center as a function of temperature T and angular velocity Ω, respectively,
with NBC and ðmq; υ3; υ4Þ ¼ ð7 MeV; 0; 8Þ.
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FIG. 13. The T − Ω phase diagram at fixed radius R is shown in
the figure. Here, the red and blue lines correspond to radii of
R ¼ 2 and 4 fm, respectively, and the dashed and dotted lines
represent NBC and DBC, respectively.

YIDIAN CHEN, DANNING LI, and MEI HUANG PHYS. REV. D 106, 106002 (2022)

106002-12



conditions, and the temperature-angular velocity phase
diagram are investigated and discussed in the holographic
QCD model. It is worth noting that our main purpose is to
qualitatively investigate the effect of rotation on chiral
condensation, and thus the final analysis is mainly quali-
tative. In the holographic model, the rotation always
exhibits a suppression effect determined by Ωr, which is
consistent with Ref. [30], while the centrifugal-like effect
of Ref. [30] does not appear. In addition, the influence of
Neumann and Dirichlet boundary conditions on the profile
of condensation is mainly focused on the edges. For the
finite-size effect, it depends on the choice of boundary
conditions. For NBC, the condensation at the center is
catalysis at high temperature and inverse catalysis at
low temperature, as the radius of the system decreases.
For DBC, chiral condensation is inverse catalysis and the
phase transition is induced by decreasing the size. T − Ω
phase diagrams are obtained for different boundary con-
ditions and system sizes, and the differences between them
are not significant. At the angular velocity of 0.01 GeV,
which is typical in heavy-ion collisions, the critical temper-
ature of the phase transition is about 128 MeV.
In the holographic model, the condensation under

rotation exhibits the local suppression effect, regardless
of the boundary conditions or rotational velocity distribu-
tion that are selected. Three cases of rotational velocity
distribution are discussed: (i) constant angular velocity,
(ii) angular velocity of the vortex structure, and (iii) angular
velocity concentrated at the center. For case (i), the shape of
the condensation as a function of the radial coordinate r is
similar to a swelling or a drum, for case (ii) the con-
densation has a minimum value at the center of the vortex,
and for case (iii) the condensation decreases slightly near
the center. The condensation does not display the centrifu-
gal-like effect as shown in Ref. [30], although case (iii) or
small angular velocities are given as input. The possible
reason is that the rotation is introduced through the polar
part of the gauge field, which acts similarly to the chemical
potential. The condensation with DBC has a plateau profile
near the center, which is consistent with Ref. [27] and
confirms the validity of the local density approximation.
However, near the edge R, the model does not show the
oscillating behavior, which is inconsistent with [27].
Different from the configuration of inhomogeneous

condensation, the finite size effect with uniform angular
velocity depends on the choice of boundary conditions,
similar to that discussed in Ref. [42]. For NBC, at slightly

below the critical temperature, the decreasing size enhances
the condensation value in the full space, especially at the
center, which behaves as the catalysis effect. However,
away from the critical temperature, the finite size effect
transforms into inverse catalysis, which is analogous to the
behavior of magnetic fields. For DBC, the finite size shows
the inverse catalysis effect at any temperature. And, as the
size decreases, the system exhibits phase transitions from
the chiral broken phase to the chiral restored phase. The
order of the phase transition depends on the form of the
potential term in the 5D action, if the parameters of
the potential term are chosen as first-order phase transition
then the phase transition is first-order, and so forth.
The temperature-angular velocity phase diagram of

chiral condensation has been studied in the holographic
model. Since the condensation is inhomogeneous, the
condensation at the center is taken as the order parameter
of the system. In consideration of the fact that both finite
size and boundary conditions can influence the profile of
condensation, we selected four cases with radii of 2 or 4 fm
and NBC or DBC, as a comparison. The results show that
although the phase lines of the four cases do not overlap,
the differences between them are negligible. The temper-
ature-angular velocity phase diagram at large angular
velocity are not discussed because the size of the QGP
is taken into account. If the vortex structure similar to the
Abrikosov lattice is achieved in the holographic QCD
model, the exploration of the phase structure at higher
rotational speed will be possible.
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