
Extracting classical Lyapunov exponent
from one-dimensional quantum mechanics

Takeshi Morita *

Department of Physics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
and Graduate School of Science and Technology, Shizuoka University,

836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

(Received 1 June 2022; accepted 26 September 2022; published 3 November 2022)

The commutator ½xðtÞ; p� in an inverted harmonic oscillator (IHO) in one-dimensional quantummechanics
exhibits remarkable properties. It reduces to a c-number and does not show any quantum fluctuations for
arbitrary states. Related to this nature, the quantum Lyapunov exponent computed through the out-of-time-
order correlator (OTOC) h½xðtÞ; p�2i precisely agrees with the classical one. Hence, the OTOC may be
regarded as an ideal indicator of the butterfly effect in the IHO. Since IHOs are ubiquitous in physics, these
properties of the commutator ½xðtÞ; p� and the OTOCs might be seen in various situations, too. In order to
clarify this point, as a first step, we investigate OTOCs in one-dimensional quantum mechanics with
polynomial potentials, which exhibit butterfly effects around the peak of the potential in classical mechanics.
We find two situations in which the OTOCs show exponential growth reproducing the classical Lyapunov
exponent of the peak. The first one, which is obvious, is using a suitably localized wave packet near the peak,
and the second one is taking a limit akin to the large-N limit in the noncritical string theories.
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I. INTRODUCTION

Inverted harmonic oscillators (IHOs) are ubiquitous in
nature. If we drew a random potential on paper, we would
see as many peaks as valleys. The valleys will be approxi-
mated by harmonic oscillators (HOs), and the peaks will
be approximated by IHOs. Needless to say, HOs play
indispensable roles in physics, particularly in stable sys-
tems. Correspondingly, IHOs play crucial roles in unstable
systems.
In particular, IHOs appear in several important topics

in modern physics: dynamical systems and chaos1 [1],
Schwinger mechanisms [2–4], noncritical string theories
[5–8], toy models of black holes [9–16], acoustic Hawking
radiation in quantum fluid mechanics [17–22], and con-
densed matter systems [23–26].

These examples show some instabilities, and they may
be quantified by Lyapunov exponents at the classical level.
Recently, as a counterpart to this quantity in quantum
mechanics, the out-of-time-order correlator (OTOC) [27]
defined by

CðtÞ ≔ −h½WðtÞ; Vð0Þ�2i ð1:1Þ
has attracted attention [28–30]. Here, we use the Heisenberg
picture, W and V are some operators in the system, and
WðtÞ¼eiHt=ℏWð0Þe−iHt=ℏ by using the Hamiltonian H. If
we takeW ¼ x and V ¼ p in a quantummechanical system,
Eq. (1.1) becomes

−
1

ℏ2
h½xðtÞ; pð0Þ�2i → fxðtÞ; pð0Þg2 ¼

�
∂xðtÞ
∂xð0Þ

�
2

; ð1:2Þ

where we have used the classical-quantum correspondence,
½; �=iℏ → f; g. Thus, the OTOC evaluates the dependence
of the initial condition of the time evolutions. Particularly,
if the system shows a butterfly effect at the classical level,
the OTOC may develop as CðtÞ ∼ e2λt, where λ is the
Lyapunov exponent. Hence, OTOCs may quantify butterfly
effects in quantum mechanics.2
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1Particle motion in an exact IHO (1.3) is integrable and not
chaotic. However, in typical chaotic systems, the appearance of
their chaotic behaviors is explained through motions near hyper-
bolic fixed points with broken homoclinic orbits [1], and the
hyperbolic fixed points are approximately described by IHOs.
Thus, IHOs capture several essential properties of chaos. This is
one motivation of this work.

2In this article, the terminology “butterfly effect” is used for the
sensitive dependence of the initial condition, i.e., a finite positive
Lyapunov exponent. Note that the sensitive dependence is usually
related to some instabilities of the system, and it occurs even in
nonchaotic systems.
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However, the relation between OTOCs and Lyapunov
exponents is subtle. First, we assume the classical-quantum
correspondence, and it does not work, in general. Second,
even if the classical-quantum correspondence is satisfied at
the early stage of the time evolution, it may break down
after the Ehrenfest time, and the exponential development
may not be observed after that. Thus, detecting exponential
developments in quantum systems is harder than in the
classical ones [30]. Hence, it is valuable to understand
when we observe CðtÞ ∼ e2λt in order to reveal properties of
the OTOCs. Since IHOs also show butterfly effects, it is
natural to investigate the OTOCs in IHOs in detail and
study the application to the aforementioned systems.
In this article, for simplicity, we consider the IHO in one-

dimensional quantum mechanics [31–34],

H ¼ 1

2
p2 −

1

2
λ2x2: ð1:3Þ

Here, λ is the Lyapunov exponent, as we will see soon. The
quantum Lyapunov exponent in the IHO has been com-
puted by evaluating an OTOC in Ref. [31], and it exactly
agrees with the classical one. Particularly, the results of
Ref. [31] imply the following relation,

��
1

iℏ
½xðtÞ;pð0Þ�

�
n
�
¼ coshnλt¼ðfxðtÞ;pð0ÞgÞn: ð1:4Þ

Here, the left-hand side evaluates the OTOC in the IHO
(1.3) for any normalizable quantum states, and the right-
hand side is the Poisson bracket for any initial conditions in
classical mechanics.3 Since coshðλtÞ ∼ eλt at a large t, this
relation shows that the Lyapunov exponent of this system is
λ in both classical and quantum mechanics, as Ref. [31]
found. Note that this relation works for any time even after
the Ehrenfest time, which is typically given by t ∼ 1

λ log
1
ℏ

[30].4 Furthermore, this relation suggests that the commu-
tator ½xðtÞ; pð0Þ� does not show any quantum fluctuations,
and the deviation is precisely zero. Thus, the commutator
½xðtÞ; pð0Þ� exhibits quite peculiar properties in the IHO,
which cannot be seen in other observables, like xðtÞ and
pðtÞ. These results suggest that the commutator ½xðtÞ; pð0Þ�
may be regarded as an ideal indicator of the butterfly effect
in the IHO.
Then, it is natural to ask whether these remarkable

properties of the OTOCs hold in more general situations.

In order to understand this question, we study one-
dimensional quantum mechanics with polynomial poten-
tials [34,35]. In classical mechanics, the particle motions
confined in the potentials are periodic and not chaotic.
However, if the potential has a hill, the hill will be
approximated by an IHO, and the system shows a butterfly
effect near there. We discuss when the OTOCs reproduce
this classical Lyapunov exponent of the hill in quantum
mechanics. As is expected through the classical-quantum
correspondence, we see that suitably localized wave pack-
ets correctly reproduce the Lyapunov exponent. In addition,
if we take a limit similar to the large-N limit in the
noncritical string theories [5–8], the correct Lyapunov
exponent will be obtained through more general states
such as energy eigenstates.
The organization of this article is as follows. In Sec. II, we

study the nature of the OTOCs in the IHO (1.3) in detail. In
Sec. III, we investigate the OTOCs in more general potential
cases. In Sec. IV, we argue that one can understand our
results in the ℏ → 0 limit in terms of classical mechanics.
Section V contains conclusions and discussions.

II. NO QUANTUM FLUCTUATION
OF THE OTOC IN THE IHO

We prove the relation (1.4). We start from classical
mechanics. The classical solution of the Hamiltonian (1.3)
is given by

xðtÞ ¼ xð0Þ cosh λtþ 1

λ
pð0Þ sinh λt; ð2:1Þ

where xð0Þ and pð0Þ are the initial conditions of the
position xðtÞ and momentum pðtÞ. Then, we can compute
the Poisson bracket as

fxðtÞ; pð0Þg ¼ ∂xðtÞ
∂xð0Þ ¼ cosh λt; ð2:2Þ

and the second equality in the relation (1.4) is satisfied.
Next, we consider quantum mechanics. As Refs. [31,33]

pointed out, we obtain

xðtÞ ¼ eiHtxð0Þe−iHt ¼ xð0Þcoshλtþ 1

λ
pð0Þ sinhλt ð2:3Þ

through the Hadamard lemma, and it leads to

½xðtÞ; pð0Þ� ¼ iℏ cosh λt: ð2:4Þ

Since this quantity is a c-number, the relation (1.4) is
satisfied for any normalizable states. Obviously, similar
relations hold for other commutators, ½pðtÞ; pð0Þ�,
½xðtÞ; xð0Þ�, and ½pðtÞ; xð0Þ�.
However, the result (1.4) is subtle since the IHO

potential (1.3) is unbounded from below and the energy

3In Eq. (1.4), the n ¼ 1 case in the left-hand side may not be
suitable to be called an OTOC. However, Eq. (1.4) shows the
exponential development at large t and diagnoses the butterfly
effect, and we loosely call it an OTOC in this article.

4The Ehrenfest time t ∼ 1
λ log

1
ℏ is estimated as the timescale

that a wave packet spreads over the curvature scale of the IHO.
However, the domain of the IHO (1.3) is infinite (−∞ ≤ x ≤ ∞),
and it may be reasonable that the naive Ehrenfest time does not
work in our case.
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eigenfunctions of the IHO (1.3) are not normalizable.
Hence, it would be valuable to test the relation (1.4)
explicitly. We add the infinite potential walls at x ¼ �Λ
to the IHO (1.3) to make the system bounded and compute
the OTOC h½xðtÞ; pð0Þ�i and h½xðtÞ; pð0Þ�2i for several
Gaussian wave packets numerically.5 We find very good
agreement between classical and quantum mechanics as
shown in Fig. 1, and the quantum fluctuations of the
operator ½xðtÞ; pð0Þ� are indeed almost zero. Thus, our
numerical computations verify the prediction (1.4).
Note that if we replace λ with iω, ðω ∈ RÞ in the

Hamiltonian (1.3), we obtain a similar relation for the
harmonic oscillator (HO),

��
1

iℏ
½xðtÞ;pð0Þ�

�
n
�
¼ cosnωt¼ ðfxðtÞ;pð0ÞgÞn: ð2:5Þ

Actually, we can derive this relation directly from the
relation hmj½xðtÞ; pð0Þ�jni ¼ iℏδmn cosωt, which we can
easily obtain by solving the HO through the standard
method [36].

III. OTOC IN GENERAL POTENTIALS

So far, we have seen that the quantum fluctuations of
the OTOCs in the IHO and HO are exactly zero. This is
because xðtÞ in Eq. (2.1) is linear in xð0Þ and pð0Þ, and it
will not be true in the general potential VðxÞ. On the other
hand, if the potential VðxÞ has a hill (valley), the region
near the hill (valley) will be approximated by the IHO
(HO), and the quantum fluctuations of the OTOCs will be
suppressed. Particularly, a classical particle near the hill
will show a butterfly effect, and the Lyapunov exponent is
computed from the curvature of the potential as

λsaddle ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00ðxÞ

p
jx¼xsaddle

: ð3:1Þ

Here, we have taken x ¼ xsaddle as the position of the top
of the hill since it is a saddle point in phase space, and we
have defined λsaddle as the Lyapunov exponent associated
with this point. Hence, if we can prepare sufficiently
localized wave packets corresponding to classical par-
ticles near the hill, the OTOCs would show the exponen-
tial developments with the Lyapunov exponent λsaddle,
and the quantum corrections would be small. [In order to
prepare such localized wave packets in the general
potential VðxÞ, the potential hill should be sufficiently
isolated.] Indeed, we have seen in Fig. 1 that the
deformation of the IHO potential by the infinite walls
does not affect the relation (1.4).
Then, one question is whether one can obtain λsaddle

through the OTOCs without using the localized wave
packets. Particularly, energy eigenstates are a useful basis
of the Hilbert space, and it is natural to try to evaluate
the OTOCs for these states. However, energy eigenstates
generally do not represent a localized particle in the
position space, and obtaining λsaddle from them seems
nontrivial. In order to test it, we numerically evaluate
the OTOCs h½xðtÞ; pð0Þ�i and h½xðtÞ; pð0Þ�2i for the energy
eigenstates in the potential6 VðxÞ ¼ −ax2 þ bx4 and
VðxÞ ¼ −ax2 þ bx8, (a, b > 0). The results are summa-
rized in Fig. 2. We do not observe clear exponential
developments for h½xðtÞ; pð0Þ�i. On the other hand, expo-
nential growth is observed for h½xðtÞ; pð0Þ�2i, but the
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FIG. 1. Time evolutions of xðtÞ and the OTOCs in the IHO (1.3). We take λ ¼ 1 and put the infinite potential walls at x ¼ �2. We
prepare the Gaussian wave packets with ðΔxÞ2 ¼ ðΔpÞ2 centered at ðx; pÞ ¼ ð−1; 1.3Þ at t ¼ 0 and evaluate their time evolutions in the
quantum mechanics with ℏ ¼ 1=10; 1=25; 1=50, and 1=100. We also compute the corresponding quantities for a single classical particle;
they are depicted by the black dashed lines. Note that hxðtÞi shows that the wave packets hit the potential wall at x ¼ 2 around t ∼ 2.5.
All the OTOCs agree very well until the hits, and they are independent of ℏ. Thus, the relation (1.4) works as long as we ignore the effect
of the potential walls.

5We use mathematica package NDEigensystem in the numeri-
cal calculations. However, this package sometimes fails to obtain
eigenfunctions that have suitable parity symmetry x → −x.
Hence, we take the domain 0 ≤ x ≤ Λ rather than −Λ ≤ x ≤ Λ
and solve the even and odd solutions separately by imposing the
corresponding boundary conditions at x ¼ 0.

6We have attempted to evaluate the OTOCs of the energy
eigenstates in the IHO with the infinite potential walls, which we
have used in the numerical study of the wave packets in Fig. 1.
However, we found that the convergence of numerical computa-
tions was not good, and we could not obtain reliable results. We
presume that the infinite potential walls are problematic. Actually,
if we evaluate fxðtÞ; pð0Þg2 of a classical particle in an infinite
potential well (without the IHO potential) and take an average over
the initial position so that it corresponds to the semiclassical energy
eigenstate, we can easily see that fxðtÞ; pð0Þg2 diverges. This
divergence will be resolved in quantum mechanics, but it may
cause larger numerical errors.
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exponents depend on the shape of the potentials. Although
the exponent in the VðxÞ ¼ −ax2 þ bx8 case is close to
2λsaddle, it is significantly smaller in the VðxÞ¼−ax2þbx4

case.7 In addition, the results must depend on the energy
level. For example, if the energy is close to the ground state,
the particles are localized near the bottom of the potential,
and we would observe the cos-type behaviors as in (2.5)
rather than exponential developments.
Actually, if we tune the energy level and ℏ such that

E → Ecr ≔ VðxsaddleÞ; ℏ → 0; ð3:2Þ

the OTOCs for the energy eigenstate show the exponential
developments (see Fig. 3). We observe that both the

OTOCs h½xðtÞ; pð0Þ�i and h½xðtÞ; pð0Þ�2i show the expo-
nential growth with the Lyapunov exponent λsaddle as we
take ℏ → 0. This limit is related to the double-scaling limit
in the noncritical string theories [5–8], and we call this
energy Ecr the critical energy.
This result can be explained as follows. In the Wentzel–

Kramers–Brillouin (WKB) approximation, the probability
density of the energy eigenfunction ρ is proportional to
the inverse of the classical momentum, ρ ∝ 1=jpj. At
E ¼ Ecr ¼ VðxsaddleÞ, the momentum near x ¼ xsaddle
satisfies

0 ∼
1

2
p2 −

1

2
λ2saddleðx − xsaddleÞ2; ð3:3Þ

and the density ρ shows a divergence

ρ ∝
1

jpj ∝
1

jx − xsaddlej
: ð3:4Þ

FIG. 2. OTOCs for energy eigenstates in VðxÞ ¼ −ax2 þ bx4 (a ¼ 1, b ¼ 0.2) (left) and VðxÞ ¼ −ax2 þ bx8 (a ¼ 1, b ¼ 0.02)
(right). The energies are taken to be E ¼ 0.2 in both cases. (In quantum mechanics, the energy eigenstates whose energy is closest to
E ¼ 0.2 are taken.) We evaluate h½xðtÞ; pð0Þ�i and h½xðtÞ; pð0Þ�2i, and their classical counterparts, which are depicted by the black
dashed lines. (The derivation of the classical results is explained in Sec. IV.) As ℏ → 0, the OTOCs converge to the classical results. We
do not observe clear exponential developments in h½xðtÞ; pð0Þ�i. On the other hand, we observe exponential growth in h½xðtÞ; pð0Þ�2i;
however, the exponent in the VðxÞ ¼ −ax2 þ bx4 case is significantly smaller than 2λsaddle, while it is close to 2λsaddle in the
VðxÞ ¼ −ax2 þ bx8 case.

7In the VðxÞ ¼ −ax2 þ bx4 case, the exponential development
of h½xðtÞ; pð0Þ�2i is roughly h½xðtÞ; pð0Þ�2i ∼ exp ðλsaddletÞ ≠
exp ð2λsaddletÞ. Similar behaviors have been observed in other
models too [32], and Ref. [32] argued that the OTOCs may be
suppressed by exp ð−λsaddletÞ in thermal ensembles.
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Therefore, when we evaluate observables, the contribution
of the saddle points would dominate.8 However, quantum
corrections make this divergence milder. By combining
these two effects, the OTOCs exhibit behaviors similar to
the IHO near the saddle point as E → Ecr and ℏ → 0. Note
that, if we prepare some states that are constructed from
energy eigenstates whose energies are close to Ecl, their
OTOCs may also show the exponential growth.9

IV. UNDERSTANDING OTOCS FROM
CLASSICAL MECHANICS

As we can see in Figs. 2 and 3, the OTOCs converge to
the classical results as ℏ → 0. Thus, the behaviors of the
OTOCs may be explained in terms of classical mechanics.
In this section, we discuss the following two questions
through classical mechanics: (1) Why are the exponents in
Figs. 2 and 3 always smaller than λsaddle or 2λsaddle. (2) In
Fig. 2, why does h½xðtÞ; pð0Þ�2i show the exponential
development while h½xðtÞ; pð0Þ�i does not.
First, we consider the derivation of the Poisson bracket

fxðtÞ; pð0Þgn, which is the counterpart of the OTOC
h½xðtÞ; pð0Þ�ni. In classical mechanics, the energy eigen-
state in quantum mechanics can be approximated by using
the particles uniformly distributed on the constant energy
curve in phase space (see Fig. 4). Then, physical quantities
for the energy eigenstate can be computed by taking the
averages of the quantities for each particle. Hence, to obtain
the OTOC, we need to compute fxðtÞ; pð0Þgn for single
particles and take their average.
We can compute the Poisson bracket fxðtÞ; pð0Þg for a

single particle as follows. Suppose that a particle starts from

FIG. 3. OTOCs for energy eigenstates close to the critical energy Ecr in Eq. (3.2). We employ the same data in Fig. 2 except the
energies. In quantum mechanics, since we cannot take E ¼ Ecr exactly, we choose the closest one with E − Ecr > 0, and we take
E ¼ 0.0001 in classical mechanics, correspondingly. We observe that all OTOCs show the exponential growth with the Lyapunov
exponent λsaddle as ℏ → 0, and the relation (1.4) is approximately satisfied.

8The momentum becomes zero at the turning point x ¼ x�
also, at which E ¼ Vðx�Þ is satisfied. However, the momentum
normally behaves as jpj ∼ ðx − x�Þ1=2, and the divergence is
much milder than that of the saddle point at the critical energy
(3.4). Hence, the turning points do not provide dominate
contributions.

9In noncritical string theories, the ground states of N free
fermions in double-well-type potentials with the Fermi energy EF
and ℏ ¼ 1=N are studied. This system, under the double scaling
limit [ℏ → 0 (N → ∞) while taking Ecr − EF small but finite]
would describe the noncritical string theory [5–8]. From our
arguments, the fluctuations of the Fermi surface would show the
exponential developments of the OTOCs, and it may be valuable
to understand the implication in the context of the noncritical
string theories.
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ðx; pÞ ¼ ðxð0Þ; pð0ÞÞ at t ¼ 0, and we define the position
of this particle at time t as xðt; xð0Þ; pð0ÞÞ. Then, we can
compute

fxðtÞ;pð0Þg¼ ∂xðtÞ
∂xð0Þ

¼ lim
Δx→0

xðt;xð0ÞþΔx;pð0ÞÞ−xðt;xð0Þ;pð0ÞÞ
Δx

:

ð4:1Þ

To evaluate the right-hand side of this equation, we need to
compute the positions of the two particles xðt; xð0Þ þ
Δx; pð0ÞÞ and xðt; xð0Þ; pð0ÞÞ (see Fig. 4). Generally,

we cannot obtain the particle positions explicitly, and
we evaluate them numerically and extrapolate the limit
Δx → 0.
Let us consider the motions of the two particles in (4.1)

in the potential VðxÞ ¼ −ax2 þ bx4. Each particle periodi-
cally moves in phase space. The period depends on the
energy of the particle, and it becomes longer as E → Ecr.
(Actually, it diverges at E ¼ Ecr, and its motion is not
periodic anymore.) Thus, for example, in the case of the
two particles plotted in Fig. 4, the period of the left particle
is longer, and, when the left particle returns to its original
position, the right particle moves slightly ahead of its
original position. Hence, fxðtÞ; pð0Þg is almost periodic
but progressively increases for each period (see Fig. 5). In
addition, since the two particle motions are almost periodic,
fxðtÞ; pð0Þg has to be zero at least twice for each period,
and the sign of fxðtÞ; pð0Þg changes when it crosses these
zero points. (Otherwise, the two particles could not return
to their original positions.) In the case of the HO (2.5),
t ¼ π=2ω and 3π=2ω correspond to the zero points.
Besides, when the particles pass near the hill of the

potential, they show exponential growth similar to (2.1),
and fxðtÞ; pð0Þg also develops exponentially. On the other
hand, when the particles move in the potential valleys, their
motions are like oscillators and fxðtÞ; pð0Þg will show a
cos-type behavior similar to (2.5). In this way, we can
roughly explain the time evolution of fxðtÞ; pð0Þg in Fig. 5.
So far, we have discussed the properties of fxðtÞ; pð0Þg

for a single particle. Now, we argue fxðtÞ; pð0Þg for the
energy eigenstate by taking an average of these single
particle results, and we explain the behaviors shown in
Fig. 2 in quantum mechanics. We first discuss why the
Lyapunov exponents are smaller than λsaddle. When we take
the average, the maximum of fxðtÞ; pð0Þg dominates. As
we can see in Fig. 5, the maximum appears after the
exponential developments terminate, and there, the growth

FIG. 4. Constant energy curves (energy contours) in phase
space for the potential VðxÞ ¼ −ax2 þ bx4 (a > 0, b > 0). The
orange dashed line denotes the critical energy Ecr. We can
compute the Poisson bracket (4.1) by evaluating the motions
of the two particles separated by Δx at t ¼ 0. Each particle orbits
in a clockwise direction along the constant energy curve, and the
Poisson bracket (4.1) can be obtained through the deviation of the
positions of these particles.

FIG. 5. We show fxðtÞ; pð0Þg for two classical particles in the potential VðxÞ ¼ −ax2 þ bx4 with the same energy (E ¼ 0.2). Left
panel: the two particles in phase space at t ¼ 0. The solid line denotes the constant energy curve. Right panel (top): particle position xðtÞ
(blue dashed line) and fxðtÞ; pð0Þg (blue solid line) for the blue dot in the left panel. Here, xðtÞ shows a periodic motion with a period
T ≃ 8.4. Correspondingly, fxðtÞ; pð0Þg is roughly periodic but progressively increases. It shows the exponential development when xðtÞ
passes 0, which is the position of the potential hill, and it takes the maximum value before the turning point (x ≃ 2.3) and suddenly
decreases around the turning point. Right panel (bottom): fxðtÞ; pð0Þg for the blue dot (the blue line) and for the red cross (the red
dashed line) in the left panel.
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is much slow. Hence, the Lyapunov exponents of the
energy eigenstates are always smaller than λsaddle.

10

Next, we discuss why we do not observe clear expo-
nential developments in h½xðtÞ; pð0Þ�i. This is because
fxðtÞ; pð0Þg, for single particles, take positive and negative
values, which may cancel each other out when we take
the average. This is very different from the OTOC
h½xðtÞ; pð0Þ�i for the wave packets, where we have seen
clear exponential developments as in Fig. 1. On the other
hand, at the critical energy E ¼ Ecr, the particles near the
saddle points dominate, and such cancellations are sup-
pressed. Hence, we observe the exponential growth as
in Fig. 3.

V. DISCUSSIONS

We have studied the OTOC h½xðtÞ; pð0Þ�ni in the IHO.
They have a peculiar property of not showing any quantum
fluctuations independent of the quantum states. This
suggests that the OTOCs can be regarded as ideal indicators
of the butterfly effect in the IHO. Hence, we expect that the
IHO may work as a starting point of perturbative calcu-
lations in unstable systems and chaos, and the Lyapunov

exponents of the systems may be extracted through the
OTOCs. (The situation may be analogous to HOs in stable
systems.) Indeed, we have seen that we can derive the
Lyapunov exponents of the saddle points by preparing
sufficiently localized wave packets or by employing an
energy eigenstate and taking the limit E → Ecr and ℏ → 0
in one-dimensional quantum mechanics. We have also
shown that the properties of the OTOCs of the energy
eigenstates can be understood through classical mechanics.
However, a one-dimensional system is integrable, and it is
important to apply our results to more complicated systems
or genuine chaotic systems. See Refs. [32–45] and refer-
ences therein for investigations of OTOCs in few-body
quantum mechanics.
In addition, as we mentioned in the Introduction, IHOs

have a wide range of applications from condensed matter
systems to quantum gravity and string theories. Thus, it is
interesting to study the implications that the OTOCs do not
receive any quantum corrections in these systems.
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