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The Unruh-DeWitt model of particle detector is widely used to probe quantum effects in noninertial
frames and curved spacetimes. In this paper, we investigate the entanglement dynamics of a quantum
system composed of two rotating Unruh-DeWitt detectors in interaction with a fluctuating massless scalar
field in vacuum. We obtain the necessary and sufficient condition for the detectors to achieve steady-state
entanglement, and systematically investigate the steady-state entanglement of two Unruh-DeWitt detectors
rotating in coaxial orbits with the same orbital radius and angular velocity. When the separation between
the detectors is vanishing, the detectors can obtain steady-state entanglement dependent on the initial state,
as the detectors in uniform acceleration and static detectors in a thermal bath do. Remarkably, however,
when the separation between the detectors is nonvanishing but small compared with the transition
wavelength of detectors, the detectors can obtain steady-state entanglement irrespectively of what the initial
state is. This is the unique phenomenon caused by the centripetal acceleration and is not present in the
uniform acceleration case and the case of static detectors in a thermal bath.
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I. INTRODUCTION

A uniformly accelerated observer perceives the vacuum
state defined by an inertial observer as a thermal bath at a
temperature proportional to its proper acceleration. This is
known as the Unruh effect [1–4]. In the investigation
leading to the discovery of the Unruh effect as well as other
quantum effects in curved spacetimes, the Unruh-DeWitt
model of particle detector [1,5] is usually exploited, which
is a pointlike two-level quantum system interacting with
fluctuating quantum fields, e.g., massless scalar fields in
the original work of Unruh [1]. For a single uniformly
accelerated Unruh-DeWitt detector, its radiative properties,
such as the transition rates [6–9] and the Lamb shift
[10,11], have been extensively studied.
The physics is richer when two Unruh-DeWitt detectors

are concerned since nonlocal quantum correlations
between detectors, quantum entanglement for instance,
may emerge. Quantum entanglement is one of the key
concepts in quantum theory, and is at the core of quantum
information science [12]. However, the fragility of quan-
tum entanglement [13,14] due to inevitable environmental
noises has become one of the main obstacles to the
realization of entanglement-based quantum technologies.

Therefore, understanding the effects of environmental
noises on quantum entanglement and searching for pos-
sible steady-state entanglement which is robust against
environmental noises are important in the application of
quantum information science. In recent years, relevant
investigations have been generalized to noninertial frames.
Benatti and Floreanini showed that two uniformly accel-
erated Unruh-DeWitt detectors with vanishing separation
coupled with fluctuating scalar fields in vacuum can obtain
steady-state entanglement when an appropriate initial state
is chosen, and the steady-state entanglement is the same as
that of static atoms in a thermal bath at the Unruh
temperature [15]. Later, the entanglement dynamics of
uniformly accelerated detectors with nonvanishing sepa-
ration coupled with various kinds of fluctuating quantum
fields in vacuum have been studied in Refs. [16–18].
However, all these results show that uniformly accelerated
Unruh-DeWitt detectors can only obtain steady-state
entanglement, which is initial-state dependent, when the
spatial separation between the two detectors is vanishing.
Besides the uniform acceleration, another common

accelerated motion is the circular motion with a constant
centripetal acceleration [19]. The quantization of scalar
fields in rotating frames was first investigated by Letaw and
Pfautch in 1980 [20]. Later, some interesting topics, such as
the energy spectrum of the vacuum field seen by a rotating
observer and the transition rate of a rotating detector, have
been studied [21–29]. These studies are partly motivated by
the fact that a large acceleration, which is required but still
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remains a challenging task for an observation of the Unruh
effect, is easier to be achieved in the circular case compared
with the linear case. Noteworthy, an interesting feature of
the circularly accelerated detectors in vacuum is that the
environmental noise they perceive is non-Planckian [21,22]
as opposed to the Planckian one for uniformly accelerated
detectors. Therefore, it is of interest to study how the
behavior of entanglement dynamics for circularly moving
Unruh-DeWitt detectors differs from that for the uniformly
accelerated ones. In this regard, let us note that the
entanglement dynamics for two rotating Unruh-DeWitt
detectors has been investigated in the ultrarelativistic limit
[30–32]. It has been found that, similar to the uniformly
accelerated case, steady-state entanglement, which is
initial-state dependent, is possible only in the limit of a
vanishing spatial separation.
Recently, we have developed a physical-scenario-inde-

pendent approach to studying the general properties of the
entanglement dynamics of an open quantum system and
obtained the necessary and sufficient condition for the
steady-state entanglement in some circumstances [33]. In
this paper, we systematically investigate, with the help of
the approach introduced in Ref. [33], the steady-state
entanglement of two Unruh-DeWitt detectors rotating in
coaxial orbits with the same orbital radius and angular
velocity in vacuum, which are coupled with a fluctuating
massless scalar field. Different from Refs. [30–32], we are
not restricted to the ultrarelativistic limit, and we discover
that very interesting physical phenomena remarkably
emerge when the limit is relaxed. Hereafter, natural units
with ℏ ¼ c ¼ kB ¼ 1 are used, where c is the speed of
light, ℏ the reduced Planck constant, and kB the Boltzmann
constant.

II. THE BASIC FORMALISM

We consider a quantum system composed of a pair of
rotating Unruh-DeWitt detectors coupled with a fluctuating
massless scalar field in vacuum. As shown in Fig. 1, the two
detectors rotate around a common axis (z-axis) with the
same orbital radius R and angular velocityΩ. We denote the
separation between their rotation planes and the phase
angle difference as L and φ (0 ≤ φ < 2π), respectively.
Then, in the laboratory frame, the trajectories of the two
detectors can be written as

x1ðtÞ¼RcosðΩtþφÞ; y1ðtÞ¼RsinðΩtþφÞ; z1ðtÞ¼L;

x2ðtÞ¼RcosðΩtÞ; y2ðtÞ¼RsinðΩtÞ; z2ðtÞ¼ 0; ð1Þ

respectively, where t is the coordinate time in the laboratory
frame. Moreover, the linear velocity v, the proper accel-
eration a, and the distance between the two detectors d can
be expressed as

v¼RΩ; a¼ γ2RΩ2; d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 sin2ðφ=2ÞþL2

q
; ð2Þ

respectively, with γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2Ω2

p
being the Lorentz

factor.
The Hamiltonian of the total system takes the form

H ¼ HS þHF þHI; ð3Þ

with HS, HF, and HI being the Hamiltonian of the
detectors, the Hamiltonian of the scalar field, and the
Hamiltonian describing the detector-field interaction,
respectively. The Hamiltonian of the two-detector system
HS can be written as

HS ¼
ω

2
σð1Þ3 þ ω

2
σð2Þ3 ; ð4Þ

where ω ¼ ω0=γ is the energy level spacing of the detector
observed in the laboratory frame, with ω0 being the energy
level spacing in the proper frame of the detector. Here,

σð1Þi ¼ σi ⊗ σ0, σ
ð2Þ
i ¼ σ0 ⊗ σi, with σi (i ¼ 1; 2; 3) being

the Pauli matrices and σ0 the 2 × 2 unit matrix. The
interaction Hamiltonian HI can be written in analogy to
the electric dipole interaction as [7]

HI ¼ μ½σð1Þ2 ϕðxð1ÞðtÞÞ þ σð2Þ2 ϕðxð2ÞðtÞÞ�; ð5Þ

where μ is the coupling constant which is assumed to be
small, and ϕðxðtÞÞ is the field operator. Note that ðxðαÞðtÞÞ is
the abbreviation of the spacetime coordinates ðt;xαðtÞÞ for
the α-th detector in the laboratory frame.
We assume that initially the detectors are switched off,

i.e., the initial state of the total system can be written as
ρtotð0Þ ¼ ρð0Þ ⊗ j0iMMh0j, where j0iM is the vacuum state
of the massless scalar field, and ρð0Þ denotes the initial state
of the detectors. The density matrix of the total system
satisfies the Liouville equation

FIG. 1. Two Unruh-DeWitt detectors rotate in coaxial orbits
with the same orbital radius R and angular velocity Ω.
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∂ρtotðtÞ
∂t

¼ −i½H; ρtotðtÞ�: ð6Þ

Under the Born-Markov approximation, the reduced den-
sity matrix of the two-detector system ρðtÞ ¼ TrF½ρtotðtÞ�
can be described by the Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) master equation [34,35], i.e.,

∂ρðtÞ
∂t

¼ −i½Heff ; ρðtÞ� þD½ρðtÞ�: ð7Þ

Here Heff and D½ρðtÞ� in the equation above are the
effective Hamiltonian and the dissipator respectively,
whose explicit forms can be written as

Heff ¼ HS −
i
2

X2
α;ϱ¼1

ðHðαϱÞ
þ σðαÞþ σðϱÞ− þHðαϱÞ

− σðαÞ− σðϱÞþ Þ;

and

D½ρðtÞ� ¼ 1

2

X2
α;ϱ¼1

½DðαϱÞ
þ ð2σðϱÞ− ρσðαÞþ − fσðαÞþ σðϱÞ− ; ρgÞ

þDðαϱÞ
− ð2σðϱÞþ ρσðαÞ− − fσðαÞ− σðϱÞþ ; ρgÞ�; ð8Þ

where σð1Þ� ¼ σ� ⊗ σ0 and σð2Þ� ¼ σ0 ⊗ σ� with σ− ¼
j0ih1j, σþ ¼ j1ih0j. Here, j0i and j1i are the ground and

excited states of the detectors, respectively. DðαϱÞ
� and HðαϱÞ

�
are determined by the Fourier and Hilbert transforms of the
field correlation functions

GðαϱÞðΔtÞ ¼ Mh0jϕðxðαÞðtÞÞϕðxðϱÞðt0ÞÞj0iM; ð9Þ

respectively. Moreover, since the environment perceived by
the detectors is stationary, the correlation functions of the
field Eq. (9) possess temporal translation symmetry and are
functions of Δt ¼ t − t0. Then, the dissipation coefficients

DðαϱÞ
� can be expressed as

DðαϱÞ
� ðωÞ ¼ μ2

Z
∞

−∞
GðαϱÞðΔtÞe�iωΔtdΔt: ð10Þ

Similarly, HðαϱÞ
� can be obtained by replacing GðαϱÞðΔtÞ

with GðαϱÞðΔtÞsignðΔtÞ, where signðΔtÞ is the sign func-
tion which equals to −1, 0, 1 when Δt <;¼; > 0,
respectively.
The Wightman function of the massless scalar field in

vacuum is

Gþðx; x0Þ

¼ −
1

4π2
1

ðt− t0 − iεÞ2 − ðx− x0Þ2 − ðy− y0Þ2 − ðz− z0Þ2 :

ð11Þ
Here ε is a positive infinitesimal. Taking the trajectories (1)
into the correlation functions (9), one obtains

Gð11ÞðΔtÞ¼Gð22ÞðΔtÞ¼PðΔt;0;0Þ;
Gð12ÞðΔtÞ¼PðΔt;φ;LÞ; Gð21ÞðΔtÞ¼PðΔt;−φ;LÞ;

ð12Þ

where

PðΔt;φ;LÞ

¼−
1

4π2
1

ðΔt− iεÞ2−4R2 sin2 ðΩΔt=2þφ=2Þ−L2
: ð13Þ

Then, the dissipation coefficient DðαϱÞ
� can be further

written as

Dð11Þ
� ðωÞ ¼ Dð22Þ

� ðωÞ ¼ μ2Pð�ω; 0; 0Þ;
Dð12Þ

� ðωÞ ¼ Dð21Þ�
� ðωÞ ¼ μ2Pð�ω;φ; LÞ; ð14Þ

where Pðω;φ; LÞ is the Fourier transform of
PðΔt;φ; LÞ, i.e.,

Pð�ω;φ; LÞ ¼
Z

∞

−∞
PðΔt;φ; LÞe�iωΔtdΔt: ð15Þ

Substituting Eq. (13) into Eq. (15), we obtain

Pð�ω;φ; LÞ ¼
Xþ∞

n¼n�
0

einφR2jnjðnΩ� ωÞ2jnjþ1

2πð2jnj þ 1Þ! F0∶1;0
1∶1;0

"
∶ jnj þ 1

2
; ;

jnj þ 3
2
∶ 2jnj þ 1; ;

�
−R2ðnΩ� ωÞ2
−L2ðnΩ� ωÞ2=4

�#
; ð16Þ

where n�0 ¼ b∓ω=Ωc þ 1. Here bζc is the largest integer less than or equal to ζ. The function F0∶1;0
1∶1;0½ ∶

jnjþ3
2
∶
jnjþ1

2
;

2jnjþ1;

;

;
ðxyÞ�, which

is a generalized Kampé De Fériet’s double hypergeometric series (function) [36–38], can be expressed as

F0∶1;0
1∶1;0

� ∶ jnj þ 1
2
; ;

jnj þ 3
2
∶ 2jnj þ 1; ;

�
x

y

��
¼

Xþ∞

k¼0

Xþ∞

l¼0

ðjnj þ 1
2
Þk

ðjnj þ 3
2
Þkþlð2jnj þ 1Þk

xkyl

k!l!
: ð17Þ

Here, ðaÞb ≡ Γðaþ bÞ=ΓðaÞ is the Pochhammer sign, with ΓðxÞ being the Euler Gamma function. See the Appendix for the
derivation of Eq. (16), and the numerical method used for its calculation.
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III. THE NECESSARY AND SUFFICIENT
CONDITION FOR STEADY-STATE

ENTANGLEMENT

In this section, we give the necessary and sufficient
condition for steady-state entanglement following the
methods we recently introduced in Ref. [33]. We first
define a set of dimensionless parameters describing the
entanglement dynamics with the transition coefficients of
the two-detector system, and then express the condition for
steady-state entanglement with these parameters.

A. The definition of the entanglement dynamics
parameters

First, we define six parameters following Ref. [33] as:

η¼DðααÞ
þ þDðααÞ

−

DðααÞ
þ −DðααÞ

−

; λ1¼
jDð12Þ

þ −Dð21Þ
− j

DðααÞ
þ −DðααÞ

−

; λ2¼
jDð12Þ

− j
DðααÞ

−
;

Γ¼DðααÞ
þ −DðααÞ

− ; θ1¼arg½Dð12Þ
þ −Dð21Þ

− �; θ2¼arg½Dð21Þ
− �;
ð18Þ

where arg½z� gives the argument of the complex number z.
Using the following conclusions: 1) The transition rate
between any two collective states is non-negative; 2) The
downward transition rate is not smaller than the upward
one for two arbitrary energy eigenstates, it can be proved
that Γ ≥ 0, η ≥ 1, 0 ≤ λ1 ≤ 1, and 0 ≤ λ2 ≤ 1 [33]. Then,

the dissipation coefficientsDðαϱÞ
� (14) can be reexpressed as

Dð11Þ
� ¼ Dð22Þ

� ¼ 1

2
ðη� 1ÞΓ; ð19Þ

Dð12Þ
þ ¼ Dð21Þ�

þ ¼ 1

2
½ðη − 1Þλ2eiθ2 þ 2λ1eiθ1 �Γ; ð20Þ

Dð12Þ
− ¼ Dð21Þ�

− ¼ 1

2
ðη − 1Þλ2e−iθ2Γ: ð21Þ

For the model considered in the present paper, the param-
eters defined in Eq. (18) can be explicitly worked out:

η ¼ 1þ 2N; λ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
R þ ð2AI þ BIÞ2

q
; λ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
R þ A2

I

q
N

;

Γ ¼ μ2γ2ω

2π
; θ1 ¼ arg½BR þ ið2AI þ BIÞ�; θ2 ¼ arg ½AR þ iAI �; ð22Þ

where

AR ¼ Ω
4πγ2ω

Z þ∞

0

½fþðxÞ þ f−ðxÞ� cos ð2ωx=ΩÞdx; ð23Þ

AI ¼ Ω
4πγ2ω

Z þ∞

0

½gþðxÞ − g−ðxÞ� sin ð2ωx=ΩÞdx; ð24Þ

BR ¼ Ω
2γ2ω

�
sin ð2ωrþ=ΩÞ

2rþ − R2Ω2 sinð2rþ þ φÞ þ
sin ð2ωr−=ΩÞ

2r− − R2Ω2 sinð2r− − φÞ
�
; ð25Þ

BI ¼ Ω
2γ2ω

�
cos ð2ωr−=ΩÞ

2r− − R2Ω2 sinð2r− − φÞ −
cos ð2ωrþ=ΩÞ

2rþ − R2Ω2 sinð2rþ þ φÞ
�
; ð26Þ

N ¼ Ω
2πω

Z þ∞

0

R2Ω2ðx2 − sin2xÞ
x2ðx2 − R2Ω2sin2xÞ cos ð2ωx=ΩÞdx: ð27Þ

Here, functions f�ðxÞ and g�ðxÞ, both of which have only two removable singularities at x ¼ r�, are, respectively,
defined as

f�ðxÞ ¼
R2Ω2

h
sinð2r� � φÞ − 2r�

sinðx−r�Þ sinðxþr��φÞ
ðx−r�Þðxþr�Þ

i
½x2 − R2Ω2sin2ðx� φ=2Þ −Ω2L2=4�½2r� − R2Ω2 sinð2r� � φÞ� ; ð28Þ

g�ðxÞ ¼
2ðx − r�Þ þ R2Ω2

h
sinð2r� � φÞ − 2r�

sinðx−r�Þ sinðxþr��φÞ
ðx−r�Þðxþr�Þ

i
½x2 − R2Ω2sin2ðx� φ=2Þ −Ω2L2=4�½2r� − R2Ω2 sinð2r� � φÞ� ; ð29Þ
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where r� is the root of the following equation:

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2Ω2 sin2

�
r� � φ

2

�
þ Ω2L2

4

s
: ð30Þ

Moreover, one can find from Eqs. (22)–(30) that, if φ ¼ 0
or π, then rþ ¼ r−, AI ¼ BI ¼ 0, and thus λ1 ¼ jBRj,
λ2 ¼ jARj=N.

B. The necessary and sufficient condition of
steady-state entanglement

We measure the degree of entanglement by concurrence
C [39], which is

C½ρðtÞ� ¼ maxf0; KðtÞg; ð31Þ

where KðtÞ ¼ κ1 − κ2 − κ3 − κ4, with κi (i ¼ 1; 2; 3; 4)
being the square roots of the eigenvalues of the matrix
ρðσ2 ⊗ σ2ÞρTðσ2 ⊗ σ2Þ in decreasing order. Here ρ is the
density matrix in the decoupled basis fj11i; j10i; j01i;
j00ig, and ρT is its transpose.
In order to obtain the density matrix ρð∞Þ characterizing

the steady state of the two-detector system, we substitute
Eqs. (19)–(21) into the master equation (7), and take the
time derivative in the master equation to be zero. Then,
taking the resulting explicit form of ρð∞Þ into Eq. (31), and
with the help of Γ > 0, η ≥ 1, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, we
can obtain the necessary and sufficient condition for the
two rotating Unruh-DeWitt detectors to be entangled in the
asymptotic steady state, which can be categorized into
the following two cases. For convenience, “&” denotes the
logical AND, and “jj” denotes the logical OR.
Case I: fλ1 ¼ λ2 ¼ 1 & θ1 ¼ θ2gjjfλ1 ¼ 1 & η ¼ 1g
When the condition fλ1¼ λ2¼1&θ1¼θ2gjjfλ1¼1&

η¼1g is satisfied, the final state ρð∞Þ is related to the
initial state ρð0Þ. The necessary and sufficient condition for
steady-state entanglement is

ρaað0Þ >
3ðη2 − 1Þ
2ð3η2 − 1Þ ; ð32Þ

and the corresponding steady-state concurrence can be
written as

Cð∞Þ ¼ 2ð3η2 − 1Þρaað0Þ − 3ðη2 − 1Þ
3η2 þ 1

> 0: ð33Þ

Case II: fλ1 ≠ 1jjλ2 ≠ 1jjθ1 ≠ θ2g& fλ1 ≠ 1jjη ≠ 1g
In this case, the final state ρð∞Þ is independent of the

initial state ρð0Þ, and it can be obtained that

Kð∞Þ¼ ðη−1Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ðλ1−λ2Þ2þΦ1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
Φ2Φ3

p Þ
η½λ21−ηþðη−1Þλ1λ2 cosðΔθÞ�þðη−1Þ2Φ2þΦ3

;

ð34Þ

where

Φ1 ¼ 4λ1λ2sin2ðΔθ=2Þfη2 þ λ1λ2cos2ðΔθ=2Þ
× ½ðλ1 − ðη − 1Þλ2Þ2 − 2η2

þ 4ðη − 1Þλ1λ2cos2ðΔθ=2Þ�g; ð35Þ

Φ2 ¼
1

2
η½ηð1 − λ22Þ − 2λ2ðλ1 − λ2Þ�

þ 2λ1λ2sin2ðΔθ=2Þ½η − λ1λ2cos2ðΔθ=2Þ�; ð36Þ

Φ3 ¼ ðη − 1Þ2Φ2 þ 2η3 − 2η½λ1 þ ðη − 1Þλ2�2
þ 8ηðη − 1Þλ1λ2sin2ðΔθ=2Þ; ð37Þ

with Δθ ¼ θ1 − θ2. From Eq. (34), the necessary and
sufficient condition for Kð∞Þ > 0 is found to be

fλ1 > λcg& fη ≠ 1g; ð38Þ

where

λcðη;λ2;ΔθÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ðη2λ22þ4ηþ4Þ−Z

p
þð4−η2−2ηÞλ2 cosðΔθÞ

4þðη−1Þλ22 sin2ðΔθÞ
;

ð39Þ

with Z ¼ λ22fðη2 − 4Þ½ðη − 1Þ2λ22 þ 4η − 3� þ 4g sin2ðΔθÞ.
When condition (38) is satisfied, the steady-state concur-
rence can be written as Cð∞Þ ¼ Kð∞Þ > 0, which is
independent of the initial state.
Moreover, with the help of η ≥ 1 and 0 ≤ λ1;2 ≤ 1, we

can also obtain some necessary conditions for steady-state
entanglement. It can be proved that ∂λc=∂η ≥ 0 and
∂λcð1; λ2;ΔθÞ=∂ðλ2 cosðΔθÞÞ > 0 [33]. Then,

1 ≥ λ1 > λcðη; λ2;ΔθÞ ≥ λcð1; λ2;ΔθÞ ≥ λcð1; 1;�πÞ ¼ 1

2
:

ð40Þ

Here, λ1 > λcð1; λ2;ΔθÞ can be equivalently expressed as
λ1½2λ1 − λ2 cosðΔθÞ� > 1. Moreover, it can be found from
λcðη; λ2;ΔθÞ < 1 that the upper limit value of η is

ffiffiffi
2

p
.

Therefore, we obtain the following necessary conditions
for steady-state entanglement independent of the initial
state, i.e.:

ð1Þ λ1 > 1=2; ð2Þ η<
ffiffiffi
2

p
; ð3Þ λ1½2λ1 − λ2 cosðΔθÞ�> 1:

ð41Þ

The necessary conditions shown in Eq. (41) are helpful for
later discussions in some specific cases, such as the
ultrarelativistic limit case.
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IV. THE STEADY-STATE ENTANGLEMENT FOR
TWO ROTATING UNRUH-DEWITT DETECTORS

With the help of the necessary and sufficient condition
obtained in Sec. III, we study whether two rotating Unruh-
DeWitt detectors in vacuum can be entangled in the
asymptotic steady state, and, if so, what conditions are
required for the parameters fR;Ω;φ; Lg.
First, when the separation between the rotating planes of

the two detectors is vanishing fL ¼ 0g, and the orbital
radius or the phase angle difference of the trajectories of the
two detectors is vanishing fR ¼ 0jjφ ¼ 0g, the distance
between the two detectors d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 sin2ðφ=2Þ þ L2

p
is

vanishing. According to Eqs. (14) and (16), when

fφ ¼ 0g& fL ¼ 0g, one obtains DðαϱÞ
� ¼ Dð11Þ

� , and thus
fλ1 ¼ λ2 ¼ 1g& fθ1 ¼ θ2 ¼ 0g according to Eq. (18).
Similarly, when fR ¼ 0g& fL ¼ 0g, one obtains
fλ1 ¼ 1g& fη ¼ 1g. Therefore, when the separation
between the two detectors is vanishing, as long as the
initial state satisfies the necessary and sufficient condition
Eq. (32), the detectors can obtain initial-state dependent
steady-state entanglement. This property is the same as that
in the uniform acceleration case and in the case of static
detectors in a thermal bath [15].
Second, for uniformly accelerated detectors in vacuum

and static ones in a thermal bath, it is straightforward to
verify that

DðαϱÞ
þ þDðϱαÞ

−

DðαϱÞ
þ −DðϱαÞ

−

¼ η: ð42Þ

Taking Eq. (42) into Eqs. (19)–(21), one obtains

fλ1 ¼ λ2g& fθ1 ¼ θ2g; ð43Þ

which has been verified in Ref. [18]. Then, λ1½2λ1 −
λ2 cosðΔθÞ� ¼ λ21 ≤ 1, so the necessary condition (3) in
Eq. (41) cannot be satisfied. That is, initial-state indepen-
dent steady-state entanglement is impossible for uniformly
accelerated detectors and static ones in a thermal bath.
However, for rotating detectors, Eq. (42) is not satisfied, so,
in the following, we focus on whether initial-state inde-
pendent steady-state entanglement can be obtained for
rotating detectors. We first give an analytical investigation
for some special cases, followed by a numerical analysis for
general cases.

A. The analytical investigation

1. The ultrarelativistic limit

To begin with, we consider the ultrarelativistic limit case,
i.e., v ¼ RΩ → 1, or equivalently the Lorentz factor γ ≫ 1,
and focus on whether the detectors can obtain steady-state
entanglement.

a. Case I. When the orbital radius R is finite, the
proper acceleration a ¼ γ2v2=R tends to infinity in the
ultrarelativistic limit v → 1 and γ → ∞. According to
Eqs. (22) and (27), we obtain

η → 1þ γΩ
πω0

Z þ∞

0

1

x2
dx → þ∞; ð44Þ

which means that the necessary condition η <
ffiffiffi
2

p
cannot

be satisfied. Therefore, initial-state independent steady-
state entanglement is impossible in this case.
b. Case II. When the orbital radius R → ∞, while the

proper acceleration a ¼ γ2v2=R is finite, η can be approxi-
mated as

η ¼ 1þ ae−
2
ffiffi
3

p
ω0

a

2
ffiffiffi
3

p
ω0

þO½1 − v�; ð45Þ

where O½εn� denotes that infinitesimals of the nth and
higher orders of ε are omitted. That is, as long as the proper
acceleration a is small enough, the necessary condition η <ffiffiffi
2

p
can always be satisfied. This case can be further divided

into two subcases.
Subcase 1. When φ ≠ 0, i.e., the phase difference φ of

the trajectories of the two detectors is nonvanishing, the
roots of Eq. (30) satisfy 0 < r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin½r� � φ=2�2

p
≤ 1.

Then it can be proved that λ1 given in Eq. (22) approaches 0
when v → 1 and the acceleration a is finite, which indicates
that the detectors cannot obtain initial-state independent
steady-state entanglement since the necessary condition
λ1 > 1=2 is not satisfied.
Subcase 2. This is the case considered in Refs. [31,32].

When φ ¼ 0, i.e., the phase difference φ of the trajectories
of the two detectors is vanishing, the roots of Eq. (30) in the
neighborhood of v ¼ 1 can be expressed as

rþ ¼ r−≡ r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2L2þ9

p
−3

q
ð1−vÞ1=2þO½ð1−vÞ3=2�:

ð46Þ

Substituting Eq. (46) into Eq. (22), and keeping the zeroth-
order terms of (1 − v), we obtain

λ1¼
ð1−V2Þ2

ð1þ6V2þV4Þ
jsinUj
U

; λ2¼
ð1−V2Þ3e−UV

ð1þ6V2þV4Þð1þV2Þ;

cosðΔθÞ¼ sign½sinU�; ð47Þ

where

U ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2L2 þ 9

p
− 6

p
a

;

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2L2 þ 9

p
þ 3

p
−

ffiffiffi
6

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2L2 þ 9

p
− 3

p :
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Then, it is obvious that U ≥ 0 and 0 ≤ V ≤ 1. According to
Eq. (47), it can be verified that λ1½2λ1 − λ2 cosðΔθÞ� ≤ 1,
which means that the necessary condition (3) in Eq. (41)
cannot be satisfied. This explains why initial-state inde-
pendent steady-state entanglement has not been found in
Refs. [31,32].

2. The nonrelativistic limit

In the following, we consider the nonrelativistic case,
i.e., v ¼ RΩ ≪ 1, or equivalently the Lorentz factor γ → 1.
This can be divided into the following two cases.
a. Case I. The dimensionless orbital radius Rω0 is finite,

while the dimensionless angular velocity Ω=ω0 approaches
zero. This reduces to the static case, in which the only way
to obtain steady-state entanglement is when the two
detectors are infinitely close, i.e., d → 0. In this case,
the steady-state concurrence has been given in Eq. (33),
when the initial state of the two-detector system satisfies
the necessary and sufficient condition Eq. (32).
b. Case II. The dimensionless angular velocity Ω=ω0 is

finite, while the dimensionless orbital radius Rω0 ≪ 1.
This can be further divided into two subcases.
Subcase 1.When the separation between the orbits of the

two detectors is nonvanishing, i.e., L ≠ 0, substituting

Eq. (14) into Eq. (18), we obtain the approximate expres-
sions of the parameters η, λ1, and λ2 as

η¼ 1þHðmÞðRω0Þ2mþO½ðRω0Þ2mþ2�;
λ1 ¼ jpjþO½ðRω0Þ2�; λ2 ¼ jqjþO½ðRω0Þ2�;

cosðΔθÞ¼Sign½pq�cosðmφÞ; ð48Þ
where

HðmÞ ¼ 2ðmΩ=ω0 − 1Þ2mþ1

Γð2mþ 2Þ ; ð49Þ

p ¼ sinðLω0Þ
Lω0

; q ¼ 0F1

�
3

2
þm;−

1

4
L2Ω2ξ2

�
; ð50Þ

with m ¼ bω0=Ωc þ 1, and ξ ¼ m − ω0=Ω. Obviously,
m ≥ 1 and 0 < ξ ≤ 1. Plugging Eq. (48) into Eqs. (39)
and (34), we obtain

λ1 − λc ¼ jpj − pq cosðmφÞ þ jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ q2cos2ðmφÞ

p
4jpj

þO½ðRω0Þ2�; ð51Þ
and

Kð∞Þ ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

½1 − pq cosðmφÞ�½2p2 − pq cosðmφÞ − 1�
½p − q cosðmφÞ�2 þ q2ð1 − p2Þ2sin2ðmφÞ

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2sin2ðmφÞ þ

�
p − q cosðmφÞ

1 − p2

�
2

s
HðmÞðRω0Þ2m

þO½ðRω0Þ2mþ2�: ð52Þ

According to the necessary and sufficient condition
Eq. (38), when λ1 − λc shown in Eq. (51) is positive, the
detectors can obtain initial-state independent steady-state
entanglement when the dimensionless orbital radius
Rω0 ≪ 1. Due to the complexity of Eq. (51), we show

numerically its dependence on the dimensionless angular
velocity Ω=ω0 and the dimensionless orbit separation Lω0

when the dimensionless orbital radius tends to zero (i.e.,
Rω0 → 0) for two special cases, i.e., the phase angle
difference of the trajectories φ ¼ 0 and φ ¼ π. When

0.034
0.068
0.102
0.136
0.170
0.204
0.238
0.272

0.045
0.090
0.135
0.180
0.225
0.270
0.315
0.360
0.405
0.450

FIG. 2. The contour map of λ1 − λc in parameter space ðΩ=ω0; Lω0Þ when Rω0 → 0, with φ ¼ 0 (left), and φ ¼ π (right).
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φ ¼ 0, the separation of the two Unruh-DeWitt detectors is
parallel to the rotating axis, while, when φ ¼ π, the
separation of the detectors intersects with the rotating axis.
From Fig. 2, we can draw the following conclusions.
(1) In either case, a sufficiently small dimensionless

orbital separation Lω0 is required for initial-state indepen-
dent steady-state entanglement (i.e., λ1 − λc > 0) in the
neighborhood of a vanishing orbital radius R.
(2) In the parallel case (i.e., φ ¼ 0), a sufficiently large

angular velocity Ω (larger than the transition frequency of
the detectors ω0) is required for initial-state independent
steady-state entanglement in the neighborhood of a vanish-
ing orbital radius R. In contrast, for the intersectant case
(i.e., φ ¼ π) in which the separation intersects with the
rotational axis, there is no such restriction.
Subcase 2. Now, we discuss the case when the separation

between the orbits of the two detectors is vanishing, i.e.,
L ¼ 0. First of all, if φ¼ 0, which means that the separation

between the detectors is vanishing, only steady-state
entanglement related to the initial state is possible, as
shown in Eq. (33). In the following, we discuss the case
when φ ≠ 0. In the limit Rω0 ≪ 1, i.e., the orbital radius is
much smaller than the transition wavelength of the detector,
we obtain

η¼ 1þHðmÞðRω0Þ2mþO½ðRω0Þ2mþ2�;

λ1¼ 1−
2

3

�
1þ3Ω2

ω2
0

�
sin2

�
φ

2

�
ðRω0Þ2þO½ðRω0Þ4�;

λ2¼ 1−
2Hðmþ1Þ

HðmÞ sin2
�
φ

2

�
ðRω0Þ2þO½ðRω0Þ4�; ð53Þ

and cosΔθ ¼ cosðmφÞ, where HðmÞ has been defined in
Eq. (49), and m ¼ bω0=Ωc þ 1. Substituting Eq. (53) into
Eqs. (39) and (34), we obtain

λ1 − λc ¼

8>>><
>>>:

1 −
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðmφÞ þ 8

q
þ cosðmφÞ

�
þO½ðRω0Þ2�;

mφ

π
∉ Evens;

�
2

3

�
Hðmþ 1Þ
HðmÞ −

�
1þ 3Ω2

ω2
0

��
sin2

�
φ

2

��
ðRω0Þ2 þO½ðRω0Þ4�;

mφ

π
∈ Evens;

ð54Þ

and

Kð∞Þ ¼

8>>>>>>>>><
>>>>>>>>>:

ðΩ=ω0 − 1Þ3
ðΩ=ω0 − 1Þ3 þ 2ðΩ2=ω2

0 þ 3ÞΩ=ω0

�
1− 2 sin

�
φ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω
ω0

þ Ω3

3ω3
0

s
ðRω0Þ þO½ðRω0Þ2�

�
; m¼ 1;

3HðmÞ
2ð1þ 3Ω2=ω2

0Þ
sin2ðmφ=2Þ
sin2ðφ=2Þ ðRω0Þ2m−2 þO½ðRω0Þ2m−1�; m > 1&

mφ

π
∉ Evens;

3

2

�
Hðmþ 1Þ
1þ 3Ω2=ω2

0

−HðmÞ
�
ðRω0Þ2m þO½ðRω0Þ2mþ2�; m > 1&

mφ

π
∈ Evens:

ð55Þ

According to Eqs. (54) and (55), we obtain the following
conclusions.
(1) In the limit of a vanishing dimensionless orbital

radius, i.e., Rω0 → 0, the steady-state entanglement inde-
pendent of the initial state measured by concurrence is

lim
Rω0→0

Cð∞Þ¼
� ðΩ=ω0−1Þ3

ðΩ=ω0−1Þ3þ2ðΩ2=ω2
0
þ3ÞΩ=ω0

; Ω>ω0;

0; Ω≤ω0:
ð56Þ

That is, when the angular velocity is larger than the energy
level spacing, the steady-state concurrence which is inde-
pendent of the initial state will be nonzero. Otherwise, it
will be zero.

(2) Although the steady-state concurrence tends to zero
in the limit of a vanishing dimensionless orbital radius
(Rω0 → 0) when the angular velocity Ω is less than the
energy level spacing of detectors ω0, it can be seen from
Eqs. (54) and (55) that the steady-state concurrence is
certainly nonzero in the neighborhood of Rω0 ¼ 0 if mφ

π is
not an even number. If mφ

π is even, whether the detectors can
obtain initial-state independent steady-state entanglement
in the neighborhood of Rω0 ¼ 0 depends on whether
Hðmþ1Þ
1þ3Ω2=ω2

0

−HðmÞ is positive. For example, if φ ¼ π (i.e.,

when the detectors rotate at opposite ends of the diameter of
a circular trajectory) and m ¼ 2 (i.e., the angular velocity
satisfies 1

2
< Ω=ω0 ≤ 1), one can find that initial-state

independent steady-state entanglement can be achieved
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when 1
2
< Ω=ω0 < 0.834. Note that here the angular

velocity Ω is smaller than the transition frequency ω0.
To summarize, in this part, we have investigated

analytically the steady state of a pair of rotating
Unruh-DeWitt detectors in the ultrarelativistic limit
and the nonrelativistic limit, respectively. We have
shown that, in the ultrarelativistic limit, initial-state
independent steady-state entanglement is always impos-
sible. However, in the nonrelativistic limit, when the
angular velocity Ω is appropriate and the orbital separa-
tion L and the orbital radius R are sufficiently small,
initial-state independent steady-state entanglement can
certainly be achieved. Moreover, it is harder to achieve
initial-state independent steady-state entanglement when
the separation of the detectors is parallel to the rotating
axis, in the sense that the rotating angular velocity is
required to be larger than the transition frequency of the
detectors, while there is no such restriction when the
separation of the detectors intersects with the rotat-
ing axis.

B. Numerical investigation

In this part, we investigate numerically how the steady-
state entanglement of two rotating Unruh-DeWitt detectors
is affected by physical variables such as the orbital radius
R, the angular velocity Ω, the orbital phase difference φ,
and the orbital separation L.
First, we focus on how the initial-state independent

steady-state entanglement is affected by the alignment of
the detectors with respect to the rotating axis (which is
determined by the orbital phase difference φ and the orbital
separation L). In Fig. 3, we plot the contour map of the
steady-state concurrence Cð∞Þ in the parameter space
ðφ=π; Lω0Þ with Rω0 ¼ 1=10 and Ω=ω0 ¼ 3, from which
we conclude as follows.
(1) A sufficiently small orbital separation L (compared

with the transition wavelength of the detectors) is a
necessary condition for the detectors to obtain steady-state
entanglement. Moreover, when the phase angle difference
φ of the trajectories of the detectors is fixed at a nonzero
value, the smaller the orbital separation L, the larger the
steady-state concurrence.
(2) When the orbital separation L is fixed, there always

exists an optimal orbital phase difference φ such that the
steady-state concurrence the detectors obtained reaches its
maximum. Moreover, as the orbital separation L increases,
the optimal value of φ changes from 0 (for L ¼ 0) to π.
(3) The larger the orbital phase difference φ, the larger

the region of the orbital separation L within which the
detectors can obtain steady-state entanglement. In this
sense, a larger orbital phase difference φ is beneficial to
steady-state entanglement.
Second, we investigate how the initial-state independent

steady-state entanglement is affected by the rotation of the
detectors described by the orbital radius R and the rota-
tional angular velocity Ω. To this end, we consider the
following two cases as sketched in Fig. 4: (1) The parallel
case, i.e., the separation of the two Unruh-DeWitt detectors
is parallel to the rotating axis. In this case, φ ¼ 0. (2)
The intersectant case, i.e., the separation of the two

0.0082
0.0164
0.0246
0.0328
0.0410
0.0492
0.0574
0.0656
0.0738
0.0820
0.0902

FIG. 3. The contour map of the steady-state concurrence Cð∞Þ
in parameter space ðφ=π; Lω0Þwith Rω0 ¼ 1=10 and Ω=ω0 ¼ 3.

FIG. 4. The parallel case: φ ¼ 0. The intersectant case: φ ¼ π.
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Unruh-DeWitt detectors intersects with the rotating axis. In
this case, φ ¼ π.
In Fig. 5, we plot the contour maps of the steady-state

concurrence Cð∞Þ in the parameter space ðΩ=ω0; Rω0Þ for
the parallel case and the intersectant case, respectively.
From Fig. 5, we conclude as follows.
(1) In either the parallel case or the intersectant case, in

order to obtain initial-state independent steady-state entan-
glement, a sufficiently small orbital radius and a suffi-
ciently large rotational angular velocity are required. Also,
the rotational angular velocity cannot be too large [other-
wise the necessary condition (2) in Eq. (41) cannot be
satisfied]. This means that there always exists an optimal
rotational angular velocity such that the steady-state con-
currence the detectors obtained reaches its maximum.
(2) Compared with the parallel case, the detectors in the

intersectant case have more spacious rooms for orbital
radius and rotational angular velocity to obtain initial-state
independent steady-state entanglement, i.e., the detectors
can obtain steady-state entanglement at a larger orbital
radius or a smaller rotational angular velocity. In this sense,
the detectors in the intersectant case are more easily able to
obtain initial-state independent steady-state entanglement
than the ones in the parallel case. Let us note that, as
discussed analytically [See Eqs. (54) and (55) and the
discussions below], steady-state entanglement is also pos-
sible in the intersectant case (φ ¼ π) when the angular
velocity is smaller than the transition frequency, i.e.,
Ω < ω0. However, the steady-state concurrence obtained
is extremely small (less than 10−5), so it is not shown
in Fig. 5.
To summarize, in this part, we have investigated numeri-

cally how the initial-state independent steady-state entan-
glement of a pair of rotating Unruh-DeWitt detectors is
affected by the configuration and the rotation of the
detectors. First, by comparing the steady-state concurrence
obtained by detectors with different configurations, we find

that the detectors in the intersectant case (i.e., when the
separation of the detectors intersects with the rotating axis)
have more spacious rooms for orbital radius and rotational
angular velocity to obtain steady-state entanglement. In this
sense, steady-state entanglement independent of the initial
state is more likely to be obtained in this case. Second, in
any configuration, a sufficiently small separation between
the detectors compared with the transition wavelength and
an angular velocity larger than the transition frequency are
required to obtain a significant amount of steady-state
entanglement.

V. SUMMARY

In this paper, we have studied the steady-state entangle-
ment of two rotating Unruh-DeWitt detectors coupled with
a fluctuating massless scalar field in vacuum. A necessary
and sufficient condition for the detectors to achieve steady-
state entanglement is derived, which can be classified
according to the dependence on the initial state. With
the help of the condition obtained, the requirements on
the physical parameters such as the angular velocity Ω, the
orbital radius R, the orbital phase difference φ, and the
orbital separation L to obtain steady-state entanglement for
two Unruh-DeWitt detectors rotating in coaxial orbits with
the same orbital radius and angular velocity is systemati-
cally investigated, both analytically and numerically. It is
found that, when the separation between the two detectors
is vanishing, the detectors can obtain steady-state entan-
glement dependent on the initial state of the two-detector
system, which is the same as what happens in the uniform
acceleration case and the case of static detectors in a
thermal bath. When the separation between the detectors is
nonvanishing but small compared with the transition wave-
length of detectors, the detectors can obtain steady-state
entanglement whatever the initial state is in the non-
relativistic limit. This is a unique phenomenon caused

0.018
0.036
0.054
0.072
0.090
0.108
0.126
0.144
0.162
0.180

0.017
0.034
0.051
0.068
0.085
0.102
0.119
0.136
0.153
0.170

FIG. 5. The contour maps of the steady-state concurrence Cð∞Þ in parameter space ðΩ=ω0; Rω0Þ for the parallel case with Lω0 ¼
1=10 (left) and the intersectant case (right). Note that contour lines with Cð∞Þ < 10−5 are not drawn here.
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by the centripetal acceleration, which can never happen in
the uniform acceleration case and the case of static
detectors in a thermal bath. In contrast, in the ultrarelativ-
istic limit, the detectors can never obtain steady-state
entanglement independent of the initial state. In addition,
the detectors have more spacious rooms for orbital radius
and rotational angular velocity to obtain initial-state inde-
pendent steady-state entanglement when their spacial
separation intersects with the rotation axis compared with
detectors aligned parallel to the rotating axis. In this sense,
the steady-state entanglement independent of the initial
state is more likely to be achieved in this case.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC under
Grants No. 11690034, No. 11805063, and No. 12075084,
and the Hunan Provincial Natural Science Foundation of
China under Grant No. 2020JJ3026.

APPENDIX: THE CALCULATION
DETAILS OF Pðω; φ; LÞ

According to the definition Eq. (13), the function
PðΔt;φ; LÞ can be expressed as

PðΔt;φ; LÞ ¼ −
1

4π2
1

ðΔt − iεÞ2 − 4R2sin2ðΩΔt=2þ φ=2Þ − L2

¼
Z

eiðLkz−ωkΔtÞei2k⊥R sinðΩΔtþφ
2

Þ sin ðθ−Ωðt0þtÞþφ
2

Þ

ð2πÞ32ωk
d3k

¼
Z þ∞

0

k⊥dk⊥
4π2

Z þ∞

−∞

eiðLkz−ωkΔtÞdkz
2ωk

Z þπ

−π

ei2k⊥R sinðΩΔtþφ
2

Þ sin ðθ−Ωðt0þtÞþφ
2

Þ

2π
dθ

¼
Z þ∞

0

k⊥dk⊥
4π2

Z þ∞

−∞

eiðLkz−ωkΔtÞ

2ωk
J0

�
2k⊥R sin

�
φþΩΔt

2

��
dkz ðA1Þ

¼
Xþ∞

n¼−∞
einφ

Z þ∞

0

dk⊥
k⊥J2nðk⊥RÞ

4π2

Z þ∞

−∞

eiLkz

2ωk
e−iΔtðωk−nΩÞdkz; ðA2Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
, with kx ¼ k⊥ cos θ, ky ¼ k⊥ sin θ. To obtain Eq. (A2) from Eq. (A1), we have used

J0

�
2k⊥R sin

�
φþ ΩΔt

2

��
¼

Xþ∞

n¼−∞
einðΩΔtþφÞJ2nðk⊥RÞ: ðA3Þ

Then, the Fourier transform of the function PðΔt;φ; LÞ can be calculated as

Pðω;φ; LÞ ¼
Z þ∞

−∞
PðΔt;φ; LÞeiωΔtdΔt

¼
Xþ∞

n¼−∞
einφ

Z þ∞

0

dk⊥
k⊥J2nðk⊥RÞ

2π

Z þ∞

−∞

eiLkz

2ωk
δðωk − nΩ − ωÞdkz;

¼
Xþ∞

n>−ω
Ω

einφ

2π

Z
nΩþω

0

J2n
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnΩþ ωÞ2 − x2
q

R


cosðLxÞdx

¼
Xþ∞

n>−ω
Ω

einφR2jnjðnΩþ ωÞ2jnjþ1

2πð2jnj þ 1Þ! F0∶1;0
1∶1;0

� ∶ jnj þ 1
2
; ;

jnj þ 3
2
∶ 2jnj þ 1; ;

�
−R2ðnΩþ ωÞ2
−L2ðnΩþ ωÞ2=4

��
; ðA4Þ

where the function F0∶1;0
1∶1;0½ ∶

jnjþ3
2
∶

jnjþ1
2
;

2jnjþ1;
;
;
ðxyÞ�, which is a generalized Kampé De Fériet’s double hypergeometric series

(function) [36–38], can be expressed as

F0∶1;0
1∶1;0

� ∶ jnj þ 1
2
; ;

jnj þ 3
2
∶ 2jnj þ 1; ;

�
x

y

��
¼

Xþ∞

k¼0

Xþ∞

l¼0

ðjnj þ 1
2
Þk

ðjnj þ 3
2
Þkþlð2jnj þ 1Þk

xkyl

k!l!
; ðA5Þ

STEADY-STATE ENTANGLEMENT FOR ROTATING UNRUH- … PHYS. REV. D 106, 105028 (2022)

105028-11



with ðaÞb ≡ Γðaþ bÞ=ΓðaÞ being the Pochhammer sign. Here we have used the following formula:

J2nðxÞ ¼
Xþ∞

k¼0

ð−1Þk½2ðkþ jnjÞ�!
k!½ðkþ jnjÞ!�2ðkþ 2jnjÞ!

�
x
2

�
2ðkþjnjÞ

ðA6Þ

in the last step in Eq. (A4). When y ¼ 0 or x ¼ 0, the double-variable function Eq. (A5) reduces to single-variable
generalized hypergeometric functions as

F0∶1;0
1∶1;0

� ∶ jnj þ 1
2
; ;

jnj þ 3
2
∶ 2jnj þ 1; ;

�
x

0

��
¼ 1F2

�
jnj þ 1

2
; jnj þ 3

2
; 2jnj þ 1; x

�
;

F0∶1;0
1∶1;0

� ∶ jnj þ 1
2
; ;

jnj þ 3
2
∶ 2jnj þ 1; ;

�
0

y

��
¼ 0F1

�
jnj þ 3

2
; y

�
: ðA7Þ

The generalized Kampé De Fériet’s double hypergeometric function can be written as a series of the single-variable
generalized hypergeometric function 0F1 or 1F2, i.e.,

F0∶1;0
1∶1;0

� ∶ jnj þ 1
2
; ;

jnj þ 3
2
∶ 2jnj þ 1; ;

�
x

y

��
¼

Xþ∞

k¼0

ðjnj þ 1
2
Þkxk

ðjnj þ 3
2
Þkð2jnj þ 1Þkk! 0

F1

�
jnj þ kþ 3

2
; y

�
ðA8Þ

¼
Xþ∞

l¼0

yl

ðjnj þ 3
2
Þll! 1

F2

�
jnj þ 1

2
; jnj þ lþ 3

2
; 2jnj þ 1; x

�
: ðA9Þ

Therefore, Eq. (A4) can be further expressed as

Pðω;φ; LÞ ¼
Xþ∞

n>−ω
Ω

Xþ∞

k¼0

eiðnφþkπÞR2jnjþ2kðnΩþ ωÞ2jnjþ2kþ1

2πð2jnj þ 2kþ 1Þð2jnj þ kÞ!k! 0F1

�
jnj þ kþ 3

2
;−L2ðnΩþ ωÞ2=4

�
ðA10Þ

¼
Xþ∞

n>−ω
Ω

Xþ∞

l¼0

eiðnφþlπÞR2jnjL2lðnΩþ ωÞ2jnjþ2lþ1

2πjnj!l!ðjnj þ lþ 1Þjnjþlþ1
1F2

�
jnj þ 1

2
; jnj þ lþ 3

2
; 2jnj þ 1;−R2ðnΩþ ωÞ2

�
; ðA11Þ

which is more convenient for numerical calculation. Then, with the help of the built-in generalized hypergeometric function

0F1 or 1F2 in Mathematica, the functionPðω;φ; LÞ can be calculated numerically to an arbitrary precision. In our numerical
results (Figs. 3 and 5 in the main text), the relative truncation errors are estimated to be less than 10−6.
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