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We show that thick spectral walls exist in antikink-kink collisions in the ϕ6 model. In this model, they are
triggered by the so-called delocalized modes that do not exist in the single-soliton sector but emerge in
antikink-kink collisions. Therefore, spectral walls are a rather common phenomenon that should occur in
many solitonic collisions involving nonsymmetric kinks as, e.g., in the ϕ8 or higher power models.
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I. INTRODUCTION

Although they are the simplest topological solitons
[1–3], kinks can reveal a complicated and fascinating pattern
of interactions. There are several reasons for this. First of all,
kinks comprise two rather distinct features. They are
localized solutions of nonlinear field equations in (1þ 1)
dimensions that are characterized by a global quantity, that
is, a topological charge. Second, there are various ways in
which kinks can interact. Except for the rare Bogomol’nyi-
Prasad-Sommerfield (BPS) cases [4–6], kinks experience a
static force if placed at a finite distance from each other.
Further, as a localized particle like object, a kink can possess
internal degrees of freedom (d.o.f.) usually identified
with normal (or quasinormal) modes arising in the standard
linear perturbation theory. This can be further generalized to
delocalized modes or delocalized d.o.f., which exist only for
multikink configurations. There is also radiation (scattering
modes) that may have a very nontrivial impact on kinks like,
e.g., negative radiation pressure [7].
In particular, the interplay between the kinetic motion of

kinks and their internal modes (both localized and non-
localized ones), can have a very nontrivial impact on kink
dynamics. The first famous example is the resonant energy
transfer [8,9], which explains the appearance of a fractal

structure in the final state formation in kink-antikink
collisions in various models like, e.g., ϕ4 theory [8–10].
Let us consider a kink and an antikink that initially carry
only kinetic energy since they are simply boosted towards
each other. During the collision the energy can be trans-
ferred to internal d.o.f. (e.g., the shape mode or Derrick
modes for kinks in the ϕ4 model). As a result, it may
happen that the kink and antikink possess too little kinetic
energy to overcome the attractive static force. This results
in kink-antikink annihilation with the formation of a so-
called bion that decays with the emission of radiation.
However, the energy can also be transferred back to the
kinetic d.o.f., which can allow the solitons to escape. The
actual final state (annihilation or back scattering) depends
very sensitively on the initial velocity and reveals a fractal-
like structure. It is important to remark that the internal modes
participating in the resonant energy transfer can be localized
on the constituent solitons (as in the ϕ4 model [8–12]) or can
be delocalized between the colliding kinks (as happens in
antikink-kink collisions in ϕ6 theory [13,14]).
The second phenomenon that involves kinetic and

internal d.o.f. is the spectral wall phenomenon [15]. A
spectral wall is an unstable stationary solution caused by a
normal mode crossing the mass threshold, i.e., by the
transition of a normal mode frequency into the continuous
spectrum. It results, for example, in a kink-antikink pair
frozen at a certain mutual distance 2asw, where the
constituent solitons are subject to small oscillations.
Equivalently, a spectral wall can be viewed as a barrier
in soliton dynamics located at the point where this unstable
solution can be formed.
Specifically, if we collide a kink and an antikink carrying

an exited internal mode which for a certain intersoliton
distance crosses the mass threshold, then three possible
scenarios can be observed. If the amplitude A of the mode
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is equal to a critical value A ¼ Acr, then the incoming
kink and antikink form this stationary (arbitrarily), long
living solution with their average positions frozen at a
certain value �asw, which is identified with the position of
the spectral wall. It has been verified that the position of
the spectral wall is a universal observable and does not
depend on the particularities of the colliding solitons (e.g.,
their velocity). It is, in fact, uniquely determined by the
intersoliton distance at which the mode crosses the mass
threshold. For A < Acr, the incoming solitons pass through
the spectral wall and their dynamics is less and less affected
by the wall as A decreases. If the mode is strongly excited,
A > Acr, then the solitons are reflected before the spectral
wall, and the reflection distance grows with the amplitude
of the mode. Such a spectral wall barrier may exist even
when the solitons are far away from each other. Thus, a
spectral wall can influence also the long range intersoliton
interactions.
Qualitatively, this behavior can be understood by the

observation that the normal mode carries a certain fraction
of the energy of the configuration which grows with the
amplitude. If it carries too much energy, then the system is
not capable of transferring this energy to other d.o.f. before
the mode disappears into the continuum, and the wall
crossing cannot occur.
Importantly, a spectral wall is a very selective phenome-

non. Every mode which crosses the mass threshold has its
own spectral wall. Furthermore, the excitation of other
modes does not affect the transition/reflection at a particu-
lar spectral wall. Only the amplitude of the mode related to
the spectral wall does matter.
Originally, spectral walls have been observed in BPS

collisions, i.e., in models that allow for static solutions
describing a kink-impurity or kink-antikink pair at any
distance [16,17]. Such BPS collisions, although important,
are rather rare and require either the addition of a back-
ground field (an impurity) [18,19] or some special multi-
field theories where the coupling constants are fine-tuned to
support a nontrivial BPS sector [20–22].
Recently, spectral walls have also been found in near-

BPS collisions, where a small kink-antikink force exists
[23]. Strictly speaking, in this case the spectral wall
transmutes into a thick spectral wall, where stationary
solutions are located at a larger distance than in the BPS
version athicksw > asw. This is related to the fact that the
stationary state is formed before the mode crosses the mass
threshold. In this case, the formation of a thick spectral wall
is due to a balance between the kink-antikink attractive
force (which would be absent in the BPS case) and a
repulsive interaction with the mode. For a detailed math-
ematical explanation we refer to Sec. V in [23]. As a
consequence, the position of the stationary solution is not
uniquely defined for a given mode but now depends on the
velocity of the scattered kinks. Equivalently, if we prepare
as an initial state a pair of kink and antikink with a

separation of 2a > 2asw and with the pertinent mode
exited, then there is a critical value of the amplitude of
the mode for which such a stationary state is formed already
at this separation. Furthermore, the value of the amplitude
depends on the initial separation. When the separation
approaches the position of the original spectral wall in the
BPS limit, a → asw, the critical amplitude that generates
the stationary solution diverges. Hence, the thick spectral
wall is bounded by the usual (BPS) spectral wall.
Nonetheless, a thick spectral wall keeps its selective nature.
A common property of the (thick) spectral walls is that

they require rather slow velocities of the colliding solitons.
This is due to the fact that the critical amplitude for which
the stationary solution is formed grows with the velocity.
Thus, at some point nonlinear effects begin to dominate the
linear mode picture. Furthermore, for high speed collisions
the system evolves too quickly to allow for the existence of
spectral walls. In a sense, in such a rapid, nonadiabatic
evolution the solitons do not have time to realize that a
mode disappeared into the continuum. This is precisely the
reason why there are no spectral walls in kink-antikink
collisions in the ϕ4 model, see for example [24] where
kinks with excited shape mode have been studied. Here, the
initial states, which are free kinks, possess a normal mode
(shape mode) that necessarily temporarily disappears dur-
ing the collision. Indeed, the vacuum, which is a configu-
ration realized at a certain instant in the scattering, does not
support any modes. Similarly, no spectral walls have been
found in the double sine-Gordon model [25].
We can conclude that (thick) spectral wall will not

always exist in kink-antikink collisions, even if the collid-
ing solitons possess normal modes localized on the
solitons. In this situation, the modes cross the threshold
when the solitons are very close to each other entering into
a very rapid (nonadiabatic) phase of the process. To find
spectral walls in usual, non-BPS, kink scattering processes,
we need modes that cross the mass threshold when the
intersoliton separation is still large and the system under-
goes an adiabatic evolution.
It is the aim of the current paper to show that thick

spectral walls can easily exist in collisions of nonsymmetric
kinks and antikinks. In this case, there are arbitrarily many
delocalized modes trapped between the colliding solitons.
These modes, one by one, cross the mass threshold as the
kinks approach each other. Since this can happen at a very
large separation, we find a clear evidence for spectral walls.

II. SPECTRAL WALLS IN THE ϕ6 MODEL

Let us consider the simplest model with nonsymmetric
kinks, that is, ϕ6 theory:

Lϕ6 ½ϕ� ¼
Z

∞

−∞

�
1

2
ϕ2
t −

1

2
ϕ2
x −

1

2
ϕ2ð1 − ϕ2Þ2

�
dx: ð1Þ

This model supports a static kink
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ΦKðx; aÞ≡ ϕð0;1Þðx; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhðx − aÞ

2

r
; ð2Þ

which joins two vacua: ΦKðx ¼ −∞Þ ¼ 0 and
ΦKðx ¼ þ∞Þ ¼ 1. The antikink interpolates between the
same vacua but in opposite order

ΦK̄ðx; aÞ≡ ϕð1;0Þðx; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tanhðx − aÞ

2

r
: ð3Þ

Obviously, these solitons are not antisymmetric
ΦKðxÞ ≠ −ΦK̄ð−xÞ.
Furthermore, a single kink (and antikink) does not support

any discrete normal modes except for the usual zero mode.
Importantly, due to a different curvature of the field theoretical
potential at the vacua, the effective potential in the linear
perturbation problem has two different mass thresholds.
Namely, at the vacuum ϕ ¼ 0 the mass of small perturbations
is m0 ¼ 1 while at the vacuum ϕ ¼ 1 we find m1 ¼ 2. This
has a huge impact on the collisions of these solitons. For
example, it leads to (anti)kink instability, see [26–28]. For
simplicity we call such solitons nonsymmetric kinks.
In kink-antikink collisions the solitons are joined by

the ϕ ¼ 1 vacuum, which effectively produces a potential
barrier of hightm2

1 ¼ 4 between the two potential wells that
are generated by single soliton solutions. Therefore, the
spectral structure for this sector is just a sum of two single
soliton sectors and no massive normal modes show up.
However, in the antikink-kink sector, where the solitons

are connected by the ϕ ¼ 0 vacuum something new
happens. The single-soliton potential wells are joined by
the lower mass threshold, effectively forming a much larger
antikink-kink potential well which can support new, so-
called delocalized modes, which are trapped between the
colliding solitons. Their number depends of the antikink-
kink separation 2a and increases arbitrarily as the separa-
tion grows. To see this, we consider the usual linear
perturbation theory where we perturb a configuration that
is a simple sum of an antikink and a kink located at −a and
a, respectively. This leads to the following spectral problem

�
d2

dx2
−
d2U
dϕ2

����
ΦK̄ðx;−aÞþΦKðx;aÞ

�
ηðx; aÞ ¼ −ω2ηðx; aÞ: ð4Þ

Here U ¼ 1
2
ϕ2ð1 − ϕ2Þ2 is just the ϕ6 potential. Then, the

form of the normalized modes η as well as their frequency
ω and number depend on the separation, see Fig. 1, where
the first few even modes are shown. They cross the mass
threshold at a ¼ 1.0072 (n ¼ 1 mode), a ¼ 1.8229 (n ¼ 2
mode), a¼3.4763 (n¼3mode), a¼5.2910 (n ¼ 4mode),
a ¼ 7.1050 ðn ¼ 5 mode). There is also an unstable mode
with imaginary frequency. We denote it as the n ¼ −1
mode to underline its unstable nature. This reflects the fact
that the simple sum ΦK̄ðx;−aÞ þΦKðx; aÞ is not a static
solution of the model, because the antikink and kink attract

each other. Nonetheless, for larger a, e.g., corresponding
with the position of the spectral wall for the red delocalized
mode, this unstable mode is almost a zero mode (quasizero
mode [29]) as the static force decreases exponentially.
Therefore, for a sufficiently large distance a the naive sum
can be treated as a solution with a good approximation. Of
course, after a finite time this mode will bring the solitons
together even if they have zero initial velocity.
These delocalized two-soliton modes are responsible for

the fractal structure in the final state formation. This was
originally found in [13] and recently carefully further
investigated in [14].
Here, however, it is important that the delocalized modes

can hit the mass threshold (of the antikink-kink collision) at
an arbitrarily large distance, where the collision is still in a
slow velocity (adiabatic) phase. These are ideal conditions
for the appearance of spectral walls.
In our first numerical experiment, we take as an initial

configuration a pair of antikink and kink that are located at
∓ a ¼ 10, respectively, and are boosted toward each other
with vin ¼ 0.05. Furthermore, we add the fourth delocal-
ized mode (purple mode in Fig. 1) η4 with frequencyω4 and
initial amplitude A4 ¼ 0.0464

ϕinðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tanh γðx − vintþ aÞ

2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanh γðxþ vint − aÞ

2

r
þ A4eiω4tη4ðx; aÞ;

ð5Þ

where γ ¼ ð1 − v2inÞ−1=2. The mode η4, as well as all other
modes, is normalized to unity. In Fig. 2 we show the
evolution of such a colliding initial configuration. At the
beginning, due to the nonzero initial velocity, the solitons
approach each other but quite quickly stabilize and form
a long living stationary state, where the positions of the
kink and antikink are frozen, see top panel in Fig. 2. This is
a thick spectral wall or, strictly speaking, one of the

FIG. 1. Frequency of the delocalized antikink-kink even modes
as a function of the distance a. Vertical lines denote the positions
of the spectral walls, i.e., the points where the modes hit the mass
threshold.
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stationary solutions forming the thick spectral wall related
to the first delocalized mode. After a long time, the
amplitude of the mode decreases due to the energy transfer
to radiation. As a consequence, the stationary solution
destabilizes and the solitons can pass through the obstacle.
They collide, performing in this case a few bounces. After
the first collision the biggest part of the energy is trans-
ferred from the initially exited fourth mode into the first
mode. In the lower panel we show the time dependence of
the value of the field at the origin ϕð0; tÞ. During the
scattering the field oscillates because of the excitation of
the fourth delocalized mode. In the bottom panel, we
present the frequency of the oscillations of the field at the
origin ϕðx ¼ 0; tÞ. This frequency is a “momentary”
frequency measured over short time intervals between
two subsequent maxima at tn and tnþ1, see Fig. 2, central
panel. Thus, ω ¼ 2π=ðtnþ1 − tnÞ. This gives a well defined
observable until the solitons temporarily annihilate, which,
for this example, happens at t ≈ 340. Note that the
measured frequency can be treated as a function of the
soliton separation a at time tn. The measured frequency
agrees with the result obtained in the two-soliton linear
perturbation theory, Eq. (4). Namely, it grows during the
collision, i.e., with decreasing the separation a, until for
t ≈ 200 it reaches an approximately constant value
ω ¼ 1.80. This happens for the separation a ¼ 4.94 at
which the stationary solution is formed. For this separation,
the linear perturbation theory gives ω ¼ 1.79.
In Fig. 3 we consider the same collision and present the

field with the subtraction of the naive superposition
ϕðx; tÞ −ΦK̄ðx;−aÞ −ΦKðx; aÞ, which allows us to clearly
visualize the excited mode.
Similar numerical computations are performed for the

first four lowest lying modes ηn (orange, green, red,
and purple modes in Fig. 1) and several initial separations
2a between the solitons. For reasons of simplicity, we

use a slightly different strategy to find the corresponding
thick spectral walls. Namely, we choose the initial con-
figuration

ϕinðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tanhðxþ aÞ

2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhðx − aÞ

2

r
þ Aneiωntηnðx; aÞ; ð6Þ

which is a nonboosted antikink-kink pair with the addition
of one of the first few (lowest frequency) modes ηn with
frequency ωn and initial amplitude An (no summation over
the index n is assumed). The addition of a delocalized mode
provides a repulsion acting against the attractive interso-
liton force, which for a suitably chosen amplitude An of the
nth mode leads to the formation of a stationary state, i.e., a
thick spectral wall. For a given n and a, we search for a
critical value of the amplitude An such that the stationary
configuration (6) is a solution for all times. We repeat this
procedure for various initial positions a and for n ¼ 1, 2, 3,
4. It turns out that this strategy allows for a more efficient
detection of the thick spectral walls.
The results are summarized in Fig. 4 where we plot the

critical amplitude of the mode An for which the stationary
solution (the thick spectral wall) is formed as a function of
the position of the antikink and kink, ∓ a.
For the third and fourth positive frequency delocalized

mode, we clearly see that the position of the thick spectral
wall is bounded from below by the point where the mode
hits the mass threshold, as predicted from the linear
perturbation analysis, Eq. (4) (see also Fig. 1). Indeed, if
the initial separation tends to the separation at which the
mode enters the continuum, 2a → 2asw, then the value of
the critical amplitude for which the thick spectral wall is
formed diverges.
For the first two modes, asw is located at much smaller

values, which requires very huge amplitudes to stabilize
the antikink-kink pair, even if we are significantly before

FIG. 2. Dynamics of an antikink-kink pair with the fourth
delocalized mode excited. See description in the text.

FIG. 3. Dynamics of the same state as in Fig. 2. We plot the
time evolution of the field with the subtraction of the single
soliton profiles: Δϕðx; tÞ ¼ ϕðx; tÞ −ΦK̄ðx;−aÞ −ΦKðx; aÞ.
The black line denotes the position of the solitons.
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the position of these spectral walls. This of course means
that nonlinearities begin to play an important role and the
stationary solutions cease to exist.

III. CONCLUSIONS

In the present work, we demonstrated the existence of
thick spectral walls in antikink-kink scattering in the ϕ6

model. They arise due to the existence of delocalized (two-
soliton) normal modes which can cross the mass threshold
at a large distance, which guarantees that the dynamics has
an adiabaticlike character.
Such thick spectral walls are stationary solutions formed

by a colliding antikink and kink, where the constituents
solitons freeze at a certain mutual distance, performing
small oscillations. The actual positions of these stationary
solutions can be predicted from perturbation theory, where
the attractive intersoliton force is balanced by a repulsion
due to the excitation of the mode, see [23].
The observed thick spectral walls act as obstacles in

antikink-kink collisions and, therefore, have a nontrivial
effect on multikink dynamics. On the other hand, there

are no spectral walls in kink-antikink collisions in the ϕ6

model, because there are no delocalized modes in this
sector. On the contrary, for an initial state consisting of a
largely separated kink-antikink pair with an additional,
e.g., Gaussian perturbation in between, we observed an
enhancement of attraction due to the negative radiation
pressure effect.
We expect that similar thick spectral walls will be present

in antikink-kink collisions in any field theory provided that
(i) the single kink and antikink are nonsymmetric solitons
with two different masses of small perturbations at the
vacua, i.e., two different mass thresholds; (ii) the scattering
kinks are joined by the lower mass vacuum (lower mass
threshold). This guarantees the emergence of delocalized,
trapped modes that necessarily should lead to the appear-
ance of thick spectral walls. Thus, they should be visible,
not only in versions of the ϕ6 model, e.g., [30–32], but also
in antikink-kink collisions in the ϕ8 model. In fact, the
observed repulsion in the latter model that occurs for an
initial configuration, which is a naive superposition of an
antikink and a kink [33], is probably an effect produced
precisely by these thick spectral walls. The same should
happen for other models with so-called fat tails [34–38].
To conclude, thick spectral walls are a generic phenome-

non influencing kink dynamics in many field theoretical
systems.
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