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At zero temperature and finite chemical potential, d-dimensional loop integrals with complex-valued
integrands in the imaginary-time formalism yield results dependent on the integration order. We observe
this even with the simplest one-loop dimensionally regularized integrals. Computing such integrals by
evaluating the spatial ddp integral before the temporal dp0 integral yields results consistent with those
obtained at small but nonvanishing temperatures. Computing the temporal integral first by applying the
residue theorem to the integrand yields a different answer. The same holds for general complexified
propagators. In this work we aim to understand the theoretical background behind this difference, in order
to fully enable the powerful techniques of residue calculus in applications. We cast the difference into the
form of a derivative term related to Dirac deltas, and further demonstrate how the difference originates from
the zero-temperature limit of the Fermi–Dirac occupation functions treated as complex-valued functions.
We also discuss a generalization to propagators raised to noninteger powers.
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I. INTRODUCTION

Loop integrals appearing in the perturbative expansion of
quantum field theories are often ill-defined when inter-
preted as ordinary integrals [1–3]. In order to evaluate
them, a number of different regulators have been intro-
duced, with the most commonly seen modern method being
dimensional regulation [4,5]. Using this formalism, an
integral is formally evaluated in dþ 1 spacetime dimen-
sions with d ¼ 3 − 2ϵ taking values in some nonempty
open set, and the result is analytically continued to obtain a
result near physically relevant values of d.
Such integrals are often manipulated somewhat care-

lessly, with hope that the analytical continuation justifies
freely changing the order of integration, and correctly
handles any issues arising from divergences and

discontinuities. In many cases, thesemanipulations still lead
to the correct answer, but there are interesting exceptions.
One particular class of exceptions occurs within thermal
field-theory calculations at zero temperature T ¼ 0 and
finite chemical potentials μ > 0, as we shall now illustrate.
While finite chemical potential will be our main focus as far
as applications go, the subtleties discussed here have at
least a possibility to arise in any loop integrals involving
complex propagators. This can happen for example in
studies of decay processes and other calculations dealing
with complex-valued momenta (for example amplitude
calculations are well known to use complex kinematics,
see [6].)
High-density calculations at T ¼ 0 are most properly

viewed as T → 0 limits of T > 0 computations. However,
the latter are often much more complicated, as they depend
on two dimensionful parameters T and μ, rather than on
one. For this reason, many high-density field theory
calculations (such as those in cold quark matter [7–9])
are performed at exactly T ¼ 0, and often proceed using
repeated application of the residue theorem from complex
analysis, which allows one to arrive at final expressions
after proceeding through significantly simpler intermediate
steps. What one ignores in this procedure is that the finite
temperature expressions often have the temperature T as a
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regulator, and as such, switching to a less-regulated T ¼ 0
expression may induce problems.
For the purpose of illustration, consider the following

simple one-loop integral with no numerator structure, given
in the imaginary-time formalism and regulated in the MS-
scheme

IαðμÞ≡
Z

∞

−∞

dp0

2π

Z
p

1

½ðp0 þ iμÞ2 þ p2�α ; ð1Þ

where α ∈ Rþ, and where we have defined the d-
dimensional spatial integral

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z

Rd

ddp
ð2πÞd

¼
�
eγEΛ2

4π

�
ϵ 2

ð4πÞd=2Γðd=2Þ
Z
Rþ

dppd−1: ð2Þ

Let us emphasize here that even noninteger values of α are
of physical interest. In multiloop computations in finite-
density quantum field theory, such integrals can arise for
example in cases where a loop integral is written as
an iterated integral, as is seen explicitly in, e.g., [10],
Eqs. (B.62) and (B.63).
An extension of IαðμÞ to finite temperatures T > 0 (in

which the integral over the 0 component is replaced by a
sum over discrete Matsubara modes) has been evaluated in
literature [10]. Evaluating the corresponding sum-integral
in d ¼ 3 − 2ϵ dimensions (again in the MS-scheme) by
first computing the spatial integral over p results in

Iαðμ;TÞ≡T
X
fωng

Z
p

1

½p2þðωnþ iμÞ2�α

¼
�
eγEΛ2

4π

�
ϵTð2πTÞd−2α

ð4πÞd=2
Γðα−d

2
Þ

ΓðαÞ

×

�
ζ

�
2α−d;

1

2
− i

μ

2πT

�
þζ

�
2α−d;

1

2
þ i

μ

2πT

��
;

ð3Þ

where ζða; bÞ is the Hurwitz zeta function. Taking T → 0 in
this expression is subtle, due to the μ=T appearing in the ζ
functions. The correct limit can be shown to be

lim
T→0

Iαðμ; TÞ ¼ −
�
eγEΛ2

4π

�
ϵ iμ
2π

Γðα − d
2
Þ

ð4πÞd=2ΓðαÞð1þ d − 2αÞ
× ½ðiμÞd−2α − ð−iμÞd−2α�: ð4Þ

Let us now attempt to evaluate IαðμÞ directly at T ¼ 0. If
we do this first by first performing the p-integral and
subsequently the p0-integration, the physically reasonable
result IαðμÞ ¼ limT→0 Iαðμ; TÞ appears without any special
considerations. However, it is very tempting to perform the

p0 integration first, in particular for parameter values
α ∈ N, given how convergent results can be dealt with
by using the residue theorem, i.e., the first integration
would involve only linear algebra and differentiation. The
benefits of this approach are more apparent with more
complex Feynman diagrams with multiple external legs (or
external momentum scales), such as

Z
p

Z
∞

−∞

dp0

2π

1

½jpþkj2 þðp0þ k0þ iμÞ2�2½p2 þðp0þ iμÞ2� :

ð5Þ

Even with the IαðμÞ defined in Eq. (1), performing the p0

integral first leads to an easier computation and gives a
completely standard evaluation involving Γ functions:

IαðμÞ →
p0-first

−
�
eγEΛ2

4π

�
ϵ μ

Γð1
2
Þ

×
Γðα − 1

2
Þ

ð4πÞd=2ΓðαÞΓðd
2
Þð1þ d − 2αÞ μ

d−2α ð6Þ

≠ lim
T→0

Iαðμ; TÞ: ð7Þ

In fact, these two expressions only agree for α ¼ 1. We thus
surprisingly find that when performing the T ¼ 0 evalu-
ation in the simplest way, we obtain a result differing from
the T → 0 limit, which, as a physically motivated value, is
what one hopes to find. Since this is the order of integration
that one often uses within physical calculations at T ¼ 0,
it is worth understanding the mechanism responsible for
the differences in the final expressions when changing the
order of integration. Furthermore, it would be useful to
have a procedure for calculating the value relevant for
physical results while still performing the 0 component
first, so that one could continue to use the power of the
residue theorem. This is what we set forth to do in
this paper.
The outline of our paper is as follows. We start in Sec. II

by showing in the simple example of α ¼ 2 what is
different between the two integration orders at T ¼ 0
and suggesting a possible way around these differences.
In Sec. III we systematically study these differences for
integer α, and demonstrate that the suggested additional
boundary terms precisely relate the results following from
the two integration orders. In Sec. IV, we demonstrate that
these additional terms arise naturally from differentiation of
the Fermi–Dirac distribution, which does not explicitly
appear in the T ¼ 0 expressions. In Sec. V, we complete the
calculation for noninteger α, which arises in the study of
higher-loop effects through dimensional regularization.
Finally, in Sec. VI we summarize our main findings,
including practical ways to handle these issues, before
concluding with a short discussion. Sections IV and V are
quite technical, with the noninteger exponents covered in
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the latter only showing up in typical computations at two-
loop order and above. Accordingly, readers only interested
in the main results should feel free to skip these sections.

II. THE TWO INTEGRATION ORDERS:
EXAMPLE CASE

Let us first evaluate the T ¼ 0 integral in Eq. (1) for
α ¼ 2 in the two possible orders. Let the superscript t
(temporal) denote the result with the 0-component integrals
being performed first (as opposed to the order immediately
leading to physical results, with dimensionally regularized
spatial integrals taking place first). We assume here that
μ > 0. By using the residue theorem and closing the
semicircle contour from the positive half plane, we obtain

It2ðμÞ¼
Z
p
θðp−μÞ

Z
∞

−∞

dp0

2π

1

½ðp0þ iμþ ipÞðp0þ iμ− ipÞ�2

¼ i
Z
p
θðp−μÞ

�
d

dp0

1

ðp0þ iμþ ipÞ2
�
p0→−iμþip

¼−
μd−3

2ðd−3Þð4πÞd2Γðd
2
Þ

�
eγEΛ2

4π

�
ϵ

; ð8Þ

where the step function θ appears as one observes which
poles are enclosed by the integration contour. Additionally,
should the outermost integral diverge at large loop
momenta (e.g., for ϵ < 0 for α ¼ 2 and in general for
α ¼ 1), we can decompose the step function θðp − μÞ ¼
1 − θðμ − pÞ. This allows us to discard the former part, a
scale-free (“vacuum”) integral of the form

R
p p

β, which
vanishes in dimensional regularization. However, if we
perform the spatial integral first, as in Eq. (1), we find

I2ðμÞ ¼
�
eγEΛ2

4π

�
ϵ 1

ð4πÞd2Γðd
2
Þ

Z
∞

−∞

dp0

2π

×
Z

∞

−∞
dp

ðp2Þd−12
½ðp − μþ ip0Þðpþ μ − ip0Þ�2

¼ −
�
eγEΛ2

4π

�
ϵ i

ð4πÞd2Γðd
2
Þ

Z
∞

−∞
dp0sgnðp0Þ

×
d
dp

�
pd−1

ðpþ μ − ip0Þ2
�
p→μ−ip0

¼ −
ðd − 2Þμd−3

2ðd − 3Þð4πÞd2Γðd
2
Þ

�
eγEΛ2

4π

�
ϵ

; ð9Þ

which is a different result. If we examine the integrand here
we can gain some insight into why these results are distinct.
In particular:

Z
p

Z
∞

−∞

dp0

2π

1

jðp0 þ iμÞ2 þ p2jα ¼ ∞; ð10Þ

with a divergence occurring at p0 ¼ 0, p ¼ μ for α ≥ 1.
Because of this divergence, Fubini’s theorem does not
apply, and we should not necessarily expect that swapping
the integration order should result in the same answer.
Let us remedy this divergence by splitting the problem-

atic point at p ¼ μ into two parts, so that the integral for It2
resembles an integral over two copies of the integrands in
It1. To the this end, we consider an integral reminiscent
of Eq. (5), with both propagators having exponent 1. By
writing q≡ jpþ kj and k0 ¼ 0, we can simplify the
expression such that

Z
∞

−∞

dp0

2π

1

ðp0 þ iμþ ipÞðp0 þ iμ − ipÞðp0 þ iμþ iqÞðp0 þ iμ − iqÞ ¼
1

q − p

�
−
θðq − μÞ

2q
þ θðp − μÞ

2p

�
1

pþ q
: ð11Þ

Taking the limit q → p, we then find the following
expression, which can be rewritten in a similar form to
the intermediate steps in Eq. (8) above:

lim
q→p

1

q − p

�
−
θðq − μÞ

2q
þ θðp − μÞ

2p

�
1

pþ q

¼ 1

2p
d
dp

�
−
θðp − μÞ

2p

�

¼ i

�
d

dp0

θð−ip0Þ
ðp0 þ iμþ ipÞ2

�
p0→−iμþip

: ð12Þ

The difference from Eq. (8) is seen in the term which
differentiates the theta function; in fact, these additional
boundary terms exactly account for the difference between
It2ðμÞ and I2ðμÞ. Such an augmentation to the residue
theorem would be a convenient solution, as it is simple to

implement in practical situations. However, so far it ismerely
an observation, andwemust verify if it works in general, and
if so, why. We shall address this in further sections.
For the time being, however, let us note that this pole-

merging analysis can be easily generalized to integer-
valued exponents m ∈ N. Generalizing (12) would then
lead to expressions of the form
Z
R

dz
2π

1

½ðzþiμÞ2þp2�m

¼? i
ðm−1Þ!

dm−1

dzm−1
θð−izÞ

ðzþiμþipÞm
����
z¼−iμþip

¼ ð−1Þmþ1

ΓðmÞ
Xm−1

k¼0

ΓðmþkÞ
Γðkþ1ÞΓðm−kÞ

ð−1Þkθðm−1−kÞðp−μÞ
ð2pÞmþk ;

ð13Þ
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whereas simply applying the residue theorem would
produce only the final term with k ¼ m − 1. We will
presently demonstrate that these additional terms exactly
account for the difference between ItmðμÞ and ImðμÞ for
general integer values for m. We emphasize that for m > 1,
all of these correction terms arise from the single point
p ¼ μ, where the denominator of the integrand contains a
real pole of order m at z ¼ 0, and which we previously
identified as a possible problem due to the breakdown of
Fubini’s theorem. This suggests that our application of the
residue theorem does not recognize these delta distributions
at the boundary p ¼ μ, associated with higher-order poles
and the finite temperature result, but rather returns only a
smooth result there.
Let us finally make one final remark here about an

alternative formulation of the above series. One may also
arrive at the series in Eq. (13) for integer-valued m by
considering rewriting the original integral in terms of
spatial differentiation of It1ðμÞ as followsZ

p

Z
∞

−∞
dp0

1

½ðp0 þ iμÞ2 þ p2�m

¼ ð−1Þm−1

ðm − 1Þ!
Z
p

�
d

dp2

�
m−1 Z ∞

−∞
dp0

1

ðp0 þ iμÞ2 þ p2
:

ð14Þ

This strategy essentially allows one to consider the com-
putation as an integration-by-parts (IBP) problem [11] for
the 0-component integral of I1ðμÞ, where the residue
theorem produces the sought-after/physically motivated
result. Given the simplicity of the IBP procedure and,
particularly since the development of the Laporta algorithm
[12], the widespread applicability to vacuum quantum field
theory [13–17] and some thermal problems [18], the result
seen in Eq. (13) is a promising step to applying the method
to finite-density field theory. To confirm this, let us study
the results found from different integration orders in the
following section.

III. GENERAL INTEGER EXPONENTS α

We have already presented the result from the standard
residue evaluation for integer-valued α, corresponding to
ItαðμÞ, in Eq. (6). Since the evaluation of IαðμÞ is not
terrifyingly lengthy, we will give a rather detailed descrip-
tion below which we can then compare with ItαðμÞ. Since
we have evaluated ItαðμÞ using the residue theorem, we are
presently limited to α ∈ N for this comparison. However,
the spatial integral can just as easily be performed for any
α ∈ R, which will show similarities to the evaluation of the
general case in further sections. These noninteger expo-
nents do not appear in standard computations up to two
loops, but do contribute at higher orders. Additionally, they
yield insight on the overall behavior and the role of
dimensional regularization in this puzzle.

A. Spatial-temporal integration order

For the evaluation of IαðμÞ with real-valued α, the toolkit
of the computation moves from the residue theorem to
analytic continuation of Euler’s beta functions.
We proceed in some generality. Let us define four real

and nonzero parameters fβ; γ; y; cg, and consider the
following analytic continuation of the Euler beta function

Z
∞

0

dxxβ

ðxþ yþ icÞγ ¼ ½yþ ic�βþ1−γ
Z y−ic

c2þy2
∞

0

dzzβ

½zþ 1�γ ; ð15Þ

where the last step in particular requires c ≠ 0 or y > 0.
The standard beta function corresponds to taking
yþ ic ↦ 1, and so the above integral corresponds to
integrating at a more general angle in the complex plane.
For the real-valued integrals with c ¼ 0 there are many
other applicable methods for evaluating this expression;
here we are only concerned with c ≠ 0, since c is associated
with a chemical potential.
The integral can be associated to a closed pizza slice

contour (of infinite radius), avoiding the pole at z ¼ −1. We
shall assume β and γ to be such that the integral along the
arc of the contour vanishes (β − γ þ 1 < 0), which leads to

− ½yþ ic�βþ1−γ
Z

0

∞

dzzβ

½zþ 1�γ

¼ ½yþ ic�βþ1−γ Γðβ þ 1ÞΓðγ − β − 1Þ
ΓðγÞ : ð16Þ

With this result in mind, let us return to spatial integral of
interest, where we can factor out the volume of the (d − 1)-
sphere Ωd, and change variables in the radial integral to
obtain

Ωd

Z
∞

0

dp
pd−1

½p2 þ ðp0 þ iμÞ2�α

¼ Ωd

2

Z
∞

0

dyy
d
2
−1

½yþ ðp0 þ iμÞ2�α

¼ π
d
2Γðα − d

2
Þ

ΓðαÞ ½ðp0 þ iμÞ2�d−2α2 : ð17Þ

The remaining computation involves using this result in
the p0 integral, which we must break up in two pieces.
Accordingly, we have

Z
∞

0

dp0½ðp0 þ iμÞ2�d−2α2 þ
Z

∞

0

dp0½ð−p0 þ iμÞ2�d−2α2

¼ 2Re

�Z
∞

0

dp0½ðp0 þ iμÞ2�d−2α2

�

¼ −2Re
� ðiμÞdþ1−2α

dþ 1 − 2α

�
: ð18Þ
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Upon combining the two intermediate results, we find the
following expression

IαðμÞ ¼ −
�
eγEΛ2

4π

�
ϵ Γðα − d

2
Þ cos ½π

2
ðdþ 1 − 2αÞ�

πð4πÞd2ΓðαÞðdþ 1 − 2αÞ μdþ1−2α:

ð19Þ

By applying trigonometric algebra in combination with
Euler’s reflection formula, we can simplify this expression
further. The more compact expression is given in terms of Γ
functions and reads

IαðμÞ ¼ −
�
eγEΛ2

4π

�
ϵ 1

ð4πÞd2ΓðαÞΓðd
2
þ 1 − αÞ

μdþ1−2α

ðdþ 1 − 2αÞ :

ð20Þ

This result agrees with the T → 0 limit of the T > 0
expression from [10], given in Eq. (4). This justifies our
choice of the integration order in Eq. (1), as well as our
choice to refer to this integration order as the physically
motivated one.
We also emphasize here that the result in Eq. (20) can be

used to confirm the viability of the IBP strategy used above.
We can find an explicit mapping from α ↦ αþ 1 by
writing

1

2α

Z
∞

−∞
dp0

Z
∞

0

dppd−2 d
dp

1

½ðp0 þ iμÞ2 þ p2�α

↦ −
d − 2

2α

Z
∞

−∞
dp0

Z
∞

0

dp
pd−3

½ðp0 þ iμÞ2 þ p2�α

¼ −
πΓðd

2
Þ

Γðαþ 1ÞΓðd
2
− 1 − αÞ

μd−1−2α

ðd − 1 − 2αÞ ;

which indeed implies that unit step in the exponent takes
place via operation − 1

α
d

dp2 inside the integrand of IαðμÞ.

B. Summary of the differences

Let us now see how our hypothesis for amending ItαðμÞ
with boundary terms compares to the value computed
above for IαðμÞ in the case of integer α. To this end, let
us define It;newα ðμÞ to be the amended result, using Eq. (13)
in place of the naive residue result. Applying the summa-
tion seen in Eq. (13) and integrating derivatives of δ
functions by parts, we find

Z
∞

0

dppd−1
Z

∞

−∞

dp0

2πi
1

½p2þðp0þ iμÞ2�α

¼ i
ð−1Þ2αΓð2α−1Þ

22α−1Γ2ðαÞ
μdþ1−2α

dþ1−2α

þθðα−2Þð−1Þ
αi

ΓðαÞ
Xα−2
k¼0

ð−1ÞkΓðαþkÞ
2αþkΓðkþ1ÞΓðα−kÞ

×ð−1Þα−2−k
Z

∞

0

dpδðp−μÞ
�

d
dp

�
α−2−k

pd−α−k−1: ð21Þ

Here the first row stands for the naive residue value,
while the second describes the contribution from the
added differentiated step functions, with nonzero contri-
butions from α ≥ 2 as indicated by the step function. For
α ¼ 1, these terms vanish and indeed It;new1 ¼ It1 ¼ I1.
Multiplying this intermediate result by the necessary factor,
and performing the remaining integrals we find

It;newα ðμÞ¼ItαðμÞ−
�
eγEΛ2

4π

�
ϵ

θðα−2Þμdþ1−2α 2ð−1Þα
ΓðαÞΓðd

2
Þð4πÞd2

×
Xα−2
k¼0

ð−1ÞkΓðαþkÞ
2αþkΓðkþ1ÞΓðm−kÞ

Γð2α−d−1Þ
Γðαþkþ1−dÞ:

ð22Þ

The first three integer values of α can be simplified
to give

It;new1 ðμÞ ¼ It1ðμÞ ð23Þ

It;new2 ðμÞ ¼ −
�
eγEΛ2

4π

�
ϵ 1

2ð4πÞd2Γðd
2
Þ
ðd − 2Þμd−3

d − 3
ð24Þ

and

It;new3 ðμÞ ¼ −
�
eγEΛ2

4π

�
ϵ 1

8ð4πÞd2Γðd
2
Þ
μd−5

d − 5
ðd − 2Þðd − 4Þ;

ð25Þ

which agree with the results for IαðμÞ in Eq. (20). One can
similarly verify agreement between Iα and It;newα for all
integer α up to any given finite value, although the process
becomes increasingly tedious, involving an increasing
number of correction terms. Given this, we note that our
originally somewhat intuitively motivated prediction also
agrees with the physical finite-temperature limit. What
remains is to understand why this works, or rather what
causes the need for this kind of treatment, which we
address next.
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IV. THERMAL ORIGIN OF THE
BOUNDARY TERMS

While considering the zero-temperature integral, we
have already recognized the difference in how the residue
theorem treats (or rather, does not treat) the boundary
associated to the pole from how dimensional regularization
handles it. The pieces necessary to match the results appear
as boundary terms associated with the zero-component
integral. Their specific form is as derivatives of step
functions, which is the zero-temperature limit of the
Fermi–Dirac distribution function. Given both this and
the fact that our physically motivated result Iα arises as a
zero-temperature limit, one could expect to find a better
explanation for the mechanism behind this difference by
examining the full expression at finite temperature.
At finite temperature, the p0-integral in Eq. (1) is

replaced by a frequency sum over fermionic Matsubara
frequencies, as in Eq. (3). The sum is often recast into a
contour integral using

Iαðμ; TÞ ¼
Z
p

�Z
∞þiμþiη

−∞þiμþiη
þ
Z

−∞þiμ−iη

∞þiμ−iη

�
dp0

2π

×
1

½p2 þ p2
0�α

nF½iβðp0 − iμÞ� ð26Þ

with β ¼ 1=T, and where η > 0 is a small regulator to avoid
the poles in the complex distribution function, and nFðxÞ ¼
1=½expðxÞ þ 1� is the Fermi–Dirac distribution function.
The box contour γ used in this expression is defined
in Fig. 1.
This definition has the benefit of being very regular, and

can be easily shown through direct computation to yield the
same result in either order of integration. Thus, it is well-
motivated—given our earlier considerations—to study the
small-temperature behavior of this expression and see how
the boundary terms are generated.
We can write the Fermi–Dirac occupation function

restricted to the nonvanishing sides of the contour as

1

e−βðIm½p0�−μÞ½cos ðβRe½p0�Þ þ i sin ðβRe½p0�Þ� þ 1

¼ 1

e�βη½cos ðβRe½p0�Þ þ i sin ðβRe½p0�Þ� þ 1
: ð27Þ

To examine the behavior near zero-temperature, we con-
sider the hierarchies 0 < T ≪ η and η < μ and note that the
trigonometric part is nonvanishing for all possible values of
p0. Depending on the sign in the exponential of the right-
hand side of Eq. (27), the zero-temperature limit yields a
different answer, which leads to the standard limit for the
distribution function (here written as a complex generali-
zation, as p0 is not a true component of a four-momentum,
but rather a complex-valued integration variable),

nF½iβðp0 − iμÞ� →
T→0

θðIm½p0� − μÞ: ð28Þ

The limit is ambiguous at exactly Im½p0� − μ ¼ 0, where
we obtain a highly oscillatory term with the already familiar
set of real-part divergences f1=ðeiβRe½p0� þ 1Þgp0

and which
motivates the original box integral, leading back to the
summation formula in Eq. (3).
Assuming the limit (28), the box contour would indeed

yield

Z
p

I
γ

dp0

2π

1

½p2 þ p2
0�α

nF½iβðp0 − iμÞ�

→
Z
p

Z
∞þiμþiη

−∞þiμþiη

dp0

2π

θðIm½p0� − μÞ
½p2 þ p2

0�α

¼
Z
p

Z
∞

−∞

dp0

2π

1

½p2 þ ðp0 þ iμþ iηÞ2�α : ð29Þ

which agrees with our initial zero-temperature integral
(apart from the η shift in the propagator). Of course, this
expression comes with the caveat that we exchanged the
T → 0 limit and the integrals. Note that in Eq. (29) above,
exchanging the T → 0 limit and the integral rejects the
lower part of γ in the complex plane, and allows us to

FIG. 1. A depiction of the integration contours associated with fermionic Matsubara sums. The dashed lines indicate contributions that
are taken to vanish.
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rewrite the integral in a way such that the occupation
function is no longer seen explicitly. This indeed appears to
be both the reason why Itα does not describe the physically
motivated zero-temperature limit, as well as the origin of
the differentiation formula.
Let us now compute this T → 0 more carefully, starting

with α ∈ N. After splitting γ into two line integrals parallel
to real axis, we note that each of the two p0 integrals can be
computed via the residue theorem in the complex plane via
convergent semicircles, closing above or below depending
on their location relative to the line p0 ¼ iμ (see the final
panel of Fig. 1). This procedure gives rise to a second step
function independent of the one obtained from the Fermi-
Dirac occupation function, related to whether the poles in
the propagator are within the semicircles or not. Explicitly,
we find for the upper horizontal line

Z
p

Z
∞þiμþiη

−∞þiμþiη

dp0

2π

1

½p2 þ p2
0�α

nF½iβðp0 − iμÞ�

¼ i
ðα − 1Þ!

Z
p
θðp − μÞ dα−1

dpα−1
0

�
nF½iβðp0 − iμÞ�
ðp0 þ ipÞα

�
p0→ip

ð30Þ

and for the lower horizontal line

Z
p

Z
∞þiμ−iη

−∞þiμ−iη

dp0

2π

1

½p2 þ p2
0�α

nF½iβðp0 − iμÞ�

¼ i
ðα− 1Þ!

Z
p

dα−1

dpα−1
0

�
nF½iβðp0 − iμÞ�
ðp0 − ipÞα

�
p0→−ip

þ i
ðα− 1Þ!

Z
p
θðμ− pÞ dα−1

dpα−1
0

�
nF½iβðp0 − iμÞ�
ðp0 − ipÞα

�
p0→ip

:

ð31Þ

To demonstrate the effect of these formulas more
explicitly, let us first consider α ¼ 2. With the knowledge
of how the occupation function tends toward the step
function according to Eq. (28), it is quite easy to visualize
that the δ-function contributions manifest from this expres-
sion as expected. A more rigorous analysis involves
differentiating with respect to p0 before taking the limit
of interest. For this purpose, we note

d
dx

nFðxÞ ¼ −
ex

ðex þ 1Þ2 ¼ nFðxÞ½nFðxÞ − 1�: ð32Þ

This implies that the integrands in Eqs. (30)–(31) are
proportional to the Fermi-Dirac distribution, which indeed
allows us to ignore the lower line integral in the small-T
limit [as it is Oðe−η=TÞ]. For the upper line, we can isolate
the correction term arising from the derivative of the
distribution function as

−βn0F½iβðp0 − iμÞ� ¼ −βnF½βðμ − pÞ�fnF½βðμ − pÞ� − 1g:
ð33Þ

Setting x ¼ μ − p, we can rewrite this expression as

−βnFðβxÞ½nFðβxÞ − 1� ¼ 1

4T cosh2 ðβx=2Þ≡ δ2TðxÞ; ð34Þ

where we recognize a family of nascent delta functions.
Thus, returning to the original expression, we can in good
faith write the sought-after limit

lim
T→0

�
−
1

T
nF

�
μ−p
T

��
nF

�
μ−p
T

�
−1

��
¼ δðμ−pÞ: ð35Þ

For the cases α > 2, we recognize that additional
boundary contributions would indeed be seen as derivatives

of nascent delta functions δðjÞ2T ðμ − pÞ with 1 ≤ j ≤ α − 2.
The additional term with most derivatives acting on the
occupation function would always correspond to

−
1

ðα − 1Þ!ð2pÞα
�
1

T

�
α−2

δðα−2Þ2T ðμ − pÞ; ð36Þ

where the structure can be easily associated to the corre-
sponding final term in the sum of Eq. (13) after careful
applications of IBP followed by the T → 0 limit.
The above analysis can be applied to the iterated

differentiation seen in Eq. (30). Doing so, we find the
elements of the sum of Eq. (13), and, as suggested earlier,
observe the same difference between Eqs. (20) and (6) in
the zero-temperature limit. The temperature acts as an
additional cutoff of the quantum field theory, but from the
point of view of complex analysis, it mollifies the dis-
tribution function, causes the integral along the arc of the
integration contour in Fig. 1 to vanish, and allows us to
discard exponentially decaying contributions Oðe−η=TÞ.
The parameter η, present also in the contour formulation
at zero temperature, serves a similar purpose, but is
somewhat less transparent.
We also see that the result is consistent if the integration

order is reversed: Taking the leading-order low-temperature
limit and computing the spatial integral, we have, up to an
overall constant multiple,

Z
∞þiμþiη

−∞þiμþiη

dp0

2π
ðp2

0Þ
d
2
−αnF½iβðp0 − iμÞ�

¼
Z

∞þiμþiη

−∞þiμþiη

dp0

2π
ðp2

0Þ
d
2
−αð1þ fnF½iβðp0 − iμÞ� − 1gÞ

¼
Z

∞þiμþiη

−∞þiμþiη

dp0

2π
ðp2

0Þ
d
2
−αf1þOðe−βηÞg: ð37Þ

Thus, the zero-temperature limit matches with IαðμÞ
performed at exactly zero temperature. This is one last
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reassurance that the earlier results Iα and It;newα are indeed
the ones relevant for physics, while also explicitly dem-
onstrating the finite-temperature origin of the discrepancy
and the interplay between the zero-temperature limit and
dimensional regularization.

V. NONINTEGER EXPONENTS α

Let us now generalize the previous section to noninteger
α ∈ R. This is relevant for example when considering terms
involving IαðμÞ for α ∈ Q½d� multiplying divergent expres-
sions [10]. Since Eq. (20) (which agrees with the careful
zero-temperature limit) can be extended to arbitrary values
of α ∈ R, we already have an expression to compare
against. Fubini’s alone theorem would imply convergence
for α < 1, but for noninteger values of α there are additional
contributions which cannot be obtained simply by using the
residue theorem and taking (an integer-valued number of)
derivatives. Perhaps the most transparent way of studying
the missing contributions is by carrying out a careful limit
procedure of the T > 0 expressions to see how the
boundary terms analogous to those seen previously are
generated from contour integrals.
First note that for any positive α, we can use IBP (in the

dimensionally regularized sense) as in Eq. (14) to relate the
integral to one involving α ∈ ð0; 1�. In terms of the residue
theorem, α ¼ 1 is an important limit, being the smallest
integer value that allows one to perform the p0-integral
by completing the contour as a semicircle (and to apply
Jordan’s lemmawithout issues). Any value of the parameter
α ∈ ð0; 1Þ is in some sense challenging. Given these
potential convergence issues with arc contours, we are
interested in finding a boxlike contour involving the real
axis and a line parallel to it. Such an approach is necessary
to compute even the generalized version of the naive result,
ItαðμÞ, which can be associated to a beta-function integral
along the real axis.
The full calculation of the T → 0 limit requires one to

consider separately two hierarchies of the radial coordinate
p, namely, one with p > μ and the other with p < μ. The
former will be easily found to correspond to ItαðμÞ, while
the latter requires more care and will vanish at α ¼ 1.
We begin with the expression for Iαðμ; TÞ. We first

manipulate it to obtain an integrand that vanishes for
Imðp0Þ → ∞. To this end, we note the Fermi-Dirac
decomposition of unity given by

nFðxÞ þ nFð−xÞ ¼ 1; ð38Þ

to rewrite Eq. (26) as

Iαðμ; TÞ ¼
Z
p

Z
∞þiμ−iη

−∞þiμ−iη

dp0

2π

1

½p2 þ p2
0�α

nF

�
−i
�
p0 − iμ

T

��

þOðe−η
TÞ; ð39Þ

again imposing the hierarchy 0 < T ≪ η. We now have a
distribution function which tends toward unity everywhere
in the complex plane with Im½p0� < μ. This is precisely the
region where we intend to complete the box contour, since
we recognize that it is not possible to apply the previous
(infinite) semicircular contour arguments.
We now create a contour Γ consisting of the real line and

the line p0 ¼ iμ − iη. Upon closing it, there is at most a
single pole within the new box contour. In particular, for
p > μ there are none, which allows us to move from the
complex contour to the real axis and continue by taking
T → 0. This gives, for the part of Iαðμ; TÞ arising from
large momenta p > μ,

Ip>μα ðμ;TÞ¼
Z
p
θðp−μÞ

Z
∞

−∞

dp0

2π

1

½p2þp2
0�α

nF

�
−i
�
p0−iμ

T

��

→
T→0

Z
p
θðμ−pÞ

Z
∞

−∞

dp0

2π

θðμ−Im½p0�Þ
½p2þp2

0�α

¼−
�
eγEΛ2

4π

�
ϵ μdþ1−2αffiffiffi

π
p ðdþ1−2αÞð4πÞd2

Γðα−1
2
Þ

ΓðαÞΓðd
2
Þ:

ð40Þ

This expression corresponds precisely to ItαðμÞ in Eq. (6),
as here the theta function keeps the p integral away from
the problematic point at μ.
In the region of small momenta p < μ we cannot find an

equally nice expression, due to the pole lying within the
(previous) integration contour. Hence, we must find an
alternative way to evaluate the integral. Let us take the
T → 0 limit and scale out μ from the integrands to arrive at

Ip<μα ðμ; TÞ ¼
�
eγEΛ2

4π

�
ϵΩdμ

dþ1−2α

ð2πÞdþ1

Z
∞

0

dppd−1θð1 − pÞ

×
Z

∞

−∞

dp0

½ðp0 þ iÞ2 þ p2�α ; ð41Þ

which we note is equivalent (up to a factor of two) to
integrating over the positive real axis for p0 and taking the
real part of the expression. Herein we consider the lower
limit of this integral over p0 to be regulated by a small
positive infinitesimal to avoid a nonintegrable pole occur-
ring at p ¼ 1 for α > 1. Furthermore, let us focus on this
modified integral without the trivial overall multipliers

Re

�Z
1

0

dppd−1
Z

∞þi

i

dz
½z2 þ p2�α

�
: ð42Þ

We can recognize that the biggest computational (regula-
tory) challenge arises from integration region in which both
p; jzj ∼ 1. Inspired by Cauchy’s integral theorem, we aim to
extract more approachable line integrals by rewriting the
innermost integral in terms of a closed box contour, Σ,
shown in Fig. 2. The contour Σ completes the existing line
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integral, with none of the poles being contained inside the
region bounded by Σ, so that

I
Σ

dz
½z2 þ p2�α ¼ 0: ð43Þ

This formulation isolates all the troublesome elements on
the line integral on the left-hand side of Σ, while the right-
hand side line integral can be assumed to vanish for all
α > 0 given that z ∈ ð∞þ i;∞Þ.
The contribution from the real axis (with its direction as

depicted in Fig. 2 above) is evaluated with ease, yielding

IΣ;lower ¼ −Re
�Z

1

0

dppd−1
Z

∞

0

dz
½z2 þ p2�α

�

¼ −
ffiffiffi
π

p
2ðdþ 1 − 2αÞ

Γðα − 1
2
Þ

ΓðαÞ : ð44Þ

As the p-integral is cut off from above instead of below, the
integral now converges for ðdþ 1Þ=2 > α > 1=2. Once the
numerical coefficients are added back, we see that this
contribution equals ItαðμÞ as well, and so will cancel the
p > μ contribution computed above, once one uses the fact
that the integral over Σ vanishes [Eq. (43)].
The remaining line integral along the imaginary axis can

be split between the hierarchies p > jzj and jzj > p,
yielding

IΣ;left ¼ Re

�Z
1

0

dppd−1
Z

i

0

dz
½p2 þ z2�α

�

¼ Re

�
i
Z

1

0

dppd−1
Z

p

0

dz
½p2 − z2�α

�

þ Re

�
i
Z

1

0

dppd−1
Z

1

p

dz
½p2 − z2�α

�
: ð45Þ

The first row of Eq. (45) vanishes (with convergent
parameter values), as the integral is purely imaginary,
evaluating to

i
Z

1

0

dppd−1
Z

p

0

dz
½p2 − z2�α

¼ i
2

�Z
1

0

dppd−2α
��Z

1

0

dwffiffiffiffi
w

p ð1 − wÞα
�

¼ i
2ðd − 2αþ 1Þ

Γð1
2
ÞΓð1 − αÞ
Γð3

2
− αÞ : ð46Þ

The second row of Eq. (45) is generally nonvanishing, as
we can observe that it contains an overall eiπα. Explicitly
one finds

i
Z

1

0

dppd−1
Z

1

p

dz
½p2 − z2�α

¼ iπ½iþ cotðαπÞ�Γðα − d
2
Þ

dðd − 2αþ 1ÞΓðαÞΓð− d
2
Þ
sin ðπα − πd

2
Þ

sinðπd
2
Þ ; ð47Þ

which we notice to converge numerically (even) when α <
1=2 for the full range of dimensional values allowing
convergence at all. More specifically, one can recognize
that the special functions used require 0 < d

2
< 1 and

dþ 1 > 2α > 0, which in turn can be analytically con-
tinued to almost the full real axis. For the real part, we get,
after some manipulations,

IΣ;left ¼ Re

�
i
Z

1

0

dppd−1
Z

1

p

dz
½p2 − z2�α

�

¼ πΓðd
2
Þ

2ðd − 2αþ 1ÞΓðαÞΓðd
2
− αþ 1Þ : ð48Þ

The expression for the topmost line integral in Σ is then
found from Eq. (43) as −IΣ;lower − IΣ;left. This expression is
found to be vanishing at α → 1, which indeed agrees
with the fact that It1ðμÞ reproduces I1ðμÞ. This agreement
reassures us that we can treat the neighborhood of α ¼ 1 in
a consistent manner, and yields insight into the piecewise
behavior of Iα when α tends toward an integer value.
The computation is finished by combining contributions

arising from both θðμ − pÞ and θðp − μÞ, i.e., the residue
result and the supplementary correction. Since the −IΣ;lower
piece from the p < μ contribution cancels the p > μ
contribution completely, the full result is just the vertical,
−IΣ;left piece from the p < μ contribution, namely

Iαðμ;TÞ →
T→0

−
�
eγEΛ2

4π

�
ϵ 1

ð4πÞd2ΓðαÞΓðd
2
þ1−αÞ

μdþ1−2α

ðdþ1−2αÞ;

ð49Þ

FIG. 2. Blue color signifies the infinite line segment ði;∞þ iÞ
which constitutes the initial integration domain. Together with the
red line segments it forms the closed contour Σ, inside which the
integrand is holomorphic. Note that the integral along the dashed
red line at real infinity vanishes.

AUGMENTING THE RESIDUE THEOREM WITH BOUNDARY … PHYS. REV. D 106, 105026 (2022)

105026-9



in full agreement with the result from Eq. (20). This
completes our demonstration that IαðμÞ can be correctly
(with respect to physics) evaluated for all α with either
order of integration.

VI. RESULTS

In this work, we have explored an apparent ambiguity
that takes place in loop integrals with finite chemical
potential (imaginary scale) at zero temperature. As seen
through the simplest relevant example, by integrating first
over p0 and applying the residue theorem, one obtains
results that disagree with those obtained by first integrating
over the dimensionally regularized spatial integral. The
latter can also be seen as the proper extension from finite
temperature, while the former is algebraically much more
attractive for most computations. As such, it is well
motivated to seek ways to augment the results from residue
theorem, and apply these lessons to more challenging
integral structures.
By considering integer-valued exponents in the loop

integral of interest, we find the difference between the two
methods appearing as a delta-function contribution at the
edge of the cut-off (Imðp0Þ ¼ μ) arising from the residue
theorem. This implies that the boundary at Imðp0Þ ¼ μ in
some sense experiences differentiation, akin to the other
elements in the integrand (contrary to what naive use of the
residue theorem suggests). This can be understood to arise
from the Fermi–Dirac distribution functions in finite
temperature expressions, or alternatively from the funda-
mental symmetries of dimensional regularization as an
iterative process (IBP). The significance of the boundary
Imðp0Þ ¼ μ is even more prominent when considering
noninteger exponents. In that case, we see the line integral
along this edge fully generates the novel structure, seen to
arise from dimensional regularization.

Moreover, we find a major difference in what regions the
integral discards, depending on which way we integrate.
Specifically, evaluating the spatial integral first yields an
expression covering all of the p × p0 space Rþ ×R. By
contrast, generalizing the residue result in a naive fashion
rejects the region ½0; μ� × R from the full integration region,
as described above (which then receives the boundary
correction from the previous paragraph, to obtain the
physically motivated answer). However, this is exclusive
to integer-valued exponents; in the case of noninteger
exponents there are contributions from the region
½0; μ� ×R, which do not appear from our residue-driven
prescription.
We have demonstrated that the Feynman integrals with

first-order poles behave in the same manner in either order
of integration, in agreement with [19]. We have also
demonstrated that higher-order results can be related to
the zero-temperature limits of finite-temperature expres-
sions supplemented by iterative differentiation of propa-
gators (being careful not to move any regulatory limits
outside the outermost p integral), which is highly beneficial
for more versatile multiloop integrals. Explicitly,

Z
p

1

ðP̃2Þk≡
Z
p

1

½ðp0þ iμÞ2þp2�k

¼
�Z

p
lim

Ep→pþ
ð−1Þk−1 dk−1

dðE2
pÞk−1

�
1

½ðp0þ iμÞ2þE2
p�
;

ð50Þ

in which the tildes denote a shift in the temporal component
by iμ. Such a prescriptions aids even in a computation as
simple as

Z
P

1

P̃4ðP̃þ KÞ2 ≡
Z
p

Z
∞

−∞

dp0

2π

1

½ðp0 þ iμÞ2 þ p2�2½ðp0 þ k0 þ iμÞ2 þ jpþ kj2�

↦ −
Z
p

lim
Ep→pþ

�
d

dðE2
pÞ

Z
∞

−∞

dp0

2π

1

½ðp0 þ iμÞ2 þ E2
p�½ðp0 þ k0 þ iμÞ2 þ jpþ kj2�

�
: ð51Þ

Here the added thermal contribution (neglected by simply
using the residue theorem) would be seen through
1

2Ep

d
dEp

θðEp − μÞ. Furthermore, we wish to emphasize here

the importance of the choice of differentiation variable, as
some alternate formulations with, e.g., p2 ↦ p2 þm2 and
acting with d

dðm2Þ might indicate that differentiation could

take place outside the spatial integral. Particularly in
multiloop computations, this can lead to situations where
the added scalem2 regulates the expression in places where
dimensional regularization should have done so. Upon

differentiation this can lead to expressions that are nearly
impossible to relate to the correct result.
Additionally, we want to emphasize that the procedure is

only safe with expressions which formally allow the
application of the residue theorem. This can for the most
part be remedied by moving divergent elements to the
spatial region of the integration. Consider for example

Z
P

p̃4
0

P̃4
¼
Z
P
1þ

Z
P

p4

P̃4
−2

Z
P

p2

P̃2
↦

Z
P

p4

P̃4
−2

Z
P

p2

P̃2
; ð52Þ
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where we recast the expression such that the (augmented)
residue theorem can be applied to the p0 integral with ease.
In the final decomposition, we have removed all p0 terms
from the numerators (as they would modify the analytic
structure), and the remaining integrals are regulated by the
d dimensional spatial integral.

VII. DISCUSSION

We have described some properties of complex-valued
dimensionally regulated integrals encountered in quantum
field theory, observing that changing the order of integra-
tion is only possible by augmenting the residue theorem
with boundary terms. While our treatment has been largely
formal, the relevant integrals are present in physical
systems. An example of this is in high-density zero-
temperature quantum chromodynamics: At high orders
in perturbation theory, performing the temporal integrals
associated with zero-components of the momenta as a first
step becomes increasingly appealing.
We have observed that doing so by only taking residues

misses, at least in the general case, certain physically
motivated contributions when propagators with an expo-
nent α > 1 are present—that is to say, an application of the
residue theorem in finite-density computations is only
possible for integrals that converge properly. Even the
simple one-loop integral we have carefully studied dis-
playing this problematic behavior is required for general
real exponents starting at next-to-next-to-leading order in
perturbative quantum chromodynamics, and integrals with
nontrivial exponents are increasingly commonplace at
higher orders.
Performing spatial integrals first alleviates the problem

by immediately introducing a suitable regulator, and the
problem was also seen to be absent at finite temperatures,

with the problem arising with a noncareful treatment of the
zero-temperature limit. However, neither approach may be
feasible in all situations, and as such alternative approaches
are called for.
A few possibilities to properly include all contributions

have been discussed above. They include adding in the
missing (boundary) terms, inspired by careful contour
integration and arising from derivatives of step functions;
and decreasing the exponent of an integer-valued propa-
gator by taking derivatives. In the latter case one must be
careful with the commutativity of limits: a derivative with
respect to an auxiliary mass parameter appearing in a
propagator might not commute especially with the spatial
integrals, and failing to take this into account can run the
risk of introducing new divergences associated with the
auxiliary mass parameter. To summarize, we emphasize
the need for caution in computations involving the use of
the residue theorem via an interchange of integration orders
when evaluating divergent expressions, as the theorem
may lead to incorrect physics without additional boundary
terms.
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