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It is demonstrated that it is possible to find a field theory containing massless scalar particles which has
infrared structure closely resembling that of quantum electrodynamics and perturbative quantum gravity
but exhibiting no gauge invariance or internal symmetries at all, and in particular, no apparent asymptotic
symmetry. It is shown that, unlike soft photons and gravitons, the soft scalars do not decouple from dressed
states, and they are generically produced when hard dressed particles interact. However, the entanglement
of the hard and resulting soft particles is vanishingly small.
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I. INTRODUCTION

Infrared divergences [1–3] due to a massless real scalar
field in four spacetime dimensions can be, for the most part,
structurally identical to those of the massless photons of
quantum electrodynamics or the massless gravitons in the
perturbative effective field theory of quantum gravity near a
flat background. However, there is a big difference between
scalar fields and photons or gravitons in that massless scalar
fields can in principle occur in quantum field theories which
do not exhibit any gauge invariance or even continuous or
discrete global symmetry and therefore do not exhibit the
asymptotic symmetries which seem intimately tied to the
infrared problem of photons and gravitons [4]. In this paper,
we shall study the infrared divergences and their cure in
such a scalar field theory and attempt to answer the question
as to what is different in that case.
What we will find, in the context of a very specific

example, where there are no obvious internal symmetries at
all, is one big difference. In this model, one can construct a
dressed state of a hard particle where the hard particle is
accompanied by a cloud of soft scalars and the soft scalar
content of the cloud is fine-tuned in such a way that
scattering amplitudes for these dressed particles are free
of infrared divergences. Of course such a dressing by soft
photons or soft gravitons is already well known and is
already proposed as a solution of the infrared problem of
quantum electrodynamics [5–7] and perturbative quantum

gravity [8]. In those cases, once electrically and gravita-
tionally charged particles are dressed, the dressing can be
further fine-tuned in such a way that the soft photons and
soft gravitons decouple completely. The S matrix factorizes
into a hard sector and a soft sector. Corrections to this
factorization are suppressed by powers of an infrared cut-
off, Eres.
For the soft scalar fields in our model, this is not the case.

There is a residual coupling of the scalar-dressed hard
particles to soft scalars which is generically as important as
the coupling of the dressed hard particles with each other.
There is no way to adjust the dressing in order to remove
this interaction. This means that even once the hard
particles are dressed with soft scalars, an interaction of
the hard particles will still produce more soft scalars.
We find that what does decouple is information. Just as

in the case of photons and gravitons, the interaction of
undressed hard particles produces infinite numbers of soft
scalars. Moreover, the S matrix for scattering processes
involving hard particles is infrared divergent. We will
confirm these facts in the context of our scalar model.
We will also confirm that, just as photons and gravitons, the
soft scalars which escape detection in a scattering experi-
ment carry away copious amounts of information to the
point that their entanglement entropy with the hard particles
left behind is itself infrared divergent. The result of this
entanglement, just as for photons and gravitons, is
decoherence of the final state of the hard particles and
suppression of interference phenomena [9–11].
When the hard particles are dressed with soft scalars, on

the other hand, even if they do not decouple and their
interaction still produces some soft scalars, the entangle-
ment between those scalars and the dressed hard particles is
negligible, suppressed by powers of the infrared cutoff Eres.
Even when the soft scalars fly away from a scattering event
undetected, the loss of quantum information, which would
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be manifest in decoherence, is negligible. In this sense it is
information that decouples.
The rest of this paper is an exposition of the results

described in the paragraphs above. It is organized as
follows. In Sec. II, we will discuss the details of the scalar
field theory model that we will use, and we will give a
derivation of the soft scalar theorem. The soft scalar theorem
will be used to study scattering amplitudes in later sections.
In Sec. III we will confirm that, for undressed states, the
structure of infrared divergences is practically identical to
those of photons or gravitons. We will discuss how the
infrared problem is addressed using the Bloch-Nordseick
scheme of using inclusive probabilities, and we will
demonstrate that infrared divergences indeed cancel for
the questions that are traditionally asked by particle phys-
icists. Then we will show that some other questions about
certain interference phenomena or decoherence are still
severely affected by the infrared divergences.
In Sec. IV, we will construct dressed states of hard

particles. There, we insist that the dressing is added by a
formally unitary transformation. This is important since, in
the infrared cutoff theory, this is a unitary transform, a simple
change of basis in the Hilbert space. When the fundamental
infrared cutoff is removed, it becomes an improper unitary
transformation. However, even in that case, if it is formally
unitary, it implements a canonical transformation between
inequivalent representations of the operator algebra of the
quantum field theory. We also discuss the Faddeev-Kulish
modification of the S matrix that is to be computed to find
the scattering amplitudes for dressed particles. In Sec. V, we
demonstrate that the infrared singularities indeed cancel
from those amplitudes. In Sec. VI, we establish that soft
scalars do not decouple from the dressed states. In Sec. VII,
we discuss the implications. We also argue that, even though
soft scalars do not decouple, they do not drive appreciable
decoherence.

II. SOFT SCALAR THEOREM

Consider a Majorana fermion of mass m coupled to a
massless real scalar field ϕ via a Yukawa coupling in four
spacetime dimensions. The Lagrangian density is given by

L ¼ −
i
2
ψ̄ ½=∂þm − gϕ�ψ −

1

2
∂μϕ∂

μϕ − VðϕÞ; ð1Þ

where ψ is the Majorana spinor field, g is the Yukawa
coupling constant, and ϕ is the scalar field. Since the
Yukawa coupling is marginal in four dimensions, g is
dimensionless. We will assume that we can always choose
counterterms so that the scalar field tadpole ∼ϕ, the scalar
field mass term ∼ϕ2, and the scalar field trivalent coupling
∼ϕ3 are all canceled exactly at each order of perturbation
theory. To make the Lehmann-Symanzik-Zimmermann
(LSZ) reduction formulas simpler, we will also assume
that the subtraction scheme can be chosen so that the pole in

the scalar field propagator has unit residue, ∼ −i
q2−iϵ þ � � �.

We note that this quantum field theory has no obvious
internal symmetries at all. Fermion parity ð−1ÞF can be
regarded as a spacetime symmetry since it is a rotation by
2π. Our use of the Majorana fermion is not essential as
results would be very similar for a complex fermion, which
would of course have at least one internal Uð1Þ symmetry.
Our use of Majorana fermions is motivated by wanting a
model with no internal symmetry at all. We will study the
infrared divergences which occur in the analysis of scatter-
ing experiments involving the asymptotic particles of this
quantum field theory. We will assume that the coupling is
weak so that the particle spectrum resembles the tree level
one, containing one Majorana fermion with mass m and
one massless real scalar field. There has already been some
discussion of soft scalar theorems [12], infrared divergen-
ces, and the possibility of asymptotic symmetries playing a
role for scalar fields [13–15]. The latter has been discussed
in the context of a dual antisymmetric tensor gauge field
representation which, for a Yukawa coupling like we use
here, is not related to this theory by a local transformation.
This is not the direction that we will pursue here. Instead,
we will examine the behavior of the scattering matrix in the
quantized theory corresponding to (1).
A scattering experiment has an incoming state. We will

use the notation jfpgfkgfqgi for such a state, with
fermions having momenta and helicity in a set fpg, hard
scalars with momenta fkg, and soft scalars with momenta
fqg. In the course of the scattering, an incoming state
evolves to an outgoing state which is a quantum super-
position of the incoming states,

jfpgfkgfqgi⇒
X

fp0gfk0gfq0g
jfp0gfk0gfq0giS†ðfp0gfk0gfq0g;

×fpgfkgfqgÞ: ð2Þ

The coefficients in the superposition, S†ðfp0gfk0gfq0g;
fpgfkgfqgÞ, are elements of the S matrix. The dagger in
the above formula is there to match conventions,

Sλðfpgfkgfqg; fp0gfk0gfq0gÞ
¼ hfpgfkgfqgjSλjfp0gfk0gfq0gi: ð3Þ

We have added a superscript λ to the S matrix to remind
ourselves that its definition requires a fundamental infrared
cutoff. We will denote this fundamental cutoff by λ.1 With
the cutoff taken into account, the operator Sλ whose matrix
elements are discussed above is the Dyson S matrix which
is computed using the usual LSZ reduction formulas, time
dependent perturbation theory, and Feynman diagrams. In
the rest of this paper, what we mean by an infrared finite

1An easy, Lorentz invariant way of introducing such a cutoff is
to simply allow the scalar field to have a small mass.
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quantity is that said quantity remains finite as we take
λ → 0. The matrix elements of Sλ in (3) are generally not
such a quantity.
Beyond the fundamental infrared cutoff λ, we shall also

require a distinction between hard and soft particles. Any
particle which has energy above a threshold Eres will be
called a hard particle. Any particle which has energy less
than Eres will be called a soft particle. We shall call Eres the
“detector resolution.” We will require a hierarchy of scales

λ ≪ Eres;Λ ≪ m; energies of hard particles; ð4Þ

where Λ is a third infrared cutoff, distinct from λ and Eres
that we will introduce shortly. Fermions are always hard
particles. The massless scalar, on the other hand, can be
either hard or soft, depending on its energy. The validity of
the arguments in the rest of this paper will need the
inequalities in Eq. (4).
Let us consider an amplitude for the scattering of some

fermions and hard scalar particles as well as the production
of a soft scalar particle. Whenever this occurs, there are
some contributions to the amplitude which are singular as
the momentum of the soft scalar approaches zero. In direct
analogy with the same phenomenon in quantum electro-
dynamics, which is outlined in beautiful detail in
Weinberg’s book [16], the most singular parts come from
the emission of the soft scalar from external lines of the
amplitude. This singular part, ∼ 1

q for a soft scalar with
momentum q, and the next-to leading behavior due to a
scalar emitted from an outgoing fermion line with momen-
tum p0, is gotten from the amplitude without the scalar
emission by making the replacement

ūrðp0Þ → lim
q→0

ūrðp0Þð−gÞ −1
i=p0 þ i=qþm − iϵ

¼ lim
q→0

ūrðp0Þ
�

2gm
p02 þ 2p0 · qþ q2 þm2 − iϵ

−
g

−i=p0 − i=qþm − iϵ

�

¼
�

gm
p0 · q − iϵ

−
g
2m

�
ūrðp0Þ þOðqÞ; ð5Þ

where ūrðpÞ is the momentum space spinor wave function
of the outgoing fermion and we have used the fact that the
spinor satisfies the Dirac equation ūrðp0Þði=p0 þmÞ ¼ 0.
Here, we note that the contribution to the next-to-leading
behavior from the external fermion line has a very simple
form for a scalar field. Corrections to this formula go to
zero as q goes to zero.
Similarly, when the soft scalar emission is from an

incoming fermion line, the singular part and next-to-
leading contribution is

urðpÞ → urðpÞ
�

gm
−p · q − iϵ

−
g
2m

�
þOðqÞ: ð6Þ

Of course, soft emissions can also take place from
internal lines in the Feynman diagrams which contribute
to the amplitude. The contribution of such processes is not
singular at small q, but it does compete with the next-to-
leading terms in (5) and (6). The effect of one soft emission
from an internal line is the same as adding a vertex, together
with a vertex counterterm to each of the fermion propa-
gators inside the amputated correlation function that is used
to form the S matrix element Sλðfpgfkg; fp0gfk0gÞ. We
will denote this process by the symbol −g∂̂m. We note that
the operation ∂̂m is related to but not exactly the same as
taking the derivative of amputated correlation function by
the renormalized fermion mass m. The discrepancy is due
to the fact that we need a subtraction scheme where some
counterterms are m-dependent in a way that does not
preserve the m − gϕ structure that appears in the
Lagrangian (1). It is easy to see that even though the
m − gϕ structure can be maintained at the tree level, it is
already violated at the one-loop level.
Putting this together, and a similar one for soft scalar

absorption, we have the leading and next-to-leading soft
scalar theorem

Sλðfpg; fkg; fp0gfk0g; q0Þ

¼
8<
:

X
pn∈fpgfp0g

�
ηngm

pn · q0 − iηnϵ
−

g
2m

�
− g∂̂m

9=
;

× Sλðfpgfkg; fp0gfk0gÞ þOðq0Þ; ð7Þ

Sλðfpg; fkg; q; fp0gfk0gÞ

¼
8<
:

X
pn∈fpgfp0g

�
ηngm

−pn · q − iηnϵ
−

g
2m

�
− g∂̂m

9=
;

× Sλðfpgfkg; fp0gfk0gÞ þOðqÞ; ð8Þ

where ηn ¼ þ1ð−1Þ if pn is the momentum of an outgoing
(incoming) line. Now let us consider the amplitude for a
process where an incoming state of hard particles and M
additional soft scalars jfpgfkg; q1;…; qMi evolves to
another state of hard particles but with N additional soft
particles jfp0gfk0g; q01;…; q0Ni. Using the leading parts of
the soft scalar theorem in Eqs. (7) and (8), it follows that the
most singular part of the S matrix element is given by2

2We have not attached momentum space wave functions for
the soft scalars. We will take the convention of including them as
the appropriate factors in the scalar states.
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Sλðfpgfkg; q1;…; qM; fp0gfk0g; q01;…; q0NÞ

¼ Sλðfpgfkg; fp0gfk0gÞ
YM
j¼1

� X
pn∈fpgfp0g

ηngm
−pn · qj − iηnϵ

�

×
YN
r¼1

� X
pn∈fpgfp0g

ηngm
pn · q0r − iηnϵ

�
þ � � � ; ð9Þ

where the ellipses denote terms less singular at small q or q0

than 1
qM

1
q0N. The remarkable fact about this soft theorem is

that it gives us the most important part of the soft scalar
production amplitude for any process if we know the
amplitude of the process without the soft scalar production.
What is more, it is practically identical to the one for soft
photons or gravitons where only the numerators in the
singular factors (here it is gm) are slightly different.

III. INFRARED DIVERGENCE CANCELLATION
IN THE BLOCH-NORDSEICK SCHEME

It is easy to see that, in direct parallel with quantum
electrodynamics and perturbative quantum gravity, the
infrared divergences in the S matrix itself come from loop
integrals where both ends of a single scalar propagator in

the loop end on external fermion lines. Introduction of the
fundamental infrared cutoff λ renders these loop integrals
finite and of order ∼ lnðλÞ.
We imagine that, in these loop integrals, the infrared

cutoff λ could be replaced by a more convenient one which
we shall call Λ. This is a third infrared cutoff, distinct from
Eres and λ. with the assumption that it is much larger than
the fundamental cutoff, Λ ≫ λ, but it would still work as an
infrared cutoff in that Λ ≪ m and that Λ is much smaller
than the momentum scales of any of the hard particles. It is
in the same interval of the hierarchy (4) as the detector
resolution Eres. Then with the new cutoff the logarithmi-
cally divergent integral goes as ∼ lnðΛÞ and the original
integral with cutoff λ goes as ∼ lnðλÞ ¼ lnðΛÞ þ lnðλ=ΛÞ,
the first logarithm being produced by the integration over
loop momenta from Λ to infinity and the second being
produced by the integration over loop momenta between λ
and Λ. Moreover, it is well known how to separate and sum
up the latter, lnðλ=ΛÞ contributions. We refer the reader to
Weinberg’s book [16] for the details in the case of photons,
and we note that, for massless scalars, the argument is
practically identical. The result is a relationship between
the S matrix defined with the two different infrared cutoffs

Sλðfpgfkg; fp0gfk0gÞ ¼ SΛðfpgfkg; fp0gfk0gÞe−iΦ̄ðfpgÞ−iΦ̄ðfp0gÞ exp
�
−
1

2

Z
Λ

λ

d3q
ð2πÞ32jq⃗j

X
pn∈fpgfp0g

gmηn
pn · q

X
pm∈fpgfp0g

gmηm
pm · q

�

ð10Þ

¼ SΛðfpgfkg; fp0gfk0gÞ
�
λ

Λ

�1
2
Āðfpg;fp0gÞ

e−iΦ̄ðfpgÞ−iΦ̄ðfp0gÞ; ð11Þ

Āðfpg; fp0gÞ ¼ −
1

8π2
X

pnpm∈fpgfp0g

g2m2ηnηm
γnm

ln

�
1þ ξnm
1 − ξnm

�
; Φ̄ðfpgÞ ¼ 1

8π

X
pmpn∈fpg

m≠n

g2m2

γnm
ln
Λ
λ
; ð12Þ

ξnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m4

ðpn · pmÞ2

s
; γnm ¼ ðpn · pmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m4

ðpn · pmÞ2

s
: ð13Þ

To be clear, the beautiful formula (10) does not remove
the fundamental infrared cutoff. It simply gives us a
relationship between S matrices computed with different
infrared cutoffs. Furthermore, it is strictly valid only when
λ ≪ Λ ≪ m. We note that the exponent, Āðfpg; fp0gÞ, of
the ratio of cutoffs contains data about the incoming and
outgoing fermions only. It is independent of the hard
incoming or outgoing scalar particles. The phases,
Φ̄ðfpgÞ; Φ̄ðfp0gÞ, are separated into two functions, one
of incoming and one of outgoing fermion momenta. Notice
that the two functions have the same sign.

For reasons which will become clear shortly, it is useful
to express the evolution from the initial to final state in
Eq. (2) in the language of density matrices where a more
general incoming state composed entirely of hard particles
would be X

fpgfkg
fp̃gfk̃g

jfpgfkgiρfpgfkgfp̃gfk̃ghfp̃gfk̃gj

with ρfpgfkgfp̃gfk̃g an incoming density matrix. In the course
of a scattering experiment, this incoming density matrix
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evolves to an outgoing one where the evolution is governed by the S matrix,

X
fpgfkg
fp̃gfk̃g

jfpgfkgiρfpgfkg;fp̃gfk̃ghfp̃gfk̃gj ⇒
X
fpgfkg
fp̃gfk̃g

ρfpgfkgfp̃gfk̃g
X

fp0gfk0gfq0g
fp̃0gfk̃0gfq̃0g

jfp0gfk0gfq0gihfp̃0gfk̃0gfq̃0gj

× Sλ†ðfp0gfk0gfq0g; fpgfkgÞ Sλðfp̃gfk̃g; fp̃0gfk̃0gfq̃0gÞ: ð14Þ

We have assumed that there are no soft particles in the incoming states. However, soft particles are produced when the
hard particles interact, and they must appear in the final state density matrix. We remember that the Smatrix elements in the
expression above are infrared divergent, and they are defined with a fundamental infrared cutoff, λ. We will implement
the Bloch-Nordsieck mechanism where we make the assumption that, due to the limitations of detector resolution, the soft
particles which are produced by the scattering are unobservable. They fly away from the scattering experiment undetected.
What is left behind are the hard particles. All of the experimentally accessible properties of the quantum state of the hard
particles which remain are embedded in the reduced density matrix that is gotten from the final state density matrix in (14)
by taking a trace over all of the soft scalar states. The reduced density matrix of the final state is thus

ρfinal ¼
X
fpgfkg
fp̃gfk̃g

ρfpgfkg;fp̃gfk̃g
X
fp0gfk0g
fp̃0gfk̃0g

jfp0gfk0gihfp̃0gfk̃0gj
X
fqg

Sλ†ðfp0gfk0gfqg; fpgfkgÞSλðfp̃gfk̃g; fp̃0gfk̃0gfqgÞ; ð15Þ

where
P

fqg denotes integration and summation over all possible soft scalar states. We can use the soft scalar theorem (9) to
simplify Eq. (15). To take the trace, we identify pairs of ingoing and outgoing q’s, and we integrate each identified pair over
all values of q⃗ with λ < jq⃗j < Eres. Using the soft scalar theorem yields the expression3

X
fqg

Sλ†ðfp0gfk0gfqg; fpgfkgÞ Sλðfp̃gfk̃g; fp̃0gfk̃0gfqgÞ

¼
X∞
N¼0

1

N!

Z
Eres

λ

d3q⃗1
ð2πÞ32jq⃗1j

� � � d3q⃗N
ð2πÞ32jq⃗N j

YN
r¼1

� X
pn∈fpgfp0g

gmηn
pn · q

X
pn∈fpgfp0g

gmηm
−pm · q

�

× Sλ†ðfp0gfk0g; fpgfkgÞSλðfp̃gfk̃g; fp̃0gfk̃0gÞ:

Notice that, in each factor in the product of integrals in the equation above, the three-dimensional integration over q⃗ is
over a narrow shell with λ < jq⃗j < Eres, and the result would be small, ∼E2

res, if it were not for the singular terms due to soft
scalar emission. It is those singular terms which allow the integrals to be appreciable, in fact logarithmically infrared
divergent ∼ lnEres=λ. Corrections to the above formula due to the nonsingular next-to-leading contributions to the soft
scalar theorem would be relatively suppressed by positive powers of Eres. The summation in the equation above
exponentiates, and we find the expression for the reduced final state density matrix

ρfinal ¼
X
fpgfkg
fp̃gfk̃g

ρfpgfkg;fp̃gfk̃g
X
fp0gfk0g
fp̃0gfk̃0g

jfp0gfk0gihfp̃0gfk̃0gjSλ†ðfp0gfk0g; fpgfkgÞSλðfp̃gfk̃g; fp̃0gfk̃0gÞ

× exp

�Z
Eres

λ

d3q⃗
ð2πÞ32jq⃗j

X
pn∈fpgfp0g

gmηn
pn · q

X
pm∈fp̃gfp̃0g

gmηm
−pm · q

�
: ð16Þ

Now, we must examine the infrared cutoff dependence of the S matrix elements on the right-hand side of Eq. (16). For
this, we must use the λ-dependence of the S matrix elements that is summarized in Eq. (10). We then get

3Since, once the scalar momenta q are on-shell, pn · q > 0, we can drop the iϵ’s from the denominators.
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ρfinal¼
X
fpgfkg
fp̃gfk̃g

ρfpgfkgfp̃gfk̃g
X
fp0gfk0g
fp̃0gfk̃0g

jfp0gfk0gihfp̃0gfk̃0gjSΛ†ðfp0gfk0g;fpgfkgÞ

×SΛðfp̃gfk̃g;fp̃0gfk̃0gÞeiΦ̄ðfpgÞþiΦ̄ðfp0gÞ−iΦ̄ðfp̃gÞ−iΦ̄ðfp̃0gÞ

×exp

�Z
Eres

λ

d3q⃗
ð2πÞ32jq⃗j

X
pn∈fpgfp0g

gmηn
pn ·q

X
pm∈fp̃gfp̃0g

gmηm
−pm ·q

�

×exp

�
−
Z

Λ

λ

d3q
ð2πÞ32jq⃗j

�
1

2

� X
pn∈fpgfp0g

gmηn
pn ·q

�
2

þ1

2

� X
pn∈fp̃gfp̃0g

gmηn
pn ·q

�
2
��

: ð17Þ

Upon combining the exponentials in the last two lines, we can write the above expression as

ρfinal ¼
X
fpgfkg
fp̃gfk̃g

ρfpgfkgfp̃gfk̃g
X
fp0gfk0g
fp̃0gfk̃0g

jfp0gfk0gihfp̃0gfk̃0gj

× SΛ†ðfp0gfk0g; fpgfkgÞSΛðfp̃gfk̃g; fp̃0gfk̃0gÞeiΦ̄ðfpgÞþiΦ̄ðfp0gÞ−iΦ̄ðfp̃gÞ−iΦ̄ðfp̃0gÞ

× exp

�Z
Eres

Λ

d3q⃗
ð2πÞ32jq⃗j

X
pn∈fpgfp0g

gmηn
pn · q

X
pm∈fp̃gfp̃0g

gmηm
−pm · q

�

× exp

�
−
1

2

Z
Λ

λ

d3q
ð2πÞ32jq⃗j

� X
pn∈fpgfp0g

gmηn
pn · q

−
X

pm∈fp̃gfp̃0g

gmηm
pm · q

�
2
�
: ð18Þ

Now we want to examine the right-hand side of Eq. (18) as the fundamental infrared cutoff λ → 0. The second line contains
phases which are separately infrared divergent, and we reserve comment on them for later. The third line is λ-independent
and infrared finite. The fourth (last) line has a negative semidefinite exponent which can be written as

exp

�
−
1

2

Z
Λ

λ

d3q
ð2πÞ32jq⃗j

� X
pn∈fpgfp0g

gmηn
pn · q

−
X

pm∈fp̃gfp̃0g

gmηm
pm · q

�
2
�

¼ exp

�
−

1

32π3
ln
Λ
λ
·
Z

dq̂

� X
pn∈fpgfp0g

gmηn
pn · v

−
X

pm∈fp̃gfp̃0g

gmηm
pm · v

�
2
�
; vμ ¼ ð1; q̂Þ; q̂≡ q⃗=jq⃗j:

Either this exponent is negative and logarithmically divergent or it vanishes. It can vanish only if the integrand in the
integration over unit vectors vanishes, that is, if

X
pn∈fpgfp̃0g

gm
pn · v

¼
X

pm∈fp0gfp̃g

gm
pm · v

: ð19Þ

It is only in this case where the jfp0gfk0gihfp̃0gfq̃0gjmatrix element of the reduced outgoing density matrix can be nonzero
when the matrix element jfpgfkgihfp̃gfq̃gj of the incoming density matrix was nonzero.
Remember that the sums in (19) are over terms containing hard fermion momenta only. Hard scalar momenta do not enter

in these expressions. The above equation must be so for all values of the null four-vector vμ ¼ ð1; q̂Þ. If we Taylor expand
the above in powers off p⃗nffiffiffiffiffiffiffiffiffiffiffi

p⃗2
nþm2

p < 1 and equate each order, we see that

X
pn∈fpgfp̃0g

ðq̂ · p⃗nÞl
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
n þm2

p
Þlþ1

¼
X

pn∈fp̃gfp0g

ðq̂ · p⃗nÞl
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
n þm2

p
Þlþ1

; ∀l; ∀ q̂:

which implies that all multipole moments of the set of fermion momentum vectors fpg ∪ fp̃0g are equal to all moments of
the set fp0g ∪ fp̃g which can only be so if the two sets of vectors are identical
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fpg ∪ fp̃0g ¼ fp0g ∪ fp̃g: ð20Þ

Only those elements of the density matrix for which this
criterion is satisfied survive the limit λ → 0.
Now, notice that, when the constraint (20) is obeyed, the

phases in the third line of Eq. (18) also cancel exactly. The
result is, for evolutions from the initial to the final state for
which (20) holds, the final density matrix is free of infrared
divergences. Let us examine some of the consequences of
this result.
Since, by unitarity, both the incoming and reduced

outgoing density matrices must have unit trace, they both
must have nonzero diagonal matrix elements. Moreover, a
question about the evolution of a diagonal element of the
density matrix element to another diagonal element of the
density matrix is unaffected by the constraint (20). This is
due to the fact that, in such a case, fpg ¼ fp0g and fp̃g ¼
fp̃0g and (20) is automatically satisfied. This is the question
that is usually asked in particle physics: what is the
probability that the state jfpgfkgihfpgfkgj will evolve
to the state jfp0gfk0gihfp0gfk0gj? This quantity is finite in
the limit λ → 0, and it is unconstrained by the condition
(20). We have nothing new to say about it.
On the other hand, if we ask the questions which probe

the off-diagonal elements of the density matrix, the λ → 0
limit can have drastic consequences. If we ask what is the
probability of the process

1ffiffiffi
2

p ðjfp1gfk1gi þ jfp2gfk2giÞ
1ffiffiffi
2

p ðhfp1gfk1gj

þ hfp2gfk2gjÞ ⇒ jfp0gfk0gihfp0gfk0gj;

we find that, unless fp1g ¼ fp2g, it is

1

2
Prob ofjfp1gfk1gihfp1gfk1gj ⇒ jfp0gfk0gihfp0gfk0gj

þ
1

2
Prob ofjfp2gfk2gihfp2gfk2gj ⇒ jfp0gfk0gihfp0gfk0gj:

There is no interference between the incoming states.
The probability for evolving to a superposition, on the

other hand,

jfpgfkgihfpgfkgj ⇒ 1ffiffiffi
2

p ðjfp0
1gfk01gi þ jfp0

2gfk02giÞ

×
1ffiffiffi
2

p ðhfp0
1gfk01gj þ hfp0

2gfk02gjÞ

unless fp0
1g ¼ fp0

2g, is simply the sum

1

2
Prob ofjfpgfkgihfpgfkgj ⇒ jfp0

1gfk01gihfp0
1gfk01gj

þ
1

2
Prob ofjfpgfkgihfpgfkgj ⇒ jfp0

2gfk02gihfp0
2gfk02gj:

The state experiences complete decoherence.
In order to get the results outlined above, we reduced the

final state density matrix by tracing it over the Fock space
states of the soft scalar fields. Of course, since we are
tracing over this entire subspace of the total Hilbert space,
tracing over any redefinition of the Fock basis for soft
scalars by a unitary transformation must give the same
answer. To find a result that is any different from what we
have obtained, one would have to use a redefinition of the
basis that is not implemented by a proper unitary trans-
formation. Of course, it is easy to find such improper
unitary transformations in a Fock space. Here, the relevant
one is the basis constructed around certain coherent states
which become improper coherent states when the funda-
mental infrared cutoff is removed. Indeed, this redefinition
of the basis for soft scalar states is easily implemented and,
when one subsequently traces in such a basis, the reduced
final state density matrix differs in ways that are physically
consequential. In that basis the evolution does not exhibit
the severe decoherence or suppression of interference that
we found for the Fock state basis.
However, then we would be in a situation where the S

matrix evolves an initial soft scalar Fock vacuum to soft
scalar coherent states which live in a different Hilbert space
and the S matrix itself is therefore not a proper unitary
operator. The only way to preserve unitarity of S in this
context is to also use the coherent states as incoming states,
so that S evolves coherent states to coherent states in such a
way that it is unitary. This is the gist of what is done in the
dressed state formalism which we will discuss in the
context of soft scalar fields in the next section. We expect
that the dressed states, in the limit where the cutoff is
removed, will have the same problems with violations of
Lorentz invariance as photon and graviton dressed states
[17–19].

IV. SOFT SCALAR DRESSING

In quantum electrodynamics, a dressed state [5,6] is a
modification of the quantum state of a charged hard
particle which attaches a coherent state of soft photons
to it. As well, it must be accompanied by a singular
redefinition of the phases of the Smatrix [7]. A similar idea
can be used to obtain dressed states of gravitationally
charged particles in quantum gravity when that theory is
written as an effective field theory for perturbations of flat
spacetime [8,20]. In both electrodynamics and gravity, the
dressing of states can be done in such a way that the S
matrix that describes the scattering of hard dressed
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particles is infrared finite. In both cases, it has been argued
that the soft photons or gravitons simply decouple from the
dressed states [7,21] in that their interactions are sup-
pressed by factors of Eres=ðhard particle scalesÞ which can
be very small. In the following, we will argue that the same
dressing procedure can be implemented for hard particles
which interact with soft scalar fields. In our simple model
(1) it is a close parallel to the construction for photons or
gravitons. We will reserve the discussion of decoupling or
nondecoupling for a later section.
Consider an incoming Fock space state of hard particles

jfpgfkgi. We will consider our quantum field theory with a
fundamental infrared cutoff λ. Following Chung and
Faddeev and Kulish [5,7], we define the dressed state,
which we denote by jfpgfkg⟫, as

jfpgfkg⟫≡WðfpgÞjfpgfkgi; ð21Þ

where WðfpgÞ is the unitary operation implemented on an
incoming state with fermion quantum numbers fpg as

WðfpgÞ ¼ exp ðRðfpgÞÞ; ð22Þ

RðfpgÞ ¼
Z

Eres

λ

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jk⃗j

q �� X
pn∈fpg

fðk; pnÞ
�
a†ðkÞ

−
� X
pn∈fpg

f�ðk; pnÞ
�
aðkÞ

�
; ð23Þ

fðk; pÞ ¼ gm
k · p

: ð24Þ

Note that RðfpgÞ is anti-Hermitian and WðfpgÞ is unitary.
In this expression, λ is a fundamental infrared cutoff, and
Eres is a second cutoff analogous to the detector resolution
of the previous section; we use the same symbol for it here.4

Our normalization of the creation and annihilation
operators is such that free field is

ϕinðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jk⃗j

q ðeikxaðkÞ þ e−ikxa†ðkÞÞ ð25Þ

and

½aðkÞ; a†ðk0Þ� ¼ δ3ðk⃗ − k⃗0Þ:

We have omitted the wave function, 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jk⃗j

p , for the scalar

fields from our expressions for the S matrix. This means

that we must compensate by taking the normalization
integral for the states to be the Lorentz invariant measureR

d3k
ð2πÞ32jk⃗j when we finally sum over scalar field states.

In addition to the dressing of states described in
Eqs. (22)–(24), the S matrix must be modified. As an
operator on Fock space, the modified S matrix is similar to
the Dyson S matrix that is computed in Feynman-Dyson-
Wick perturbation theory and which we used in the
previous sections; the only difference is that it should be
multiplied by some phases which take into account the
infinite range of interactions. If we consider the transition
between a dressed state jfpgfkg⟫ and a dressed state
jfp0gfk0g⟫, the modified S matrix, which we shall denote
by the symbol S, is defined by

Sðfpgfkg; fp0gfk0gÞ ¼ ⟪fp0gfk0gjSjfpgfkg⟫ ð26Þ

≡ eiΦðfpgÞ⟪fp0gfk0gjSλjfpgfkg⟫eiΦðfp0gÞ; ð27Þ

ΦðfpgÞ ¼ −
1

8π

X
pn;pm∈fpg

m≠n

g2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpn · pmÞ2 −m4

p ln
Eres

λ
: ð28Þ

As we shall see, the infrared diverging phases serve to
cancel the infrared divergent parts of the phases due to
infrared divergent loop integrals encountered in the com-
putation of Sλ.

V. INFRARED FINITENESS OF THE DRESSED
S MATRIX

In this section, we shall show that matrix elements of the
S matrix between dressed states are free of infrared
divergences. The proof is very similar to the analogous
one for quantum electrodynamics and for perturbative
quantum gravity [5,8]. Consider the Dyson Smatrix operator
Sλ computed in renormalized perturbation theory and the
dressed states defined in Eqs. (21)–(24). The matrix element
of the S matrix between dressed states is given in Eq. (27)
which we recopy here for the reader’s convenience:

Sðfpgfkg; fp0gfk0gÞ
¼ eiΦðfpgÞ⟪fp0gfk0gjSλjfpgfkg⟫eiΦðfp0gÞ: ð29Þ

The superscript λ on Sλ indicates that the matrix elements on
the right-hand side of the above equation are computed
while using λ as a fundamental infrared cutoff. The dressed
states jfpgfkg⟫ and the phases ΦðfpgÞ are also defined
with this cutoff. Cancellation of this singular dependence on
λ and finiteness as λ is put to zero on the right-hand side of
Eq. (29) is the “infrared finiteness” that we are seeking in
this section.

4Note that f defined in (24) is real. Thus f� in (23) appears to
overcomplicate the expression. However, we prefer to write it this
way to allow for any (possibly complex) subleading term in the
definition of the dressed states, should we require it.
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We can use the Baker-Campbell-Hausdorff formula5 to rewrite the exponential operators in the dressed states defined in
Eqs. (21)–(24) as

jfp0gfk0g⟫ ¼ exp

�Z
Eres

λ

d3l

ð2πÞ32jl⃗j

�
−
1

2

				 X
p0
n∈fp0g

fðl; p0
nÞ
				2 þ X

p0
n∈fp0g

fðl; p0
nÞa†ðlÞ

��
jfp0gfk0gi; ð30Þ

⟪fpgfkgj ¼ hfpgfkgj exp
�Z

Eres

λ

d3l

ð2πÞ32jl⃗j

�
−
1

2

				 X
pn∈fpg

fðl; pnÞ
				2 − X

pn∈fpg
f�ðl; pnÞaðlÞ

��
: ð31Þ

Then, using these states, Eq. (29) becomes

Sðfpgfkg;fp0gfk0gÞ¼ exp

�
iΦðfpgÞþ iΦðfp0gÞþ

Z
Eres

λ

d3l

ð2πÞ32jl⃗j

�
−
1

2

				 X
pn∈fpg

fðl;pnÞ
				2−1

2

				 X
p0
n∈fp0g

fðl;p0
nÞ
				2
��

× hfpgfkgjexp
�
−
Z

Eres

λ

d3lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jl⃗j

q X
pn∈fpg

f�ðl;pnÞaðlÞ
�

×Sλ exp

�Z
Eres

λ

d3lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jl⃗j

q X
p0
m∈fp0g

fðl;p0
mÞa†ðlÞ

�
jfp0gfk0gi: ð32Þ

A compact form for the LSZ formula for the scalar field part of the Dyson S matrix is obtained using a generating
functional

Sλ≕ e
R

dzϕinðzÞð−∂2Þ δ
δJðzÞ∶ � � � T � � � ei

R
Jϕ � � � � � � jJ¼0;

where ϕinðxÞ is the asymptotic free field as in Eq. (25) and ∶ � � � ∶ denotes the normal ordering. With this formula, we can
find the action of the dressing operator on Sλ as

hfpgfkgje
−
R

Eres
λ

d3lffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jl⃗j

p P
pn∈fpg f

�ðl;pnÞaðlÞ
Sλe

R
Eres
λ

d3lffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jl⃗j

p P
p0m∈fp0g fðl;p0

mÞa†ðlÞ
jfp0gfk0gi

¼ exp

�
−
Z

Eres

λ

d3l

ð2πÞ32jl⃗j
X

pn∈fpg
f�ðl; pnÞ

X
p0
m∈fp0g

fðl; p0
mÞ
�
exp

�Z
dzfðzÞð−∂2Þ δ

δJðzÞ
�

× hfpgfkgj∶e
R

dzϕinðzÞð−∂2Þ δ
δJðzÞ∶ � � � T � � � ei

R
Jϕ � � � � � � jfp0gfk0gijJ¼0:

In the above formula, we have used the equations

e
−
R

Eres
λ

d3lffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jl⃗j

p P
pn∈fpg f

�ðl;pnÞaðlÞ
a†ðkÞ ¼

�
a†ðkÞ −

X
pn∈fpg

f�ðpn; kÞ
�
e
−
R

Eres
λ

d3lffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jl⃗j

p P
pn∈fpg f

�ðl;pnÞaðlÞ
; ð33Þ

aðkÞe
R

Eres
λ

d3lffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jl⃗j

p P
p0m∈fp0g fðl;p0

mÞa†ðlÞ
¼ e

R
Eres
λ

d3lffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jl⃗j

p P
p0m∈fp0g fðl;p0

mÞa†ðlÞ�
aðkÞ þ

X
p0
n∈fp0g

fðk; p0
nÞ
�
; ð34Þ

and the result is the classical scalar field,

5For operators A and B with the properties ½A; ½A; B�� ¼ 0 and ½B; ½A; B�� ¼ 0, the Baker-Campbell-Hausdorff formula is

eAeB ¼ e
1
2
½A;B�eAþB ¼ e½A;B�eBeA:
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fðzÞ ¼
Z

Eres

λ

d3l

ð2πÞ32jl⃗j

� X
p0
n∈fp0g

fðl; p0
nÞeilz −

X
pm∈fpg

f�ðl; pmÞe−ilz
�
;

occurring in the exponential functional derivative operator in the second line,

exp

�Z
dzfðzÞð−∂2Þ δ

δJðzÞ
�
:

This operation inserts ingoing and outgoing soft scalars with wave functions ∼f;−f� into the S matrix element that it
operates on. We can use the soft scalar theorem (9) to rewrite these as the Smatrix element without the soft scalars and with
an exponential factor,

exp

�Z
Eres

λ

d3l

ð2πÞ32jl⃗j

� X
pn∈fpg

gm
pn · l

−
X

p0
n∈fp0g

gm
p0
n · l

�� X
pm∈fpg

fðl; pmÞ −
X

p0
m∈fp0g

f�ð−l; p0
mÞ
��

;

which then leads us to

Sðfpgfkg; fp0gfk0gÞ ¼ Sλðfpgfkg; fp0gfk0gÞeiΦðfpgÞþiΦðfp0gÞ exp
�Z

Eres

λ

d3l

ð2πÞ32jl⃗j

�
−
1

2

				 X
p0
n∈fpg

fðl; pnÞ
				2

−
1

2

				 X
p0
n∈fp0g

fðl; p0
nÞ
				2 − X

pn∈fpg
f�ðl; pnÞ

X
p0
m∈fp0g

fðl; p0
mÞ

þ
� X
pn∈fpg

gm
pn · l

−
X

p0
n∈fp0g

gm
p0
n · l

�� X
pm∈fpg

fðl; pmÞ −
X

p0
m∈fp0g

f�ð−l; p0
mÞ
���

: ð35Þ

Then, we can use Eqs. (10) to write the above equation as

Sλðfpgfkg; fp0gfk0gÞ ¼ SΛðfpgfkg; fp0gfk0gÞeiΦðfpgÞ−iΦ̄ðfpgÞþiΦðfp0gÞ−iΦ̄ðfp0gÞ

× exp

�Z
Eres

λ

d3l

ð2πÞ32jl⃗j

�
−
1

2

				 X
p0
n∈fpg

fðl; pnÞ
				2 − 1

2

				 X
p0
n∈fp0g

fðl; p0
nÞ
				2

−
X

pn∈fpg
f�ðl; pnÞ

X
p0
m∈fp0g

fðl; p0
mÞ þ

� X
pn∈fpg

gm
pn · l

−
X

p0
n∈fp0g

gm
p0
n · l

�

×

� X
pm∈fpg

fðl; pmÞ −
X

p0
m∈fp0g

f�ð−l; p0
mÞ
�
þ
Z

Λ

λ

d3l

ð2πÞ32jl⃗j

�
−
1

2

� X
pn∈fpg

gm
pn · l

�
2

−
1

2

� X
p0
n∈fp0g

gm
p0
n · l

�
2

þ
X

pn∈fpg

gm
pn · l

X
p0
m∈fp0g

gm
p0
m · l

��
: ð36Þ

The first line in Eq. (36) contains the phases that come from the Faddeev-Kulish prescription plus from the internal loop
contributions to the infrared cutoff Sλ. The logarithmic infrared divergences cancel in the combinations in which the phases
appear there, leaving behind finite parts which we will display shortly. The second and third lines in Eq. (36) come from the
normalizations and overlaps of the coherent states. The fourth line in Eq. (36) contains the result of using the soft scalar
theorem to take into account the soft scalars coming from the coherent states. The last line in Eq. (36) is the contribution of
internal loops encountered in the computation of Sλ. It is easy to see that the λ-dependence of the sum of all of these terms
cancels when we put fðp;lÞ ¼ gm

p·l. The latter exponential factors simplify as
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exp

�Z
Λ

Eres

d3l

ð2πÞ32jl⃗j

�
−
1

2

�X
pn∈fpg

gm
pn · l

�
2

−
1

2

�X
p0
n∈fp0g

gm
p0
n · l

�
2

þ
X

pn∈fpg

gm
pn · l

X
p0
m∈fp0g

gm
p0
m · l

��

¼
�
Eres

Λ

�
Aðfpgfp0gÞ

;

where

Aðfpgfp0gÞ ¼ 1

8π2
X
nm

g2m2ηmηnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm · pnÞ2 −m4

p �
i

�
1þ ηmηn

2

�

þ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m4

ðpm·pnÞ2
q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m4

ðpm·pnÞ2
q �

:

The final result for the element of the S matrix in dressed
states is simply

Sðfpgfkg; fp0gfk0gÞ

¼
�
Eres

Λ

�
Aðfpgfp0gÞ

SΛðfpgfkg; fp0gfk0gÞ: ð37Þ

The left-hand side of the above formula (37) is the matrix
element of the modified S matrix, S, computed with dressed
states. It is the amplitude for the transition from dressed state
jfpgfkg⟫ to dressed state jfp0gfk0g⟫. The right-hand side
simply contains the Dyson S matrix, Sλ, its matrix elements
SΛðfpgfkg; fp0gfk0gÞ computed with undressed Fock
space states and with an infrared cutoff Λ. It is multiplied
by the factor ðEres

Λ ÞAðfpgfp0gÞ made from the ratio of cutoffs
raised to a complex, momentum-dependent exponent. The
right-hand side does not depend on Λ in that the
Λ-dependence of SΛ is compensated by the Λ-dependence
of the factor. However, the right-hand side does depend on
the cutoff, Eres, which is now a parameter of the theory.

VI. NONDECOUPLING OF SOFT
SCALAR EMISSION

Having constructed the infrared finite S matrix for
dressed states, we are now interested in computing the
amplitude of emission of additional soft scalars beyond
those in the dressing. The vanishing of such amplitudes and
the factorization of the S matrix into hard and soft sectors
for the scattering amplitudes of dressed states is an already
well-known feature of quantum electrodynamics and per-
turbative quantum gravity [7,10,20,21]. There, the factori-
zation has to do with the fact that one could correct the
dressing factors to take into account the next-to-leading
contributions to the soft theorem. Then the amplitude for
the interaction of suitably dressed states to emit or absorb
an additional soft photon or soft graviton is indeed

suppressed by powers of the detector resolution cutoff
Eres. This decoupling also has sound physical reasoning.
Photons or gravitons with wavelengths the size of the solar
system should have nothing to do with electrodynamic or
gravitational physics at a subatomic scale.
As we shall see, the case of the massless scalar field is a

little different. Wewill find that soft scalars do not decouple.
A scattering event for hard dressed particles can produce
soft scalars with an amplitude of the same order as other
radiative corrections to the amplitude and at the same order
as the interactions between the hard particles themselves.
We will outline the argument for this in the following. Later,
in the next section, we will examine the entanglement of the
dressed hard particles and the soft particles that are
produced in the scattering of hard particles.
Let us consider an outgoing dressed state which contains

an additional soft scalar

jfp0gfk0gq0⟫ ¼ eRðfp0gÞa†ðq0Þjfp0gfk0gi: ð38Þ

We would like to compute the dressed S matrix element
Sðfpgfkg; fp0gfk0gq0Þ which is defined as the quantity

Sðfpgfkg; fp0gfk0gq0Þ
¼ eiΦðfpgÞhfpgfkgjW†ðfpgÞSλWðfp0gÞ
× a†ðq0Þjfp0gfk0gieiΦðfp0gÞ: ð39Þ

We can move the scalar creation operator past the operator
Wðfp0gÞ by using the identity (33) to get

Sðfpgfkg;fp0gfk0gq0Þ
¼ eiΦðfpgÞþiΦðfp0gÞhfpgfkgjW†ðfpgÞSλ

×

�
a†ðq0Þ−

X
p0
n∈fp0g

fðp0
n;q0Þ

�
Wðfp0gÞÞjfp0gfk0gi: ð40Þ

Then, the a†ðq0Þ can either act on W†ðfpgÞ, for which we
use Eq. (34), or it could be absorbed into the S matrix, in
which case we can use the soft scalar theorem (7), which we
will keep to next-to-leading order. The result is a cancella-
tion between the singular factors and the f’s, leaving only
the contributions from the next-to-leading soft scalar
theorem,

Sðfpgfkg; fp0gfk0gq0Þ

¼
�
Eres

Λ

�
Aðfpgfp0gÞ�

−
X

pn∈fpgfp0g

�
g
2m

�
− g∂̂m

�

× SΛðfpgfkg; fp0gfk0gÞ; ð41Þ

where quantities on the right-hand side are defined in the
discussions around Eqs. (7), (8), and (37).
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This equation is one of our central results. The right-hand
side, unlike what occurs for photons or gravitons, cannot be
written in a form that depends only on the initial and final
states in a way that its effect can be absorbed into Wðfp0gÞ
or W†ðfpgÞ. Even absorbing the first term with − g

2m for
each external fermion would modifyW in such a way that it
is no longer unitary. It is easy to confirm by a simple tree
level computation that −g∂̂m operating on an amputated
correlation function simply cannot in general be written as
something that depends only on fpgfkg plus something
that depends only on fp0gfk0g, and its action therefore
cannot be absorbed into the W’s either. Our conclusion is
that the soft scalars couple to the dressed S matrix at order g
in the coupling constant, which makes them just as coupled
as the other particles.

VII. CONCLUSIONS

We have shown that, in the context of our admittedly
rather specialized model, the infrared problem due to
massless scalar fields is practically identical to that for
photons in quantum electrodynamics and for gravitons in
perturbative quantum gravity. This is in spite of the fact that
there are no apparent internal symmetries, either continu-
ous or discrete, whatsoever. This means that there are no
conserved Noether currents beyond the energy-momentum
tensor, no Ward-Takahashi identities, and no apparent
asymptotic symmetries. We have found what we conjecture
is different in the soft scalar theory. The difference lies in
the next-to-leading soft scalar theorem. Unlike the case of
photons or gravitons where Ward-Takahashi identities help
to write those terms as referring only to the initial and final
states [20], their scalar analog cannot be written that way.
Then, unlike for photons and gravitons, the next-to-leading
behavior cannot be absorbed by modifying the hard particle
dressing. Soft scalars are still produced when dressed hard
particles interact.
Now that we have demonstrated that soft scalars do not

decouple from the interactions of dressed states, we can

revisit the question as to whether they carry any significant
amount of information. We still expect the scenario where
the interactions of hard particles in a scattering event also
produce a cloud of soft particles and those soft particles are
undetectable. Our experimental resources only have access
to the dressed hard particles. To proceed, we could simply
ask the same question that we did for the scattering of
undressed hard particles. We consider an incoming density
matrix state

X
fpgfkg
fp̃gfk̃g

jfpgfkg⟫ρfpgfkg;fp̃gfk̃g⟪fp̃gfk̃gj; ð42Þ

which should evolve to an outgoing density matrix

X
fpgfkg
fp̃gfk̃g

X
fp0gfk0gfq0g
fp̃0gfk̃0gfq̃0g

jfp0gfk0gfq0g⟫⟪fp̃0gfk̃0gfq̃0gj

× S†ðfp0gfk0gfqg; fpgfkgÞρfpgfkg;fp̃gfk̃g
× Sðfp̃gfk̃g; fp̃0gfk̃0gfq0gÞ; ð43Þ

which we now trace over the outgoing soft scalars to obtain
a reduced density matrix which describes all of the
accessible physics of the hard particles in the outgoing
state,

ρfinal ¼
X
fpgfkg
fp̃gfk̃g

X
fp0gfk0g
fp̃0gfk̃0g

jfp0gfk0g⟫⟪fp̃0gfk̃0gj

×
X
fqg

S†ðfp0gfk0gfqg; fpgfkgÞρfpgfkg;fp̃gfk̃g

× Sðfp̃gfk̃g; fp̃0gfk̃0gfqgÞ: ð44Þ

Then, we observe that the trace over the soft scalars
involves

X
fqg

S†ðfp0gfk0gfqg; fpgfkgÞρfpgfkg;fp̃gfk̃gSðfp̃gfk̃g; fp̃0gfk̃0gfqgÞ

¼ S†ðfp0gfk0g; fpgfkgÞρfpgfkg;fp̃gfk̃gSðfp̃gfk̃g; fp̃0gfk̃0gÞ

þ
Z

Eres

λ

d3q0

ð2πÞ32jq⃗0jS
†ðfp0gfk0gq0; fpgfkgÞρfpgfkg;fp̃gfk̃gSðfp̃gfk̃g; fp̃0gfk̃0gq0Þ þ � � � : ð45Þ

Since the combination

S†ðfp0gfk0gq0; fpgfkgÞρfpgfkg;fp̃gfk̃g
× Sðfp̃gfk̃g; fp̃0gfk̃0gq0Þ ∼ ðq0Þ0

is not singular as q → 0, it goes as a constant, the
integration in the last line of the above equation produces
a factor of E2

res, and the higher order terms represented by
the ellipses there have multiple volume integrals which
produce higher orders of Eres. All of these are suppressed.
In the approximation where we neglect contributions with
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positive powers of Eres, we neglect such terms. Then
Eq. (44) becomes

ρfinal ¼
X
fpgfkg
fp̃gfk̃g

X
fp0gfk0g
fp̃0gfk̃0g

jfp0gfk0g⟫⟪fp̃0gfk̃0gj

× S†ðfp0gfk0g; fpgfkgÞρfpgfkg;fp̃gfk̃g
× Sðfp̃gfk̃g; fp̃0gfk̃0gÞ þOðE2

resÞ ð46Þ

with no reference to soft particles at all. This is the sense in
which the information contained in the soft particles
decouples. We could produce soft scalars in a scattering
experiment. However, if we do not have the detector
resolution to see them directly, we have no way of knowing
that they are there. It will also be interesting to understand
the implications of our result in the context of Hawking,

Perry, and Strominger’s proposal [22,23] of the resolution
of the black hole information paradox which has been
heavily criticized based on the decoupling of soft gravitons
in the dressed formalism [21].
We should note that recent work on the memory effect

[24] suggests that, as well as the well-known cases of
massless QED and Yang-Mills theory, Faddeev-Kulish-like
dressings may not work for the full nonlinear diffeo-
morphism invariant quantum gravity. Perhaps studying
this issue in the simpler context of trivalently coupled
massless scalar fields could shed some light on these
complex issues.
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