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We introduce a convenient set of analytical tools (the Gaussian formalism) and diagrams (symplectic
circuits) to analyze multimode scattering events in analogue gravity, such as pair creation à la Hawking by
black hole and white hole analogue event horizons. The diagrams prove to be valuable Ansätze for the
scattering dynamics, especially in settings where direct analytic results are not straightforward and one
must instead rely on numerical simulations. We use these tools to investigate entanglement generation in
single- and multihorizon scenarios, in particular when the Hawking process is stimulated with classical
(e.g., thermal noise) and nonclassical (e.g., single-mode squeezed vacuum) input states—demonstrating,
for instance, that initial squeezing can enhance the production of entanglement and overcome the
deleterious effects that initial thermal fluctuations have on the output entanglement. To make further
contact with practical matters, we examine how attenuation degrades quantum correlations between
Hawking pairs. The techniques that we employ are generally applicable to analogue gravity setups of
(Gaussian) bosonic quantum systems, such as analogue horizons produced in optical analogues and in
Bose-Einstein condensates, and should be of great utility in these domains. We show the applicability of
these techniques by putting them in action for an optical system containing a pair white-black hole
analogue, extending our previous analysis of [Phys. Rev. Lett. 128, 091301 (2022)].
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I. INTRODUCTION

In the 1970s, Stephen Hawking discovered that black
holes are not completely black but, instead, spontaneously
emit thermal radiation as blackbodies [1–3]—now
famously referred to as Hawking radiation. This result
originated from applying quantum field theory on the
background space-time of a collapsing, massive body.
Since quantum mechanics of closed quantum systems
relies on unitary evolution, as is the case here, this presents
an apparent contradiction: how can the final, outgoing
quantum state of the Hawking radiation be thermal—and
therefore a mixed (as opposed to pure) quantum state—
when the initial quantum state was pure (vacuum, in the
case of spontaneous emission)? The contradiction is
resolved1 by observing one intriguing fact that follows
from a more detailed analysis: there exists a counterpart gas
of blackbody radiation falling into the black hole, which is
entangled with the thermal outgoing Hawking radiation,

thus purifying the full quantum state and avoiding the
apparent contradiction [4]. The quantum entanglement
between the outgoing Hawking radiation and the infalling
partner radiation is a crucial feature of the process, high-
lighting the genuine “quantumness” of the effect.
The spontaneous generation of Hawking radiation (and

the entangled partner radiation) by an event horizon—a
process which we shall generally refer to as the Hawking
process or Hawking effect—was originally thought to be a
mysterious property of black holes alone, but analogue
gravity systems have changed that perspective entirely
(e.g., in fluids [5,6], optical systems [7–18], and Bose-
Einstein condensates [19–28]), revealing that the formation
of an analogue causal barrier (event horizon) generically
generates entangled Hawking quanta spontaneously from
the vacuum with thermal properties [29–33]. This has
stimulated a tremendous amount of research aimed at
discovering physical systems which support such analogue
event-horizons, potentially leading to detectable signatures
of Hawking quanta—and their entanglement—in the lab
[34–40].
Many detailed theoretical analyses have been done,

primarily focusing on the microphysics of the Hawking
process in a multitude of physically distinct platforms.
From our perspective, it would be beneficial to have a set of
universal tools and simple intuitive diagrams, which are
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1Though it leads to a true puzzle (the information-loss paradox

[3]) once the evaporation of the black hole is considered. We do
not discuss this true puzzle here.
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applicable to various microphysical settings and which,
more importantly, highlights the essential physics arising
therein. Such may be especially relevant for the multimode
scattering scenarios that are ever present in generic dis-
persive media. Moreover, as experimental efforts strive to
observe the Hawking effect and entanglement in the lab,
some theoretical handle on practical considerations—such
as, e.g., noise and system inefficiencies—would be useful
when modeling such systems. Addressing these matters, in
a comprehensive yet efficient way, is one goal of this paper.
A crucial aspect of theHawking process—and one that we

pay particular attention to—is the entanglement generated
therefrom, whether that be from the spontaneous or stimu-
lated Hawking effect. From our viewpoint, it is unclear from
previousworkswhat the stimulatedHawkingprocess implies
about the quantumness of the effect, since such is commonly
regarded as having purely classical origin. We are thus
motivated to clarify what is quantum and what is not in
the stimulated Hawking process. We do so by evaluating
entanglement in a precise and operationally meaningful
manner (via the logarithmic negativity [41,42]), which
allows us to describe in detail the harmful role that thermal
noise and inefficiencies play, as well as show how some
stimulating radiation—such as a single-mode squeezed
vacuum—can actually enhance entanglement and even help
to vanquish the detrimental effects of thermal noise.
When appropriate, we compare the logarithmic negativity

to another indicator of entanglement prolifically utilized in
the analogue gravity literature (such as a particular Cauchy-
Schwarz inequality originally introduced in Refs. [25,26]),
and point out subtle but important distinctions between the
two when making physically meaningful statements about
the entanglement within the system. In particular, we discuss
how the explanatory power of such Cauchy-Schwarz
inequalities are limited and can lead to false conclusions
about entanglement if they are pushed beyond their range of
applicability. We highlight this point with a few simple
examples relevant to practical realizations of the analogue
Hawking effect. Portions of this article contain a detailed and
extended analysis of the ideas presented succinctly in [43].
This paper is organized as follows. In Sec. II, we

summarize the tools we use throughout this article to deal
with Gaussian states of linear systems. The tone of this
section is pedagogical. We defend the power and usefulness
of these techniques, and the visual tools associated with
them, to describe the physics behind the Hawking effect in
analogue systems. In Sec. III, we show the utility of these
tools by applying them to the Hawing effect in gravita-
tionally produced, spherically symmetric black holes.
Section IV describes how to build symplectic circuits to
describe the Hawking effect. Section V applies these tools
to a second example: the Hawking effect in optical systems
containing a pair white-black hole, and uses them to
analyze in some detail the production of entanglement in
this multimode system. This section also includes a detailed

comparison with numerical simulations, in order to evalu-
ate the accuracy of the proposed symplectic circuit to
describe the system. Section VI discusses ideas to amplify
the generation of entanglement in the Hawking process, in
particular the use of quantum inputs such as single-mode
squeezed states. We also evaluate the way ambient noise
and losses affect the entanglement in the final state.
Section VII contains an overview of the main results in
this article and discusses them from a broader perspective.
The appendices contain material of a more technical nature
helpful to support some of the claims made along this
article. We work with units in which c ¼ ℏ ¼ 1.

II. GAUSSIAN STATES AND SYMPLECTIC
TRANSFORMATION FOR BOSONIC

SYSTEMS OF FINITE MODES

A. Symplectic transformations and Gaussian states

1. Symplectic transformations

Our focus is on scattering processes between a finite and
well-defined set of “in”modes to a well-defined set of “out”
modes, with an interaction region in between. We presume
that the interaction region is described by a Hamiltonian
that is quadratic in the basic variables, with coupling
coefficients that may otherwise be complicated functions
of space and time. Since the interaction is quadratic, the
relations between the in-modes and out-modes is linear. We
then wish to find the scattering matrix from the in-modes to
the out-modes describing the process.
In this work, we shall restrict our attention to a certain

class of quantum states known as Gaussian states.
Gaussian states include vacua, coherent, thermal, and
squeezed states. Although our attention is restricted, it
is sufficiently general to describe most of the states one
can easily create and manipulate in the laboratory. To
make this paper self-contained, we provide a general
discussion and some details surrounding the properties of
such transformations. For explicit details and extensive
derivations, see Refs. [44,45].
To describe linear transformations, we work in the

effective phase space of the modes. Consider a finite set
of in-modes and out-modes, with annihilation operators

âðinÞJ and âðoutÞJ with J ∈ f1; 2;…; Ng, where N is the
number of relevant interacting modes. (An example of a
mode is an electromagnetic wave with frequency ω and
wave number k⃗.) Define the canonical operators (or quad-
rature operators, as they are often called),

Q̂J ≡ 1ffiffiffi
2

p ðâJ þ â†JÞ; ð1Þ

P̂J ≡ iffiffiffi
2

p ðâ†J − âJÞ; ð2Þ
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which we define for both the in- and out-modes and which,
from the standard commutation relations between annihi-
lation and creation operators, obey the canonical commu-
tation relations ½Q̂J; P̂K� ¼ iδJK. Now, define the (column)
vector of canonical operators as the direct sum of the
canonical pairs for each mode, i.e.,

R̂≡ ðQ̂1; P̂1;…; Q̂N; P̂NÞ⊤; ð3Þ

where the transposition is with respect to the implicitly
introduced vector space, R2N , which is the phase space of
the modes. A point that we wish to emphasize in this
section is that, in the Gaussian setting, quantum dynamics
reduces to the dynamics of vectors and matrices in this
2N-dimensional phase space, without reference to the
(infinite dimensional) Hilbert space or Schrödinger equa-
tions. This is a significant simplification.
In terms of the vector R̂, the canonical commutation

relations can be succinctly written as

½R̂i; R̂j� ¼ iΩij; Ω≡⨁
N

�
0 1

−1 0

�
; ð4Þ

where i; j; � � � ∈ f1;…; 2Ng are indices running from 1 to
2N (contrary to capitalized latin labels I; J; � � �, which we
choose to run from 1 to N), and we have defined the 2N ×
2N antisymmetric matrix, Ω, which is the (inverse of the)
symplectic form.
Given any unitary transformation generated by a quad-

ratic Hamiltonian, which takes in-modes to out-modes, one
can describe such a transformation by a 2N × 2N sym-
plectic matrix, S, such that,

R̂ðoutÞ ¼ S · R̂ðinÞ: ð5Þ

One can think about this transformation as the familiar
Heisenberg evolution of the canonical operators—which is
linear because we are assuming the Hamiltonian is quad-
ratic. The matrix S is symplectic in the sense that it
preserves the symplectic form, i.e., SΩS⊤ ¼ Ω, which is
the only condition that S must satisfy. The set of such
matrices S forms the symplectic group SpðR; 2NÞ; they are
made of the subset of canonical transformations that are
also linear. The matrix S encodes the relevant dynamical
processes within the interaction region and it thus serves as
a scattering matrix. Appendix A describes two examples of
symplectic transformation we use extensively in this paper:
two-mode squeezing and beam splitters.

2. Gaussian states

We restrict our analyses to a class of quantum states
known as Gaussian quantum states (or just Gaussian
states). Physically, pure Gaussian states are states which
one can generate with symplectic transformations applied

to the ground state of some quadratic Hamiltonian. More
generally, acting with symplectic transformations on a
thermal state of some quadratic Hamiltonian, one can build
all mixed Gaussian states. AGaussian state has the property
that it is completely and uniquely described in terms of its
first and second moments (defined below) of the basic
variables (e.g., the Q’s and P’s); higher-order moments can
be derived from the second moments, in exactly the same
way that the statistical moments of a Gaussian probability
distribution are all determined from the first and second
moments (hence the name Gaussian).
We define the mean vector (the vector of first moments)

and covariance matrix (the matrix of second moments) for a
generic quantum state as,

μi ≡ hR̂ii; ð6Þ

σij ≡ hfR̂i − μi; R̂j − μjgi; ð7Þ

where the expectation value h·i is taken with respect to the
quantum state under consideration (either pure or mixed),
and f·; ·g denotes the symmetric, anticommutator. [One
subtracts μi to avoid having redundant information in the
first and second moments. The focus on the symmetric part
of the second moments is because the antisymmetric part is
fully determined by the canonical commutation relations
and is thus state independent. Therefore, the pair ðμ; σijÞ is
the minimum information needed to fully characterize a
Gaussian state.] Note that these definitions apply to any
quantum state whatsoever. It is only for Gaussian quantum
states that such quantities are sufficient in describing the
quantum state in its entirety.
To give a few examples, the vacuum of a set of N

oscillators is characterized by μ ¼ 0, σ ¼ I2N (I2N is the
2N × 2N identity matrix); a coherent state by μ ≠ 0, σ ¼
I2N (same covariance matrix as vacuum, but different first
moments; for this reason coherent states are called dis-
placed vacua); a squeezed state in general has σ ≠ I2N , and
a thermal state μ ¼ 0, σ ¼ ⨁Ið1þ 2nIÞI2, where nI is the
mean number of thermal quanta in the mode I ¼ 1;…; N.
Thermal states are mixed states.
Many invariant properties of a Gaussian state can be

extracted directly from σ. For instance, Heisenberg uncer-
tainty relations are completely and elegantly captured in the
relation σ þ iΩ ≥ 0

2; a Gaussian state is pure, if and only if
the eigenvalues of the matrix σikΩkj are all equal to �i
[44,45]; etc.
From Eq. (5), given a generic set of in-moments

ðμðinÞ; σðinÞÞ and a symplectic transformation S, the out-
moments are obtained by simple multiplication with S, as
follows:

2More explicitly, ðσij þ iΩijÞv̄ivj is a non-negative real number
for all vectors v ∈ C2N (the bar denotes complex conjugation).
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μðoutÞ ¼ SμðinÞ; ð8Þ

σðoutÞ ¼ SσðinÞS⊤: ð9Þ

This is a direct consequence of the linearity of evolution.
Let us assume the initial state is a Gaussian quantum state
with in-moments ðμðinÞ; σðinÞÞ. These quantities completely
determine the initial quantum state. Then, since symplectic
transformations map Gaussian states to Gaussian states and
since the first and second moments completely determine
all properties of a Gaussian quantum state, Eqs. (8) and (9)
completely determine all properties of the out quantum
state in terms of the in quantum state. Hence, the full
quantum dynamics of the system of N bosonic modes can
be reduced to the dynamics of vectors and matrices in the
2N-dimensional phase space, R2N . Since we are evolving
expectation values, there is no need to differentiate between
Schrödinger or Heisenberg pictures here.
Finally, let us state a simple and useful formula for the

mean number of quanta for any Gaussian state (pure or
mixed) of N modes with mean μ and covariance matrix σ,

hn̂i ¼ 1

4
Trfσg þ 1

2
μ⊤μ − 1

2
N: ð10Þ

In particular, the mean μ and covariance matrix σ could
describe the reduced moments of an N-dimensional sub-
system of an N þM Gaussian quantum state. (See
Appendix A for additional details.)

B. Quantum entanglement

An essential feature of the Hawking process is the
quantum correlations (entanglement) generated therefrom.
For pure quantum states, the most popular entanglement
quantifier is the von Neumann entropy. However, for mixed
quantum states (as generic subsystems of a pure quantum
state), the von Neumann entropy for a bipartition no longer
captures quantum correlations alone. There exists several
measures, witnesses, and quantifiers of entanglement, with
increasing levels of technicality and computational diffi-
culty. We consider a few such quantifiers and witnesses of
entanglement here. See Appendix A for some example
applications.

1. Logarithmic negativity

One easily computable measure of entanglement for pure
states and mixed states alike is the logarithmic negativity
(LN) [41,42]. A nonzero value of the LN is in one-to-one
correspondence with the violation of the Positivity of
Partial Transpose (PPT) criterion for quantum states [42]
—a criterion that separable quantum states faithfully obey.
In simpler words, a nonzero value of LN implies the
existence of entanglement (or nonseparability), however,
the reverse is not generically true—some entangled states

have zero LN. On the other hand, when restricting to
Gaussian states and when one of the subsystems is made of
a single mode (NA ¼ 1), regardless of the size of the other
subsystem, the LN is different from zero if and only if the
state is entangled. Importantly, the LN is an entanglement
monotone; it is a faithful quantifier of entanglement, in the
sense that higher LN means more entanglement. Later in
this paper, we will use the LN to quantify entanglement
precisely.
For Gaussian quantum states (and other types of quan-

tum states), the value of the LN has an operational meaning
as the exact cost (where the currency is Bell pairs or
entangled bits, ebits) that is required to prepare or simulate
the quantum state under consideration [46,47]. Hence, if a
quantum state ρ has a larger LN value than a quantum state
τ, then one can quantitatively and confidently claim that ρ
possesses more entanglement than τ, as it is more expensive
to simulate ρ than it is to simulate τ. This is a useful fact.
For consider that ρ and τ differ by a continuous change in a
parameter ϑ, such that ρðϑÞ and τ ¼ ρðϑþ δϑÞ. Then, one
can make definitive statements about the role that ϑ plays in
entanglement by monitoring the changes it induces in the
LN. For instance, if the LN monotonically increases with
the parameter ϑ, then this parameter quantifies a valuable
resource (such as squeezing). On the other hand, if the LN
monotonically decreases with ϑ, then this parameter is
obviously a nuisance (such as loss and thermal noise) and
should be minimized as much as possible.
The LN for a Gaussian quantum state can be directly

computed from its covariance matrix (i.e., the LN does not
dependent on the first moments μ). Consider an N þM-
mode Gaussian quantum state ρAB with covariance matrix
σAB, where the subsystem A consists of N modes and B
consists of M modes. The LN for the bipartition can be
computed from the symplectic eigenvalues3 of the covari-
ance matrix σ̃AB of the partially transposed quantum state
ρ⊤B
AB, which can be written in terms of σAB as

σ̃AB ¼ TσABT; ð11Þ

where T ¼ I2N ⊕ ΣM and ΣM ¼⊕M σz is a direct sum of
M 2 × 2 Pauli-z matrices; see, for instance, Chapter 7.1 of
Ref. [45] for details, and Appendix A for concrete
calculations in a simple situation. Let fν̃jgMþN

J¼1 denote
the symplectic eigenvalues of σ̃AB. The LN for the Gaussian
quantum state ρAB is then given as [44,45]

3The symplectic eigenvalue of a covariance matrix σ, are
defined as the absolute value of the eigenvalues of the matrix
σikΩkj. The properties of σ guarantee that the 2N eigenvalues of
this matrix are purely imaginary and they come in pairs, �iνI ,
with I ¼ 1;…; N and νI real for all I. Hence, by taking the
absolute values, we are left with N distinct symplectic eigenval-
ues equal to νI .
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LNðρABÞ ¼
XMþN

J¼1

max ½0;−log2ðν̃JÞ�: ð12Þ

Observe that a sufficient condition for quantum entangle-
ment is minfν̃Jg < 1. For instance, we use this condition
later on to evaluate precise, yet physically motivated
entanglement criteria based on relationships between the
Hawking temperature of an analogue gravity system and
the temperature of initial thermal fluctuations.

2. A Cauchy-Schwarz inequality

In the analogue gravity literature, there has been much
focus on a particular Cauchy-Schwarz inequality (to be
defined precisely below) to evaluate entanglement, which
was first introduced in Refs. [25,26] in the context of Bose-
Einstein condensates (BECs); see, e.g., Refs. [37,48,49] for
further usage.
Consider two modes, labeled â and b̂, and the two-mode

quantum state ρAB describing these modes. Define the mean
occupation numbers na ¼ hâ†âi and nb ¼ hb̂†b̂i and the
parameter cab ≡ hâ b̂i, where the expectation is taken with
respect to the state ρAB. It was shown in Refs. [25,26] that
the following Cauchy-Schwarz (CS) inequality,

Δ≡ nanb − jcabj2 < 0; ð13Þ
is a sufficient condition for the two modes, â and b̂, to
be quantum mechanically entangled in the state under
consideration.
The inequality for Δ above is simple and can be

evaluated by measuring only a handful of observables,
leading to an approachable method for witnessing entan-
glement in the lab. However, it is important to be aware of
its limitations. The witness Δ does not quantify entangle-
ment. In other words, a larger violation of the inequality
(a more negative Δ) does not imply more entanglement is
present within the system. Moreover, the inequality is
only sufficient to witness entanglement—not sufficient
and necessary; this implies that for some entangled states
we may find Δ > 0. In Ref. [26], the inequality was shown
to be necessary and sufficient for a certain class of two-
mode quantum states (so-called “stationary states”;
cf. Refs. [25,26]), though this does not generally hold.
Hence, even when restricting to Gaussian states and to
situations when one subsystem is made of a single mode
(conditions under which the LN is a necessary and
sufficient condition for entanglement), a non-negative
value ofΔ does not guarantee the absence of entanglement
(see Appendix A for an explicit example); Δ is faithful
only when the additional condition of “stationarity”,
defined in [25,26], is met.
As pointed out in Appendix A of Ref. [26], the inequality

Δ < 0 is actually subsumed by a more generic inequality
based on the PPT criterion [50]. Consider the following
covariance matrix for a two-mode Gaussian state, ρAB,

σAB ¼
�

A C

C⊤ B

�
; ð14Þ

where A (B) is the covariance matrix for the subsystem
A (B), which we assume to be made of a single mode, andC
describes the correlations among them. Now define the PPT
parameter,4

P− ≡ detA detBþ ð1 − j detCjÞ2
− TrfAΩ1CΩ1BΩ1C⊤Ω1g − detA − detB; ð15Þ

where Ω1 ¼ ð 0
−1

1
0
Þ is the single-mode symplectic form.

Actually, Δ happens to be equal to the first line of the last
equation, namely

Δ ¼ detA detBþ ð1 − j detCjÞ2: ð16Þ

A necessary and sufficient condition for a Gaussian two-
mode quantum state to be entangled is P− < 0, which is
derived from the PPT criterion as applied to Gaussian
states; see Ref. [50] for explicit details. Note also that P− is
a binary indicator of entanglement, not a quantifier. The
drawback to the more general quantityP−, as opposed toΔ,
is that computing the former requires access to the entire
covariance matrix of the quantum state. For Gaussian
states, this is equivalent to performing quantum-state
tomography on the two-mode system (see, e.g.,
Ref. [51] for details about quantum-state tomography of
optical systems). However, as shown in Ref. [26], for a
certain class of Gaussian quantum states (“stationary
states”), P− < 0 ⇔ Δ < 0. Hence, for this subfamily of
states, the simpler quantity Δ is as useful as P−. (Again, we
insist that neither is a quantifier of entanglement; see
Appendix A.)

3. Remarks

The LN precisely quantifies the amount of entanglement
within a system under the circumstances described above
(Gaussian states and when one of the subsystems is made of
a single mode). However, computing it in practice requires
knowledge of the entire covariance matrix, which amounts
to knowing the quantum state of said system (i.e., via
quantum-state tomography [51]). Entanglement witnesses,
such as Δ, on the other hand, can relieve the burden of full
quantum-state tomography, as such are typically computed
by measuring only a few observables—often appearing in
the form of Cauchy-Schwarz inequalities. The trade-off,
however, is that entanglement witnesses have a binary
outcome, telling us only if a state is entangled or not (they

4Our definition here differs from Refs. [26,50] by a numerical
factor of 1=16 due to our definition of the covariance matrix,
Eq. (7).
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do not quantify entanglement), and they are not necessarily
always faithful.
In this paper, we utilize the LN to genuinely quantify

entanglement and analyze how certain parameters (e.g.,
thermal noise, inefficiencies) affect quantum entanglement
within a system of modes. We briefly consider entangle-
ment witnesses discussed in previous paragraphs, due to
their practical appeal, and point out discrepancies between
such and the LN.

C. Simple yet practical noise models

Since there is currently much experimental effort to
observe Hawking radiation in the lab with analogue
systems, it seems appropriate to include potential imper-
fections in a hypothetical experimental setup which may
distort or degrade certain features of the Hawking effect.
In this paper, we focus on two potential sources of
imperfections:

(i) Background temperature (i.e., initial thermal fluc-
tuations), Tenv

(ii) Attenuation or losses, η,
where Tenv is the temperature of the “environment” and
0 ≤ 1 − η ≤ 1 can represent the probability that a mode
scatters into some set of inaccessible modes (attenuation);
or η can be the efficiency to which one can couple outgoing
modes to a detector setup.
The former is relevant since, generally, the Hawking

temperature of analogue gravity systems is meager, and
thus, there will be a competition between the quantum
fluctuations produced in the Hawking effect versus the
initial thermal fluctuations (more on this in Sec. III B).
We include the effects of a background temperature

within our model by simply taking the initial state be in
thermal equilibrium at temperature Tenv. In the Gaussian
context, this means that the initial first and second moments
of each mode, prior to any interactions or operations, are
σΘ ¼ 0 and σΘ ¼ ð1þ 2nenvÞI2 (and different modes are
uncorrelated) where nenv is the mean occupation number of
a harmonic oscillator (e.g., a mode of a photon gas) at
temperature Tenv. Generally speaking, each mode can be of
different frequency, as is the case for analogue models with
Bose-Einstein condensates [52], and for them nenv ≡
1=ðeω=Tenv − 1Þ with ω the frequency of the mode. It is
straightforward to generalize to noise that may have
different spectral profiles than simple blackbodylike occu-
pation numbers.
Another source of imperfection, which plagues all

experimental platforms, is unwanted scattering of the
system modes into a set of inaccessible modes (i.e.,
attenuation) that could arise from, e.g., inefficiencies within
the setup. This leads to a loss of quanta, which in turn
reduces quantum correlations between the outgoing modes
of the system and, as we show below, it may cause serious
issues if the goal is to measure entanglement generated
during the Hawking process. We provide a simple model

for loss in the form of a homogeneous, thermal-loss
channel (also known as an attenuation map), LN

η , which
preserves the Gaussianity of the state, and maps the mean μ
and covariance matrix σ of an N-mode system to

μ⟶
LN
η ffiffiffi

η
p

μ ð17Þ

σ⟶
LN
η
ησ þ Nnoiseð1 − ηÞI2N; ð18Þ

where 1 − η is the attenuation parameter quantifying the
inefficiencies (the probability to scatter into an inaccessible
channel; η ¼ 1 is no attenuation). The presence of the
parameter Nnoise ≥ 1 allows for the possibility that the
inaccessible scattering channel is not merely a pure losses
channel, but it also injects noise to the system. This model
assumes that the inaccessible modes, to which the system
modes scatter into, act homogeneously on the system and
are uncorrelated. These assumptions allow us to discuss
generic features of unwanted scattering processes in simple
terms and to evaluate the impact of losses on quantum
aspects of the Hawking process. As an aside, our analyses
can be extended by introducing a more elaborate model for
the open-system dynamics, perhaps leveraging the input-
output formalism for open systems of bosonic modes (see
for instance Chapter 6 of Ref. [45]).

III. EXAMPLE 1: BLACK HOLE

In this section, we apply the formalism presented in
Sec. II to the (usual) Hawking process triggered by the
formation of a black hole by the gravitational collapse of a
spherically symmetric body, and introduce a simple sym-
plectic circuit associated with this process. The motivation
is to illustrate the use of these tools in a simple context.

A. Physical picture, symplectic circuit,
and example calculations

1. Physical picture

Imagine a scattering experiment consisting of a well-
defined and finite set of in-modes and out-modes, with an
interaction region in between that is well described by a
quadratic interaction Hamiltonian, with coupling coeffi-
cients that are dependent on space and time. The interaction
then leads to a linear transformation between the in- and
out-modes, as in Sec. II.
One usually derives the astrophysical Hawking effect in

precisely this context, in which case there is a free (bosonic)
quantum field, described by a quadratic Hamiltonian,
evolving on the space-time-dependent (classical) metric
of a collapsing body. The relevant in-modes are the modes
which define the standard vacuum in the asymptotic in-
region, at past infinity (past null infinity for massless fields,
which are the type of fields that dominate the Hawking
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effect [53]), while the out-modes consist of the Hawking
radiation emitted by the black hole, which make it to the
asymptotic out-region at future infinity, asymptotically far
from the black hole, together with the “Hawking-partner”
modes, as well as backscattered modes, which fall through
the event horizon and into the black hole. The conventional
story is illustrated in Fig. 1.
Though there is generically an infinite number of modes

to deal with in a quantum field theory in curved space-time,
the Hawking process can be reduced to interactions
between only a handful of modes, as heuristically alluded
to above and illustrated in Figs. 1 and 2, such that one can
directly apply the Gaussian formalism of Sec. II A to the
process. This can be done by using the “Wald’s basis” [54]
(see also [55]). We sketch the essential ingredients here and
provide a reconstructive argument starting with Hawking’s
final result [2] and working backwards (see [55–57] for
detailed derivations). We start by ignoring backscattering,
which we introduce later. The arguments below apply to
any field that is emitted in the Hawking process, but for
concreteness, we focus on massless fields (e.g., electro-
magnetic radiation).
Let Hout be the Hilbert space of the field at future

infinity. The Hawking process leads to a quantum state in
this Hilbert space corresponding to an outgoing flux of
uncorrelated blackbody radiation, beginning with only

vacuum fluctuations in the asymptotic past [1,2]. Such
state has a density matrix of the form

ρ̂out ¼⊗
ω
ρ̂out;ω; ð19Þ

where

ρ̂out;ω ¼ 1

1þ nω

X∞
N¼1

�
nω

1þ nω

�
N
jNihNjout;ω; ð20Þ

and nω ≡ 1=ðeω=TH − 1Þ is the Bose-Einstein distribution
characterized by the Hawking temperature TH, which is
frequency independent. Here, ω labels positive frequency
modes—of which there are infinitely many—and, hence,
jNiout;ω is a Fock state of N quanta in the out frequency
mode ω reaching future null infinity. The quantity nω can
be precisely interpreted as the (average) number of quanta
emitted by the black hole per frequency per time.
In words, Eq. (19) asserts that the frequency modes in the

outgoing Hawking flux are completely uncorrelated among
each other, while Eq. (20) asserts that, for an individual
frequency, the quantum state ρ̂out;ω is completely mixed, in
the sense that its photon statistics5 are dictated by the
probability distribution given in Eq. (20). Moreover, since
nω follows a Bose-Einstein distribution, the entire “out”
state, ρ̂out, is precisely that of an uncorrelated quantum gas

FIG. 2. Symplectic circuit of the Hawking process. Three in-

modes—âðinÞω;1 , â
ðinÞ
ω;2 , and a backscattering mode b̂ðinÞω —scatter to

three out-modes. The outgoing Hawking radiation occupies the

mode âðinÞω;2 . The other two modes, âðintÞω and b̂ðintÞω , propagate into
the interior of the black hole. The former is the Hawking-partner
mode while the latter, the backscattered mode, carrying Hawking
radiation that was reflected back into the black hole by a potential
barrier.

FIG. 1. Conventional illustrations of the Hawking process.
(Left) Space-time diagram of a black hole formed by gravitational
collapse depicting ingoing modes, interior modes, and outgoing
Hawking radiation. (Right) A close-up of the different scattering
events. The origin story of the long-wavelength Hawking
radiation in the asymptotic future typically follows by tracing
the evolution of the outgoing Hawking radiation “back in time”
along geometric rays to the asymptotic past. Doing so, one finds
that the Hawking radiation has contributions from particle-pair
creation at the event horizon (Hawking effect) as well as
contributions from a classical scattering process (backscattering)
at a gravitational potential barrier. In absence of backscattering,
the outgoing Hawking radiation has a blackbody spectrum due to
the Hawking effect. However backscattering modulates the
blackbody spectrum by a graybody factor, which is just the
probability to transmit through the barrier.

5By photon statistics, we are referring to the statistical fact that
N is a discrete random variable, governed by the probability

distribution 1
1þnω

�
nω

1þnω

�
N
, which is often referred to as a

completely mixed (or “thermal”) distribution in the quantum
optics literature for any form of nω.
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of blackbody radiation, characterized by a single number—
the Hawking temperature, TH.
The state ρ̂out is obviously a mixed state, but this is only

because we are restricting ourselves to the “out” Hilbert
spaceHout, whereas the entire Hilbert space isHint ⊗ Hout,
with Hint the Hilbert space of modes falling into the black
hole horizon. By introducing the “int” degrees of freedom,
we can purify the out-state, such that ρ̂out → jΨiint;out and
jΨiint;out ∈ Hint ⊗ Hout is the pure quantum state which
arises from evolving the in-vacuum. The correct purifying
modes where discovered in Ref. [54]. Their explicit form is
not important for the arguments written below, and they can
be found in Refs. [54–57]. We will denote the creation
operators defined from them (or, as usual, by wave packets

built from them [2,54]) by âðintÞω , labeled by the out-
frequency ω (note that the int-modes in Wald’s basis do
not have well-defined frequency with respect to any natural
notion of time translation at the horizon). The total state in
Hint ⊗ Hout is the simplest purification jΨiint;out of the out-
state ρ̂out, namely

jΨiint;out ¼⊗
ω
jΨiint;out;ω; ð21Þ

where

jΨiint;out;ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nω

p
X∞
N¼1

�
nω

1þ nω

�
N=2

jN;Niint;out;ω;

ð22Þ

and fjNiintg is the number state associated with the number

operator defined from âðintÞω . This is a “thermo-field double”
state [4] (although we need to keep in mind that at the
horizon there is no natural notion of time which allows us to
physically interpret the interior state as blackbody radia-
tion). Using Eqs. (21) and (22), it is easy to check that
ρ̂out ¼ TrintðjΨihΨjint;outÞ, justifying that jΨiint;out is indeed
a purification of ρ̂out. In words, Eqs. (19)–(22) tell us that
there exists two quantum gases of blackbody radiation: the
Hawking radiation escaping to spatial infinity and another
gas falling into the black hole. Moreover, these quantum
gases are entangled, per Eqs. (21) and (22); see, e.g.,
Ref. [58] for more discussion on entanglement of bosonic
fields for a spontaneously evaporating black hole.
The state jΨiint;out is dynamically related to the “in”

vacuum, jvaciin ∈ Hin. There exists a basis of in-modes
[54] such that this dynamical relation is just a direct product
of two-mode transformations (one for each ω). We denote

Wald’s in-modes by âðinÞω;1 and â
ðinÞ
ω;2 . They are related with the

int- and out-modes via [54]

âðoutÞω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ω=TH

p ðâðinÞω;1 þ e−ω=2TH âðinÞ†ω;2 Þ ð23Þ

âðintÞω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ω=TH

p ðâðinÞω;2 þ e−ω=2TH âðinÞ†ω;1 Þ: ð24Þ

Wald’s in-modes are labeled by the out-frequency ω that
they are the progenitors of. They do not have well defined
in-frequency but, rather, are made by combining positive
frequency in-modes, without contribution from negative-
frequency in-modes. This guarantees that Wald’s basis is an
explicit basis to define the unique in-vacuum—i.e.,

âðinÞω;k jvaciin ¼ 0, k ¼ 1, 2. The advantage of Wald’s basis
is that it makes the dynamical relation between in- and int-
out-modes a direct-product of two-mode transformations
(one for each ω). We can therefore focus on one ω at a time
and think of the Hawking-process as just a two-mode
interaction mapping two “in” modes to the “out” and “int”
modes. The full interaction is then a direct product over all
the modes ω.
Backscattering can then be introduced by noticing that

the out-modes do not actually propagate to infinity, since
they are partially scattered back by the gravitational
potential barrier surrounding the black hole. Only a portion
Γl;ω of the initial out-mode makes it to infinity, while the
rest falls back into the black hole.

2. Symplectic circuit

We now show how the previous results can be described
in an exact and efficient manner using the Gaussian
formalism summarized in Sec. II. The reformulation is
simple, and allows us to extend the calculation to any initial
Gaussian state, and to compute all aspects of the final state
in an efficient manner, including entanglement between any
subsystem of modes. The reformulation comes together
with useful diagrams—referred to here as symplectic
circuits—which help to derive nontrivial qualitative infor-
mation about the Hawking process. The name “symplectic
circuit” is motivated by the fact that the diagrams depict the
dynamical evolution by a concatenation of elementary
symplectic transformations (squeezers, beam splitters and
phase shifters). They describe both the classical and the
quantum evolution.
For the Hawking effect, we notice that Eq. (23) above,

which constitute the core of the Hawking effect, correspond
precisely to a process of two-mode squeezing (see
Appendix A), while the process of backscattering is
described by a beam splitter (see below). The physics of
the Hawking process can be described diagrammatically by
the symplectic circuit depicted in Fig. 2, which consists of a
discrete concatenation of physical processes in a concrete
manner. The circuit is simple: First, the in-modes aðinÞω;1 and

aðinÞω;2 pass through a two-mode squeezer, which we label as
SH (H stands for Hawking), leading to particle-pair crea-
tion. Formally, this process corresponds to the two-mode
symplectic squeezing transformation, written in 2 × 2
blocks as
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SH ¼
�
cosh rHI2 sinh rHσz
sinh rHσz cosh rHI2

�
; ð25Þ

which acts on the canonical operators as described in
Sec. II A (note that this matrix is the particularization of
Eq. (A1) to r ¼ rH and ϕ ¼ 0). Here, σz is the standard
Pauli-z matrix, and rH are frequency dependent real
numbers given by tanh2 rH ≡ e−ω=TH, where TH is the
Hawking temperature of the system. The expression for rH
accounts for the blackbody spectrum at the Hawking
temperature TH of the outgoing radiation.
Following pair creation in the near horizon region, one

mode of the pair, the one described by the int-mode aðintÞω;1
(the Hawking-partner mode), falls into the black hole,

while the other outgoing mode aðoutÞω;2 (the long wavelength,
outgoing Hawking radiation) must climb the potential
barrier on its way to infinity. This process of backscattering
is described completely by a simple process in which two-
modes scatter to two-modes. The incoming modes are the

mode aðoutÞω;2 produced in the near horizon region (this mode,
is in many references, called the “up” mode; see e.g.,
[55,57]) and one long wavelength incoming mode from
past infinity, which we will denote by the annihilation

operator b̂ðinÞω . The results of the scattering process are the
out-modes which make it to the asymptotic out-region as
Hawking radiation, together with long-wavelength modes
backscattered into the black hole, which we will denote as

b̂ðintÞω (see Fig. 1 for an illustration). Formally, the back-
scattering process corresponds to a beam splitter, described
by an orthogonal-symplectic transformation Oθ, written in
2 × 2 blocks as,

Oθ ¼
�

cos θl;ωI2 sin θl;ωI2
− sin θl;ωI2 cos θl;ωI2

�
; ð26Þ

where the angle θl;ω encodes the graybody factor Γl;ω

through the transmission probability cos2 θl;ω ¼ Γl;ω. We
represent this classical scattering in the circuit by a beam
splitter element [to simplify our notation we will omit the
labels l (the angular quantum number) and ω in θ and Γ].
At the level of annihilation operators, the beam splitter
imposes the following transformation (see Appendix A for
further details):

âðoutÞω;2 → cos θωâ
ðoutÞ
ω;2 þ sin θωb̂

ðinÞ
ω ; ð27Þ

b̂ðinÞω → cos θωb̂
ðinÞ
ω − sin θωâ

ðoutÞ
ω;2 : ð28Þ

Observe that this process does not create particles, easily
seen by the fact that there are no creation operators present
in the output modes.

We now combine these elements to write a scattering
matrix corresponding to the circuit of Fig. 2. Let us choose
the following order for the vector of canonical operators

R̂ðinÞ ≡ ðQ̂ðinÞ
ω;1 ; P̂

ðinÞ
ω;1 ; Q̂

ðinÞ
ω;b; P̂

ðinÞ
ω;b; Q̂

ðinÞ
ω;2 ; P̂

ðinÞ
ω;2Þ⊤;

R̂ðoutÞ ≡ ðQ̂ðintÞ
ω;1 ; P̂

ðintÞ
ω;1 ; Q̂

ðintÞ
ω;b ; P̂

ðintÞ
ω;b ; Q̂

ðoutÞ
ω;2 ; P̂ðoutÞ

ω;2 Þ⊤;

where, e.g., Q̂ðinÞ
ω;1 ¼ðâðinÞω;1þ âðinÞ†ω;1 Þ= ffiffiffi

2
p

and P̂ðinÞ
ω;1 ¼−iðâðinÞω;1−

âðinÞ†ω;1 Þ= ffiffiffi
2

p
, and similarly for the other pairs of canonical

variables. Under this ordering, the full symplectic trans-
formation taking the in-modes to the out/int-modes is easily
found as

SBH ¼

0
B@

I2 0 0

0 cosθωI2 − sinθωI2
0 sinθωI2 cosθωI2

1
CA

·

0
B@

cosh rHI2 0 sinh rHσz
0 I2 0

sinhrHσz 0 coshrHI2

1
CA

¼

0
B@

cosh rHI2 0 sinhrHσz
sinθω sinh rHσz cosθωI2 sinθω cosh rHI2
cosθω sinhrHσz − sinθωI2 cosθω coshrHI2

1
CA:

ð29Þ

We note that a similar parametrization was given in
Refs. [28,49] in the context of an analogue black hole
formed in BECs, but no diagrammatic decomposition (nor
generalizations thereof to multimode scattering scenarios)
was discussed.
From the S-matrix, and given the first and second

moments of a Gaussian initial state, one can derive all
aspects of the final state in a simple manner. We emphasize
that the circuit simply provides a reformulation of
Hawking’s original derivation [2] and, in particular, the
circuit does not introduce any extra assumption or
approximation.
Let us compute, for instance, the particle density for the

outgoing Hawking radiation, assuming a vacuum input.
The vacuum state is a three-mode Gaussian state with
moments μðinÞvac ¼ 0 and σðinÞvac ¼ I6. The out/int moments can
then be found by acting with the scattering matrix of
Eq. (29) on the in-moments, using the general trans-

formations of Eqs. (8) and (9), namely μðoutÞvac ¼ SBHμ
ðinÞ
vac

and σðoutÞvac ¼ SBHσ
ðinÞ
vac S⊤BH. One then finds the quantum state

of the outgoing Hawking radiation from these results by
simply taking the reduced moments of the single-mode

phase space corresponding to the mode aðoutÞw;2 (just extract
the relevant matrix coefficients of the final out/int
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moments). After a little algebra, the mean vector and
covariance matrix for the outgoing Hawking mode are

μðoutÞw;2 ¼ 0; ð30Þ

σðoutÞw;2 ¼ ð1þ 2cos2θωsinh2rHÞI2: ð31Þ

This is the covariance matrix of a thermal state with mean
number of quanta,

hn̂Hi ¼
1

4
TrσðoutÞw;2 −

1

2
¼ cos2θl;ωsinh2rH ¼ Γl;ω

eω=TH − 1
;

ð32Þ

where we have used Eq. (10), the correspondence
cos2 θl;ω ¼ Γl;ω (and restored the labels l and ω in this
expression) and the Hawking relation tanh2rH ¼ e−ω=TH .
Equation (32) is the standard result for the outgoing
Hawking flux in the asymptotic out-region, physically
describing a quantum gas of blackbody radiation modu-
lated by a graybody coefficient, Γl;ω.

B. Quantum correlations
and entanglement degradation

Next, we use the black hole circuit to analyze the
entanglement between the modes in the final state. From
the symplectic circuit, we can obtain analytical expressions
for the entanglement in any bipartition or anypair ofmodes in
the 3-mode network, using techniques described in Secs. II A
and II B. In an analogue gravity experiment, it is likely that
entanglement will only be measured pairwise for the out-
going radiation, as measuring entanglement between any-
or-all bipartitions requires multimode measurements (or
multimode quantum-state tomography)—an experimentally
challenging feat. In this section, we therefore restrict our
attention to the modes, aðintÞω;2 and aðoutÞω;1 (the “original
Hawking pairs”), and quantify the entanglement by the
LN. (We discuss multimode entanglement in Sec. V B.)
We also incorporate the effects of initial thermal fluctua-

tions and attenuation. Defining efficiency η (1 − η measures
attenuation), the covariance matrix of the process is

σðoutÞ ¼ ηSBHσðinÞS⊤BH þ ð1 − ηÞI6; ð33Þ

where SBH is the symplectic matrix of Eq. (29) and σðinÞ ¼
ð1þ 2nenvÞI6 is an initial thermal state at e.g., temperature
Tenv. Notice that we have assumed isotropic initial thermal
fluctuations in the inputs for simplicity (i.e., nenv is the same
for the three input modes). In fact, isotropic thermal noise is

highly unphysical, since the in-modes âðinÞω;1 and âðinÞω;2 have
support only on ultrahigh frequencies as measured by an
inertial observer at past infinity, while the backscattering

mode b̂ðinÞω has frequency of the same order as the Hawking

quanta (of the order of the Hawking temperature TH).
Therefore, for any realistic thermal environment for astro-
physical black holes (e.g., the cosmic microwave back-

ground radiation), the in-modes âðinÞω;1 and âðinÞω;2 would be
meekly populated due to their ultrahigh frequencies.
However, since our main goal in this section is to illustrate
the effects that thermal noise has in the generation of
entanglement and to extract conclusion for analog black
holes for which all in-modes can be realistically thermally
populated, we consider the situation of isotropic thermal
noise. Though, it is straightforward to relax this assumption.6

Similarly, the physical meaning of the attenuation parameter
η is more clear for analog black holes—where η is related to
the peculiarities of the experimental set up or to the efficiency
of detectors—than for astrophysical black holes. We study
the effects that varying η has on the entanglement of the final
state as a pedagogical preparation for Sec. V.
The covariance matrix σðoutÞ is a 6 × 6 matrix for the

three modes of the black hole circuit (corresponding to a
mixed 3-mode Gaussian quantum state), from which we

take the reduced covariance matrix for the modes aðintÞω;2

and aðoutÞω;1 .
Given the reduced covariance matrix for Hawking pairs

in the final state, we compute the LN as a function of all the
open parameters and plot the result; see Fig. 3. The left
panel is the entanglement in the system-parameter space,
ðω=TH;ΓÞ, for ideal operating conditions, nenv ¼ 0 and
η ¼ 1. We show this to simply illustrate that there is
entanglement in this pair of modes, over all system
parameters (vanishing only asymptotically as Γ → 0 or
ω=TH → ∞). Note that the entanglement decreases with
the graybody factor, Γ, as some quanta are lost to the

backscattering channel, b̂ðintÞω . However, in the absence of
environmental thermal fluctuations (characterized by nenv),
there is always residual entanglement between the modes

âðintÞω and âðoutÞω , no matter the amount of backscattering
Γ > 0. The entanglement within the entire system of three
modes, however, does not change with the graybody factor,
as backscattering simply shifts quanta around. On the other
hand, we note that, if initial thermal fluctuations are
present, non-negligible backscattering will generally
degrade (or even destroy) entanglement between
Hawking-pair modes if the thermal fluctuations are strong
enough (not shown here).
The right panel of Fig. 3 illustrates the effects of noise

due to thermal fluctuations and attenuation, assuming
Γ ¼ 1 and ω=TH ¼ 1. Both of these effects are harmful

6We can generalize this to nonisotropic noise and also
include noise added from the loss channel, σðoutÞ ¼
ηSBHð⊕3

i¼1 NkiI2ÞS⊤BH þ ð1 − ηÞð⊕3
i¼1 NkiI2Þ, where Nki ¼ 1þ

2nki and nki is the number of noisy quanta in the ith mode. Here,
we have assumed the added quanta from the loss channel is equal
to the initial noise population.
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to the entanglement generated in the Hawking process. For
instance, ignoring attenuation for the moment (i.e., restrict-
ing to the bottom line at η ¼ 1), once we “turn on” the
Hawking effect, the Hawking process will cause initially
independent thermal fluctuations to spread amongst the
modes, leading to (classically) correlated noise within the
system, but these correlations have nothing to do with
entanglement. Even worse, such classical correlations can
dominate over the genuine quantum correlations produced
during the Hawking process—rendering any entanglement
null, as depicted by the white space in the right panel
of Fig. 3.
For near-unit efficiency, a critical condition is found

Tenv=TH < 2, above which entanglement is zero (under the
assumption of isotropic thermal noise). This is an equiv-
alent condition as that discussed in the BEC context of
Ref. [52]. We extend these prior results to include attenu-
ation—thus obtaining a family of critical conditions,
Tenv=TH < fðηÞ, where 0 ≤ fðηÞ ≤ 2, as seen by the
boundary curve in Fig. 3. For instance, there is entangle-
ment for all Tenv=TH < 1 for 1 − η ≈ :3. We remark that
this family of conditions are independent of the ratio ω=TH
in this simple setup.
The LN explicitly shows the behavior of entanglement in

the noise parameter space ð1 − η; Tenv=THÞ (see Fig. 3): the
entanglement is monotonically decreasing in both the
attenuation, 1 − η, and in the environment temperature,
Tenv, as intuitively expected. Hence, the take home message
is that the entanglement generated in the Hawking process
is fragile to both loss and ambient noise; this is an important
lesson to keep in mind in analog scenarios discussed below.
Contrariwise, one cannot faithfully deduce such behav-

ior from the entanglement witnesses P− orΔ of Eq. (13) for

the same set of parameters, as they are witnesses of
entanglement and not measures of it. Indeed, there are
regions in the parameter space ð1 − η; Tenv=THÞ which
exhibit a larger violation of the CS inequality, Δ < 0, when
the noise is increased (see Fig. 21 in Appendix C).
Although Δ cannot be used as a quantifier of entanglement,
we point out that, in this simple set up, Δ ¼ 0 genuinely
highlights the critical line in the ð1 − η; Tenv=THÞ plane
where entanglement vanishes, consistent with the vanishing
of the LN (the boundary line in Fig. 3), as should be the
case for a good entanglement witness. [On the other hand,
Appendix C shows other situations where Δ ¼ 0 does not
faithfully capture the boundary in the ð1 − η; Tenv=THÞ
plane where entanglement vanishes.]

IV. SIMPLE RECIPE FOR CIRCUIT
CONSTRUCTION

From the simple circuit decomposition detailed in the
previous section, we ascertain a few rules-of-thumb that we
can follow to assess more generic settings (e.g., multimode
settings with multiple event horizons) in order to find
effective circuit descriptions therein. The rules are:
(1) Insert a two-mode squeezer, with squeezing intensity
rH characterized by the Hawking temperature TH via
tanh2rH ¼ e−ω=TH , for each Hawking-pair creation mecha-
nism; (2) insert a two-mode beam splitter for each classical
scattering event between twomodes; and finally, (3) arrange
circuit elements appropriately to highlight the physics at
play. If white hole and black hole horizons are both present,
then one must take into consideration the inverse nature of
the white hole scattering process and the order of scattering
events (see next section).

FIG. 3. Entanglement (quantified by LN) between the “Hawking-pair” of modes âðintÞω;2 and âðoutÞω;1 in the Hawking process. Left panel:
Variation of entanglement across system parameters, ðΓ;ω=THÞ, assuming ideal conditions of zero background temperature, Tenv ¼ 0,
and perfect efficiency, η ¼ 1 (zero attenuation). Right panel: Variation of entanglement in noisy parameter space ð1 − η; Tenv=THÞ at
ω=TH ¼ 1 and Γ ¼ 1. This plot assumes isotropic thermal noise (an unphysical assumption)—i.e., the same number of thermal quanta
in the three in modes. Null space indicates zero entanglement. Observe the boundary curve where entanglement vanishes identically.
Behavior does not change with choice of ω=TH.
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In a more mathematical language, a pair creation occurs
when a mode with positive symplectic norm7 mixes with a
mode with negative symplectic norm (the mixing is, of
course, dictated by the equations of motion). Such inter-
action is described, therefore, by a two-mode squeezer. On
the contrary, when two modes with the same sign of their
symplectic norm interact, the process is described by a
beam splitter. Free propagation corresponds to phase
shifters. Therefore, if one knows the dynamics, it is simple
to translate it to a simpler and more intuitive circuit.
When the details of the dynamics are unknown, the

rules-of-thumb (1)–(3) enumerated above are heuristic and
not necessarily algorithmic,8 nor are such rules entirely
general. For instance, the roles of phases are not mentioned
in the rules above, which can lead to important conse-
quences in certain scenarios where resonance effects matter
(such as lasing in a white-black hole [59,60]). Moreover,
our circuit diagrams are not a substitute for the micro-
physics, since a microphysical description is required in
order to specify, e.g., the functional form of the graybody
factor, Γ, as well as the Hawking temperature, TH.
Nevertheless, with some ingenuity, such a circuit diagram
proves to be immensely useful as an explanatory tool and
supplementary guide, especially when an analytical
description is not straightforward, as we demonstrate in
the next section for an optical- analogue, white-black hole
generated by a strong electromagnetic pulse.

V. EXAMPLE 2: WHITE-BLACK HOLE PAIR

In this section we put the techniques described above in
action for the more complicated scenario where a black
hole event horizon and a white hole event horizon are both
present and interacting. We construct a symplectic circuit
using the recipe given above and derive analytical expres-
sions for different aspects of the out-state therefrom
(regarding both particle creation and multimode entangle-
ment). Finally, in order to quantitatively assess the accuracy
of the circuit in describing the underlying physics, we
compare the results derived from such with numerical
solutions to the equations of motion for the particular case
of optical systems.

A. Physical picture, symplectic circuit,
and example calculations

1. Physical picture

Consider the circumstance where a black hole event
horizon and a white hole event horizon share a mutual
interior region. This is common in optical setups where the
analogue space-time is generated from a strong pulse with a
rising tail (corresponding to the white hole) and a descend-
ing front (corresponding to the black hole) [34,39]. For
concreteness, the analysis of this section will have this
system in mind, but we expect a similar scenario for any
background flow with a rise-then-fall profile and a
(approximate) trapped/antitrapped region in between.
The “white-black hole”, as we shall call it, partitions two

asymptotically flat space-time regions. The exterior region
of the white hole (ideally) has no access whatsoever to the
exterior region of the black hole, due to the causal-
impossibility of traversing the white hole event horizon.
However, the converse is not true. Anything that falls into
the black hole emerges from the white hole, though slightly
perturbed by the Hawking pair-creation mechanisms occur-
ring near each event horizon. Figure 4 illustrates this
configuration, together with the structure of modes
involved in the process, separated in three groups: incom-
ing, outgoing, and interior. In optical systems, these are the
modes associated with a single frequency ω but different
wave number k (as defined in the frame comoving with the
white-black hole pair), and modes with different frequen-
cies do not interact (more details below, and in Ref. [12]).
The discussion in this section applies to any system with a
similar mode structure, regardless of its physical origin.
The Hawking process of the white hole is the time-

reverse process of the black hole. Instead of emitting bland,
thermal Hawking radiation, the white hole emits quantum-
correlated Hawking pairs of modes kðoutÞ1 and kðoutÞ4 .

FIG. 4. Illustration of the structure of in, int, and outmodes for
an optical analogue white-black hole in the comoving frame [43].
The analogue white-black hole is generated by a strong electro-
magnetic pulse via the Kerr effect. There are four in-modes (three
arriving at the black hole horizon and one at the white hole
horizon), and four outgoing-modes. There are two real, propa-
gating interior modes (int-modes) between horizons; the other
two modes are evanescent (and thus exponentially suppressed)
within this region.

7Given a complex solution φðx⃗; tÞ to the equations
of motion describing one mode of the system, its symplectic
norm is defined from the symplectic product ðφ1;φ2Þ≡
i
R
Σ d

3Σnμðφ̄1∇μφ2 −∇μφ̄1φ2Þ, where d3Σ is the volume
element of the Cauchy hypersurface Σ and nμ its future-oriented
unit normal (see, e.g., [56,57]). The name “symplectic” is
motivated from the fact that such product is defined from the
symplectic structure of the classical phase space.

8Though, using physical arguments, one can be slightly more
rigorous and, e.g., place bounds on the number of free parameters
required to specify/construct the desired circuit; see Appendix B
for further comments on this matter.
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However, for the tangled white-black hole system collo-
quially described above, the white hole pair-creation
process is not spontaneous, as the infalling Hawking
partner generated at the black hole event horizon stimulates
the white hole. Thus, the Hawking pairs generated by the
white hole are slightly tainted and in a mixed state—
purified only by the outgoing Hawking radiation in the
exterior region of the black hole.

2. Symplectic circuit

For simplicity, we assume that the white hole and black
hole event-horizons are identical. In other words, the pulse
generating the white-black hole is symmetric about its
center. One can straightforwardly generalize this to
include asymmetries in the flow profile induced by the
pulse.
To describe the modes involved in the scattering process,

it is simpler to work in the frame comoving with the pulse,
in which the white-black hole pair is at rest and stationary.
The frequency ω of waves defined in this frame is
conserved because of stationarity, and modes with different
frequencies do not mix with each other. Therefore, the
evolution factorizes into uncoupled ω-sectors, reducing the
problem to a finite set of interacting modes for each ω.
The analysis of the dispersion relation for this system (see
e.g., [12] for an analytical description), shows that, far
away from the strong pulse producing the white-black hole
system (in the asymptotic regions), there exist four different
modes for each frequency ω, which we label as k1, k2, k3,
k4. Three of them move to the left, and the fourth moves to
the right (see Fig. 4 to see our conventions). Hence,
considering both the white and black hole sides of the
pulse, we have four modes coming in, and four modes
going out, which is a slightly more complicated setup than
that of astrophysical black holes, where we had only three
in-modes and three out-modes and a single event horizon.
In spite of such complications, the analysis is conceptually
similar.
We choose the following order for the in-vector of

canonical operators:

R̂ðinÞ ≡ ðQ̂ðinÞ
k1

; P̂ðinÞ
k1

; Q̂ðinÞ
k2

; P̂ðinÞ
k2

; Q̂ðinÞ
k3

; P̂ðinÞ
k3

; Q̂ðinÞ
k4

; P̂ðinÞ
k4

Þ⊤;
ð34Þ

where, e.g., Q̂ðinÞ
k3

is the only in-mode to the white hole and
is the time-reverse of the outgoing Hawking mode emitted

by the black hole (thus, Q̂ðinÞ
k3

is the “ingoing Hawking
mode”). We choose a similar order for the out-modes.
In Ref. [43], we introduced a symplectic circuit to

describe the Hawking process for a white-black hole
(shown here in Fig. 5), which serves as a powerful
explanatory tool to describe the physics behind the distinct

scattering processes of a white-black hole. Here, we
provide a more detailed analysis of the circuit description.
This circuit is built following the recipe provided in the
previous section; namely, each event horizon introduces a
two-mode squeezer accounting for the pair creation and a
beam splitter to implement a possible process of back-
scattering. As discussed in Refs. [12,61], backscattering
primarily affects long-wavelength modes (k2 and k3 in this
scenario), while it can be neglected for the short-wave-
length modes k1 and k4. Observe that the symplectic circuit
of Fig. 5 arises by simply gluing together the circuit for the
black hole alone (Fig. 2) with its mirror image (because a
white hole is the time reversal of a black hole). In the next
section, we show that this simple circuit captures the
underling physics with great accuracy in the regime where
the analogy with the Hawking effect occurs—i.e., in the
low frequency regime where dispersive effects do not
dominate.
The next step is to convert the symplectic circuit into a

scattering matrix, from which we can derive analytical
expressions depending on the parameters of the circuit. Let
us label each symplectic operation in the circuit by Si,
where i ∈ f1; 2; 3; 4g labels the order of operations in time
(from left to right in Fig. 5). For instance, S1 is the black
hole two-mode squeezer which, with this mode ordering,
has a matrix description

S1 ¼

0
BBB@

cosh rHI2 0 0 sinh rHσz
0 I2 0 0

0 0 I2 0

sinh rHσz 0 0 cosh rHI2

1
CCCA: ð35Þ

Next, we have a scattering process in the exterior of the
black hole horizon, described by

FIG. 5. Minimal Ansatz for the symplectic circuit of the
Hawking process for the white-black hole. The squeezer and
beam splitter on the left corresponds to the black hole, while the
elements to the right correspond to the white hole horizon. The
white hole scattering process is the time reverse of the black hole
scattering process; hence the in-modes of the black hole are the
out-modes of the white hole and vice versa. SH is a two-mode
squeezer with squeezing intensity rH, while beam splitters are
labeled by the parameter θω.
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S2 ¼

0
BBB@

I2 0 0 0

0 cos θωI2 0 − sin θωI2
0 0 I2 0

0 sin θωI2 0 cos θωI2

1
CCCA; ð36Þ

followed by the counterpart of these two operations for the
white-hole:

S3 ¼

0
BBB@

I2 0 0 0

0 cos θωI2 sin θωI2 0

0 − sin θωI2 cos θωI2 0

0 0 0 I2

1
CCCA; ð37Þ

S4 ¼

0
BBB@

cosh rHI2 0 − sinh rHσz 0

0 I2 0 0

0 0 0 I2
− sinh rHσz 0 cosh rHI2 0

1
CCCA: ð38Þ

The relative minus signs between S1 and S4, and S2 and S3
are due to the inverse character of the white hole relative to
the black hole. The full scattering matrix describing the
transformation from the four in-modes to the four out-
modes is then found by matrix multiplication, which we
write formally as SWB ¼ S4S3S2S1 where the subscript WB
refers to “white-black” hole. Written out fully,

SWB ¼

0
BBB@

ð1þ cos2θsinh2rHÞI2 cos θ sin θ sinh rHσz − cos θ sinh rHσz cos2θ cosh rH sinh rHσz
− cos θ sin θ sinh rHσz cos2θI2 sin θI2 − cos θ sin θ cosh rHI2

cos θ sinh rHσz sin θI2 0 cos θ cosh rHI2
−cos2θ cosh rH sinh rHσz − cos θ sin θ cosh rHI2 cos θ cosh rHI2 ðsin2θ − cos2θsinh2rHÞI2

1
CCCA: ð39Þ

Due to the multimode structure of the setup and the many
physically distinct operations in play, it is instructive to
perform some simple calculations to gain some insight
into the dynamics of the network. We will thus begin by
restricting ourselves to the ideal scenario where all modes
initially contain only vacuum fluctuations. Then, the output
covariance matrix for the 4-mode pure state is given by

σðoutÞω ¼ SWB · σðinÞω · S⊤WB, with σðinÞω ¼ I8; the mean of the
state is zero. All properties of the quantum state of the

modes can then be written in terms of the elements of σðoutÞω .
We first calculate the outgoing spectrum of Hawking

particles emitted by the black hole. This can be computed
by taking the reduced covariance matrix of σðoutÞω of the

single-mode subspace corresponding to the mode aðoutÞk3
,

σðoutÞω;k3
. It is straightforward to see that this covariance matrix

describes a thermal state, σðoutÞH ¼ ð1þ 2hn̂ðoutÞH iÞI2, as
expected. That is, the outgoing Hawking radiation from
the black hole is completely oblivious to the presence of the
white hole, as required by causality (or an approximate
form thereof for analogue horizons).
Utilizing the general formula (10) for the mean number

of quanta, the mean number of quanta in the mode kðoutÞ3 is

hn̂ðoutÞH i ¼ cos2θωsinh2rH ¼ Γω

eω=TH − 1
; ð40Þ

where we have used the definition Γω ≡ cos2 θω, and we
have assumed the Hawking relation tanh2 rH ¼ e−ω=TH

holds (see [12] for a justification using an analytical model,
valid in the low frequency regime where dispersive effects
do not dominate; see below for a numerical confirmation).

We see that the outgoing Hawking spectrum is a modulated
blackbody spectrum, analogous to the original Hawking
effect, with modulation coming from backscattering via the
graybody factor Γω.
Beyond the Hawking spectrum alone, another interesting

quantity is the total number of quanta generated in the full
process, i.e., the quanta emitted by both the black and white
hole (per unit frequency and unit time). Using the circuit
and the relations above, we find
X

all modes

hn̂ðoutÞi i ¼ 2cos2θωsinh2rHð2þ cos2θωsinh2rHÞ:

ð41Þ
Interestingly, this is an increasing function of the graybody
factor, Γω ¼ cos2 θω. Hence, backscattering, if present, acts
as a self-stabilising mechanism for the white-black hole.
We further note that this result is agnostic to individual
phases which might accumulate between the black hole and
white hole pair creation processes in Fig. 5. (We do not
include such phases in our circuit decomposition, but it is
straightforward to check this claim.) In other words, adding
a phase to each mode in the middle of the circuit, which
preserves the space-time symmetry of the diagram (a
symmetry which is induced by the symmetry of the pulse),
does not change the total particle number at the output.9

9This is in contrast to, e.g., white-black hole lasers which
support a resonant enhancement of particle creation [59,60].
Though, we note that the laser setup is quite different than the
white-black hole here, since, in the laser system, the output of the
white hole seeds the black hole and vice versa, leading to a
cascaded succession of pair-creation events.
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The reduction in the total number of particles by the
graybody factor is unique to the white-black hole case (it
does not arise for a single horizon) and has an interesting
story behind which can be easily understood by simple
inspection of the circuit. In short, if Γω → 0 (completely
reflecting potential barrier for the long-wavelength modes
k2 and k3) the white hole undoes exactly the pair
production at the black hole horizon. In more detail,

consider the aðinÞk4
mode approaching the black hole in

Fig. 5. This mode converts into outgoing Hawking
radiation via the Hawking process, while its entangled
partner falls into the black hole. On the way out, the
Hawking radiation meets a barrier and scatters back into

the black hole as a kðintÞ2 mode. This backscattered
Hawking radiation then traverses through the interior
region of the white-black hole, emerging from the white
hole unperturbed (the backscattered mode mixes negli-
gibly with the mode k1 in the interior). Following its
escape from the white hole horizon, the backscattered
radiation meets another barrier in the exterior region of the
white hole; at which point, it reflects back towards the

white hole—now as an ingoing Hawking mode, kðinÞ3 ,
seeding the white hole pair-creation mechanism. This
“reflective-seeding” process undoes the Hawking process
initiated by the black hole, since the white hole and black
hole unitary dynamics are time reversals of one another—
thus resulting in an overall reduction in the total number of
particles. One can see this directly by treating each of the
beam splitter elements in Fig. 5 as perfect mirrors (such
that ingoing quanta bounce off the beam splitters and
cannot traverse through them) and tracing the paths of the
modes through the circuit. Of course, the exact cancella-
tion we just described only occurs under the assumption of
symmetric pulse, which amounts to saying that the white
hole is the exact time-reversal of the black hole.
This example illustrates the usefulness of symplectic

circuits to understand complex aspects of system by mere
visual inspection.

B. Quantum correlations

We now investigate the quantum correlations generated
by the circuit depicted in Fig. 5. We will show results for
Γω ¼ 1 (negligible backscattering), not only for pedagogi-
cal reasons, but also because in the numerical simulations
of this systems shown below (see also [43]), we find that Γω

is indeed very close to one for all frequencies of interest.
For the squeezing intensity, as mentioned above, we use
tanh2 rH ¼ e−ω=TH , with TH a single number (i.e., inde-
pendent of frequency). The output covariance matrix can
be found from the symplectic elements introduced in the

previous section, namely SWB · σðinÞω · S⊤WB, with SWB given
in Eq. (39). We start by discussing vacuum input, for

which σðinÞω ¼ I8.

Due to the entangling effects of the two-mode squeezers,
there is genuine multimode entanglement within the net-
work. To assess the entanglement, we consider pairwise
entanglement for a reduced set of modes as well as bipartite
entanglement for the entire system of modes. Since the
scattering intensity is Γω ≈ 1, the mode k2 weakly mixes
with the rest and does not get entangled with the other
modes. We are left with k1, k3 and k4, out of which there are

2 entangled mode pairs corresponding to10 ðâðoutÞk1
; âðoutÞk4

Þ
and ðâðoutÞk1

; âðoutÞk3
Þ. There are also 3 multimode bipartitions

corresponding to ðâðoutÞk1
jâðoutÞk4

; âðoutÞk3
Þ, ðâðoutÞk4

jâðoutÞk3
; âðoutÞk1

Þ,
and ðâðoutÞk3

jâðoutÞk1
; âðoutÞk4

Þ. Figure 6 depicts the entanglement
between all such mode pairs and bipartitions; the entan-

glement in the pair ðâðoutÞk4
; âðoutÞk3

Þ is identically zero (see
below for an explanation) and is thus not shown. (The
circuit produces analytical expressions for all the curves
shown in Fig. 6, but they are lengthy and provide no real
insight.)
Note that the bipartition ðâðoutÞk3

jâðoutÞk1
; âðoutÞk4

Þ physically
represents the partition between the black hole and white
hole exterior regions. By looking at the circuit, it is easy to
understand that the entanglement across the black hole/
white hole bipartition is formally equivalent to that of a
single two-mode squeezed vacuum state, with squeezing
governed by the Hawking relation tanh2 rH ¼ e−ω=TH . This
is because the white hole squeezer entangles the modes

âðoutÞk1
and âðoutÞk4

, but this is a local transformation within one

subsystem in the bipartition ðâðoutÞk3
jâðoutÞk1

; âðoutÞk4
Þ and as such

FIG. 6. Entanglement predicted by the circuit of Fig. 5 in all
possible bipartitions and mode pairs for the out-modes of the
analogue white-black hole, as measured by the logarithmic
negativity (LN); assuming only initial vacuum fluctuations are
present and taking Γω ¼ 1∀ω=TH .

10Entanglement is contained only in mode pairs of opposite
symplectic norm.
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it does not alter the entanglement in the bipartition (recall that
entanglement is invariant under local transformations—
where “local” here means within a subsystem of modes).
Furthermore, Fig. 6 shows that the black hole/white hole
bipartition hosts the least amount of entanglement out of all
3-mode bipartitions, which is due to the fact that the white
hole squeezer does not contribute.
It is interesting to point out that, for vacuum input, the

black hole horizon generically produces more entangle-
ment than the white hole one. This is because, as it is
manifest by simple inspection of the circuit, the white
hole horizon receives thermal radiation emitted by the black
hole in a flux of Hawking partners. Hence, the white hole
emission is always stimulated by thermal radiation, and we
know from the analysis of the previous section and also
from Appendix A that such thermal input degrades the
production of entanglement. It is important to emphasize
that this, as well as all the features regarding entanglement
discussed above, can be easily understood by simple
inspection of the circuit. More than that, the circuit provides
analytical expressions for all these quantities.
Generally speaking, the entanglement between biparti-

tions of the 3 modes is greater than or equal to the
entanglement between the mode-pairs because the LN is
an entanglement monotone [42]. This is quantitatively
manifest in Fig. 6. Also, observe that the bipartition with
the greatest amount of entanglement is ðâðoutÞk1

jâðoutÞk4
; âðoutÞk3

Þ,
since the mode âðoutÞk1

participates in each pair-creation
mechanism this system experiences. The mode pair with
the largest amount of entanglement are the Hawking pairs

emitted from the white hole, ðâðoutÞk1
; âðoutÞk4

Þ. Oddly, the
maximal amount of entanglement between the original

Hawking pair ðâðoutÞk1
; âðoutÞk3

Þ (the pair generated by the black
hole) carries, at most, precisely 1 bit of entanglement,11

which is maximal at about one Hawking wavelength.
We now include initial thermal fluctuations assuming

attenuation is negligible. We consider (the unphysical but
simplistic assumption of) isotropic thermal noise in the
comoving frame—i.e., the same amount of noisy quanta in
all input modes—and parametrize the thermal noise by a
single temperature Tenv, which determines the number of
noisy quanta by means of nenv ¼ ½expðω=TenvÞ − 1�−1. We

show in Fig. 7 the LN for the subsystem ðâðoutÞk1
jâðoutÞk4

Þ
(again, this is the Hawking-pair emitted by the white hole)
versus Tenv=TH for ω=TH ¼ 1. In order to discuss one
problem at a time, we consider no losses for the moment
(η ¼ 1). The plot shows the fragility of entanglement in
noisy environments. This fragility is actually frequency
dependent, and we report in Table I the values of Tenv for
which the entanglement in different bipartitions is lost, for
low (ω=TH → ∞) and high (ω=TH → 0) particle emission

regimes. In the low particle regime (large frequency),
almost all the entanglement conditions collapse to Tenv <

2TH [with the exception of the ðâðoutÞk1
jâðoutÞk4

; âðoutÞk3
Þ biparti-

tion], which is the entanglement condition for a single
horizon in BECs found by Bruschi et al. [52], and can also
be deduced from the convergence of curves in Fig. 6 as
ω=TH → ∞. This simple condition is thus a good heuristic
proxy for entanglement in bosonic analogue gravity sys-
tems, at least in the low-particle limit. The situation
changes, however, as frequencies approach the typical
Hawking frequency (high-particle limit), which one can
observe by scanning the far-right column of Table I or the
curves in Fig. 6 as ω=TH → 0. We stress, however, that
these results correspond to an isotropic temperature in the
comoving frame of the white-black hole. For optical
analogs, the conclusions drawn henceforth can drastically
change due to large boosts between the lab frame and the
comoving frame, as we discuss briefly below.

FIG. 7. Entanglement between “Hawking pairs” emitted by the
white hole horizon, ðâðoutÞk1

; âðoutÞk4
Þ, at ω=TH ¼ 1 for varying

environmental temperatures Tenv=TH; assumes initial, isotropic
thermal fluctuations of temperature Tenv in the comoving frame
for all modes.

TABLE I. Necessary criteria for entanglement between differ-
ent subsystems of out-modes for the white-black hole, in different
particle-number regimes, (ω=TH → ∞) and (ω=TH → 0). As-
suming initial, homogenous thermal fluctuations at temperature
Tenv in the comoving frame and no loss (η ¼ 1).

Subsystems ðω=TH → ∞Þ ðω=TH → 0Þ
ðâðoutÞk1

jâðoutÞk3
Þ Tenv < 2TH 0

ðâðoutÞk1
jâðoutÞk4

Þ Tenv < 2TH Tenv < TH

ðâðoutÞk3
jâðoutÞk1

; âðoutÞk4
Þ Tenv < 2TH Tenv < 2TH

ðâðoutÞk4
jâðoutÞk3

; âðoutÞk1
Þ Tenv < 2TH Tenv < 4TH

�
TH
ω

�
ðâðoutÞk1

jâðoutÞk4
; âðoutÞk3

Þ Tenv <
2TH

1−lnð2ÞTH=ω Tenv < 4TH

�
TH
ω

�
11The LN is in units of entangled bits or ebits.
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Note that these results represent the best-case scenario,
when attenuation is negligible (η ¼ 1), but such can be
extended to include attenuation, leading to a family of
critical conditions parametrized by ð1 − η; TH;ωÞ, similar
to the black hole case discussed in Sec. III B. This
information is shown in Fig. 8 for the entanglement in

the Hawking pair emitted by the white hole, ðâðoutÞk1
; âðoutÞk4

Þ,
for ω=TH ¼ 1 and Γ ¼ 1.
A situation of practical interest is when the thermal bath

is at rest in the laboratory frame. This case is more subtle
since, on the one hand, the modes fkig have different
populations (due to having different lab frequencies; their
comoving frequencies are the same) and, on the other hand,
the large Lorentz boost between the lab and comoving
frames implies that higher temperatures are needed for the
thermal noise to appreciably affect entanglement. We find

that the threshold lab temperature TðlabÞ⋆
env above which

entanglement is extinguished is TðlabÞ⋆
env =TH ∼Oð103Þ—

significantly higher than the Hawking temperature, as
qualitatively alluded to in previous studies of optical
analogs [34]. This is a subtle and distinctly interesting
point that warrants focused attention, which we leave for
future study.

C. Accurateness of the white-black hole circuit

The circuit of Fig. 5 has been proposed using physical
arguments resting on the analogy with the Hawking effect
in gravitational black holes. A legitimate question is
whether this circuit actually captures correctly the physics
of optical white-black hole pairs. The goal of this section is
to quantitatively address this query. Optical white-black

hole pairs rest on complex physics; even in situation where
the effect of higher order nonlinearities can be neglected,
the dispersive character of these systems may introduce
additional complications, which can break the analogy with
the (gravitational) Hawking effect. Our circuit has been
built assuming the analogy works well. Therefore, any
deviation from the predictions of the circuit are actually
signaling a break down of the analogy between the physics
of these optical systems and the Hawking effect. We show
in this subsection that there is a region in the parameter
space where the analogy with the Hawking effect is on solid
ground and our circuit describes the system with great
accuracy. We also find regions in the parameter space
where dispersive effects lead to a breakdown of the analogy
with the Hawking effect and identify physical origins
of such.
The analysis of this subsection rests on a numerical

simulation of the optical systems described above (see
[6,8,9,21–25,27,62,63] for previous numerical efforts in
similar systems). Our simulations are based on the micro-
scopic analytical model proposed in Ref. [12], building on
previous work [64], and based on the Hopfield model in
which the dielectric material is modeled by a collection of
oscillators [65]. The interaction with a strong electromag-
netic pulse modifies the natural frequency of the oscillators,
and this modification, in turn, is experienced by weak
electromagnetic probes propagating thereon as a change in
the effective index of refraction. As described in Ref. [12],
the dynamics of weak probes in this model is governed by a
4th order ordinary differential equation in the comoving
coordinates (Eq. (11) in Ref. [12]). For each (comoving)
frequency ω, we numerically solve this equation and
compute the evolution of in-wave packets which, asymp-
totically far from the horizons, are peaked on each of the
four wave numbers k1, k2, k3, k4 (these are the four
solutions of the dispersion relations for a fixed ω). We
propagate these wave packets and track the evolution to
outgoing wave packets propagating asymptotically far away
from the strong pulse. From this, we obtain the S-matrix
relating in- and out-modes. (A companion paper [66], which
goes over the details of this microphysical model and of the
numerical simulations, is in preparation.)
In our numerical simulations, we model the perturbation

of the refractive index as δnðx; tÞ ¼ δn0 sech2ðt−x=uD Þ, a
profile which is a common and convenient choice
[34,39], where u is the group velocity of this perturbation,
and x and t are space-time coordinates in the lab frame.
This profile is parametrized by two real positive numbers,
δn0 and D; they determine the amplitude and width of the
perturbation, respectively. We have performed simulations
for δn0 in the interval 0.01 to 0.1, and D ranging from 2 fs
to 10 fs, respectively. These ranges are chosen by demand-
ing that analogue white and black hole event horizons are
present even for the fastest mode (since the dispersion
relation of this system is subluminal, low frequency modes

FIG. 8. Entanglement between Hawking pairs emitted by the
white hole horizon, ðâðoutÞk1

; âðoutÞk4
Þ, at ω=TH ¼ 1 and Γ ¼ 1 for

varying environmental temperatures Tenv=TH and attenuation,
1 − η; assumes initial, isotropic thermal fluctuations of temper-
ature Tenv in the comoving frame.
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are faster). This is also the range of parameters for which
the analogy with the Hawking effect is closer, as we
discuss below.
Our numerical calculations are independent of the circuit

of Fig. 5. The inputs of our numerics are the parameters δn0
and D, and the output is an 8 × 8 matrix of numbers
representing the S-matrix (there is an S-matrix for each
value of the frequency ω). We say that the circuit describes
well the physics of the system when there exist values of
the free parameters of the circuit, rHðωÞ and θω for which
the analytical S-matrix associated with the circuit predicts
values of physical quantities of interest that are equal to
those obtained from the numerical S-matrix. This is a
nontrivial demand. A symplectic evolution of four modes
generically requires 36 free parameters (this is the dimen-
sion of the symplectic group in four dimensions), though
this can be reduced to 16 using information from the
dispersion relation (see Appendix B for more discussion on
this)—whereas our circuit Ansatz contains only three free
parameters.
We do not expect, however, our circuit to describe every

single aspect of the dynamics since, as discussed above, we
have not included in the circuit, e.g., “single-mode phase
shifters” to account for possible phases that different modes
acquire during the propagation. In other words, we expect
our circuit to describe the system “up to phases”. It is not
difficult to include these phases, but we consider unnec-
essary to add this complication for the following reason.
We have found that the quantities we are interested in—
namely, the mean number of quanta in each out-mode and
the entanglement between modes—are insensitive to
phases. In particular, none of the quantities we plot below
depends on, for instance, the squeezing phase ϕ in our
circuit. Hence, we will leave this phase unspecified.
Keeping this in mind, to compare both calculations we

will focus attention on their physical predictions, rather
than merely comparing the S-matrices. We proceed as
follows. For each frequency ω, we determine the two
circuit-parameters—rHðωÞ and θω—by demanding that
two components of the circuit S-matrix matches the same
components of the numerical S-matrix. More concretely,
we obtain θω from the component (3,3) of the numerical S-
matrix, which, according to the circuit, is equal to cos2 θω
[see Eq. (39)]; rHðωÞ is then obtained from the component
(7,5), which corresponds to cos θω cosh rHðωÞ, according
to the circuit. In this way, we determine rHðωÞ and θω (we
repeat the calculation for each value of ω in the regime of
interest). Next, we substitute these values into the S-matrix
written in Eq. (39), and use it to evaluate quantities of
interest. The values for physical quantities obtained in this
way are then compared with the results derived with the
numerically computed S-matrix. If both calculations agree,
we say the circuit captures the correct physics. We insist
that this is a nontrivial check, since the circuit calculation
uses inputs from just two components of the numerical

S-matrix, while we demand the two calculations to agree in
quantities which depend on complicated combinations of
all components. This summarizes the strategy we follow.
We now show the results.
First, we plot the two-circuit parameters rHðωÞ and θω

versus frequency ω (in this simulation we use D ¼ 6 fs
and δn0 ¼ 0.05). More concretely, Figs. 9 and 10 show
lnðcoth2 rHÞ and 1 − cos2 θ, respectively. On the one hand,
lnðcoth2 rHÞ helps us to evaluate whether the squeezers
associated with both white and black hole horizons emit
radiation with a blackbody frequency spectrum (as
expected from the analogy with the Hawking effect) since,
in such a situation, rH must depend on frequency as
rH ¼ arcothðeω=2THÞ, with TH a frequency independent

FIG. 9. The dots correspond to the numerically determined
values of lnðcoth2 rHÞ versus ω, for a strong pulse with D ¼ 6 fs
and δn0 ¼ 0.05. We also show a straight line, ω=TH , which is a
good fit to the data for TH ¼ 3.51 K. This plot shows that the
squeezers representing each horizon produce radiation with a
frequency spectrum in good agreement with a blackbody dis-
tribution at temperature TH ¼ 3.51 K. Stronger deviations from
thermality emerge at high frequencies.

FIG. 10. Numerically determined value of 1 − cos2 θ versus
ω=TH , for a strong pulse with D ¼ 6 fs and δn0 ¼ 0.05. The plot
shows that the transmission probability of the beam splitters
(cos2 θ) of the circuit is very close to one. This implies the mode
k2 weakly interacts with the other modes in the system.
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real number. This in turn implies that lnðcoth2 rHÞ ¼ ω=TH
is a linear function ofω. Figure 9 confirms that this is in fact
the case to a great approximation. From this plot, we can
read the value of the Hawking temperature, from which we
obtain TH ¼ 3.51 K. This value agrees with analytical
approximations derived in Ref. [12] within a few percent.
The quantity cos2 θ informs us about the transmission

probability of the potential barrier (recall, Γω ¼ cos2θω).
Figure 10 shows that cos2 θ is very close to one for all
frequencies in the range of interest, and it is closer to one
for large ω. Since the beam splitters in the circuit are the
means by which the mode k2 interacts with the rest, these
results tell us that k2 evolves almost entirely in solitude,
with little interaction with the rest of modes. (Physically,
this is because the wavelength of this mode in the lab frame
is much larger than the rest, and therefore this mode probes
the system at different scales.)
Next, we compare the predictions for the mean number

of quanta in the out-modes âðoutÞk1
, âðoutÞk2

, âðoutÞk3
, and âðoutÞk4

,
starting from vacuum input. This is shown in different
panels of Fig. 11. A few interesting messages emerge from
these plots. The number of quanta produced in the mode

âðoutÞk2
is much smaller than the rest, by about four orders of

magnitude. This confirms that the mode k2 is a spectator in
this process. The symplectic circuit also produces results in
great agreement with the numerical code for the number of

quanta in the modes âðoutÞk1
, âðoutÞk3

and âðoutÞk4
(differences are

of order of one part in thousand, or smaller). However

discrepancies do appear for the mode âðoutÞk2
.

We show in Fig. 12 the entanglement between pair-wise
out-modes. First of all, such entanglement is exactly zero
unless the mode âðoutÞk1

is a member of the pair. This is true
both in our circuit as well as in our numerical calculations,
and it has a simple explanation: entanglement can only be
generated if modes with different symplectic norms inter-
act. The mode âk1 is the only one having negative
symplectic norm [12]. The remaining modes have positive
norm (which is a consequence of the dispersion relation of
the system [12]). Our circuit respects this fact, since both
squeezers involve a positive- and a negative-norm mode.
Hence, in Fig. 12, we only show the nonzero pair-wise
entanglements. We see that the entanglement in the pairs

ðâðoutÞk1
; âðoutÞk3

Þ and ðâðoutÞk1
; âðoutÞk4

Þ shows again a great agree-
ment between the outcomes of the circuit and the numerical

calculations. The entanglement in the pair ðâðoutÞk1
; âðoutÞk2

Þ

FIG. 11. Expectation values of the number operator of the out-modes kðoutÞ1 , kðoutÞ2 , kðoutÞ3 , and kðoutÞ4 resulting from evolving the vacuum
state (spontaneous creation of particles), for a strong pulse with D ¼ 6 fs and δn0 ¼ 0.05. The red squares represent the predictions of

our circuit, while the black dots correspond to the results of our numerical code. The number of quanta produced in the mode kðoutÞ2 is
several order of magnitude smaller than in the rest of modes. We observe great agreement between the predictions of the circuit and our

numerical code for the modes kðoutÞ1 , kðoutÞ3 and kðoutÞ4 , which are the ones involved in the Hawking process. Discrepancies appear in the

mode kðoutÞ2 ; the circuit underestimates the quanta produced in this mode. This indicates a (weak) coupling between the modes kðoutÞ1 and

kðoutÞ2 not captured by the circuit.
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predicted by our circuit is several orders of magnitude
too small.
The discrepancy in the predictions involving the mode

âðoutÞk2
for both the number of quanta and entanglement, have

a common origin—namely, the absence of a direct coupling

between the modes âðoutÞk1
and âðoutÞk2

in our circuit. Since
these modes have symplectic norms of different signs, such
coupling would imply a source of particle-pair production,

which would account for the extra quanta in the mode âðoutÞk2
shown in the numerical simulation, as well as the extra

entanglement between the modes âðoutÞk1
and âðoutÞk2

. However,
the fact that our circuit captures very well the behavior of

the mode âðoutÞk1
implies that such coupling is very weak and

does not significantly affect the rest of the modes in the
system. (For very large frequencies, ω ≫ TH, this coupling
has a larger relative effect, since the number of quanta and
entanglement in the rest of modes fall off exponentially
with ω, due to its blackbody character, while the coupling
of the mode k2 with the rest, falls at a slower rate.) It is not
difficult to modify our circuit to account for the missing

coupling between modes âðoutÞk1
and âðoutÞk2

, by simply adding
an extra squeezer. Though we find this additional compli-
cation unnecessary, since such coupling is unrelated to
the Hawking effect, and, more importantly, it produces

negligible effects for the modes actually involved in the
Hawking process for frequencies in the range
ω ∈ ð0; 10THÞ. A similar dispersive effect was previously
identified in [61], in a different system.
Our numerical simulations reveal another dispersive

effect, which indicates a second departure from the analogy
with the Hawking effect and the predictions of our circuit.
We identify the physical origin of this effect as being due to
the tunneling of the mode k3 (the ingoing Hawking mode)
from outside the white hole to the exterior of the black hole
horizon—hence, indicating that these are not perfect event
horizons. This limitation is intrinsic to this (and other)
analogue models, and originates from the fact that, in
between horizons, there actually exist modes propagating
in both directions, but the modes propagating from the
white hole to the black hole have complex wave numbers
[12,61]. (These modes are not drawn in Fig. 4.) They are
evanescent modes (not propagating modes), in the sense
that their amplitude falls off exponentially in the interior
region. If the pulse generating the horizons is narrow
enough, a significant portion of the mode can emerge on
the black hole side. This is not very different from the
familiar tunneling effect in wave mechanics. From general
arguments, this effect is expected to be more important for
narrow (small D) and weaker pulses (small δn0), as well as
for long wavelength modes. In agreement with this expect-
ation, we observe this effect only for the mode k3, since this

FIG. 12. Logarithmic negativity between pairs of modes in the out-state corresponding to vacuum input, for a strong pulse with
D ¼ 6 fs and δn0 ¼ 0.05. The red squares represent the predictions of our circuit, while the black dots correspond to the results of our

numerical code. The plot shows great agreement for the pairs (kðoutÞ1 , kðoutÞ3 ) and (kðoutÞ1 , kðoutÞ4 ), which are the pairs that dominate the

entanglement in the final state. The value of LN for the pair (kðoutÞ1 , kðoutÞ2 ) is several orders of magnitude smaller and is not well captured
by our circuit.
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is the lone, longest wavelength mode propagating to the
right (with the conventions of Fig. 4) and for low
frequencies. This effect is sizable already for D ¼ 4 fs,
and δn0 ¼ 0.01 (although only for very low frequencies)
and quickly disappears when these two parameters are
increased.
Tunneling by the k3 mode (from the white hole exterior

to the black hole exterior) obviously breaks the analogy
with the Hawking effect, since nothing should emerge from
the interior of an actual black hole. Not surprisingly, this
effect also produces significant differences between the
predictions of our circuit and the numerical simulations.
These differences manifest primarily in a nonzero tunneling

probability, jt33j2, from kðinÞ3 to kðoutÞ3 (which is identically
zero in the perfect analogue case; see Fig. 5). In Fig. 13, we
plot the jt33j2 for a pulse characterized by D ¼ 4 fs and
δn0 ¼ 0.01. The tunneling probability is higher for low-
frequency modes (ω=TH ≲ 1), as expected on physical
grounds,12 and is non-negligible (jt33j2 ∼ :001 − :1) for this
choice of pulse parameters. As a comparison, for D ¼ 6 fs
and δn0 ¼ 0.05, where the analogy to the Hawking effect
holds well, we find jt33j2 ≲ 10−6 in the frequency range
of interest. We are currently developing a more
detailed analysis of tunneling, which will appear in a later

paper [66], as such is prominent in realistic optical plat-
forms [8,9,34,39].
In summary, for a strong pulse with D ¼ 6 fs and δn0 ¼

0.05 (or larger), we find that our circuit accounts very well
(with differences of order of one part in thousand, or
smaller) for the evolution of the modes actually involved in

the Hawking effect, namely modes kðoutÞ1 , kðoutÞ3 , and kðoutÞ4 .
The analogy with the Hawking effect is on firm ground.

The mode kðoutÞ2 interacts very weakly with the rest. We
have identified two dispersive effects which break the
analogy with the Hawking effect and induce deviations
from the predictions of our circuit. On the one hand,
dispersive effects produce a coupling between the modes

kðoutÞ1 and kðoutÞ2 which induce production of pairs of quanta

in the modes kðoutÞ1 and kðoutÞ2 . Such production is not
thermal and is unrelated to the Hawking effect, and it
can be neglected for low frequencies ω < 10TH. On the
other hand, if the strong pulse producing the horizon is too
weak or too narrow (approximately under D ¼ 6 fs and
δn0 ¼ 0.05), the white- and black-hole horizons are imper-
fect and modes can propagate in both directions, breaking
the analogy. These are intrinsic limitations caused by the
dispersion relation underlying this—and other—analogue
systems. It is worth mentioning that these threshold values
for D and δn0, at which tunneling becomes relevant,
depend on the properties of the material.

VI. ENTANGLEMENT ENHANCEMENT
VIA THE STIMULATED EFFECT

A. General remarks

As discussed above, practical constraints—such as initial
thermal fluctuations and attenuation—are a detriment to the
quantum correlations generated during the Hawking proc-
ess. These are serious hurdles for experimental platforms to
overcome, in order to genuinely observe the quantumness
of the Hawking process. Of course, one can always seek to
improve the operating conditions (low Tenv and η ≈ 1).
However, this requires operating at temperatures near the
Hawking temperature of the system, which is generally
quite low, as well as having control of unwanted scattering
channels (i.e., increasing efficiency of the setup). An
alternative way to overcome noise is to utilize quantum
resources at the inputs. We discuss this possibility for two
specific strategies:

(i) Entanglement resonance: One can, in some sense,
revitalize entanglement in the face of noise by
injecting a controllable two-mode squeezed-vacuum
state into the analogue system, which is phase
matched (in resonance) with the Hawking process.
The resonance condition allows for the entangle-
ment in each source (the input and the Hawking
process, respectively) to add constructively, thus
boosting the total amount of entanglement in the

FIG. 13. Tunneling probability, jt33j2, across the white-black
hole. In the ideal case, when the analogy to gravity is firm, the
probability to tunnel through the white-black hole is zero and the

mode kðoutÞ3 (the outgoing Hawking radiation from the black hole)

has no contribution from the mode kðinÞ3 (the ingoing mode to the
white hole). However, as the height of the strong pulse, which
generates the effective horizons, decreases and the width narrows,
transmission through the white hole horizon increases. The
parameters of the strong pulse used in this figure are δn0 ¼ :01
andD ¼ 4 fs. An (approximate) Hawking temperature can still be
found for these parameter values, TH ≈ 1.14 K.

12Low frequency modes have longer wavelengths, and thus the
pulse is relatively narrower for such modes.
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output. This can be used to bypass the temperature
conditions discussed previously. The proviso is that
one must be able to phase match the controllable
two-mode squeezer to the Hawking process of the
analogue system in order to observe constructive
effects; otherwise, one could induce destructive
interference, potentially disentangling the particles.
Another aspect to bear in mind here is the ability to
distinguish between the entanglement generated by
the input resource and the Hawking process;
although this may be possible with sufficient control
over the input resource and sufficient knowledge of
the analogue system. We do not explore this idea
further, as such has already been discussed in the
context of BECs in Ref. [52].

(ii) Leverage a single-mode resource: Likewise, inject-
ing a single-mode squeezed vacuum into one of
the modes can enhance the entanglement generated
during the Hawking process and help to subdue
background thermal noise [43]. The benefit here
(contrasted with the entanglement-resonance scheme
above) is that the single-mode squeezing approach
does not rely on a phase-matching condition (the
entanglement varies only with the amount of squeez-
ing), and thus no fine-tuning is necessary. The draw-
back, however, is that this approach is more sensitive
to losses. Nevertheless, we provide a quantitative
assessment of this strategy in the context of an
analogue white-black hole in the next section, and
discuss where it may be beneficial.

The amplification of the entanglement in the stimulated
Hawking process may come as a surprise at first, since the
stimulated process is usually regarded as a purely classical
effect. We insist that this intuition is true if the stimulation
is done with a “classical” state, namely a coherent state or
mixtures thereof. The covariance matrix of a coherent state
is the identity—the same as for vacuum—and since
entanglement is derived exclusively from the covariance
matrix (with no reference to the first moments), entangle-
ment in the output state cannot distinguish between initial
vacuum or coherent input. In other words, by illuminating
the system with a coherent state, we can amplify the output
intensities, but there is no amplification of entanglement in
the final state. This conclusion, however, ceases to be true if
nonclassical inputs are used to stimulate the system, even if
the input is separable (not entangled). Appendix A shows
an example of this mechanism for a simple two-mode
squeezing interaction.
Entanglement-enhancement strategies are promising,

however we must also be careful of the conclusions we
draw about the Hawking process itself when nonclassical—
even nonentangled—resources are in play. The reason
being that there are passive operations that can be done
on nonclassical, separable inputs which generate quantum
entanglement. For instance, it is known that a network of

passive elements (consisting only of orthogonal symplectic
transformations, such as the beam splitter discussed in
Appendix A) generally generates multimode entanglement
starting from single-mode squeezed vacuum at the input
[67,68]. Avery simple example is the scattering of a single-
mode squeezed vacuum by a potential barrier: the trans-
mitted and the reflected beams are quantum mechanically
entangled, even when the input is separable; the barrier is
able to transform initial single-mode squeezing into two-
mode entanglement. If we now consider the network as a
blackbox, with elements unknown to us, would we deduce
that the box is intrinsically quantum by nature, or is the
quantumness of an output a feature solely of the input
resource?
Hence, is there a way to extract the quantum features of

the output that are products of the Hawking process and not
necessarily due to our input resources? One indication
would be that the analogue system works as an amplifier
(creates particles) for the entangled modes under question
and that the amount of entanglement increases with the
number of particles generated by the system (holding
everything else fixed). Thus, concurrently observing ampli-
fication of the modes as well as quantum correlations
would provide support for the quantumness of the stimu-
lated Hawking process in the presence of extrinsic non-
classical resources, though more sophisticated methods for
distinguishing such features may be desired in practice.
Sufficient control of the inputs is thus a necessity.

B. Example: Seeding with single-mode
squeezed vacuum

We illustrate the strategy of stimulating the system with a
single-mode squeezed vacuum with the example of the
optical white-black hole discussed above. These results
have been reported in [43]; here we add further details
omitted there and generalize the strategy to nonisotropic
noise. Our strategy is to illuminate the white hole (i.e.,
populate the mode aðinÞk3

; see Fig. 4) with a single-mode
squeezed-vacuum state and monitor the entanglement in the
Hawking pairs emitted by the white hole, i.e., the modes

aðoutÞk1
and aðoutÞk4

, as well as the output intensities. As we
shall show, illuminating the white hole with a single-mode
squeezed vacuum allows one to tune the output entangle-
ment as a function of the input squeezing, and extract the
symplectic-circuit parameters (squeezing amplitudes and
beam splitter angles) of the white-black hole from the
intensities and entanglement, even in the presence of
thermal fluctuations and (a mild amount of) attenuation.
Before moving forward, we emphasize again that such
entanglement enhancement is not possible by stimulating
the process with classical states, such as coherent states (or
more generally, a convex combination of coherent states,
e.g., a thermal state) for the reasons discussed in the previous
subsection and in Appendix A. (All results described below
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can be understood in the simpler context of a two-mode
squeezer described in detail in Appendix A.)
The single-mode covariance matrix for the initially

squeezed mode aðinÞk3
, written in terms of the squeezing

strength s, is given by Nenve2sσz, with σz the familiar z-Pauli
matrix, where we have assumed squeezing along the
quadrature P (and, consequently, antisqueezing along Q
quadrature)—although the direction of squeezing does not
alter the quantities that we are interested in. Assuming all
input modes are populated by thermal fluctuations, each
with individual noise factor Nki, i ¼ 1, 2, 3, 4, the input
covariance matrix is given by the direct sum of single-mode
covariance matrices

σðinÞ ¼ Nk1I2 ⊕ Nk2I2 ⊕ Nk3e
2sσz ⊕ Nk4I2: ð42Þ

Given this input to the white-black hole and including
attenuation effects, the output covariance matrix is formally
given by

σðoutÞWB ¼ ηSWBσðinÞS⊤WB þ ð1 − ηÞI6 ð43Þ

(the first moments μ of the initial state—and hence of the
final state too—are chosen to be zero). From this covari-
ance matrix all quantities of interest can be calculated.

1. Entanglement enhancement with squeezing

In the near-ideal scenario of perfect efficiency, η ¼ 1, we
have found that single-mode squeezing can always be used
to overcome the degrading effects of initial thermal
fluctuations. In other words, for a given frequency ω=TH
and arbitrary thermal noise, there exists a value of the
squeezing strength s⋆ðωÞ such that the LN is nonzero.
Moreover, the entanglement is shown to increase with more
squeezing, s (see the curve corresponding to η ¼ 1 in
Fig. 14). Importantly, the entanglement is not generated by
the squeezing resource itself per se; in the sense that, for a
set squeezing strength s, the entanglement between the

ðaðoutÞk1
; aðoutÞk4

Þmodes increases with the Hawking-squeezing
parameter, rH, and vanishes entirely as rH goes to zero. In
this sense, the origin of the entanglement can be attributed
to Hawking pair production.
We now discuss the effects of attenuation (η < 1). As

shown in Fig. 14, attenuation limits the entanglement-
enhancement gained by initially squeezing the white hole
input, which also depends on the initial thermal fluctuations
in the lab frame. However, enhancements are to be found
even for very inefficient setups; for instance, initial squeez-

ing can help even for η ¼ :5 and TðlabÞ
env ¼ 100TH. The

thermal fluctuations (in the lab frame) do not cause much
harm to the entanglement generated in the system, even
when efficiency effects are accounted for, thanks to the
large Lorentz boost between the lab frame and the

comoving frame. Our squeezing protocol is thus more
robust to efficiency effects than we anticipated in Ref. [43].
It is worth mentioning that, upon stimulating the white

hole with a single-mode squeezed vacuum, the entangle-
ment criterion imposed by the parameter Δ [Δ < 0;
Eq. (13)] is not sufficient to witness entanglement in our
setup across all regions of parameter space; see Appendix C
and Fig. 22 for more details.

2. Circuit parameters from intensities and LN

An interesting by-product of squeezing is that it also
allows us to extract the functional form of the symplectic-
circuit parameters from the output intensities of the white
hole only, assuming our squeezing source is characterized
and tunable. Using Eq. (43), we obtain an analytical
expression for the mean-occupation number for each mode,
and find that they all have the simple form, hn̂ðoutÞki

i ¼
misinh2sþ bi, where sinh2 s is the number of initially
squeezed photons and the intercepts bi are independent of
the squeezing parameter s. The slopes,mi, encode the circuit
parameters via the relations

m1 ¼ Nk3η cos
2θωsinh2rH;

m2 ¼ Nk3η sin
2θω;

m3 ¼ 0;

m4 ¼ Nk3η cos
2θωcosh2rH; ð44Þ

where, recall, Nk3 is the noise factor in the initial state of the

mode kðinÞ3 . The expressions for bi are lengthy andwill not be
used in this section [for completeness, we report them in

FIG. 14. Entanglement between the photon pairs emitted by the

white hole, ðaðoutÞk1
; aðoutÞk4

Þ, versus initial squeezing (solid curves),
for various efficiency values η ¼ 1; :75; :5 (from top to bottom)

and the value TðlabÞ
env ¼ 100TH has been taken for the initial

thermal fluctuations in the lab frame. Dashed lines represent zero
initial squeezing, similarly with η ¼ 1; :75; :5 (from top to
bottom).
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expressions (D1) in Appendix D]. Note that all slopesmi are
proportional to the thermal noise in the input mode k3 and to
the attenuation parameter η. For a given frequency, we can
monitor the output intensities of each mode as we vary the
squeezing parameter s. If we then plot the output intensities
versus the intensity of the initial squeezing sinh2 s, we will
find straight lineswith slopes given as above. Taking ratios of
these slopes we cancel out the factorsNk3 and η, allowing us
to map out the frequency dependent forms of the Hawking
intensity rHðωÞ from the ratio

m1

m4

¼ tanh2rH ¼ e−ω=TH ; ð45Þ

from which the Hawking temperature may also be derived.
The value of the Hawking temperature, TH (or equiv-

alently, Hawking’s squeezing intensity, rH) can be inde-
pendently checked against the size of the entanglement
between, say, the Hawking pair k1 and k4 emitted by the
white hole, as described in [43]. As mentioned previously,
using the circuit, we can obtain analytical expressions for
the LN between these two modes (and any other biparti-
tion), in terms of the parameters of the circuit and the initial
state. These expressions are lengthy, but they can be easily
obtained using any software for symbolic calculus. Rather
than writing the lengthy expressions for LN, we plot its
value in terms of the squeezing intensity of the initial state
and for different potential values of the Hawking temper-
ature TH;i in Fig. 15. If the LN can be measured, for
instance, by reduced-state tomography using homodyne
measurements [51] (a challenging task), by comparing with
the theoretical curves in Fig. 15 it would be possible to
determine the actual Hawking temperature (TH;1 ¼ 3.5 K

here) from a quantity of purely quantum origin. The value
of TH obtained in this way must be in agreement with the
one independently obtained from intensities [Eq. (45)]; this
is a nontrivial consistency test [43].

VII. CONCLUSION

One of the goals of this paper is to promote a set of
analytical and visual techniques to study Hawking-like
phenomena in analogue gravity systems. The analytical
techniques are derived from the so-called Gaussian for-
malism for continuous variables systems, and the visual
techniques correspond to symplectic circuits. The Gaussian
formalism provides a powerful toolbox to describe
Gaussian states of bosonic systems and their evolution
under quadratic Hamiltonians. Importantly, the formalism
comes together with a set of compact and simple expres-
sions to extract physical quantities from the first and second
moments of the state, such as particle number, purity,
entropy, entanglement, etc. (see e.g., [45] for an extensive
treatment).
Particle creation phenomena in quantum field theory in

curved space-times, such as the Hawking effect, precisely
fall within the applicability of the Gaussian formalism. In
this paper we have shown how to apply the formalism to
reformulate the Hawking effect in very simple terms, from
which one can derive all interesting aspects of the underling
physics (see, e.g., Refs. [28,52,69] for similar treatments in
the context analogue gravity). Our analysis is particularly
useful to study Hawking-like effects in analogue gravity,
where multimode scattering adds complications which are
otherwise more difficult to deal with. We have shown how
effects of thermal noise, losses, and detector inefficiencies
—ubiquitous in experimental setups—can be incorporated
within the description and have provided a thorough study
of the impact they have on quantities of physical interest. In
particular, we have studied multimode entanglement gen-
erated in the Hawking process and how such is affected by
noise. One important aspect we want to emphasize about
our analysis is its simplicity: the a priori complex task of
quantifying entanglement between any subset of modes
becomes a simple exercise within the Gaussian formalism.
We have complemented the analysis with the introduc-

tion of symplectic circuits to describe Hawking like
phenomena. The goal of these circuits is twofold: they
provide an analytical approximation for the dynamics and,
moreover, are powerful visual tools for understanding how
particles and entanglement are created and distributed
among the different output modes. By mere inspection
of such circuits, one can extract valuable information about
the physics of the system and write down an approximation
for the evolution (scattering matrix). The name “symplectic
circuit” is motivated by the fact that, in the classical theory,
the circuit describes a symplectic transformation—i.e., a
canonical transformation that is linear in the basic varia-
bles. These circuits are generally built by concatenating

FIG. 15. Logarithmic negativity between modes âðoutÞk1
and âðoutÞk4

forming the Hawking pairs emitted by the white hole horizon,
versus the gain of the initial single-mode squeezing, e2s. Curves
correspond to different possible values of the Hawking temper-
ature TH;i, at a given comoving frequency ω. This plot is
obtained for a transmission coefficient of the potential barrier
Γ ¼ 0.999929.
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three elementary operations: a phase shifter describing free
evolution, beam splitters accounting for scattering phe-
nomena, and two-mode squeezers describing creation of
entangled particles. It is important to keep in mind that
symplectic circuits are meant to approximate the dynamics
of the system, and in concrete applications one must check
the accuracy of the proposed circuit against the actual
dynamics.
We have applied these tools to study the Hawking effect

in optical analogue systems, where an analogue white hole
horizon is generated together with a black hole horizon,
extending our previous results summarized in Ref. [43].
The use of symplectic circuits proves to be very convenient
in this context. We have provided a detailed comparison of
the predictions of our circuit Ansatz against the numerical
solutions of the equations describing the system and have
found that the circuit Ansatz indeed provides an excellent
description of the system in the regime where the analogy
with the Hawking effect is on firm ground. With this, we
have studied the concrete way in which ambient noise and
losses affect the entanglement structure of the output state,
confirming that these effects are dangerous enemies of
entanglement. Since entanglement generation is the quan-
tum signature of the Hawking effect, ambient noise and
losses must be under control in any experiment aiming to
observe quantum aspects of the Hawking process.
We point out that, for an analogue white-black hole, our

circuit fails to accurately describe the system when the
analogy with the Hawking effect breaks down due to
dispersive effects. This has allowed us, in turn, to identify
and characterize the physical origin of such dispersive
effects in a precise manner. Nevertheless, one can extend
the circuits presented here and add new elements to
accommodate these additional effects.
Finally, we have proposed a mechanism to amplify the

quantum aspects of the Hawking process via stimulating
the analogue system with (single-mode) squeezed light.
Such stimulation triggers additional particle creation.
Stimulated Hawking radiation is commonly regarded as
being purely classical and of little value to inform us about
the quantum aspects of the Hawking effect; we argue
otherwise. We show that the induced radiation is indeed
classical when the system is stimulated with classical light,
namely with a coherent or a thermal state. On the contrary,

we show that quantum inputs have the ability to stimulate
the generation of additional entanglement (relative to the
spontaneous Hawking effect). This not only solidifies that
the stimulated Hawking effect is genuinely quantum but
also provides a mechanism to increase the visibility of
quantum aspects of the Hawking effect in the lab. We have
outlined a protocol to implement this idea in an exper-
imental set up.
It is our view that the tools leveraged here will be

beneficial to study other analogue systems beyond the ones
that we have already explored, such as laserlike effects in
multihorizon scenarios [59,60,62,70,71], tunneling effects
[8,9,34,39], super-radiant effects [72,73], etc. Indeed, one
of the motivations for the pedagogical character of this
paper is to make these tools readily available to the
community.
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APPENDIX A: TWO EXAMPLES OF GAUSSIAN
EVOLUTION: TWO-MODE SQUEEZERS AND

BEAM SPLITTERS

This appendix summarizes some details of two repre-
sentative examples of linear evolution of Gaussian states.
Our goal is twofold: (i) to increase the pedagogical content
of Sec. II by putting the techniques summarized there in
action in two concrete and simple situations, and (ii) to
introduce and describe the properties of the two symplectic
transformations that play an important role in the bulk of
this paper. In fact, the main results of this paper can be
reduced, in a sense, to the properties of two-mode squeez-
ers and beam splitters spelled out here.

1. Two-mode squeezer

A two-mode squeezer is a transformation between two
modes,

R̂ðinÞ ¼ ðQ̂ðinÞ
1 ; P̂ðinÞ

1 ; Q̂ðinÞ
2 ; P̂ðinÞ

2 Þ → R̂ðoutÞ ¼ ðQ̂ðoutÞ
1 ; P̂ðoutÞ

1 ; Q̂ðoutÞ
2 ; P̂ðoutÞ

2 Þ;

defined by a scattering matrix that depends on two parameters, r and ϕ, as

SSqzðr;ϕÞ ¼

0
BBB@

cosh r 0 sinh r cosϕ sinh r sinϕ

0 cosh r sinh r sinϕ − sinh r cosϕ

sinh r cosϕ sinh r sinϕ cosh r 0

sinh r sinϕ − sinh r cosϕ 0 cosh r

1
CCCA: ðA1Þ
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The parameters r, ϕ are real numbers called the squeezing
intensity and squeezing phase, respectively. It is straight-
forward to show that this matrix belongs to the symplectic
group Spð4;RÞ, by checking SSqz · Ω · S⊤Sqz ¼ Ω for all r
and ϕ. Using (1), it is easy to obtain the transformation of
annihilation operators by the two-mode squeezer,

âðinÞ1 → âðoutÞ1 ¼ cosh râðinÞ1 þ eiϕ sinh râðinÞ†2 ; ðA2Þ

âðinÞ2 → âðoutÞ2 ¼ cosh râðinÞ2 þ eiϕ sinh râðinÞ†1 : ðA3Þ

(The way creation operators transform is obtained from
these equations by simple Hermitian conjugation.) Observe
that the two-mode squeezer mixes creation and annihilation

operators, but does so in a very concrete manner: âðoutÞ1 is

made of a combination of âðinÞ1 and âðinÞ†2 , but it does not get

contributions from either âðinÞ†1 nor âðinÞ2 (and similarly for

âðinÞ2 ). We depict a two-mode squeezer by the symbol
showed in Fig. 16.
Physically, a two-mode squeezer describes an amplifier

(the transformation does not conserve energy; energy must
be injected into the system by an external agent for the
process to happen). Quantum mechanically, amplification
means creation of quanta; as we show below, two-mode
squeezers add two genuinely quantum features to the
amplification process: (i) The quanta are created in pairs,
which are generically entangled, and (ii) a squeezer can

create quanta even if the input is the vacuum—i.e.,
squeezers amplify the vacuum. Two-mode squeezers
appear in diverse physical situations: they are responsible
for the phenomenon of parametric down conversion, for
particle creation in the early universe and, as we argue in
this paper, for the physics of the Hawking effect.
To better understand the action of two-mode squeezers,

we now discuss the way they transform various input states.

a. Vacuum input

Acting on the vacuum state, ðμðinÞ ¼ 0; σðinÞ ¼ I4Þ a two-
mode squeezer produces another Gaussian state, called a
two-mode squeezed vacuum, and defined by μðoutÞ and σðoutÞ
given by the following expressions:

μðoutÞ ¼ SSqz · μðinÞ ¼ 0;

σðoutÞ ¼ SSqz · σðinÞ · S⊤Sqz ¼

0
BBB@

cosh 2r 0 sinh 2r cosϕ sinh 2r sinϕ

0 cosh 2r sinh 2r sinϕ − sinh 2r cosϕ

sinh 2r cosϕ sinh 2r sinϕ cosh 2r 0

sinh 2r sinϕ − sinh 2r cosϕ 0 cosh 2r

1
CCCA: ðA4Þ

This covariance matrix is of the form

σðoutÞ ¼
�
σðredÞA σAB

σ⊤AB σðredÞB ;

�
; ðA5Þ

where

σðredÞA ¼ σðredÞB ¼
�
cosh 2r 0

0 cosh 2r

�
ðA6Þ

are the reduced covariance matrix for each of the two
subsystems, and σAB describes the correlations between
them. Recall that the covariance matrix of a thermal

state [with density matrix ρ̂ ¼ N expð−βĤÞ, where Ĥ ¼
1
2
ωðQ̂2 þ P̂2Þ] is σ ¼ ð1þ 2n̄ÞI and n̄ ¼ ðexpðβωÞ − 1Þ−1

is the mean number of thermal quanta. Since both σA and σB
have this form, each mode in a two-mode squeezed vacuum
are individually in a thermal state with inverse temperature
β ¼ 2 lnðcoth rÞ=ω. (The mean number of quanta n̄A ¼ n̄B,
when written in terms of r, have the simple expression
n̄A ¼ n̄B ¼ sinh2 r.) That each output is in a thermal state
implies, in particular, that both subsystems are in a mixed
quantum state, and since the total state is pure, the sub-
systems must be entangled. This entanglement can be
quantified either using the von Neumann entropy of either
of the subsystems (since the total state is pure, this entropy
defines the entanglement entropy) or the logarithmic neg-
ativity. Both quantities can be easily computed as follows.

FIG. 16. Circuit diagram for two-mode squeezing interaction,
with squeezing intensity r and squeezing angle ϕ, described by
symplectic matrix SSqz.
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The von Neumann entropy of an N-mode Gaussian state
with covariance matrix σ is given by

S½σ� ¼
XN
I

�
νI þ 1

2

�
log2

�
νI þ 1

2

�

−
�
νI − 1

2

�
log2

�
νI − 1

2

�
; ðA7Þ

where νI , I ¼ 1;…; N are the absolute value of the
eigenvalues of the matrix σikΩkj, where Ω ¼⊕N ð 0

−1
1
0
Þ,

is the symplectic form. It is common to refer to the N (real
and positive) numbers νI as the “symplectic eigenvalues” of
the covariance matrix because there exists a symplectic
transformation, Sσ , which diagonalizes σ such that the
diagonal elements are given by νI.
The symplectic eigenvalue of σðredÞA is equal to

ν ¼ 1þ 2 sinh2 r, and produces a von Neumann entropy

Sent ¼ ð1þ sinh2rÞlog2ð1þ sinh2rÞ − sinh2rlog2ðsinh2rÞ:
ðA8Þ

This is the entanglement entropy of subsystems A and B.
The logarithmic negativity of a Gaussian state made of

two Gaussian subsystems A and B, is given by

LN½σ� ¼
X
I

Max½0;−log2ν̃I�; ðA9Þ

where ν̃I are the symplectic eigenvalues of the partially
transposed covariance matrix σ̃, defined from σ by revers-
ing the sign of all components involving momenta Pi of the
subsystem B. This is more clearly shown with an example.
For a two-mode squeezed vacuum, the partially transposed
covariance matrix (with respect to the natural bipartition) is

σ̃ðoutÞ ¼

0
BBB@

cosh 2r 0 sinh 2r cosϕ − sinh 2r sinϕ

0 cosh 2r sinh 2r sinϕ 2 sinh r cosh r cosϕ

sinh 2r cosϕ sinh 2r sinϕ cosh 2r 0

− sinh 2r sinϕ 2 sinh r cosh r cosϕ 0 cosh 2r

1
CCCA;

which differs from σðoutÞ in Eq. (A4) only in the sign of the
components (1,4), (2,4), (3,4), (4,1), (4,2), and (4,3) [note
that the sign of the component (4,4) is not reversed; or
equivalently, is reversed twice]. This is equivalent to
applying expression (11). The symplectic eigenvalues of
this matrix are ν̃1 ¼ e2r and ν̃2 ¼ e−2r. Since ν̃2 is smaller
than one for r > 0, the two subsystems are entangled and
LN ¼ −log2e−2r ¼ 2r

ln 2.
Entanglement entropy and LN have different values, but

they grow monotonically with the squeezing strength, r.
Both quantities are explicit entanglement quantifiers for
this system.

b. Coherent state input

Recall that a coherent state ðμðcohÞ ≠ 0; σðcohÞ ¼ I4Þ
differs from the vacuum only in its first moments, while
its covariance matrix is the same as for vacuum. Hence, if
we send a coherent state through a two-mode squeezer, we
get a Gaussian state identical to (A4) except that the first
moments are replaced by SSqz · μðcohÞ. This implies that the
entanglement between the two subsystems in the output
state is exactly the same as for vacuum input. Only
quantities that depend on the first moments are different.
Examples of such quantities are the mean number of quanta
in each subsystem,

hn̂Ai ¼ sinh2r

þ ½μðinÞ2 cosh rþ ð−μðinÞ4 cosϕþ μðinÞ3 sinϕÞ sinh r�2

þ ½μðinÞ1 cosh rþ ðμðinÞ3 cosϕþ μðinÞ4 sinϕÞsinh2r�2

hn̂Bi ¼ hn̂Ai þ −μðinÞ21 − μðinÞ22 þ μðinÞ23 þ μðinÞ24 : ðA10Þ

Note that the last equation tells us that the difference in the
mean number of quanta between both subsystems is the
same before and after the action of the squeezer. In this
sense, quanta are created in pairs. We identify in these last
equations the term sinh2 r that we would have obtained for
vacuum input. The other terms are proportional to the
components of the first moments of the initial state

μðinÞ ¼ ðμðinÞ1 ; μðinÞ2 ; μðinÞ3 ; μðinÞ4 Þ. The term sinh2 r corre-
sponds, therefore, to the spontaneous creation of quanta,
while the rest account for induced or stimulated creation.
Interestingly, since the entanglement in the final state is
exactly the same as for the case of vacuum input, one can
say that the extra quanta created by this stimulated process
is, in some sense, not entangled. In other words, there is
nothing genuinely quantum in the stimulated radiation. We
will see below, however, that this classical character of
the stimulated process is a peculiarity of using a coherent
state input, and it is not true in general. In particular, this
classical interpretation of the stimulated process does not
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hold if we use a single-mode squeezed vacuum for the
initial state.

c. Thermal state input

Intuitively, we expect thermal noise to degrade quantum
coherence and entanglement. This can indeed be shown
using the simple example of a thermally seeded two-mode
squeezing process. Consider the input state to be a thermal
state, and for simplicity let us assume that the two initial
modes have the same mean number of thermal quanta,
which we will denote by nenv (a generalization is straight-
forward). The input state is a Gaussian state with μðthÞ ¼ 0,
and σðthÞ ¼ ð1þ 2nenvÞI4. The only difference with vac-
uum is the multiplicative factor ð1þ 2nenvÞ in the covari-
ance matrix, which is easy to carry over through evolution.
For instance, the final state is given by Eq. (A4) times
ð1þ 2nenvÞ. However, this simple factor has an significant
impact on entanglement. The expression for LN is now

LN ¼ Max½0;−log2½ð1þ 2nenvÞe−2r��; ðA11Þ

(rather than LN ¼ − log2 e−2r) which shows that LN
decreases with nenv; even more, LN completely vanishes
if ð1þ 2nenvÞ > e2r. (Note that the entropy no longer
quantifies entanglement, since the total state is not pure.)
Figure 17 shows how the entanglement between the two
output modes changes with nenv. The upper-left panel
traces the Logarithmic Negativity (LN) versus nenv and
confirms the intuition that thermal noise degrades entan-
glement—completely removing it beyond the threshold
value nenv ¼ er sinh r (thus leading to a convex combina-
tion of separable states for the final state). Figure 17 (upper-
right panel) also shows the entanglement witness P−
[defined in Eq. (15)] versus nenv. Here, P− correctly signals
the presence of entanglement (P− < 0), since P− takes
negative values in exactly the same range of nenv for which
LN is different from zero. This is expected, since for a
system like the one we are working with (a Gaussian state
of a two-mode system), P− is negative if and only if the
state is entangled. On the other hand, the plot also shows
that P− does not change monotonically with nenv as the LN
does. For instance, for small values nenv, P− becomes more

FIG. 17. Upper-left panel: Logarithmic Negativity (LN) for the two-outputs of a two-mode squeezer seeded with a thermal state of nenv
mean number of quanta in both input modes. Entanglement in the final state decreases monotonically with nenv, completely disappearing
when nenv is above the threshold value er sinh r, which depends on the intensity r of the two-mode squeezer. Upper-right panel:
Entanglement witness P− [defined in Eq. (15)] versus nenv, for the same system. P− correctly signals the presence of entanglement
(P− < 0) for values of nenv for which LN is different from zero. However, P− is not an entanglement quantifier and thus does not tell us
whether there is more or less entanglement. Lower panel: Δ [defined in Eq. (16)] versus nenv. In this exampleΔ also signals correctly the
range of nenv for which the final state is entangled. Though, it is not an entanglement quantifier either. Plots are computed using a
squeezing intensity r ¼ 1. The three figures are independent of the value of the squeezing angle ϕ. The effect of increasing r is to shift
(horizontally to the right) the value of nenv for which the entanglement vanishes.
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negative as nenv increases, suggesting that the state
becomes more entangled—even though we know from
LN that entanglement degrades as we add more thermal
noise. This result reminds us that P− does not quantify
entanglement but only signals its presence. The lower panel
of Fig. 17 shows the quantity Δ [defined in Eq. (16)] versus
nenv. We see that, for the current situation, Δ also correctly
signals the presence of entanglement for the appropriate
values of nenv in accordance with the LN (although Δ does
not quantify entanglement either). We will see below an
example for which Δ is not able to signal entanglement,
reminding us that Δ < 0 is only a sufficient condition for
entanglement (not necessary and sufficient).

d. Single-mode squeezed vacuum input

Lastly, we consider a situation in which one of the inputs
of the two-mode squeezer is a single-mode squeezed state.
To illustrate the effect of initial single-mode squeezing, we
also include thermal noise in the initial state. That is, we

take the initial state to be a single-mode squeezed thermal
state,

μðinÞ ¼ 0;

σðinÞ ¼ ð1þ 2nenvÞ

0
BBB@

e2rI 0 0 0

0 e−2rI 0 0

0 0 1 0

0 0 0 1

1
CCCA; ðA12Þ

where rI is the initial squeezing intensity on the first mode.
(Note that we have chosen to squeeze the state in the

direction PðinÞ
1 . This choice does not alter the following

discussion.) As in previous examples, the final state is
computed by simple multiplication with SSqzðr;ϕÞ, from
which we can study how different quantities of interest
behave with rI. We focus on the mean number of quanta in
each output mode and on the entanglement between the
modes. Figure 19 shows the number of quanta in each

FIG. 18. Upper-left panel: Logarithmic Negativity (LN) for the two-outputs of a two-mode squeezer (with squeezing intensity r ¼ 1)
seeded with a single-mode-squeezed thermal state with nenv mean number of quanta in both input modes. The horizontal axis represents
nenv, and the three curves correspond to different values of the initial squeezing intensity, namely rI ¼ 0 (solid), rI ¼ :75 (dashed), and
rI ¼ 1 (dot-dashed). The plots show that, by increasing rI , we can restore entanglement for values of nenv for which otherwise
entanglement would not exist. Upper-right panel: Entanglement witness P− [defined in Eq. (15)] versus nenv. As in the previous
example, the condition P− < 0 captures faithfully the values of nenv for which the final state is entangled. Lower panel: Δ [defined in
Eq. (16)] versus nenv. The Cauchy-Schwarz inequality Δ < 0misses the existence of entanglement for values of nenv at which the state is
entangled. As we increase rI , the portion of the horizontal axis for which Δ < 0 decreases, while we know from the LN (upper-left
panel) that the region for which the final state is entangled increases. This example reminds us thatΔ < 0 is not a necessary condition for
entanglement (in other words, a positive value of Δ cannot rule out that the state is entangled).
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subsystem, hn̂Ai and hn̂Bi, versus the initial squeezing
intensity rI (the plot uses r ¼ 1 for the intensity of the two-
mode squeezer, and nenv ¼ 2; the choice of squeezing angle
ϕ does not change the result). The plot shows that larger
values of rI induce additional creation of quanta (stimu-
lated radiation). Figure 18 shows the entanglement between
the two output modes versus the number of noise quanta
nenv, for various initial squeezing intensities rI. This figure
also shows (lower panel) an example for which the Cauchy-
Schwarz inequality Δ < 0 misses the presence of entan-
glement between the modes.

2. Beam splitter

A beam splitter is a two-mode transformation defined by
the matrix

SBSðθÞ ¼

0
BBB@

cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

1
CCCA: ðA13Þ

This is a simple rotation in the two-mode phase space,
which splits the amplitudes of the inputs among the
outputs. It represents, for instance, the effect of a potential
barrier with transmission and reflection probabilities cos2 θ
and sin2 θ, respectively. (The two in-modes in this case are
the waves approaching the barrier from right and left, and
similarly, the out-modes are the ones leaving the barrier
from both sides.) When acting on creation and annihilation
operators, the transformations become

âðinÞ1 → âðoutÞ1 ¼ cos θâðinÞ1 þ sin θâðinÞ2 ; ðA14Þ

âðinÞ2 → âðoutÞ2 ¼ cos θâðinÞ2 − sin θâðinÞ1 : ðA15Þ

We depict the action of a beam splitter as in Fig. 20. The
matrix SBSðθÞ satisfies, SBSðθÞS⊤BSðθÞ ¼ I4, hence it
belongs to the orthogonal subgroup of the symplectic
group. This automatically implies that it leaves the vacuum
invariant

μðinÞ ¼ 0 → μðoutÞ ¼ SBS · μðinÞ ¼ 0

σðinÞ ¼ I4 → σðoutÞ ¼ SBS · σðinÞ · S⊤BS ¼ SBS · S⊤BS ¼ I4;

ðA16Þ

which, in turn, implies that the total number of quanta is left
invariant via Eq. (10). For this reason, a beam splitter is
often referred to as a passive transformation.
When acting on a coherent state, the covariance matrix of

the transformed state is again the identity, and the first
moments μðinÞ ¼ ðμðinÞ1 ; μðinÞ2 ; μðinÞ3 ; μðinÞ4 Þ transform to

μðoutÞ ¼ SBS · μðinÞ ¼ ðμðinÞ1 cos θ þ μðinÞ2 sin θ; μðinÞ2 cos θ

þ μðinÞ4 cos θ; μðinÞ3 cos θ − μðinÞ1 sin θ; μðinÞ4 cos θ

− μðinÞ2 sin θÞ:

APPENDIX B: FURTHER COMMENTS ON
SYMPLECTIC-CIRCUIT CONSTRUCTION

We are analyzing linear relationships between inputs and
outputs of N bosonic modes, due to symplectic trans-
formations. Hence, the scattering matrix, S, uniquely
encoding such relationships is a 2N × 2N matrix and an
element of the real symplectic group, Spð2N;RÞ. Generally
speaking, S has ð2NÞ2 free parameters. However the
symplectic condition, SΩS⊤ ¼ Ω, which is the only con-
dition for S ∈ Spð2N;RÞ, introduces Nð2N − 1Þ con-
straints.13 Therefore, the number of parameters needed to
describe any S ∈ Spð2N;RÞ is jSpð2N;RÞj ¼ 2N2 þ N,
which is just the dimension of S minus the number of
constraints imposed on S by the symplectic condition.
Without further information about, e.g., symmetries,

FIG. 19. hn̂Ai (solid) and hn̂Bi (dashed), versus initial squeez-
ing intensity rI. The plot corresponds to r ¼ 1 and nenv ¼ 2; the
choice of squeezing angle ϕ does not change the result.

FIG. 20. Schematic of a beam splitter transformation with
transmission probability cos2 θω.

13SΩS⊤ is a 2N × 2N real antisymmetric matrix, which has
2Nð2N − 1Þ=2 ¼ Nð2N − 1Þ free parameters corresponding to
the number of constraints imposed on any S ∈ Spð2N;RÞ.
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allowed interactions etc., the dimension of the symplectic
group sets an ultimate upper bound on the number of free
parameters (i.e., circuit elements) required to fully describe
a symplectic transformation on N bosonic modes.
In analogue gravity models (dispersive theories), infor-

mation about permissible interactionsmay be found from the
dispersion relation for the modes [12,61]. Information about
the symplectic norm of interacting modes, in turn, tells us
which modes transform passively (i.e., via beam splitterlike
transformations) or actively (i.e., via squeezinglike trans-
formations) during the scattering process. For instance,
negative-norm modes mix with positive-norm modes via

active transformations only, whereas positive-norm (nega-
tive-norm)modesmix positive-norm (negative-norm)modes
via passive transformations only. This information can
substantially reduce the number of free parameters needed
to describe interactions between the N modes. Furthermore,
dynamical symmetries (such as, e.g., space-time reversal
symmetry in the white-black hole scattering; see Fig. 5) play
a role here as well. We implicitly have such notions in mind
when devising circuit diagrams to explain multimode scat-
tering events.

APPENDIX C: ASPECTS OF THE
ENTANGLEMENT WITNESS Δ
FOR ANALOGUE HORIZONS

Here we further illustrate the general differences between
the LN and entanglement witness of Δ from Eq. (13) with
two examples. In Fig. 21, we plot Δ for the correlated pair

aðoutÞω and aðintÞω of a black hole, assuming Γ ≈ 1 and
ω=TH ¼ 1, which is the same parameter setting as in
Fig. 3 for the LN between this pair of modes. A few
observations can be made. First, the boundary curve in
Fig. 21, for which Δ ¼ 0, demarcates the boundary
between entangled (colorful region) and not entangled
(null region), agrees with the boundary curve in the LN
of Fig. 3. Hence, Δ is a good indicator of entanglement in
this simple setting. However, it is not a quantifier of
quantum correlations since, for instance, there are regions
in Fig. 21 of higher environment temperature Tenv where Δ
is more negative, which is inconsistent with the LN.
Incorrectly interpreting Δ as a quantifier of entanglement
would thus have us deduce that increasing thermal fluc-
tuations can increase entanglement between Hawking pairs
in some regions of parameter space, which is unreasonable
and, more importantly, disagrees with the behavior of
the LN.

FIG. 21. Plot of the entanglement witness Δ of Eq. (13) (Δ < 0

signifies entanglement) for the output modes, aðoutÞω and aðintÞω , of a
black hole. Boundary curve at Δ ¼ 0 correctly demarcates the
entanglement and no-entanglement regions, consistent with the
boundary curve of the LN in Fig. 3 of the main text. Observe,
however, that Δ is nonmonotonic in Tenv, and hence nonmono-
tonic with LN or any other entanglement quantifier.

FIG. 22. (Left panel)Δ between output modes, aðoutÞk4
and aðoutÞk1

, of a stimulated white-black hole pair. The white hole is stimulated with
a (noisy) single-mode squeezed vacuum of squeezing intensity e2s and initial thermal fluctuations at temperature Tenv ¼ TH in the
comoving frame. Curves from bottom to top indicate increasing levels of attenuation (1 − η ¼ 0; :5; :25). Δ does not faithfully indicate
the presence of entanglement for e2s > 3 since Δ is not in correspondence with the LN in this regime (right panel).
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In Fig. 22 (left panel), we plot Δ for the output pairs

emitted by awhite hole,aðoutÞk4
andaðoutÞk1

, in awhite-black hole
setup, when the white hole is stimulated with a squeezed
vacuum state. This is the setup described in Sec. VI B, but
here, we take an isotropic comoving temperature Tenv ¼ TH
to highlight discrepancies betweenΔ and theLN.We see that
Δ does not witness entanglement for squeezing levels
e2s ≳ 3, in contrast with the LN shown in Fig. 22 (right
panel), which shows a monotonic increase in the amount of

entanglement with input squeezing (depending on the
efficiency η). Thus, Δ does not serve as a good proxy of
entanglement for stimulated Hawking radiation when initial
squeezing is present in all regions of parameter space.

APPENDIX D: FORMULAS

For completeness, we quote the y-intercepts, bi, for the
squeezing-enhanced setup discussed in Sec. VI B,

b1 ¼ −
η

2
þ 1

2
ηsinh2rHcosh2rHðNk4cos

4θ − 2Nk1sin
2θÞ þ 1

2
ηNk1sin

4θsinh4rH

þ 1

2
ηNk2sin

2θcos2θsinh2rH þ 1

2
ηNk3cos

2θsinh2rH þ 1

2
ηNk1cosh

4rH;

b2 ¼
1

2
ηNk2cos

4θ þ 1

2
ηNk3sin

2θ −
η

2
þ 1

8
ηNk1sin

2ð2θÞsinh2rH þ 1

8
ηNk4sin

2ð2θÞcosh2rH;

b3 ¼
1

2
ηðNk2sin

2θ þ Nk1cos
2θsinh2rH þ Nk3cos

2θcosh2rH − 1Þ;

b4 ¼ −
η

2
þ 1

2
ηsinh2rHcosh2rHðNk1cos

4θ − 2Nk4sin
2θÞ þ 1

2
ηNk2sin

2θcos2θcosh2rH

þ 1

2
ηNk3cos

2θcosh2rH þ 1

2
ηNk4sin

4θcosh4rH þ 1

2
ηNk4sinh

4rH;

where Nki ¼ 1þ 2nki and nki is the number of noisy quanta in the ith in mode.
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