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Every 4D N ¼ 2 superconformal field theory T corresponds to an associated vertex operator algebra
VðT Þ, which is in general nonrational with a more involved representation theory. Null states in VðT Þ can
give rise to nontrivial flavored modular differential equations, which must be satisfied by the refined/
flavored character of all the VðT Þ modules. Taking some A1 theories T g;n of class S as examples, we
construct the flavored modular differential equations satisfied by the Schur index. We show that three
types of surface defect indices give rise to common solutions to these differential equations and therefore
are sources of VðT Þ-module characters. These equations transform almost covariantly under modular
transformations, ensuring the presence of logarithmic solutions which may correspond to characters of
logarithmic modules.
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I. INTRODUCTION

Four-dimensional superconformal field theories
(SCFTs) with N ¼ 2 supersymmetry are fascinating sub-
jects to study, as they are constrained enough to allow
various exact computations and also rich enough to gen-
erate numerous, interesting physical and mathematical
structures.
One remarkable example is the SCFT/vertex operator

algebra (VOA) correspondence between the 4D N ¼ 2

SCFTs and 2D VOAs [1], which maps the operator product
expansion (OPE) algebra of the Schur operators in any 4D
SCFT T to that of an associated VOA VðT Þ. According to
the correspondence, the Schur limit I of the 4D N ¼ 2

superconformal index equals the vacuum character of the
associated VOA, and the c central charge and the flavor
central charges of T are related to the 2D central charge and
the levels of affine subalgebras of VðT Þ by simple pro-
portionality

c2D ¼ −12c4D; k2D ¼ −
1

2
k4D: ð1:1Þ

The minus signs imply that whenever the 4D theory is
unitary, the associated VOA will be nonunitary.
Like the Lie algebras, it is interesting to study VOAs from

a representation-theoretic point of view, as they admit many

or infinite interesting modules. When a VOA is rational,1

namely, when it admits only finitely many irreducible
modules whose characters form a vector-valued modular
function, it could be considered as the chiral (symmetry)
algebra of a rational conformal field theory (RCFT), with its
modules corresponding to the primaries of theRCFT.Outside
the realm of RCFT, the representation theory of a VOA could
be much more complicated. For instance, logarithmic mod-
ules may be present on which L0 does not act diagonally and
the corresponding character is logarithmic. In general, the
associated VOAs of class-S theories are not rational.2

Fortunately, there are tools that may help explore the
structure of the modules of the associated VOAs. Crucially,
sources of modules can be found in 4D physics. In a 4D
N ¼ 2 SCFT T , one can introduce surface operators that
perpendicularly penetrate the VOA plane at the origin while
simultaneously preserving a 2DN ¼ ð2; 2Þ superconformal
subalgebra of the 4D superconformal algebra [9–13]. It is
conjectured that such a defect corresponds to a nonvacuum
(twisted) module of the associated VOA VðT Þ [12–18]. In
particular, the character of such a module should coincide
with the Schur index in the presence of the defect. In cases
where VðT Þ have been explicitly known, e.g., when T is an

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1A rational VOA is a special case of a lisse=C2-cofinite VOA,
which is a VOA with zero-dimensional associated variety [2–5].
In the SCFT/VOA correspondence, the associated variety of an
associated VOA equals the Higgs branch of the 4D theory [6].
Therefore, the rationality of the associated VOA implies the
absence of the Higgs branch in 4D, and in particular, the absence
of flavor symmetry.

2Theories of class S in general have nontrivial Higgs branches.
For genus-0 theories, the associated VOAs are shown to be
quasilisse [7,8] (i.e., the associated variety has finitely many
symplectic leaves).

PHYSICAL REVIEW D 106, 105020 (2022)

2470-0010=2022=106(10)=105020(39) 105020-1 Published by the American Physical Society

https://orcid.org/0000-0003-2492-6601
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.105020&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevD.106.105020
https://doi.org/10.1103/PhysRevD.106.105020
https://doi.org/10.1103/PhysRevD.106.105020
https://doi.org/10.1103/PhysRevD.106.105020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Argyres-Douglas theory, surface defects that arise from the
Higgsing prescription have been identified with the modules
of the associated VOAs. However, in general, it remains
challenging to verify the conjecture.
Another tool that comes in handy is the modular differ-

ential equations. In a RCFT, the chiral symmetry algebra has
finitely many irreducible modules, whose characters χi form
a vector-valued modular form of weight-0 with respect to
SLð2;ZÞ or a suitable subgroup. As a result, any module
character (of the chiral algebra) must satisfy a universal
unflavored modular differential equation whose coefficients
are ratios of Wronskian matrices made out of characters χi
[19,20]. These coefficients are strongly constrained by their
modularity, and this fact has been extensively exploited to
classify RCFTs with a fixed number of chiral primaries
(with or without fermions) [21–28]. Modular differential
equations also arise in the context of SCFT/VOA corre-
spondence. As shown in [6], the stress tensor of the
associated VOA must be nilpotent up to an element φ in
the subspace C2ðVðT ÞÞ and a null state N , ðL−2Þnj0i ¼
N þ φ for some n ∈ N>0. Combined with Zhu’s recursion
formula [2,29,30] that computes torus one-point functions,
the nilpotency may lead to a nontrivial unflavored modular
differential equation satisfied by the unflavored Schur
index. Such an equation has been exploited to classify
rank-2 4D N ¼ 2 SCFTs [31]. The same reasoning
naturally generalizes to characters of other (twisted) mod-
ules of the associated VOA, and one expects the untwisted
characters to satisfy the same equation, while the twisted
characters satisfy a twisted version of the equation.
When the 4D theory has flavor symmetry, flavor fugac-

ities can be introduced into the Schur index and defect
indices. With the help of the flavored Zhu’s recursion
formula [17,32,33], some null states lead to flavored
modular differential equations (FMDEs). Note that there
are usually additional null states giving rise to a few more
equations besides the one corresponding to the nilpotency
of the stress tensor. The character of any (twisted) VðT Þ
module is expected to satisfy all of these (twisted versions
of) differential equations simultaneously, and therefore is
heavily constrained.
This paper aims to further explore the relation between

surface defects in a class of 4D N ¼ 2 SCFTs and the
module characters of their associated VOAs. For simplicity,
we focus on the class-S theories of type A1: These theories
are the simplest in the sense that their Schur indices and
vortex defect indices (from Higgsing) are known in closed
form in terms of some well-known analytic functions [34].
We construct the (flavored) modular differential equations
that their Schur indices satisfy and study the common
solutions to such equations.
It turns out that there are several physical sources of

common solutions: the Schur index Ig;n itself obviously,
and vortex defect indices [11]Idefect

g;n ðk ¼ evenÞ (namely,with
even vorticity k), the defect indices of Gukov-Witten-type

surface defects [9], and some surface defects related to
modular transformations. Based on these computational
results, we conjecture that these surface defects indeed
correspond to nonvacuum modules of the associated VOA.
Furthermore, vortex defects with odd vorticities are solutions
to some twisted version of the differential equations, and
therefore, it is natural to associate them with the twisted
modules.
Although the presence of additional flavored modular

differential equations makes the special equation (tempo-
rarily called eqNil) from the nilpotency of the stress tensor
seem less prominent, in several examples, we find that eqNil
actually contains all the information on the allowed
flavored characters. The key is modularity. When flavored,
the coefficients of the flavor modular differential equations
are no longer modular forms, but rather quasi-Jacobi forms.
Under suitable modular transformation, eqNil does trans-
form, and it actually generates all the necessary modular
differential equations of lower weights. Schematically,

SðeqNilÞ ¼
X
m;n

τmbnðFMDEs of lower weightsÞm;n: ð1:2Þ

Together, they determine all the allowed nonlogarithmic
and logarithmic characters.
When unflavored, the presence of logarithmic solutions is

expected whenever the indicial roots are integral spaced,
e.g., by the Frobenius method. See also [7,35,36]. In the
cases we have studied where the Schur and vortex defect
indices have closed-form expressions, these logarithmic
solutions are just modular transformations of the nonlogar-
ithmic solutions, thanks to the modularity of the coefficients
which makes the differential equations covariant (or invari-
ant, up to an overall factor of τn) under suitable modular
transformations. However, the quasi-Jacobiness upon fla-
voring would naively break this logic. Luckily, the covari-
ance can be almost restored by introducing some additional
fugacities yi associated with the flavor central charges, and
this leads to the generation of flavored modular differential
equations of lower weights we just mentioned.
The organization of this paper is as follows. In Sec. II, we

recall some basics of the SCFT/VOA correspondence and
surface defects in 4D N ¼ 2 SCFTs. In particular, we
review the closed-form expression for the Schur index of all
A1 class-S theories and the defect indices from Higgsing.
We also recall how modular differential equations arise in
the context of 2D RCFT and 4D SCFT. In Sec. III, we
analyze in detail the βγ system of conformal weighs 1

2
(also

known as the symplectic bosons). In both the untwisted and
twisted sectors, we construct flavored modular differential
equations from trivial null states in the vacuum module and
study their common solutions and modularity. In Sec. IV, we
focus on the A1 class-S theories T g;n, and in several simple
examples, we study their associated (flavored) modular
differential equations and the solutions given in terms of
different defect indices. In particular, we conjecture the
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complete set of module characters (as analytic functions) ofcsoð8Þ−2 and 2D small N ¼ 4 superconformal algebra. In
Appendix A, we collect a few definitions on modular/Jacobi
forms and some relevant differential operators.

II. SCFT/VOA CORRESPONDENCE AND MDES

A. The Schur index

Four-dimensional N ¼ 2 SCFT has been one of the
most interesting subjects, as it bridges different branches in
mathematical physics. These theories are substantially
constrained by the symmetry which allows exact compu-
tation of many quantities, yet they retain extremely rich
internal mathematical and physical structures. We recall
that the 4D N ¼ 2 superconformal algebra suð2; 2j2Þ3
contains the generators

Pα _α; K _αα; D; Mα
β; M _α

_β; RI
J; QI

α; SαI ; Q̃I _α; S̃I _α:

ð2:1Þ
The (anti)commutation relations can be found in [1].
Two quantities of a 4DN ¼ 2 SCFTattract considerable

attention, the S4-partition function [37] and the super-
conformal index Iðp; q; tÞ (which is also an S3 × S1-
partition function) [38–40],

Iðp; q; tÞ ≔ trð−1ÞFp1
2
ðΔ−2j1−2R−rÞ

× q
1
2
ðΔþ2j1−2R−rÞtRþre−βfQ̃2 _−;S̃

2 _−gaf: ð2:2Þ
Both quantities participate in certain Alday-Gaiotto-
Tachikawa (AGT)-type 4D/2D correspondence when the
theory under consideration is of class S [41–55].4 In
comparison, the index is much simpler as it is independent
of exactly marginal deformations of the theory. In the
context of the 4D/2D correspondence, the superconformal
index of a theory T ½Σ� equals a topological correlator on the
associated Riemann surface Σ [48]. In different limits, the
superconformal index often enjoys supersymmetry
enhancement, receiving contributions only from states
annihilated by more than two supercharges.
The Schur index of a 4DN ¼ 2 SCFT is the Schur limit

t → q of the full superconformal index Iðp; q; tÞ [1,39] and
can be written simply as a (super)trace over the Hilbert
space of states in the radial quantization,

I ¼ trð−1ÞFe−β1fQ1
−;S−1 ge−β2fQ̃2 _−;S̃

2 _−gqE−Rbf: ð2:3Þ

Here, E is the conformal dimension, R the SUð2ÞR-charge
generator defined by 2R ¼ R1

1 − R2
2, and F the fermion

number. Bold letters b and f denote collectively any flavor
fugacities and the associated Cartan generators of the flavor
group that one may include in the trace. Thanks to the
anticommutativity and the neutrality under E − R (and f) of
the two pairs of supercharges Q̃2 _−; S̃

2 _− and Q1
−; S−1 , the

index is actually independent of β1, β2, and the ð−1ÞF
insertion leads to vast cancellations between bosonic and
fermionic states. The only contributions to the Schur index
are from the states satisfying the Schur conditions,

fQ1
−; S−1 g ¼ fQ̃2 _−; S̃

2 _−g ¼ 0 ⇔ E − 2R −Mχ

¼ rþMdef ¼ 0: ð2:4Þ

Here, Mχ and Mdef denote the spin under the rotations
within R2

x3;x4 and R2
x1;x2 , or in other words, the eigenvalues

ofMþþ þM _þ
_þ andMþþ −M _þ

_þ, respectively. The Uð1Þr
generator r≡ 1

2
ðR1

1 þ R2
2Þ. These states correspond to the

so-called Schur operators in the 4D theory which are
typically restricted to the R2

x3;x4 plane.
As a superconformal index, the Schur index is invariant

under exactly marginal deformation of the 4D theory.
Exploiting such an independence, the Schur index of
Lagrangian 4D N ¼ 2 SCFTs can be easily computed
in the free limit. The result is organized into a contour
integral

I ¼ ð−iÞ
rankg−dim g

jWj
I Yrankg

A¼1

daA
2πiaA

ηðτÞ−dim gþ3 rankg

×
Y
α≠0

ϑ1ðαðaÞÞ
Y
w∈R

ηðτÞ
ϑ4ðwðaþ bÞÞ≔

I
da
2πia

ZðaÞ: ð2:5Þ

Here, g denotes the gauge algebra with the Weyl group W,
and R denotes the joint representation of the gauge and
flavor group in which the hypermultiplets transform. The ϑi
are the Jacobi theta functions and η the Dedekind η
function. Their definitions and properties are collected in
Appendix A. Throughout this paper, the letters a, b, … in
Fraktur font are related to the letters a, b, … by

aA ¼ e2πiaA ; bj ¼ e2πibj ; …; q¼ e2πiτ: ð2:6Þ

The integration contour of each integration over aA is taken
to be the unit circle jaAj ¼ 1, and jbjj ¼ 1. Note that there
is no pole along the integration contour, since the zeroes of
ϑ4ðzÞ are given by z ¼ τ

2
þmþ nτ.

The contour integral can be reproduced from a super-
symmetric localization computation on S3 × S1 [62,63]. In
radial quantization, the Euclidean spacetime R4 is viewed
as S3 ×R where R denotes the radial direction. The Schur
index as a trace over the Hilbert space can be equivalently

3In the Euclidean signature, the superconformal algebra is
su�ð4j2Þ instead.

4The AGT correspondence is also extensively studied in the
presence of surface defects. See, for example, [56,57]. In this
context, the modular property (with respect to the complexified
gauge coupling τgauge ≔ θ

2π þ 4πi
g2YM

) of the effective superpotential

W is also studied [58], where the modular anomaly equation
[59,60] determines W. See also [61] for an application of the
modular anomaly equation to the Schur index.

SURFACE DEFECTS, FLAVORED MODULAR DIFFERENTIAL … PHYS. REV. D 106, 105020 (2022)

105020-3



computed by first compactifying the radial R → S1 and
placing some appropriate background metric (that depends
on a complex modulus τ controlling the relative size and
angle between S3 and S1) and R-symmetry gauge fields.
Let us parametrize S3 by a coordinate system φ; χ; θ
adapted to the T2-fibration structure of S3, with ranges
φ; χ ∈ ½0; 2π� and θ ∈ ½0; π

2
�. The space S3φ;χ;θ × S1t has a

T2
φ;t subspace at θ ¼ 0 and another T2

χ;t subspace at θ ¼ π
2
.

The path integral of a 4D N ¼ 2 Lagrangian SCFT
localizes to an ordinary integral of a 2D path integral on
T2
φ;t over flat dynamical gauge fields of the form A ∼ adt,

I ¼
I

da
2πia

Z
DΦe−S

T2φ;t ðaÞ;

a ∈ Cartan of the gauge group; a ∼ e2πia: ð2:7Þ

The integrand Z of (2.5) enjoys a crucial property:
ellipticity [64]. By that, we mean that the integrand, as a
meromorphic function of the rank − g variables aA, is
separately doubly periodic under shifts aA → aA þ τ and
aA → aA þ 1 of any one variable aA,

ZðaA þ 1Þ ¼ ZðaA þ τÞ ¼ ZðaAÞ: ð2:8Þ

This fact enables an elementary method to evaluate the
integral exactly and organize the result in terms of finitely
many twisted Eisenstein series and Jacobi theta functions
[34,65] (see also [66]).
In this paper, we will mainly focus on the A1 theories

T g;n of class S associated with a genus-g Riemann surface
with n punctures. Their fully flavored Schur index Ig;n has
an elegant compact form given by

Ig;n≥1 ¼
in

2

ηðτÞnþ2g−2Q
n
j¼1 ϑ1ð2bjÞ

X
αj¼�

�Yn
j¼1

αj

�

×
Xnþ2g−2
k¼1

λðnþ2g−2Þk Ek

� ð−1ÞnQ
n
j¼1 b

αj
j

�
; ð2:9Þ

Ig≥1;0 ¼
1

2
ηðτÞ2g−2

Xg−1
k¼1

λ2g−22k

�
E2k þ

B2k

ð2kÞ!
�
: ð2:10Þ

Here, Ig;n is fully flavored with respect to the class-S
description, and bi¼1;…;n denotes the SUð2Þ flavor fugac-
ities of the n punctures. Coefficients λ are rational numbers
determined by the following recursion relations:

λðoddÞeven ¼ λðevenÞodd ¼ 0; λð1Þ1 ¼ λð2Þ2 ¼ 0; ð2:11Þ

λðevenÞ0 ¼ 0; λð2kþ1Þ1 ¼
Xk
l¼1

λ2k2l

�
S2l −

B2l

ð2lÞ!
�
; ð2:12Þ

λð2kþ1Þ2mþ1 ¼
Xk
l¼m

λð2kÞ2l S2ðl−mÞ; λð2kþ1Þ2mþ1 ¼
Xk
l¼m

λð2kÞ2l S2ðl−mÞ:

ð2:13Þ

Here, Bn denotes the nth Bernoulli number, S are rational
numbers that are given by the 2nth coefficient of a y-series
expansion,

S2n ≔
�
y
2

1

sinh y
2

�
2n

: ð2:14Þ

B. SCFT/VOA correspondence

The Schur states contributing to the Schur index are
harmonic with respect to the two pairs of supercharges
ðQ1

−; S1−Þ and ðQ̃2 _−; S̃
2 _−Þ. By the state/operator correspon-

dence, any Schur state can be created by a Schur operator
Oð0Þ acting on the unique vacuum. This Schur operator at
the origin (anti)commutes with all four supercharges.
Translating the operator away from the origin typically
breaks this Bogomol'nyi–Prasad–Sommerfield (BPS) con-
dition. However, one may consider moving the operator
along the R2

34 ¼ Cz;z̄ plane by the twisted translation [1]

Oðz; z̄Þ ≔ e−zL−1−z̄L̂−1Oð0ÞeþzL−1þz̄L̂−1 ; ð2:15Þ

where

L−1 ¼ Pþ _þ; L̂−1 ¼ P− _− þ R2
1: ð2:16Þ

The translated Schur operator Oðz; z̄Þ remains in the kernel
of two superchargesQ1 ≔ Q1

− þ S̃2 _−,Q2 ≔ Q̃2 _− − S−1 , and
the z̄ dependence is Q1;2 exact. Hence, at the level of
cohomology, OðzÞ ≔ ½Oðz; z̄Þ� is holomorphic in z.
Moreover, their OPE coefficients are also holomorphic,
forming a 2D VOA/chiral algebra on the plane Cz;z̄ [1]. For
any local unitary 4D N ¼ 2 SCFT T , the associated VOA
VðT Þmust be nontrivial and nonunitary, since a component
of the SUð2ÞR Noether current must be a nontrivial Schur
operator, which gives rise to the stress tensor in the VOA
with a negative central charge c2D ¼ −12c4D. Furthermore,
any flavor symmetry G in T will be associated with an
affine subalgebra ĝk2D ⊂ VðT Þ, whose generators descend
from the moment map operator of the symmetry G, and
they transform in the adjoint representation ofG. For the A1

theories T ¼ T g;n, the exact form (2.9) of Schur index Ig;n

highlights several flavor representations in which the VOA
generators transform. In particular, the denominators
ϑ1ð2biÞ are tied to the SUð2Þ-adjoint moment map oper-
ators/affine currents of the n puncture, while the Ek’s seem
to come from the multifundamentals.
The associated VOA is an important invariant of 4D

N ¼ 2 SCFT, constituting a VOA-valued topological

HAOCONG ZHENG, YIWEN PAN, and YUFAN WANG PHYS. REV. D 106, 105020 (2022)

105020-4



quantum field theory (TQFT) for theories of classS thanks to
the nontrivial associativity properties descending from the
class-S duality [48,67]. Under the correspondence, the Schur
index of T is identified with the character of the vacuum
module ofVðT Þ, and it plays a central role in the SCFT/VOA
correspondence. (See, for example, [53,67–76].)
Two-dimensional VOA is an interesting subject in its

own right, say, from the representation-theoretic perspec-
tive. A VOA typically admits many modules besides the
vacuum module. For those constituting a RCFT, there may
be finitely many irreducible modules generated from the
primaries. Unfortunately, the VOAs that arise in the SCFT/
VOA correspondence often do not have nice properties
such as rationality, making their modules less straightfor-
ward to study. However, one may still hope to access their
modules through four-dimensional physics.
In a 4D N ¼ 2 SCFT T , one can insert surface defects

that perpendicularly intersect at the origin with the C plane
where the VOA resides. In particular, one may consider
those preserving N ¼ ð2; 2Þ superconformal symmetry on
their support. It is generally believed that such defects
correspond to nonvacuum modules of the associated VOA
VðT Þ, since the Schur operators in the 4D theory may act
on the defect operators via bulk-defect OPEs. A quantity
that captures information of such defect systems is the
defect index which we now review.

C. Defect indices

Let us focus on the N ¼ ð2; 2Þ superconformal surface
defects supported on the x1, x2 plane which preserve the
supercharges Q̃2 _−; S̃

2 _− [13]. One can compute the full 4D
N ¼ 2 superconformal index in the presence of such a
defect [10], which admits the usual Schur limit t → q
[10,13]. In this section, we will briefly review the indices
of three types of surface defects. Wewill see in a later section
that they all give rise to solutions to the modular differential
equations, and therefore, potentially correspond to VOA
modules.

1. Vortex defects

The vortex defect that we are interested in is labeled by a
natural number k ∈ N. One begins with a 4D N ¼ 2 SCFT
which is usually referred to as the T IR, and we will take it to
be T g;n. First we assume n ≥ 1, in which case the theory
contains at least one SUð2Þf flavor symmetry. This theory is
then coupled to the theory of four hypermultiplets T 0;3 by
gauging an SUð2Þ flavor symmetry associated with a
puncture, by gauging the diagonal of SUð2Þf and one
SUð2Þ flavor symmetry of T 0;3. The resulting theory is
denoted as T UV, which has an additional SUð2Þ flavor
symmetry, say, the (nþ 1)th puncture. One then turns on a
position-dependent vacuum expectation value for the corre-
sponding moment map operator with a profile ∼ðx1 þ ix2Þk
triggering a renormalization group (RG) flow to the IR.When

k ¼ 0, the IR fixed point reproduces the original IR theory
I IR, while for k ≥ 1, the IR fixed point is T IR coupled to a
vortex defect. The Schur index of the resulting IR theory can
be computed by [11,16,51]

Idefect
g;n ðkÞ ¼ 2ð−1ÞkRes

bnþ1→q
1
2
þk
2
q−

ðkþ1Þ
2
ηðτÞ2
b

Ig;nþ1: ð2:17Þ

Inserting the exact formula for Ig;nþ1, one arrives at the
closed form of the defect index [34]5

Idefect
g;n ðkÞ ¼ ð−1Þk

in

2

ηðτÞnþ2g−2Q
n
i¼1 ϑ1ð2biÞ

ð2:19Þ

×
X
αi¼�

�Yn
i¼1

αi

� Xnþ1þ2g−2

l¼1
λ̃nþ1þ2g−2l ðkþ 1ÞEl

×

� ð−1ÞnþkQ
n
i¼1 b

αi
i

�
; ð2:20Þ

where the (twisted) Eisenstein series Ek is defined in
Appendix A. λ̃ are rational numbers defined by

λ̃ðnþ1þ2g−2Þl ðkÞ ≔
Xnþ1þ2g−2

l0¼l

�
k
2

�
l0−l 1

ðl0 − lÞ! λ
ðnþ1þ2g−2Þ
l0 :

ð2:21Þ

Below we list a few simple values of λ̃ for the readers’
convenience:

λ̃ðnÞn ðkÞ ¼ 1; λ̃ðnÞn−1ðkÞ ¼
k
2
; λ̃ð3Þ1 ðkÞ ¼

k2 − 1

8
;

λ̃ð4Þ2 ðkÞ ¼
k2

8
−
1

6
; λ̃ð4Þ1 ðkÞ ¼

k3

48
−

k
12

:

The exact formula of Idefect
g;n ðkÞ suggests that the defect

indices are (combinations of) spectral-flow vacuum char-
acter Ig;n [34]. In particular, when k ¼ odd, the corre-
sponding flow modules are twisted modules where the
multifundamental generators in the VOA have their con-
formal weights shifted by half-integers, while the affine
currents associated with the n punctures keep their weights
(mod 1). We will observe such a pattern again when we
discuss the flavored modular differential equations.
Although the above construction of a vortex defect

generalizes to g ≥ 1, n ¼ 0 by cutting a handle and
inserting a T 0;3, the formula (2.19) is only valid for

5Note that k ¼ 0 reproduces the original Schur index Ig;n,

Idefect
g;n ðk ¼ 0Þ ¼ Ig;n: ð2:18Þ
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n ≥ 1. Indeed, with n ¼ 1 the poles b → q
1
2
þk¼even

2 are
actually double poles due to the twisted Eisenstein series.6

In more detail,

Ig;1 ¼
i
2

ηðτÞ2g−1
ϑ1ð2b1Þ

X
α1¼�

α1
X2g−1
l¼1

λð2g−1Þl El

� −1
bα11

�
: ð2:22Þ

The twisted Eisenstein series involved has simple poles at
b1 ¼ q

1
2
þk¼even

2 [see Eq. (A22)], which collide with the
simple poles of the ϑ1ð2b1Þ. Still, the residue in (2.17)
can be computed using

Res
b→q

1
2

1

b
1

ϑ1ð2bÞ
E2nþ1

�−1
b

�
¼enþ

Xn−1
l¼0

1

4lð2lþ1Þ!E2n−2l;

ð2:23Þ

where en are some rational numbers. Combining with
(A17), we have the following defect indices:

Idefect
g;0 ðk ¼ evenÞ ¼ ηðτÞ2g−2

Xg−1
l¼0

clðkÞE2l; ð2:24Þ

Idefect
g;0 ðk ¼ oddÞ ¼ ηðτÞ2g−2

Xg−1
l¼0

c0lðkÞE2l

�−1
1

�
: ð2:25Þ

Here, clðkÞ; c0lðkÞ are some rational numbers that can be
worked out explicitly.
Given g and n ≥ 1, there are infinitely many vortex

defects corresponding to k ∈ N. However, we see from the
exact form of Idefect

g;n ðkÞ that they are all linear combinations
of the fixed structures with different l,

X
α

Yn
i¼1

αiEl

� �1Q
n
i¼1 b

αi
i

�
: ð2:26Þ

From the symmetry property (A16), such a structure is
nonzero only when l ¼ n mod 2 and l > 0.7 In particular,
when n ¼ even, only the following ⌈ nþ2g−2

2
⌉ Eisenstein

series contributes:

E2

" �1Q
i
bαii

#
; E4

" �1Q
i
bαii

#
; … Enþ2g−2

" �1Q
i
bαii

#
; ð2:27Þ

while when n ¼ odd, only

E1

" �1Q
i
bαii

#
; E3

" �1Q
i
bαii

#
; … Enþ2g−2

" �1Q
i
bαii

#
ð2:28Þ

contribute, and again, there are ⌈ nþ2g−2
2

⌉ of them. The� 1

in the Eisenstein series is given by ð−1Þnþk. These
Eisenstein structures are linear-independent functions of
b1;…; bn; hence, for even k or odd k [so that ð−1Þnþk is
fixed], there are ⌈ nþ2g−2

2
⌉ linear-independent vortex defect

indices (including the original Schur index corresponding
to k ¼ 0).
A similar analysis can be applied to defect indices with

n ¼ 0. There, the defect indices Idefect
g;0 ðkÞ are all linear

combinations of g Eisenstein series [multiplied by ηðτÞ2g−2
which is omitted here],

E0 ¼ −1; E2; E4;…E2g−2 when k is even; ð2:29Þ

E0

�−1
1

�
¼ −1; E2

�−1
1

�
; E4

�−1
1

�
;

E2g−2

�−1
1

�
when k is odd: ð2:30Þ

Hence, for n ¼ 0, there will be g independent defect indices
for either parities of k.

2. Gukov-Witten defects

Other types of superconformal surface defects that will
be relevant are the Gukov-Witten surface defects [9], where
the dynamical gauge fields are prescribed with some
singular background profile at a defect plane orthogonal
to the VOA plane. Upon mapping to S3φ;χ;θ × S1t , the defect
plane is mapped to the torus T2

χ;t ⊂ S3 × S1 at θ ¼ π
2
, linking

(not intersecting) the VOA torus T2
φ;t at θ ¼ 0. The singular

profile in flat space then translates to a background gauge

FIG. 1. The dynamic gauge field with a prescribed singular
behavior near the defect plane drawn vertically. φ is the angular
coordinate in the x3, x4 plane where the associated VOA lives.
The wedge denotes the x1, x2 plane on which the surface defect is
supported.

6See also [77] for a discussion on higher order poles in the
context of the Hall-Littlewood index.

7Here we have assumed n ≥ 1, and we also define E0½θϕ� ¼ −1;
see Appendix A.
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field A ∼ a0dφ which is singular at the locus T2
χ;t, since the

φ circle is contractible in S3. See Fig. 1. Once the super-
symmetric localization is performed, the final integral over
flat gauge fields awill be shifted to an integral over aþ a0τ,
and the Schur index reads

I ¼
I

da
2πia

Zðaþ a0τÞ: ð2:31Þ

This effectively shifts (expands or shrinks) the integration
contour away from the unit circles. For small a0, the
integral does not change until the integration contour hits
the poles of the integrand Z and residues Resi are picked
up. Schematically, in the presence of different Gukov-
Witten-type surface defects [17],

Idefect ∼ I þ
X
i

ciResi; ð2:32Þ

where ci are numbers that depend on the precise configu-
ration of the singular background value. Therefore, the
residues of the integrandZ can be identified with the Schur
index in the presence of Gukov-Witten-type surface
defects. These residues can be also interpreted as free
field characters of some bcβγ systems since the residues
are just ratios of ηðτÞ and ϑi functions.

3. Defect indices from S transformation

There is yet another type of surface defect that we will
encounter. We have explained that the Schur index Ig;nðbÞ
can be computed as an S3φ;χ;θ × S1t -partition function [62].
In such an interpretation, the flavor fugacities b correspond
to flat background gauge fields B of the flavor symmetry,
roughly of the form B ∼ bdt (where b ∼ e2πib), leading to a
smooth and vanishing background field strength.
Suppose one performs an S transformation on the index

Ig;n, mapping

b → b0 ¼ b
τ
; τ → τ0 ¼ −

1

τ
: ð2:33Þ

The new index SIðb; τÞ ≔ Ig;nðbτ ;− 1
τÞ can also be reinter-

preted as an S3 × S1-partition function with a new back-
ground flavor gauge field. Now the background gauge field
b0 ¼ −bð− 1

τÞ is proportional to the new complex modulus
τ0 ¼ − 1

τ, and the background flavor gauge field will be of
the form B0 ∼ bdφ. Although the gauge field B0 is flat
almost everywhere, it is singular along the torus T2

χ;t

at θ ¼ π
2
, where the flavor background field strength has

a δ-function profile. Therefore, an S-transformed Schur
index SIðb; τÞ can be interpreted as a flavor defect partition
function on the geometry with complex modulus τ0.

D. Modular differential equations

Modular differential equations will play an important
role in our subsequent analysis, and they have already been
a useful tool to study both 2D CFT and 4D N ¼ 2 SCFTs.
There are two major ways where such an object comes
into play.
Rational CFTs are CFTs with finitely many primaries.

Each primary generates an irreducible module of the chiral
symmetry algebra (namely, VOA) with character chi¼1;…;N.
The full partition function Z ≔ trqL0− c

24q̄L̄0− c
24 can be

expanded in these module characters,

Z ¼
X
i;j

MijchiðτÞchjðτ̄Þ; q ≔ e2πiτ; ð2:34Þ

where Mij is the pairing matrix independent of q; q̄. The
full partition function Z is also a T2-partition function
where the torus has complex structure labeled by τ, and
therefore, Z is expected to be invariant under the modular
group SLð2;ZÞ. Consequently, the characters chi are
required to form a vector-valued modular form of
weight-0 under SLð2;ZÞ (or its subgroups if fermions
are present [26,27]). For example, for bosonic theory,

chi

�
−
1

τ

�
¼

X
j

SijchjðτÞ: ð2:35Þ

The Sij form the well-known modular Smatrix, from which
one can compute fusion coefficients between the said
primaries by the Verlinde formula [78].
Using the N characters chi and the differential operator

DðkÞq defined in Eq. (A36), one can write down a “trivial”
ordinary linear differential equation [79]

DðNÞq chi þ
XN−1

r¼0
ϕrD

ðrÞ
q chi ¼ 0 ð2:36Þ

using the Wronskian matrices Wr,

Wr ≔

0BBBBBBBBBBBBBBBB@

ch1 ch2 � � � chN

Dð1Þq ch1 Dð1Þq ch2 � � � Dð1Þq chN

..

. ..
. ..

. ..
.

Dðr−1Þq ch1 Dðr−1Þq ch2 � � � Dðr−1Þq chN

Dðrþ1Þq ch1 Dðrþ1Þq ch2 � � � Dðrþ1Þq chN

..

. ..
. ..

. ..
.

DðNÞq ch1 DðNÞq ch2 � � � DðNÞq chN

1CCCCCCCCCCCCCCCCA
;

ϕr ≔ ð−1ÞN−r Wr

WN
: ð2:37Þ
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What is nontrivial about this equation, however, is the fact
that the coefficients ϕr must be weight-ð2N − 2rÞ modular
forms and therefore are severely constrained by modularity.
Note also that the differential equation is homogeneous in
modular weight and therefore transforms covariantly under
suitable modular transformations. Any reducible module of
the given rational VOA is a direct sum of the above finitely
many irreducible modules, and the corresponding module
character must also be a solution to the above modular
differential equation.
This fact has been exploited to classify (bosonic/fer-

mionic) RCFTs [21–28]. A modular differential equation
can be labeled by its order N, and the “total order l of
zeros” of the Wronskian WN . The parameter τ takes value
in the fundamental region of the SLð2;ZÞ (or suitable
subgroups when fermions are involved), and the zeros can
sit at the orbifold points, internal points, or the cusp i∞.
The total order of the zeros equals l=6, l ¼ N − f1g. For
low values of ðN;lÞ, there are only a small number of free
coefficients in the modular differential equation due to
modularity. In these situations, it is possible to scan a large
range of values for these coefficients and look for “admis-
sible character solutions” with non-negative integral coef-
ficients when expanded in q series. These solutions are then
tested against more stringent conditions, e.g., by demand-
ing non-negative and integral fusion coefficients.
Another way in which the modular differential equations

arise is through some null states in the vacuum module of a
VOA V . One can insert the zero modeN ½0� (if nonzero; see
Appendix B for a brief review on notations) of a null state
N into the (super)trace that computes the (super)character
of a module M of V ,

0 ¼ strMN ½0�qL0− c
24bf: ð2:38Þ

Here we have included flavor fugacities b associated with
the Cartan of the flavor symmetries f. When N takes
certain form, the zero modeN ½0� can be “pulled out” of the
trace using Zhu’s recursion formula, and the equation turns
into a (flavored) modular differential equation [2,6,29,32].
For any 4D N ¼ 2 SCFT T , the associated VOA VðT Þ

descends from the Schur operators in 4D. These operators
may originate from different superconformal multiplets, and
some are outside of the Higgs branch chiral ring RH. In
particular, the 2D stress tensor T of VðT Þ descends from a
component of the SUð2ÞR Noether current in 4D, which
does not belong toRH. The chiral ringRH is identical to the
associated variety of VðT Þ, and as a result, T must be
nilpotent up toC2ðVðT ÞÞ and a null stateN of the VOA [6],

ðL−2Þnj0i ¼N þφ; φ ∈ C2ðVðT ÞÞ; some n ∈ N≥1:

ð2:39Þ

Inserting this equation into the supertrace, it is believed to
turn into an unflavored modular differential equation for the

unflavored Schur index of T /vacuum character of VðT Þ.
Such an equation plays an important role in a recent
classification of rank-2 4D N ¼ 2 SCFT [31].

III. βγ SYSTEM

Although our focus will be on the a1-type class-S
theories, it proves helpful to begin with a detailed analysis
of the simple theory of the βγ system with conformal
weights 1

2
. The theory is also the associated VOA of a free

hypermultiplet in four dimensions. The β, γ OPE reads

βðzÞγðwÞ ∼ 1

z − w
⇒ ½βm; γn� ¼ δmþn;0; ð3:1Þ

where the two fields are expanded in the traditional manner,

βðzÞ¼
X

n∈Z−h½β�
βnz−n−h½β�; γðzÞ¼

X
n∈Z−h½γ�

βnz−n−h½γ�: ð3:2Þ

The theory possesses a stress tensor T and a Uð1Þ current J
given by

T ≔
1

2
ðβ∂γÞ − 1

2
ðγ∂βÞ; J ≔ ðγβÞ: ð3:3Þ

Note that the stress tensor T is defined as a composite and
also as an element in the subspace C2ðβγÞ, since

L−2j0i ∝
�
β−3

2
γ−1

2
− γ−3

2
β−1

2

�
j0i; ð3:4Þ

where j0i is the vacuum state of the VOA.
The β and γ fields carry charges under L0 and J0,

β γ

L0 1=2 1=2
J0 −1 þ1.

The vacuum module of the βγ system is simply the Fock
module from acting β−n−1

2
, γ−n−1

2
on the vacuum j0i, n ∈ N.

We recall that βn−1
2
, γn−1

2
annihilate j0i, ∀ n > 0. The

vacuum character, or the Schur index of a free hyper-
multiplet in 4D, is thus,

ch ¼ trqL0− c
24bJ0 ¼ q

1
24PE

�
q

1
2b−1 þ q

1
2b

1 − q

�
¼ ηðτÞ

ϑ4ðbÞ
: ð3:5Þ

A. Untwisted sector

Following [29], we consider inserting the zero modes of
the null states J − ðγβÞ and T − 1

2
ððβ∂γÞ − ðγ∂βÞÞ into the

trace. For example,8

8All modes in the trace are taken to be the “square modes”; see
[2,6] for more detail.
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0 ¼ q−
c
24troðJ − ðγβÞÞqL0bJ0

¼ q−
c
24tr

�
J0 − oðγ−1

2
β−1

2
j0iÞ

�
qL0bJ0 : ð3:6Þ

The first trace involving J0 is nothing but Db ch, where we
define

Db ≔ b∂b: ð3:7Þ

The second term can be easily computed by Zhu’s recursion
relations [2,30],

q−
c
24troðγ−1

2
β−1

2
j0iÞqL0bJ0

¼
Xþ∞
n¼1

En

�−1
b

�
troðγn−1

2
β−1

2
j0iÞqL0− c

24bJ0 ¼ −E1

�−1
b

�
ch:

ð3:8Þ

Altogether, the vacuum character satisfies a weight-1
flavored modular differential equation,

Dbchþ E1

�−1
b

�
ch ¼ 0: ð3:9Þ

A similar computation can be performed for the
T − 1

2
ððβ∂γÞ − ðγ∂βÞÞ insertion,

0 ¼ tro

�
T −

1

2
ððβ∂γÞ − ðγ∂βÞÞ

�
qL0− c

24bJ0 : ð3:10Þ

Zhu’s recursion relations leads to a weight-2 equation,

Dð1Þq ch − E2

�−1
b

�
ch ¼ 0: ð3:11Þ

Here we used the symmetry property Eeven½�1b−1� ¼ Eeven½�1b �,
and DðnÞq denotes the nth modular differential operator

given in (A36). In particular,Dð1Þq ¼ q∂q. Note that this null
state expresses the stress tensor in terms of an element
ðβ∂γÞ − ðγ∂βÞ ∈ C2ðβγÞ, which precisely corresponds to
the nilpotency of T [6,7].
The above computation generalized to all kinds of

normal ordered products of T and J. One simply subtracts
from it its explicit expression in terms of the free fields
βγ. For example, ðJJÞ − ðβðβðγγÞÞÞ − ðβ∂γÞ þ ð∂βγÞ ¼ 0
gives rise to�

D2
b − E2 − 2E1

�−1
b

�
2

− 2E2

�−1
b

��
ch ¼ 0: ð3:12Þ

Note that the square of E1 can be eliminated by combining
the weight-2 null descending from ðβðJ − ðγβÞÞÞ, leaving

�
D2

bþE1

�−1
b

�
Db −E1

�−1
b

�
2

− 2E2

�−1
b

�
−E2

�
ch¼ 0:

ð3:13Þ

However, these higher-weight equations are not indepen-
dent equations, since they can be derived from the (3.9) and
(3.11). For example, (3.12) can be obtained from (3.9) by
taking a Db derivative

D2
bchþDbE1

�−1
b

�
chþ E1

�−1
b

�
Dbch ¼ 0: ð3:14Þ

Applying the identity

DbE1

�−1
b

�
¼ −2E2

�−1
b

�
− E1

�−1
b

�
2

− E2; ð3:15Þ

one recovers (3.12).
The vacuum character admits a smooth unflavoring limit,

ch⟶
b→1 ηðτÞ

ϑ4ð0Þ
: ð3:16Þ

Consequently, some of the flavored modular differential
equations reduce to the more familiar unflavored modular
differential equations when unflavoring. For example, the
weight-2 equation (3.11) reduces directly to�

Dð1Þq − E2

� −1
þ1

��
chðb ¼ 1Þ ¼ 0: ð3:17Þ

However, the weight-1 equation (3.9) does not reduce to a
nontrivial unflavored equation. Instead,

Dbch⟶
b→1

0; E1

�−1
b

�
ch⟶

b→1
0; ð3:18Þ

hence, its unflavoring limit is trivial.

B. Twisted sector

Besides the vacuum module in the untwisted sector, one
may also consider twisted modules of the βγ VOA. For our
purpose, we consider the 1

2
-twisted sector based on a twisted

vacuum j0i1
2
. The two fields expand in the following form:

βðzÞ ¼
X
n∈Z

βnz−n−
1
2; γðzÞ ¼

X
n∈Z

γnz−n−
1
2; ð3:19Þ

such that the twisted vacuum j0i1
2
is annihilated by γn∈Z≥0

,
βn∈Z>0

. In this sector, T and J still have integer moding;
however, their precise relations with modes of β, γ are
shifted. In particular [80],
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J0 ¼
X
k∈Z<0

γkβ−k þ
X
k∈Z≥0

β−kγk −
1

2
ð3:20Þ

and

L0 ¼ −
1

2

�X
k<0

ðk − 1Þβkγ−k þ
X
k≥0
ðk − 1Þγ−kβk

�
þ 1

2

�X
k<0

ðk − 1Þγkβ−k þ
X
k≥0
ðk − 1Þβ−kγk

�
þ 3

8
:

ð3:21Þ
The relevant charges are

β γ j0i1
2

L0 0 1 − 1
8

J0 −1 þ1 − 1
2
.

With these charges, the character of the twisted Fock
module built from j0i1

2
reads [80]

ch1
2
¼ q−

1
8b−

1
2trqL0− c

24bJ0

¼ q−
1
8b−

1
2q

1
24PE

�
q0b−1 þ q1b

1 − q

�
¼ −i

ηðτÞ
ϑ1ðbÞ

: ð3:22Þ

As before, one can insert the same null states discussed
above into the trace to produce flavored modular differ-
ential equations satisfied by the twisted character ch1

2
. The

only difference from the untwisted case is that now the
conformal weights of β, γ are integers, and therefore, all
En½−1b � should be replaced by En½þ1b �. For example,

0 ¼
�
Db þ E1

�þ1
b

��
ch1

2
; ð3:23Þ

0 ¼
�
Dð1Þq − E2

�þ1
b

��
ch1

2
; ð3:24Þ

0 ¼
�
D2

b − E2 þ E1

�þ1
b

�
Db − 2E2

�þ1
b

��
ch1

2
: ð3:25Þ

C. Unique character(s)

Now that the (twisted) characters are constrained by an
infinitely many (with only two independent) partial differ-
ential equations, it is natural to ask if there are additional
solutions. It turns out that the equations in the untwisted
and twisted sectors uniquely determine (up to a numerical
coefficient) the corresponding characters. For instance, the
weight-2 equation (3.11) in the untwisted sector is an
ordinary differential equation in q. Recall

E2

�−1
b

�
¼ 1

8π2
ϑ004ðbÞ
ϑ4ðbÞ

−
1

2
E2 ¼ Dð1Þq

�
1

3
ln

ϑ01ð0Þ
ϑ4ðbÞ3

�
; ð3:26Þ

and therefore, Eq. (3.11) can be solved by (as an analytic
function)

ch ¼ CðbÞ ηðτÞ
ϑ4ðbÞ

: ð3:27Þ

Finally, the weight-1 equation (3.9) further fixes CðbÞ to
be independent of b. Similar arguments show that the
twisted character is also uniquely fixed by the weight-1
and -2 equations. At the end of this section, we will see
that the weight-1 equation (3.9) is actually redundant, in
the sense that it can be generated from the weight-2
equation (3.11) through a modular transformation, and
(3.11) (or its twisted version) alone actually encodes all
the character information.

D. Modular properties of the equations

The coefficients of the unflavored modular differential
equations in [6,21–28] are modular forms with respect to
suitable modular groups. Consequently, the equations
transform covariantly under SLð2;ZÞ (or a subgroup). In
contrast, the coefficients of the flavored modular differ-
ential equations (3.9) and (3.11) are quasi-Jacobi forms,
and their modular properties are less straightforward. For
simplicity, we first look at the twisted sector. The simpler
equation is the weight-1 equation (3.9),�

Db þ E1

�þ1
b

��
ch ¼ 0: ð3:28Þ

Consider the naive S transformation that acts on the τ and b
parameter,

τ → −
1

τ
; b →

b
τ
: ð3:29Þ

The modular differential equation transforms nontrivially
and noncovariantly under S,

Db → τDb; E1

�
1

b

�
→ bþ τE1

�
1

b

�
⇒ Db þ E1

�
1

b

�
→ Db þ E1

�
1

b

�
þ b: ð3:30Þ

Even so, the S-transformed solution remains a solution: In
the case at hand, the S-transformed twisted character differs
from the original by a simple exponential factor,

ηðτÞ
ϑ1ðbÞ

→ ie−
iπb2
τ

ηðτÞ
ϑ1ðbÞ

: ð3:31Þ

This transformed twisted character is annihilated by the
transformed equation,
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�
τDbþ τE1

�
1

b

�
þ b

��
e−

iπb2
τ

ηðτÞ
ϑ1ðbÞ

�
¼ τ

�
Dbþ τE1

�
1

b

��
ηðτÞ
ϑ1ðbÞ

þ 1

2πi
τ
−2iπb

τ

ηðτÞ
ϑ1ðbÞ

þ b
ηðτÞ
ϑ1ðbÞ

¼ τ

�
Dbþ τE1

�
1

b

��
ηðτÞ
ϑ1ðbÞ

¼ 0: ð3:32Þ

Phrased differently, after stripping off the exponential
factor in the S-transformed character, the remaining object
is the solution to the original modular differential equation.
At the moment, this statement holds true trivially in the
current case (since the S transformation merely introduces a
simple factor).
A more systematic approach to deal with the modular

properties of flavored modular differential equations is to
introduce an additional fugacity that couples to the affine
level of the current J, in this case, k ¼ −1=2. Define the
y-extended character (using the same symbol)

ch ≔ trqL0− c
24ykbJ0 : ð3:33Þ

This is essentially the original index, since yk is merely a
constant that can be pulled out of the trace.
We further define the SLð2;ZÞ transformation of the

fugacities ðy; b; τÞ in the following way [81]:

ðy;b; τÞ⟶S
�
y−

b2

τ
;
b
τ
;−

1

τ

�
; ðy;b; τÞ⟶T ðy;b; τþ 1Þ:

ð3:34Þ

In particular, under the S transformation, the derivatives
transform as

Dð1Þq → Dð1Þq0 ¼ τ2Dð1Þq þ bτDb þ b2Dy;

Db → Db0 ¼ τDb þ 2bDy; ð3:35Þ

where Dy ≔ y∂y; Dych ¼ kch: ð3:36Þ

Therefore, the weight-1 modular differential equation
transforms under S as

Db þ E1

�þ1
b

�
⟶
S
τDb þ 2bDy þ τE1

�þ1
b

�
þ b

¼ τ

�
Db þ E1

�þ1
b

��
; ð3:37Þ

showing that the weight-1 modular differential equation
transforms covariantly once we incorporate the additional y
fugacity. Here we have used the fact that Dych ¼
kch ¼ − 1

2
ch.

The transformation of the weight-2 equation can be
similarly analyzed,

Dð1Þq − E2

�þ1
b

�
⟶
S
τ2Dð1Þq þ bτDb þ b2Dy − τ2E2

�þ1
b

�
þ bτE1

�þ1
b

�
þ b2

2

¼ τ2
�
Dð1Þq − E2

�þ1
b

��
þ bτ

�
Db þ E1

�þ1
b

��
: ð3:38Þ

In going to the second line we have applied Dy ¼ k ¼ − 1
2
.

Clearly, the weight-2 equation transforms almost cova-
riantly under S, up to a term proportional to the weight-1
equation.
The analysis of the equations in the untwisted sector is

similar but slightly more involved, where the relevant
modular group is Γ0ð2Þ. Note that under STS ∈ Γ0ð2Þ,

E1

�−1
b

�
⟶
STS

τE1

�−1
b

�
þ b − E1

�−1
b

�
: ð3:39Þ

Collecting everything, we find covariance for the weight-1
equation,

Db þ E1

�−1
b

�
→ ðτ − 1Þ

�
Db þ E1

�−1
b

��
; ð3:40Þ

and almost covariance for the weight-2 equation,

Dð1Þq −E2

�−1
b

�
⟶
STS ðτ−1Þb

�
DbþE1

�−1
b

��
þðτ−1Þ2

τ

�
τ

�
Dð1Þq −E2

�−1
b

��
þb

�
DbþE1

�−1
b

���
:

ð3:41Þ

Again, the weight-1 equation appears on the right-hand side
of the transformed weight-2 equation.
From the earlier discussion, the weight-1 and weight-2

equations are enough to determine the unique character
of the βγ system in either the twisted or untwisted sector.
Now we also learn that the weight-2 equation alone
generates the weight-1 equation through the modular
transformation S or STS. Therefore, it appears that the
weight-2 flavored equation, which reflects the nilpotency of
T up to C2ðβγÞ, holds all the information of the characters
of the βγ system.

IV. CLASS S THEORIES OF TYPE A1

Each A1 theory T ¼ T g;n is associated with a vertex
operator algebra VðT Þ that consists of the Schur operators
on the VOA plane R2

x3x4 . The fact that a vortex defect in
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Sec. II C preserves the supercharges Q̃2 _−; S̃
2 _−; Q1

−; S−1
implies that the Schur index in their presence equals the
character of a nontrivial VðT Þmodule [13]. As discussed in
Sec. II D and the example in Sec. III, null states in VðT Þ
may lead to (flavored) modular differential equations that
the Schur index must satisfy. By the same logic, the
character of any module M of VðT Þ must also satisfy
the same differential equations (or a twisted version of them
in the case of a twisted module).
It is therefore natural to expect that the defect indices

mentioned in Sec. II C also share such a feature, since they
are supposed to be module characters of VðT Þ. We will
show that this is indeed the case by examining several
simple examples by studying the (flavored) modular differ-
ential equations the Schur indices satisfy and looking for
their common solutions.

A. T 0;3

The trinion theory T 0;3 is the simplest A1 theory of class
S, which consists of four free hypermultiplets. The asso-
ciated vertex operator algebra is just the product of four βγ
systems [1]. Since we have discussed in detail the βγ
system in Sec. III, here we will be brief. The Schur index of
the A1 trinion theory is given by

I0;3 ¼
Y
��

ηðτÞ
ϑ4ðb1� b2� b3Þ

¼ 1

2i
ηðτÞQ

3
i¼1 ϑ1ð2biÞ

X
αi¼�

�Y3
i¼1

αi

�
E1

� −1Q
3
i¼1 b

αi
i

�
: ð4:1Þ

It is straightforward to find the following modular differ-
ential equations for the Schur index I0;3:

�
Dbi þ

X
α;β¼�

E1

� −1
bibαj b

β
k

��
I0;3 ¼ 0; i ≠ j ≠ k; ð4:2Þ

�
Dð1Þq −

1

2

X
αi¼�

E2

� −1Q
3
i¼1 b

αi
i

��
I0;3 ¼ 0: ð4:3Þ

Equations of higher weights can be similarly deduced.
Note that the second equation (reflecting the nilpotency of
the stress tensor) has an unflavoring limit bi → 1 which
reproduces the first order equation in [6], while the weight-
1 equation does not have a nontrivial limit.
The vortex defects labeled by k have indices given by a

simple formula (2.19),

Idefect
0;3 ðkÞ ¼

ðkþ 1ÞηðτÞ
2
Q

3
i¼1 ϑið2biÞ

X
αi¼�

�Y3
i¼1

αi

�

× E1

� −1Q
3
i¼1 b

αi
i

�
¼ ðkþ 1ÞI0;3; k ¼ even;

ð4:4Þ

Idefect
0;3 ðkÞ ¼

−iðkþ 1ÞηðτÞ
2
Q

3
i¼1 ϑið2biÞ

X
αi¼�

�Y3
i¼1

αi

�

× E1

� þ1Q
3
i¼1 b

αi
i

�
; k ¼ odd;…: ð4:5Þ

The vortex defects labeled by even k ∈ N have indices
identical to I0;3 up to some numerical factors, and there-
fore, they all satisfy exactly the same modular equations.
For odd k, the above defect indices can be equivalently
rewritten as

Idefectðk ¼ oddÞ ∼
Y
��

ηðτÞ
ϑ1ðb1 � b2 � b3Þ

: ð4:6Þ

Obviously, this corresponds to nothing but the (product of)
1
2
-twisted module of the four βγ systems. Immediately, one
derives the modular differential equations that they satisfy,
for instance,�
Dbi þ

X
α;β¼�

E1

� þ1
bibαj b

β
k

��
I0;3 ¼ 0; i ≠ j ≠ k; ð4:7Þ

�
Dð1Þq −

1

2

X
αi¼�

E2

� þ1Q
3
i¼1 b

αi
i

��
I0;3 ¼ 0: ð4:8Þ

Similar to the discussion in Sec. III, the weight-2
modular differential equation (4.3) uniquely determines
the relevant characters up to numerical factors. Recall again
that

E2

�−1
b

�
¼ 1

8π2
ϑ004ðbÞ
ϑ4ðbÞ

−
1

2
E2 ¼ q∂q

�
1

3
ln

ϑ01ð0Þ
ϑ4ðbÞ3

�
; ð4:9Þ

and therefore, by the weight-2 equation (4.3)

I0;3 ¼ Cðb1; b2; b3Þ
Y
��

ηðτÞ
ϑ4ðb1 � b2 � b3Þ

: ð4:10Þ

The weight-2 equation (4.2) further fixes C to be constant
in bi. Similarly, the solution in the twisted sector is also
uniquely fixed to be

Idefectðk¼oddÞ
0;3 ¼

Y
��

ηðτÞ
ϑ1ðb1 � b2 � b3Þ

: ð4:11Þ
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B. SUð2Þ theory with four flavors

The theory T 0;4 describes an SUð2Þ theory coupled to
NF ¼ 4 fundamental hypermultiplets [42]. The flavor
symmetry of the theory is SOð8Þ ¼ SOð2NFÞ that rotates
the eight half-hypermultiplets Qi

a transforming in the
(pseudo-real) fundamental representation of the SUð2Þg
gauge group, where i ¼ 1;…; 8 is the SOð8Þ vector
indices, and a ¼ 1, 2 is the SUð2Þg fundamental indices.
The moment map M associated with the SOð8Þ flavor
symmetry transforms under the adjoint adj of SOð8Þ and
is a gauge-invariant composite of the scalars in the eight
half-hypermultiplets,

Mij ¼ Qi
aQaj: ð4:12Þ

This simple structure of Mij implies that within the Higgs
branch chiral ring [82],

ðM ⊗ MÞ35s ¼ ðM ⊗ MÞ35c ¼ 0: ð4:13Þ

Moreover, the N ¼ 1 superpotential of the N ¼ 2 theory
imposes

ðM ⊗ MÞ35v ¼ ðM ⊗ MÞ1 ¼ 0: ð4:14Þ

Note that symm2 adj ¼ 35v ⊕ 35s ⊕ 35c ⊕ 1 ⊕ 2adj,
and the above four relations give the Joseph ideal.
The associated VOA of T 0;4 is given by the affine

algebra csoð8Þ−2 with central charge c ¼ −14, whose
generators descend from the moment map operator in
the 4D theory. The algebra csoð8Þ−2 is a member of the
affine Lie algebras associated with the Deligne-Cvitanovic
exceptional series

a1⊂a2⊂g2⊂d4⊂ f4⊂ e6⊂ e7⊂ e8; k¼−
h∨
6
−1: ð4:15Þ

This set of current algebras are quasilisse [7], and their
(unflavored) characters satisfy a (unflavored) modular
differential equation of the form

ðDð2Þq − 5ðh∨ þ 1Þðh∨ − 1ÞE4ÞI ¼ 0; ð4:16Þ

where h∨ denotes the dual Coxeter number. For csoð8Þ−2,
this equation reads

ðDð2Þq − 175E4ÞI0;4 ¼ 0: ð4:17Þ

It is known thatcsoð8Þ−2 with the central charge c ¼ −14 ¼
−4 − 2 × 5 is not rational [36]. Therefore, one would
expect its representation theory to be more involved than
rational VOAs.
The stress tensor T of csoð8Þ−2 is a composite given by

the Sugawara construction [1],

T ¼ 1

2ðk2d þ h∨Þ
X
A;B

KABðJAJBÞ; ð4:18Þ

where KAB is the inverse of the Killing form
KAB ≔ KðJA; JBÞ. This equation corresponds to the
Joseph ideal relation in the trivial representation in
(4.14), since T is not in the Higgs branch chiral ring.

1. The equations in the untwisted sector

The Joseph ideal relations (4.13) and (4.14) descend to
nontrivial null states N a in the associated VOA csoð8Þ−2
and can be inserted into the supertrace str oðN ÞqL0bf. Null
states charged under the Cartan of SOð8Þ do not have
interesting outcomes; however, those uncharged can lead to
nontrivial modular differential equations.
As a warm-up, let us first consider a simpler partially

unflavored limit where all bi → b. In this limit, the index
corresponds to the supertrace over the vacuum module

I0;4 ¼ str bh1þh2þh3þh4qL0− c
24

¼ ηðτÞ2
ϑ1ð2bÞ4

�
3E2 − 4E2

�
1

b2

�
þ E2

�
1

b4

��
; ð4:19Þ

where hI are the Cartan generators of the four SUð2Þ flavor
groups associated with the four punctures.
The simplest null state associated with the Joseph ideal is

the Sugawara construction T −
P

a;b KabðJaJbÞ ¼ 0. Upon
inserting into the supertrace, the equation translates into a
weight-2 modular differential equation

0 ¼
�
Dð1Þq −

1

16
D2

b −
1

2

�
E1

�
1

b2

�
þ E1

�
1

b4

��
Db

þ
�
E2 þ 4E2

�
1

b2

�
þ 2E2

�
1

b4

���
I0;4:

The remaining three relations corresponding to 35v;s;c each
lead to three uncharged null states; however, in the partial
unflavoring limit they do not give rise to any nontrivial
modular differential equation.
At weight-3, there are new null states besides the

descendants of the above Joseph relations. In the partial
unflavoring limit, they give rise to three modular differ-
ential equations, for example,

�
Dð1Þq Db þ

�
E2 − 4E2

�
1

b2

�
− 2E2

�
1

b4

��
Db

þ 16

�
4E3

�
1

b2

�
þ E3

�
1

b4

���
I0;4 ¼ 0: ð4:20Þ

Finally, at weight-4 there is
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�
Dð2Þq þ

�
4E3

�
1

b2

�
þ E3

�
1

b4

��
Db −

�
96E4

�
1

b2

�
þ 12E4

�
1

b4

�
þ 67E4

��
I0;4 ¼ 0: ð4:21Þ

All the above partially unflavored modular differential equations can be fully refined to depend on all four generic flavor
SUð2Þ fugacities bi, including additional equations from the 35v;s;c Joseph relations which were previously unavailable in
the partially unflavoring limit [83].9 For example, the Sugawara condition gives rise to a weight-2 fully flavored modular
differential equation,

0 ¼
�
Dð1Þq −

1

4
ðDb3Db2 þDb4Db2 þDb4Db3 þD2

b4
Þ − 1

2
E1

�
1
b1

b2b3b4

�
ðDb1 −Db2 −Db3 −Db4Þ

−
1

2
E1

�
1

b1b2b3b4

�
ðDb1 þDb2 þDb3 þDb4Þ − E1

�
1

b24

�
Db4

þ
�
E2 þ 2E2

�
1
b1

b2b3b4

�
þ 2E2

�
1

b1b2b3b4

�
þ 2E2

�
1

b24

���
I0;4: ð4:22Þ

For later convenience, we denote the differential operator acting on the index as DSug.
Additional Joseph ideal relations corresponding to 35v;s;c lead to in total nine equations [83]. Three null states at weight-2

are associated with the 35v relations. They are

J½1j�J½1j� þ J½5j�J½5j� −
1

4
J½mn�J½mn�; ð4:23Þ

J½2j�J½2j� þ J½6j�J½6j� −
1

4
J½mn�J½mn�; ð4:24Þ

J½3j�J½3j� þ J½7j�J½7j� −
1

4
J½mn�J½mn�: ð4:25Þ

The three states lead to the following flavored modular differential equations:

X2
i¼1

�
1

4
D2

bi
þ E1

�
1

b2i

�
Dbi − 2E2

�
1

b2i

��
I0;4 ¼

X4
i¼3

�
1

4
D2

bi
þ E1

�
1

b2i

�
Dbi − 2E2

�
1

b2i

��
I0;4

and

1

2
Db1Db2 þ

X2
j¼1

�
þE2

�
1

b−2j b1b2b3b4

�
− E1

�
1

b−2j b1b2b3b4

�X4
i¼1
ð−1ÞδijDbi

�
ð4:26Þ

¼ 1

2
Db3Db4 þ

X4
j¼3

�
þE2

�
1

b−2j b1b2b3b4

�
− E1

�
1

b−2j b1b2b3b4

�X4
i¼1
ð−1ÞδijDbi

�
; ð4:27Þ

as well as

1

2
Db1Db2 þ

X2
j¼1

�
þE2

�
1

b−2j b1b2b−13 b4

�
− E1

�
1

b−2j b1b2b−13 b4

�X4
i¼1
ð−1Þδijþδi3Dbi

�
ð4:28Þ

¼ −
1

2
Db3Db4 þ

X4
j¼3

�
þE2

�
1

b−2j b1b2b−13 b4

�
− E1

�
1

b−2j b1b2b−13 b4

�X4
i¼1
ð−1Þδijþδi3Dbi

�
: ð4:29Þ

9We thank Wolfger Peelaers for sharing his unpublished results on these equations.

HAOCONG ZHENG, YIWEN PAN, and YUFAN WANG PHYS. REV. D 106, 105020 (2022)

105020-14



From the 35s and 35c relations there are also six other similar equations, For example, from the null state
J½12�J½56� − J½15�J½26� þ J½25�J½16�, it follows that�

D2
b1
þ 4E1

�
1

b21

�
Db1 − 8E2

�
1

b21

��
I0;4 ¼

�
D2

b2
þ 4E1

�
1

b22

�
Db2 − 8E2

�
1

b22

��
I0;4: ð4:30Þ

It will be convenient to reorganize the nine equations from the three 35’s in the following more compact form:

0 ¼
X
i<j

aijDbiDbjI0;4 þ
X4
i¼1

ai

�
D2

bi
þ 4E1

�
1

b2i

�
Dbi − 8E2

�
1

b2i

��
I0;4

þ
X
αi¼�

�X
i<j

αiαjaij

��
−E2

�
1Q

4
k¼1 b

αk
k

�
þ 1

4
E1

�
1Q

4
k¼1 b

αk
k

�X4
i¼1

αiDbi

�
I0;4: ð4:31Þ

Here, ai and ai;j are nine arbitrary constants with constraint a1 þ a2 þ a3 þ a4 ¼ 0. Let us denote the differential operator
acting on I0;4 as D35.
At weight-3, there are four independent modular differential equations, where the index is annihilated by the differential

operator

X4
i¼1

ci

�
Dð1Þq Dbi þ E2Dbi − 2E2

�
1

b2i

�
Dbi þ 8E3

�
1

b2i

��
ð4:32Þ

−
1

4

X
αi¼�

E2

�
1Q

4
k¼1 b

αk
k

�X4
i;j¼1

αiαjciDbj þ 2
X
αi¼�

X4
i¼1

αiciE3

�
1Q

4
k¼1 b

αk
k

�
: ð4:33Þ

Here, ci are four arbitrary constants. Finally, at weight-4 there is one equation

0 ¼
�
Dð2Þq − 31E4 þ

1

2

X
αi¼�

E3

� þ1Q
4
i¼1 b

αi
i

��X4
i¼1

αiDbi

�
þ 2

X4
i¼1

E3

�þ1
b2i

�
Dbi

− 12
X4
i¼1

E4

�þ1
b2i

�
− 6

X
αi¼�

E4

� þ1Q
i
bαii

��
I0;4: ð4:34Þ

In the bi → 1 limit, Eq. (4.34) reduces to the unflavored
equation (4.17) where one sends Eodd½�11 � → 0 correspond-

ing to the nilpotency of the stress tensor T incsoð8Þ−2 [6,7].
2. The solutions and modular property

It is natural to ask if there are additional solutions to all
these modular differential equations besides the flavored
Schur index. We begin by noting that the second order
unflavored equation (4.17) has an additional solution which
is logarithmic [6,7,35,36]. This can be seen from the
integral spacing of the indicial roots for the anzatz
I ¼ qαð1þ…Þ,

α2 −
α

6
−

35

144
¼ 0 ⇒ α ¼ −

5

12
;
7

12
: ð4:35Þ

Indeed, the unflavored index can be written as [7,34]

I0;4ðb ¼ 1Þ ¼ 3
q∂qE4

ηðτÞ10 : ð4:36Þ

Under S transformation,

SI0;4 ¼
1

960π7ηðτÞ13
�
5ϑð3Þ1 ð0Þ2
ηðτÞ3 − 6πϑð5Þð0Þ1 þ 5iτϑð3Þ1 ð0Þ3

16π2ηðτÞ6

−
13iτϑð3Þ1 ð0Þϑð5Þð0Þ1

16πηðτÞ3 þ 3

8
iτϑð7Þ1 ð0Þ

�
; ð4:37Þ

which is precisely the additional logarithmic solution of the
form if expanded in q series,

q−
5
12ðaþ…Þ þ q

7
12ðlog qÞða0 þ…Þ: ð4:38Þ

The fact that the modular transformation of a solution leads
to another solution is guaranteed by the covariance of the
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unflavored modular differential equation under SLð2;ZÞ
(or a suitable subgroup).
Next we turn to the fully flavored case and consider

additional solutions to all the equations of weight-2, -3,
and -4 discussed above. Similar to the unflavored case, we
will see that there is also a logarithmic solution that arises
from the S transformations of the y-extended Schur index
given by SI0;4. Here, following the discussion in Sec. III,
we assume a y extension for I0;4 by a factor

Q
4
i¼1 y

ki
i ,

where ki ¼ −2 being the critical affine level of each ŝuð2Þ

affine subalgebra. The presence of a logarithmic solution
can be seen by studying the modular properties of the
modular differential equations. First of all, all ten of the
weight-2 equations are covariant separately under the S
transformation,

Sðweight-2Þ ¼ τ2ðweight-2Þ: ð4:39Þ

Here we apply the transformation of the derivatives

DðnÞq →

�
τ2∂ð2n−2Þ þ τ

X
i

biDbi þ b2i ki − ð2n − 2Þ τ

2πi

�
∘…

∘
�
τ2∂ð2Þ þ τ

X
i

biDbi þ b2i ki − 2
τ

2πi

�
∘
�
τ2∂ð0Þ þ τ

X
i

biDbi þ b2i ki

�
; ð4:40Þ

and Dbi → τDbi þ 2biki. The Eisenstein series transforms under S following (A24).
The weight-3 equations (4.32) are almost covariant under S transformation up to combinations of the weight-2 equations.

For example, the weight-3 equation with c1 ¼ 1, c2 ¼ c3 ¼ c4 ¼ 0 transforms under S as

Sðweight-3Þ ¼ τ3ðweight-3Þ − τ2b1ð4DSug þD35ða1i ¼ 0; a23 ¼ a24 ¼ a34 ¼ 1; a1 ¼ −1; a2 ¼ a3 ¼ 0ÞÞ
− τ2b2ðD35ða12 ¼ −1; all other a0s ¼ 0ÞÞ − τ2b3ðD35ða13 ¼ −1; all other a0s ¼ 0ÞÞ
− τ2b4ðD35ða14 ¼ −1; all other a0s ¼ 0ÞÞ: ð4:41Þ

Finally, the weight-4 equation is almost covariant under S transformation, up to combinations of weight-2 and weight-3
equations,

Sðweight-4Þ ¼ τ4ðweight-4Þ ð4:42Þ

þ τ3
X4
i¼1
ðweight-3Þðci ¼ 2; cj≠i ¼ 0Þ

þ τ2
X3
i¼1

b2i ð−4DSug þD35ða23 ¼ a24 ¼ a34 ¼ −1; ai ¼ 1; other a ¼ 0ÞÞ

þ τ2b24ð−4DSug þD35ða23 ¼ a24 ¼ a34 ¼ −1; other a ¼ 0ÞÞ

þ τ2
X4
i<j

bibjðD35ðaij ¼ 2; ai ¼ 1; other a ¼ 0ÞÞ: ð4:43Þ

The (almost) covariance implies that the S transformation
of a solution must also be a solution which is logarithmic
in this case, and therefore, it is potentially a logarithmic
module character of csoð8Þ−2. As was discussed in Sec. II
C, SI0;4 can be interpreted as a type of surface defect
index.
There are an additional four nonlogarithmic solutions to

all of the above equations [83]. Recall that the fully
flavored Schur index can be computed by the contour
integral

I0;4 ¼ −
1

2

I
jaj¼1

da
2πia

ϑ1ð2aÞϑ1ð−2aÞ
Y4
j¼1

Y
�

ηðτÞ
ϑ4ð�aþmjÞ

≔
I

da
2πia

ZðaÞ; ð4:44Þ

where mj ¼ e2πimj are related to the standard flavor
fugacities in the class-S description,

m1¼ b1b2; m2¼
b1
b2

; m3¼ b3b4; m4¼
b3
b4

: ð4:45Þ
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The integrand ZðaÞ has four residues,

Rj¼1;…;4 ≔ Res
a→mjq

1
2

ZðaÞ ¼ i
2

ϑ1ð2mjÞ
ηðτÞ

×
Y
l≠j

ηðτÞ
ϑ1ðmj þmlÞ

ηðτÞ
ϑ1ðmj −mlÞ

: ð4:46Þ

These residues also appear in the modular transformation
of I0;4,

SI0;4 ¼ iτI0;4 þ 2i
X4
j¼1

mjRj;

× ðyi; bi; τÞ⟶S
�
yi −

b2i
τ
;
bi
τ
;−

1

τ

�
: ð4:47Þ

From the discussion in Sec. II C, Rj can be interpreted as
indices of Gukov-Witten defects with specific singular
boundary behavior at the defect plane.
These four residues Rj are actually additional linear-

independent nonlogarithmic solutions to the modular differ-
ential equations. They are conjectured to be the characters of
the four highest-weight modules of csoð8Þ−2, whose (finite)
highest weights are given by λ ¼ wðω1 þ ω3 þ ω4Þ − ρ,
with Weyl reflections w ¼ 1; s1;3;4 [4,34]. Given that Rj are
just simple ratios of ϑi and ηðτÞ, they can also be viewed as
free field characters of four bcβγ systems and provide new
free field realization of csoð8Þ−2 [84]. Unlike the index I0;4

and SI0;4, the residues Rj do not have a smooth unflavoring
limit, and therefore, flavoring is necessary to probe their
existence.
It can be shown that the Rj and I0;4 are the only

nonlogarithmic solutions to all the weight-2, -3, and -4
equations that we have discussed, by solving them through
an anzatz I ¼ qh

P
n anðb1;…; bnÞqn [83]. It is therefore

natural to conjecture, with the logarithmic solution SI0;4,
that we have found all the (untwisted) module characters
of csoð8Þ−2,

Nonlogarithmic Logarithmic

I0;4 Rj SI0;4

and the tools required to determine them were simply the
flavored modular differential equations (4.22), (4.31),
(4.32), and (4.34).

In fact, the modular differential equation (4.34) alone,
which corresponds to the nilpotency of the stress tensor T,
actually generates all the equations of lower weights by
modular transformations. Subsequently, they together deter-
mine all the allowed characters ofcsoð8Þ−2. So it appears that
all the information about the untwisted characters ofcsoð8Þ−2 is encoded in one single equation (4.34).

The above solutions transform nicely under modular
transformations. First of all, the residues Rj transform in the
one-dimensional representation of SLð2;ZÞ,

SRj ¼ iRj; TRj ¼ e
7πii
6 Rj: ð4:48Þ

They satisfy S2 ¼ ðSTÞ3 ¼ −id.
On the other hand, I0;4 and SI0;4 transform in a two-

dimensional representation of SLð2;ZÞ. Denote ch0 ≔ I0;4,
ch1 ≔ SI0;4. Then, we have in this basis

S ¼
�
0 1

1 0

�
; T ¼

�
e
7πi
6 0

e−
πi
3 e−

5πi
6

�
: ð4:49Þ

Here we use the convention that gchi ¼
P

j¼0;1 gijchj for
g ∈ SLð2;ZÞ. The two matrices satisfy ðSTÞ3 ¼ S2 ¼ 1, as
they should. The two characters ch0;1 form an SLð2;ZÞ
invariant partition function

Z ¼ nðch0ch1 þ ch1ch0Þ ≔
X
i;j¼0;1

Mijchichj; ð4:50Þ

where n denotes possible multiplicity. The S matrix is
symmetric and unitary; however, it does not give rise to
sensible fusion coefficients since S01 ¼ 0. We attempt to fix
this by considering a different basis

ch00 ≔ ch0; ch01 ≔ ach0þ bch1; ch0i ¼
X
j¼0;1

Uijchj:

ð4:51Þ

Doing so, the SLð2;ZÞ invariant partition function reads

Z¼
X
i;j

M0ijch
0
ich
0
j¼

X
k;l

�X
i;j

U−1
ik U

−1
jlMjk

�
ch0kch

0
l ð4:52Þ

and

gch0j¼
X
l

�X
j;k

UijgjkU−1
kl

�
ch0l; ∀ g∈ SLð2;ZÞ: ð4:53Þ

With the S0 matrix in the new basis, we tentatively define

Nk
ij ¼

X
l

S0ilS
0
jlS
0
lk

S0l
; ð4:54Þ

and require Nk
ij to be non-negative integers and M0 to be an

integral. The minimal solution to such a problem is given by

U00 ¼ 1; U01 ¼ 0; U10 ¼ 1; U11 ¼�1; ð4:55Þ

such that
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M0 ¼ ∓
�

2 −1
−1 0

�
; ½ch00� × ½ch0i� ¼ ½ch0i�;

× ½ch02� × ½ch02� ¼ ½ch02�: ð4:56Þ

However, it is unclear if such a fusion algebra bears any
sensible mathematical or physical meaning.

3. The twisted sector

In the case at hand, ⌈ nþ2g−2
2

⌉ ¼ 1, and therefore, among
all defect indices, there is only one independent index with

even k and one with odd k. For those with odd vorticity, we
focus on Idefect

0;4 ðk ¼ 1Þ,

Idefect
0;4 ðk¼ 1Þ ¼ ηðτÞ2Q

4
i¼1 ϑ1ð2biÞ

X
α⃗¼�

�Y4
i¼1

αi

�
E2

� −1Q
4
i¼1 b

αi
i

�
:

ð4:57Þ

The defect index Idefect
0;4 ðk ¼ 1Þ does not satisfy the

equations discussed in the previous section. However, they
do satisfy equations that belong to the twisted sector. To
begin, the defect index has a smooth unflavoring limit,

Idefect
0;4 ðk ¼ 1; bi ¼ 1Þ ¼ ηðτÞ2

8π2ϑ4ð0Þ3ϑ01ð0Þ4
½6ϑ004ð0Þ3 − 7ϑ4ð0Þϑ004ð0Þϑð4Þ4 ð0Þ þ ϑ4ð0Þ2ϑð6Þð0Þ4 �:

It is easy to check that it satisfies a weight-4 equation

0 ¼
�
Dð2Þq − 79E4 − 96E4

�−1
1

��
Idefect
0;4 ðk ¼ 1; b ¼ 1Þ: ð4:58Þ

Apparently, this is the twisted version of the unflavored equation (4.17).
Next we consider the fully flavored defect index. As discussed in Sec. II C, the exact form (2.19) suggests that the

multifundamentals in the VOA have half-integer conformal weight. One can insert all the weight-2, -3, and -4 null states that
we mentioned above into the supertrace that computes the twisted module character Idefect

0;4 ðk ¼ 1Þ and turn them into
flavored modular differential equations. The equations will be almost identical to the ones in the untwisted sector, except
that all the Eisenstein series En½þ1… � associated with the multifundamentals should be modified to En½−1…�. Therefore, the
Sugawara condition leads to an equation

0 ¼
�
Dð1Þq −

1

4
ðDb3Db2 þDb4Db2 þDb4Db3 þD2

b4
Þ − 1

2
E1

� −1
b1

b2b3b4

�
ðDb1 −Db2 −Db3 −Db4Þ

−
1

2
E1

� −1
b1b2b3b4

�
ðDb1 þDb2 þDb3 þDb4Þ − E1

�
1

b24

�
Db4

þ
�
E2 þ 2E2

� −1
b1

b2b3b4

�
þ 2E2

� −1
b1b2b3b4

�
þ 2E2

�
1

b24

���
Idefect
0;4 ð1Þ; ð4:59Þ

while all the nulls from the three 35 relations give rise to

0 ¼
X
i<j

aijDbiDbjI0;4 þ
X4
i¼1

ai

�
D2

bi
þ 4E1

�
1

b2i

�
Dbi − 8E2

�
1

b2i

��
I0;4

þ
X
αi¼�

�X
i<j

αiαjaij

��
−E2

� −1Q
4
k¼1 b

αk
k

�
þ 1

4
E1

� −1Q
4
k¼1 b

αk
k

�X4
i¼1

αiDbi

�
Idefect
0;4 ð1Þ: ð4:60Þ

Higher-weight equations can be similarly obtained. These equations are almost covariant under STS transformations, and
therefore, STS transformation of the defect index Idefect

0;4 ðk ¼ 1Þ provides a logarithmic solution to this set of equations.
There may be additional nonlogarithmic solutions that resemble the residues/free field characters Rj; however, we leave
their existence to future study.
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C. N = 4 SUð2Þ theory
The N ¼ 4 theory with an SUð2Þ gauge group has an

SUð2Þf flavor symmetry. The corresponding moment map
operator M transforming in the adjoint of SUð2Þf satisfies
the Joseph relation in the Higgs branch chiral ring,

ðM ⊗ MÞ1 ¼ 0: ð4:61Þ

Additional relations with the Hall-Littlewood chiral ring
operators ω; ω̃ also exist,

ðM ⊗ ωÞ2 ¼ ðM ⊗ ω̃Þ2 ¼ ω ⊗ ω ¼ ω̃ ⊗ ω̃ ¼ 0: ð4:62Þ

The N ¼ 4 theory with SUð2Þ gauge group has the
small N ¼ 4 superconformal algebra VN¼4 as its asso-
ciated VOA, with the central charge c ¼ −9. The SUð2Þ
flavor symmetry leads to an ŝuð2Þk2d¼−3=2 subalgebra
with generators JA. The Sugawara stress tensor TSug ¼

1
2ðk2dþh∨Þ

P
A;B KABðJAJBÞ equals the full stress tensor T of

VN¼4. Since the stress tensor descends from 4D outside the
Higgs branch chiral ring, the Sugawara construction
reflects the aforementioned Joseph relation. The above
Hall-Littlewood chiral ring relations are also reflected by
four null states in the VOA at conformal weight 5=3 and 3
[6], which are charged under the Cartan of SUð2Þf . There
is an additional neutral null state (with A ¼ 3) at conformal
weight-3,

N A
3 ¼ ðσAα _βGα

−3=2G̃
_β
−3=2 þ 2fABCJB−2J

C
−1

þ 2JA−3 − 2L−2JA−1Þj0i: ð4:63Þ

The stress tensor T is outside of the chiral ring. As
analyzed in [6], it must be nilpotent up to terms in the
subalgebra C2ðVN¼4Þ. This is concretely realized by a null
at conformal weight-4,

N 4 ¼
�
ðL−2Þ2 þ ϵαβðG̃α

−5=2G
β
−3=2 −Gα

−5=2G̃
β
−3=2Þ

− KABJA−2J
B
−2 −

1

2
L−4

�
j0i ð4:64Þ

corresponding to a relation in the Higgs branch,

ðTTÞ ∼ ðKABJAJBÞ2 ¼ 0: ð4:65Þ

Now we turn to the modular differential equations that
follow from the null states. The Schur index of the N ¼ 4
theory is given by the simple expression

IN¼4 ¼ trð−1ÞFqL0− c
24bJ0 ¼ 1

2π

ϑ04ðbÞ
ϑ1ð2bÞ

¼ iϑ4ðbÞ
ϑ1ð2bÞ

E1

�−1
b

�
:

ð4:66Þ

The factor in front of the Eisenstein series can be inter-
preted as a character of a bcβγ system [17,85],

Ibcβγ ≔
iϑ4ðbÞ
ϑ1ð2bÞ

: ð4:67Þ

On the other hand, the Schur index of theN ¼ 4 theory is a
simple contour integral

IN¼4 ¼
1

2

I
da
2πia

ηðτÞ3
ϑ4ðbÞ

Y
�

ϑ1ð�aÞ
ϑ4ð�aþ bÞ ≔

I
da
2πia

ZðaÞ:

ð4:68Þ

Character Ibcβγ coincides with the residue of the integrand

Resa→bþτ
2
ZðaÞ ∼ Ibcβγ; ð4:69Þ

and can be viewed physically as related to the Schur index
in the presence of a Gukov-Witten surface defect in the
N ¼ 4 theory.
Various null states above can be inserted into the trace,

leading to nontrivial modular differential equations. The
Sugawara construction 0 ¼ T − TSug is the simplest exam-
ple, giving a modular weight-2 equation [17,83],�
Dð1Þq −

1

2ðkþ h∨Þ
�
1

2
D2

b þ kE2 þ 2kE2

�
1

b2

�
þ 2E1

�
1

b2

�
Db

��
IN¼4 ¼ 0: ð4:70Þ

Also, the weight-3 and weight-4 null states N A¼3
3 , N 4

lead to

0¼
�
Dð1Þq DbþE1

�−1
b

�
Dð1Þq − 3E3

�−1
b

�
þ 6E3

�
1

b2

�
þ
�
E2þE2

�−1
b

�
− 2E2

�
1

b2

��
Db

�
IN¼4 ¼ 0 ð4:71Þ

and

0¼
�
Dð2Þq þc2d

2
E4

�
IN¼4

þ
�
−2E2

�−1
b

�
Dð1Þq −4E3

�−1
b

�
Dbþ18E4

�−1
b

��
IN¼4

þ
�
3k2dE4þ2E3

�
1

b2

�
Db−9E4

�
1

b2

��
IN¼4: ð4:72Þ

There are additional solutions to the above three modular
differential equations. First, we recall that in the unflavor-
ing limit, the Schur index is given by
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IN¼4ðb ¼ 1Þ ¼ yk

4π

ϑ004ð0Þ
ϑ01ð0Þ

; ð4:73Þ

and it satisfies a Γ0ð2Þ-modular equation following from
the null state (4.64),�
Dð2Þq − 18E4 − 2E2

�−1
1

�
Dð1Þq þ 18E4

�−1
1

��
IN¼4 ¼ 0:

ð4:74Þ
This equation reflects the nilpotency of the stress tensor,
and it is also the unflavoring limit of (4.72), where

E3

��1
b2

�
⟶
b→1

0; DbI⟶
b→1

0: ð4:75Þ

The corresponding indicial equation predicts α ¼ −1=8
and α ¼ 3=8 for the standard anzatz I ¼ qα

P
n anq

n=2.
The half-integer spacing between α’s implies that among
the two linear-independent solutions, one is logarithmic of
the form

q−1=8
X
n

anqn=2 þ q3=8 log q
X
n

a0nqn=2: ð4:76Þ

Such a logarithmic solution is given by the STS trans-
formation of the unflavored Schur index,

I log ¼ −
i
2
yk

ϑ4ð0Þ
ϑ01ð0Þ

þ ð1 − τÞIN¼4ðb ¼ 1Þ: ð4:77Þ

When flavored, there are three equations (4.70)–(4.72) to
be concerned with. One can assume an anzatz for non-
logarithmic solutions of the form

I ¼ qα
X
n≥0

anðbÞqn
2: ð4:78Þ

The coefficients anðbÞ can be solved order by order, and
one finds that the Schur index IN¼4 and the Gukov-Witten
defect index Ibcβγ are the only two solutions (correspond-
ing to α ¼ 3=8 and α ¼ −1=8, respectively) to the three
flavored modular equations [83]. The flavored Schur index
IN¼4 in the b → 1 limit reproduces the nonlogarithmic
unflavored solution of unflavored equation (4.74), while
the α ¼ − 1

8
solution Iβγbc does not have a smooth b → 1

limit and is invisible from (4.74). As discussed in [86],
irreducible VN¼4 modules from the categoryO of the small
N ¼ 4 superconformal algebra VN¼4 were classified:
There are only two, one being the vacuum module, and
the other will be called M.10 From [85,86], the associated

VOA VN¼4 is a sub-VOA of the bcβγ system Vbcβγ ,
making Vbcβγ a reducible but indecomposable VN¼4
module [86]. The quotient gives precisely the irreducible
module M ¼ Vbcβγ=VN¼4. The two nonlogarithmic solu-
tions IN¼4 and Ibcβγ that we have found precisely
correspond to the irreducible vacuum module VN¼4 and
the reducible but indecomposable module Vbcβγ, while
Ibcβγ − IN¼4 is the character of the irreducible M.
There is also a logarithmic solution to the flavored

modular differential equations given by the STS trans-
formation of IN¼4. To see the presence of such a solution,
let us first analyze the modular property of Eq. (4.70). As
discussed in Sec. III, we consider the y-extended character

IN¼4ðy; b; τÞ ¼ ykIN¼4ðb; τÞ; k ¼ −
3

2
: ð4:79Þ

Recall that the auxiliary variable y is associated with the
flavor SUð2Þ fugacity b, whose affine level is k ¼ −3

2
. We

consider again the S transformation

S∶ ðy; b; τÞ →
�
y −

b2

τ
;
b
τ
;−

1

τ

�
: ð4:80Þ

The weight-2 equation (4.70) is actually covariant under S,

Dð1Þq −
1

2ðkþh∨Þ
�
1

2
D2

bþkE2þ2kE2

�
1

b2

�
þ2E1

�
1

b2

�
Db

�
ð4:81Þ

→ τ2
�
Dð1Þq −

1

2ðkþ h∨Þ
�
1

2
D2

b þ kE2 þ 2kE2

�
1

b2

�
þ 2E1

�
1

b2

�
Db

��
: ð4:82Þ

This implies that SIN¼4 must be a solution. It is also
invariant under T. A similar analysis extends to (4.71) and
(4.72), which can be shown to be almost covariant under
STS ∈ Γ0ð2Þ, up to equations in lower modular weights.
Explicitly,

STSðweight-3Þ ¼ ðτ − 1Þ3ðweight-3Þ − 2bðτ − 1Þ2
× ðweight-2Þ;

STSðweight-4Þ ¼ ðτ − 1Þ4ðweight-4Þ þ 2bðτ − 1Þ3
× ðweight-3Þ − 2b2ðτ − 1Þ2ðweight-2Þ:

ð4:83Þ

To conclude, STSIN¼4 furnishes a logarithmic solution
to all three modular equations. We conjecture that we have
found the complete set of solutions and the module
characters of VN¼4,

10Note that M is different from the module called M ⊗ F in
[86]. Module M ⊗ F ¼ the free bcβγ system Vbcβγ in our
notation.
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Nonlogarithmic Logarithmic

IN¼4 Ibcβγ STSIN¼4

. The logarithmic solution STSIN¼4 may correspond to a
logarithmic module of VN¼4 where the Virasoro zero mode
L0 does not have a diagonalizable action [86], though the
precise relation will be left for future study.
Like in the case ofcsoð8Þ−2, by a modular transformation

STS, the weight-4 equation (4.72) generates all the lower-
weight equations (4.70) and (4.71) that are necessary for
determining the allowed characters. Hence, all the character
information is encoded in one equation (4.72) that reflects
the nilpotency of the stress tensor.
Finally, it is straightforward to show that Γ0ð2Þ acts

linearly on the two-dimensional space spanned by ch0 ≔
IN¼4 and ch1 ¼ STSIN¼4:

S2 ¼ 1; T2 ¼
�−i 0

2i −i

�
; STS¼

�
0 1

−1 2

�
: ð4:84Þ

Here the matrix gij of an element g ∈ Γ0ð2Þ are defined
through action gchi ¼

P
j¼0;1 gijchj.

D. T 1;1

1. Untwisted sector

The T 1;1 theory is the product of the N ¼ 4 SUð2Þ
theory and a free hypermultiplet. In general, the two sectors
each have their own SUð2Þ flavor symmetry with separate
flavor fugacities b1;2, on which the Schur index depends.
Let us first look at the naive class-S limit b1 ¼ b2 ¼ b. The
Schur index is given by the formula (2.9),

I1;1 ¼ i
ηðτÞ

ϑ1ð2bÞ
E1

�−1
b

�
: ð4:85Þ

It satisfies one weight-2, two weight-3, and three weight-4
equations which are collected in Appendix D. For example,
there are equations mirroring those in the N ¼ 4 theory at
weight-2

0 ¼
�
Dð1Þq −

1

2
D2

b − E1

�−1
b

�
Db − 2E1

�
1

b2

�
Db þ 3E2

�
1

b2

�
þ 2E2 − 2E1

�−1
b

�
E1

�
1

b2

��
I1;1; ð4:86Þ

weight-3

0 ¼
�
Dð1Þq Db þ E2Db þ E1

�−1
b

�
Dð1Þq − 2E2

�
1

b2

�
Db − 2E1

�−1
b

�
E2

�
1

b2

�
þ 6E3

�
1

b2

��
I1;1; ð4:87Þ

and at weight-4

0 ¼
�
Dð2Þq − 4E2

�−1
b

�
Dð1Þq − 4E3

�−1
b

�
Db þ 2E3

�
1

b2

�
Db

þ 8

3
E1

�−1
b

�
E3

�−1
b

�
þ 2

3
E1

�−1
b

�
E3

�
1

b2

�
þ 16E4

�−1
b

�
− 11E4

�
1

b2

��
I1;1: ð4:88Þ

Note that this weight-4 equation reduces in the b → 1 limit the second order unflavored modular differential equation the
reflects the nilpotency of the stress tensor [6],

0 ¼
�
Dð2Þq − 4E2

�−1
1

�
Dð1Þq − 11E4

�þ1
1

�
þ 16E4

�−1
1

��
I1;1ðb ¼ 1Þ: ð4:89Þ

There are additional solutions to this set of equations. First of all, the factor Iβγ ≔
ηðτÞ

ϑ1ð2bÞ in front of I1;1 is a
nonlogarithmic solution and also coincides with the residue of the integrand that computes I1;1 in a contour integral. Like in
theN ¼ 4 case, Equations (4.86)–(4.88) can be solved order by order through an anzatz I ¼ qh

P
n¼0 anðbÞqn

2. It turns out
that I1;1 and Iβγ are the only two non-logarithmic solutions.
There are also logarithmic solutions. This can be seen by working out the modular transformation of Eqs. (4.86)–(4.88).

For example, (4.86) is covariant under STS, while (4.88) is almost covariant

STSðweight-4Þ ¼ ðτ − 1Þ4ðweight-4Þ − 2ðτ − 1Þ3bðweight-3Þ þ 2ðτ − 1Þ2b2ðweight-2Þ:
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Therefore, STSI1;1 is also a solution, and we believe we
have exhausted all the solutions to the flavored modular
differential equations. Once again, the flavored modular
differential equation corresponding to the nilpotency of T
encodes all the information of all the flavored characters, as
it generates all the necessary equations of lower weight.
Next, we turn on separate flavor fugacities for the

two SUð2Þ flavor symmetries. The fully flavored Schur
index is just the product of the Schur indices of the two
theories,

I1;1ðb1; b2Þ ¼
1

2π

ϑ04ðb1Þ
ϑ1ð2b1Þ

ηðτÞ
ϑ4ðb2Þ

¼ iϑ4ðb1Þ
ϑ1ð2b1Þ

ηðτÞ
ϑ4ðb2Þ

E1

�−1
b1

�
: ð4:90Þ

It is straightforward to derive the fully flavored modular
differential equations for this theory by combining the
results in Secs. IVA and IV C. For instance, at weight-2
one has the equation by combining the Sugawara condition
(4.70) and (3.11),

0 ¼
�
Dð1Þq −

1

2ðkþ h∨Þ
�
1

2
D2

b1
þ kE2 þ 2kE2

�
1

b21

�
þ 2E1

�
1

b21

�
Db1

�
− E2

�−1
b2

��
I1;1: ð4:91Þ

Equations of weight-3 and -4 in Sec. IV C can be easily
carried over from the previous section. The equations in

Sec. IVA without any DðnÞq also appear here naturally.
Again, there are additional solutions to these equations.

The coefficient of the fully flavored index is given by

IbcðβγÞ2 ¼
iϑ4ðb1Þ
ϑ1ð2b1Þ

ηðτÞ
ϑ4ðb2Þ

; ð4:92Þ

which coincides with the residue of the integrand that
computes (4.90). It satisfies all the abovementioned modular
differential equations. The equations are also (almost)
covariant under STS transformation, and hence, the trans-
formed index STSI1;1ðb1; b2Þ gives a logarithmic solution.
We believe that I1;1, STSI1;1, and IbcðβγÞ2 form the
complete set of solutions.

2. Untwisted sector

Next, we move on to the twisted sector where we
consider again the bi ¼ b limit. Since ⌈nþ2g−2

2
⌉ ¼ 1 in this

case, there is only one linear-independent vortex defect
index with odd vorticity, which we choose to be
Idefect
1;1 ðk ¼ 1Þ. In this sector, we should change all the

flavor fundamentals to have integer conformal weights.
Indeed, one can check that the defect index Idefect

1;1 ðk ¼ 1Þ

satisfies all the above equations with En½−1b � → En½þ1b �. For
example, at weight-2, there is

0¼
�
Dð1Þq −

1

2
D2

b −E1

�
1

b

�
Db − 2E1

�
1

b2

�
Dbþ 3E2

�
1

b2

�
þ 2E2 − 2E1

�
1

b

�
E1

�
1

b2

��
Idefect
1;1 ð1Þ: ð4:93Þ

At weight-4, there is also

0 ¼
�
Dð2Þq − 4E2

�
1

b

�
Dð1Þq − 4E3

�
1

b

�
Db þ 2E3

�
1

b2

�
Db

þ 8

3
E1

�
1

b

�
E3

�
1

b

�
þ 2

3
E1

�
1

b

�
E3

�
1

b2

�
þ 16E4

�
1

b

�
− 11E4

�
1

b2

��
Idefect
1;1 ð1Þ: ð4:94Þ

What is surprising to observe is that the free field
character Iβγ is actually an additional nonlogarithmic
solution to all the equations in both the untwisted sector
and the twisted sector.11 In fact, there are precisely two
linear-independent nonlogarithmic solutions to all the
equations in the twisted sector, the free field character
Iβγ and the defect index Idefect

1;1 ðk ¼ 1Þ.12 This can be
similarly shown by solving them order by order. Finally, the
equations in the twisted sector are all SLð2;ZÞ (almost)
covariant, and therefore, logarithmic solutions are present
given by the modular transformations of the vortex
defect index.

E. The genus-2 theory

The genus-2 theory T 2;0 admits two weak-coupling
limits. One limit is given by gauging two T 1;1 by an
SUð2Þ vector multiplet, where one reads off a Uð1Þ flavor
symmetry invisible in the class-S description [1]. The chiral
algebra of I2;0 has been constructed in [87] and later a free
field realization was proposed in [88]. The associated
flavored Schur index is given by the exact formula [34],

11Among all the examples we have examined, this is the only
instance where the free field character walks between both
worlds. We leave its physical or mathematical implication to
future study.

12However, unlike that in the untwisted sector, neither of these
solutions has a smooth unflavoring limit. In particular,

Idefect
1;1 ðk ¼ 1Þ ¼ −

ηðτÞϑ01ðbÞ
πϑ1ðb; qÞϑ1ð2bÞ

ð4:95Þ

has a double pole at b ¼ 0. Therefore, there is no unflavored
modular differential equation in the twisted sector.
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I2;0 ¼
iϑ1ðbÞ2

ηðτÞϑ1ð2bÞ
�
E3

�þ1
b

�
þ E1

�þ1
b

�
E2

�þ1
b

�
þ 1

12
E1

�þ1
b

��
: ð4:96Þ

Here, b denotes the Uð1Þ flavor fugacity. Note that the factor in front can be viewed as a free field character of a ðbcÞ2βγ
system,

I ðbcÞ2βγ ≔
iϑ1ðbÞ2

ηðτÞϑ1ð2bÞ
: ð4:97Þ

The Schur index satisfies several modular differential equations. At weight-4, we have�
Dð2Þq þ 1

4
D4

b − 2Dð1Þq D2
b þ 2E1

�
1

b2

�
D3

b − 2

�
E1

�
1

b

�
þ 2E1

�
1

b2

��
Dð1Þq Db

þ 4

�
E2 þ E2

�
1

b

�
þ E2

�
1

b2

��
Dð1Þq þ

�
−7E2 − 2E2

�
1

b

�
− 8E2

�
1

b2

��
D2

b

×

�
−2E2

�
E1

�
1

b

�
þ 8E1

�
1

b2

��
þ 12E3

�
1

b

�
þ 18E3

�
1

b2

��
Db

þ
�
7E2

2 þ 4E2

�
E2

�
1

b

�
þ 4E2

�
1

b2

��
− 2

�
14E4 þ 12E4

�
1

b

�
þ 9E4

�
1

b2

����
I2;0 ¼ 0: ð4:98Þ

This modular differential equation comes from the null [87]

ðBþB− − J4Þ þ 2ðDþID̄−
I Þ ¼ 4T2 − 6∂2T − 8J2T þ 12∂ðJTÞ − 4∂J3 þ 9ð∂JÞ2 þ 14J∂2J − 5∂3J: ð4:99Þ

There is no weight-5 equation, even though there are several null states at conformal weight-5. At weight-6, the Schur
index satisfies two modular differential equations. The first one is�

Dð3Þq þ 3

2
Dð2Þq D2

b − 3E1

�
1

b

�
Dð2Þq Db þ 6

�
E2 − 2E2

�
1

b

��
Dð1Þq D2

b ð4:100Þ

þ3
�
E2 þ 2E2

�
1

b

��
Dð2Þq − 12

�
E2E1

�
1

b

�
− 5E3

�
1

b

�
þ E3

�
1

b2

��
Dð1Þq Db ð4:101Þ

þ6
�
−3E3

�
1

b

�
þ E3

�
1

b2

��
D3

b ð4:102Þ

þ
�
9E2

2 −
111

2
E4 − 24E2E2

�
1

b

�
þ 180E4

�
1

b

�
− 72E4

�
1

b2

��
D2

b ð4:103Þ

þDð1Þq

�
−6E2

2 − 49E4 þ 24E2E2

�
1

b

�
− 72E4

�
1

b

�
þ 36E4

�
1

b2

��
− 3

�
4E2

2E1

�
1

b

�
þ 5E4E1

�
1

b

�
þ E2

�
−44E3

�
1

b

�
þ 16E3

�
1

b2

��
þ 216E5

�
1

b

�
− 108E5

�
1

b2

��
−
�
6E2

3 − 24E2
2E2

�
1

b

�
þ 3E2

�
E4 þ 72E4

�
1

b

�
− 48E4

�
1

b2

���
ð4:104Þ

−
�
10

�
11E6 − 3E4E2

�
1

b

�
− 72E6

�
1

b

�
þ 54E6

�
1

b2

����
I2;0 ¼ 0: ð4:105Þ

This equation arises from the weight-6 null in [87]. Another modular differential equation takes the schematic form
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ðD6
b − 14Dð1Þq D4

b þ…ÞI2;0 ¼ 0: ð4:106Þ

Note, however, that this equation does not follow from any
null states in [87] and we shall discard.
Let us turn to additional solutions to the modular

differential equations. It is easy to verify that the free
field character I ðbcÞ2βγ in front of the Schur index is an
additional solution to the above equations with associated
null states. Like in the previous examples, it also coincides
with the residue of the integrand that computes the
original Schur index (4.96). Recall that the theory has a
duality frame of gluing two copies of T 0;3, where the
Schur index is written as

I2;0 ¼ −
1

8

I Y3
i¼1

�
dai
2πiai

ϑ1ð2aiÞϑ1ð−2aiÞ
�

×
Y
�;�;�

ηðτÞ
ϑ4ð�a1 � a2 � a3 þ b

2
Þ ð4:107Þ

≔
I Y3

i¼1

dai
2πiai

ZðaÞ: ð4:108Þ

The free field character appears as the following residue:

I ðbcÞ2βγ ¼ Resa1→a2þa3þb
2
þτ

2
Resa2→−a3Resa3→−1

2
bZða; bÞ

¼ i
32

ϑ1ðbÞ2
ηðτÞϑ1ð2bÞ

: ð4:109Þ

Note that I ðbcÞ2βγ is not annihilated by the second weight-6
modular differential equation which has no associated null

state, which is somewhat expected. Unfortunately,
although one would expect that the SLð2;ZÞ transforma-
tion of the index I2;0 gives an additional logarithmic
solution, the first weight-6 equation does not transform
properly under SLð2;ZÞ. As a result, the S-transformed
I2;0 only satisfies the weight-4 equation. The physical
meaning of the lack of a logarithmic common solution
remains unclear.

F. T 1;2

The Schur index of T 1;2 in its exact form is given by

I1;2 ¼ −
ηðτÞ2Q

2
i¼1 ϑ1ð2biÞ

�
E2

�
1

b1b2

�
− E2

�
1

b1=b2

��
:

ð4:110Þ

Note that the factor in front can be interpreted as a free field
character of a pair of βγ systems,

Iβγβγ ¼
ηðτÞ

ϑ1ð2b1Þ
ηðτÞ

ϑ1ð2b2Þ
: ð4:111Þ

Noting that ⌈ nþ2g−2
2

⌉ ¼ 1, there is only one defect index
Idefect
1;2 ðk ¼ 0Þ ¼ I1;2 with even k and one Idefect

1;2 ð1Þ with
odd k.

1. The untwisted sector

At weight-2, there are two modular differential equations
satisfied by the index I1;2,

0 ¼
�
Dð1Þq −

1

4

X
i¼1;2

D2
bi
−
1

4

X
αi¼�

E1

�
1

bα11 bα22

�X
i¼1;2

αiDbi −
X
i¼1;2

E1

�
1

b2i

�
Dbi ð4:112Þ

þ2
�
E2 þ

1

2

X
αi¼�

E2

�
1

bα11 bα22

�
þ

X
i¼1;2

E2

�
1

b2i

���
I1;2 ð4:113Þ

and �
D2

b1
þ 4E1

�
1

b21

�
− 8E2

�
1

b21

��
I1;2 ¼

�
D2

b2
þ 4E1

�
1

b22

�
− 8E2

�
1

b22

��
I1;2: ð4:114Þ

At weight-3, there are three new equations,

�
D3

b1
þ 6E1

�
1

b21

�
D2

b1
þ…

�
I1;2 ¼ 0: ð4:115Þ

There are two more weight-4 equations,�
D4

b1
þ 8E1

�
1

b21

�
D3

b1
− 48E2

�
1

b21

�
D2

b1
þ 192E3

�
1

b21

�
Db1 − 384E4

�
1

b21

��
I1;2 ¼ ðb1 ↔ b2Þ; ð4:116Þ
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and a third one, which has a tedious form and schematically
looks like

ðDð2Þq þ…ÞI1;2 ¼ 0: ð4:117Þ
As will be noted shortly, the unflavored index I1;2ðbi → 1Þ
satisfies a third order modular differential equation, which
should also admit a fully flavored refinement. Unfortunately,
we have not obtained its explicit form.
Let us turn to additional solutions to the modular

differential equations. We first point out that the free field
character I ðβγÞ2 in front of the Schur index is also a solution
to the fully flavored modular differential equations at
weight-2 and Eq. (4.116) at weight-4, but not the
weight-3 and the second one of weight-4. Like in the case
of the SUð2Þ N ¼ 4 theory or T 0;4, the free field character
I ðβγÞ2 also arises as the residue of the integrand in the
contour integral that computes the index I1;2,

I1;2 ¼
I �Y2

i¼1

dai
2πiai

1

2
ϑ1ð2aiÞ2

�Y2
i¼1

Y
��

ηðτÞ
ϑ4ða1 � a2 � biÞ

≔
I Y2

i¼1

dai
2πiai

Zða; bÞ: ð4:118Þ

Explicitly,

I ðβγÞ2 ¼ Resa1→a2þb1þτ
2
Resa2→−1

2
b1−1

2
b2Zða; bÞ: ð4:119Þ

Drawing an analogy with the results in Secs. IV B and
IV C, we conjecture that the free theory of the bcβγ system
is actually a module of VðT 1;2Þ. Consequently, we expect
that the weight-2 and the weight-4 equations above arise
from actual null states in VðT 1;2Þ, while the weight-3

equations and the weight-4 equation ðDð2Þq þ…ÞI ¼ 0 do
not, and we shall ignore them from now on.
Next, we look for logarithmic solutions. It is easy to

check that the unflavored index satisfies an unflavored
equation at weight-6,13

0 ¼ ðDð3Þq − 220E4D
ð1Þ
q þ 700E6ÞI1;2: ð4:121Þ

The indicial equation based on I ¼ qαð1þ…Þ gives

0 ¼ ð6α − 5Þð6αþ 1Þ2 ⇒ α ¼ −
1

6
;−

1

6
;
5

6
: ð4:122Þ

Clearly, the α ¼ 5=6 solution is the unflavored Schur index.
The two linear-independent solutions corresponding to α ¼
− 1

6
are logarithmic ones of the form

I log ¼ q−
1
6

X
n

anqn=2 þ q−
1
6 log q

X
n

a0nqn=2

þ q
5
6ðlog qÞ2

X
n

a00nqn=2: ð4:123Þ

Now we focus on the three flavored modular differential
equations of weight-2 and weight-4 with conjectural asso-
ciated null states. Under the S transformation (with the
critical affine levels ki ¼ −2 and the y extension as
introduced in Sec. III), both weight-2 equations are covar-
iant,

Sðweight-2Þ ¼ τ2ðweight-2Þ: ð4:124Þ
The weight-4 equation (4.116) is almost covariant,

Sðweight-4Þ ¼ τ4ðweight-4Þ þ τ3
12i
π
ðweight-20Þ; ð4:125Þ

where the weight-20 equation is defined to be a combination
of the two weight-2 equations,�

D2
b1
−D2

b2
þ 4

�
E1

�
1

b21

�
Db1 − E1

�
1

b22

�
Db1

�
− 8

�
E2

�
1

b21

�
Db1 − E2

�
1

b22

�
Db1

��
I1;2 ¼ 0:

Therefore, the (almost) covariance suggests additional log-
arithmic solutions given by modular transformation of the
(y-extended) Schur index. More explicitly, under S trans-
formation we have

SI1;2 ¼
ηðτÞ2

8π2ϑ1ð2b1Þϑ1ð2b2Þϑ1ðb1 − b2Þϑ1ðb1 þ b2Þ
× ½−τ2ϑ001ðb1 − b2Þϑ1ðb1 þ b2Þ − 4πiτðb1 − b2Þϑ01ðb1 − b2Þϑ1ðb1 þ b2Þ
þ τ2ϑ001ðb1 þ b2Þϑ1ðb1 − b2Þ þ 4iπτðb1 þ b2Þϑ01ðb1 þ b2Þϑ1ðb1 − b2Þ
− 16π2ϑ1ðb1 þ b2Þϑ1ðb1 − b2Þ�

¼ −τ2I2;0 − 2b1b2
ηðτÞ2Q

2
i¼1 ϑ1ð2biÞ

− τ
ηðτÞ2Q
iϑ1ð2biÞ

X
α¼�

αðb1 þ αb2ÞE1

�
1

b1bα2

�
: ð4:126Þ

13In [6], a weight-8 equation was listed instead,

0 ¼ ðDð4Þq − 220E4D
ð2Þ
q − 2380E6D

ð1Þ
q þ 6000E2

4ÞI1;2ðb → 1Þ: ð4:120Þ
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Similarly, after TS transformation,

TSI1;2 ¼ ð−1Þ2=3I1;2 − ð−1Þ2=3SI1;2 ð4:127Þ

þð−1Þ2=3
�
2τI2;0 þ

ηðτÞ2Q
iϑ1ð2biÞ

X
α¼�

αðb1 þ αb2ÞE1

�
1

b1bα2

��
: ð4:128Þ

Before moving on to the modular properties of these solutions, we briefly remark on the completeness of the above
solutions so far. Although the weight-6 fully flavored modular differential equations are currently unavailable, we can look
at the partially unflavoring limit bi → b. In this limit, there is a unique weight-614 flavored modular differential equation that
annihilates I1;2, I ðβγÞ2 and the two logarithmic solutions SI1;2 and TSI1;2,

0 ¼
�
Dð3Þq þ 1

24
D4

bD
ð1Þ
q −

1

2
Dð2Þq D2

b þ
1

2
E2D

ð1Þ
q D2

b − 14E2D
ð2Þ
q þ 1

2
E1

�
1

b2

�
Dð1Þq D3

b

þ 4E1

�
1

b2

��
6E2 − E2

�
1

b2

��
Dð1Þq Db þ

�
1

6
E2 −

1

4
E2

�
1

b2

��
D4

b

þ 1

2

�
3E2E1

�
1

b2

�
− 5E2

�
1

b2

�
E1

�
1

b2

�
þ 5E3

�
1

b2

��
D3

b

þ 1

3

�
−18E2E2

�
1

b2

�
þ 35E2

�
1

b2

�
2

þ 38E1

�
1

b2

�
E3

�
1

b2

�
− 40E4

�
1

b2

��
D2

b

−
4

3

�
15E2

2 þ 54E2E2

�
1

b2

�
þ 31E2

�
1

b2

�
2

− 98E1

�
1

b2

�
E3

�
1

b2

�
− 20E4

�
1

b2

��
Dð1Þq

þ
�
12E2E1

�
1

b2

�
− 92E2

�
1

b2

�
E3

�
1

b2

�
þ 40E5

�
1

b2

��
Db

þ E2

�
−52E1

�
1

b2

�
E2

�
1

b2

�
þ 48E3

�
1

b2

��
Db −

4

3

�
9E3

2 − 72E2
2E2

�
1

b2

�
− 87E3

�
1

b2

�
2
�

−
4

3
E2

�
−137E2

�
1

b2

�
− 158E1

�
1

b2

�
E3

�
1

b2

�
þ 18E4

�
1

b2

��
þ 40

�
5E2

�
1

b2

�
E4

�
1

b2

�
þ E1

�
1

b2

�
E5

�
1

b2

�
þ 7E6

�
1

b2

���
I1;2ðbÞ: ð4:129Þ

The S transformation of this equation produces a set of lower-weight flavored modular differential equations whose only
nonlogarithmic solutions are I1;2ðbÞ and I ðβγÞ2ðbÞ.
Now let us look at the modular properties of the solutions. One can find a simple basis for the SLð2;ZÞ orbit of the Schur

index,

ch0 ¼ I1;2; chlog;1 ¼ 2τI1;2 þ
X
α¼�

αðb1 þ αb2Þ
ηðτÞ2Q
iϑ1ð2biÞ

E1

�
1

b1bα2

�
; ð4:130Þ

chlog;2 ¼ SI1;2: ð4:131Þ

In this basis,

Tch0 ¼ −ð−1Þ2=3ch0; ð4:132Þ

Tchlog;1 ¼ ð−1Þ2=3ð−2ch0 − chlog;1Þ; ð4:133Þ

14Some equations of lower weights are collected in Appendix D.
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Tchlog;2 ¼ ð−1Þ2=3ðch0 þ chlog;1 − chlog;2Þ; ð4:134Þ

and by construction

Sch0 ¼ chlog;2; Schlog;2 ¼ ch0; Schlog;1 ¼ chlog;1:

ð4:135Þ

In the form of matrix gchi ¼
P

j gijchj, we have

T ¼ e
2πi
3

0B@−1 0 0

−2 −1 0

1 1 −1

1CA; S¼

0B@0 0 1

0 1 0

1 0 0

1CA; ð4:136Þ

which furnishes a three-dimensional representation of
SLð2;ZÞ. The three characters can form an SLð2;ZÞ
invariant partition function

Z¼ 2ch0ch2þ ch1ch1þ2ch2ch0¼
X
i;j

Mijchichj: ð4:137Þ

Unfortunately the S matrix does not lead to reasonable
fusion coefficients. One can consider a new basis ch0i such
that the pairing matrix M0ij is integral and the fusion
coefficients Nk

ij are non-negative integers. Such a new
basis is not unique, and it leads to two possible fusion
algebras,

½ch00� × ½ch0i� ¼ ½ch0i�; ½ch01� × ½ch01� ¼ ½ch01�;
½ch02� × ½ch02� ¼ ½ch02�; ð4:138Þ

or

½ch00� × ½ch0i� ¼ ½ch0i�; ½ch01� × ½ch01� ¼ ½ch01�;
½ch01� × ½ch02� ¼ 2½ch01�; ð4:139Þ

½ch02� × ½ch02� ¼ 2½ch01� þ ½ch02�: ð4:140Þ

It is unclear if such algebras have physical or mathematical
meaning.
Besides the Schur index and its modular companions, the

residue I ðβγÞ2 transforms in a one-dimensional representa-
tion under SLð2;ZÞ,

SI ðβγÞ2 ¼ −I ðβγÞ2 ; TI ðβγÞ2 ¼ −ð−1Þ2=3I ðβγÞ2 ð4:141Þ

satisfying S2 ¼ ðSTÞ3 ¼ id.

2. The twisted sector

The defect index Idefect
1;2 ðk ¼ 1Þ is a twisted character and

will satisfy corresponding twisted modular differential

equations. Again, these equations can be obtained from
all those in the untwisted sector with all the contributions
En½þ1… � from the bifundamentals turned into En½−1…�. For
example, at weight-2, there is

0 ¼
�
Dð1Þq −

1

2
D2

b2
−
1

2

�
E1

� −1
b1b2

�
þ E1

�−1
b1
b2

��
Db1

−
1

2

�
E1

� −1
b1b2

�
− E1

�−1
b1
b2

�
þ E1

�−1
b22

��

þ 2

�
E2

� −1
b1b2

�
þ E2

�−1
b1
b2

�
þ 2E2

�
1

b22

�
þ E2

��
I1;2;

ð4:142Þ

and one with b1 ↔ b2.

G. Other examples

In the previous subsections, we have discussed a few
of the simplest theories with low g, n, where we have
studied their flavored modular differential equations and
the solutions for these equations other than the Schur
index. In the following, we comment on theories with
higher g, n. For simplicity, we shall focus on the unflavored
index and the unflavored modular differential equations [6]
they satisfy.

1. T 0;5

We start with the theory T 0;5. The unflavored Schur
index satisfies a weight-8 modular differential equation,

0¼
�
Dð4Þq − 220E4D

ð2Þ
q −

�
3020E6þ 3840E6

�−1
1

��
Dð1Þq

− 144

�
−35E8þ 224E8

�−1
1

�
þ 144E4

�−1
1

�
2
��

I0;5:

ð4:143Þ

This equation has four independent solutions. The indicial
equation for the anzatz qh

P
n anq

n reads

ðh − 1Þh3 ¼ 0 ⇒ h ¼ 1; 0; 0; 0: ð4:144Þ

The integral spacing suggests the presence of two or
three logarithmic solutions. Clearly, the h ¼ 1 solution is
given already by the original unflavored Schur index. It
turns out that there is an additional nonlogarithmic
solution given by the unflavored vortex defect index
with vorticity k ¼ 2,
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Idefect
0;5 ðk ¼ 2Þ ¼ −5ϑ4ð0Þϑð2Þ4 ð0Þð3π2ð12E2ðqÞ þ 5Þϑð4Þ4 ð0Þ − 2ϑð6Þ4 ð0ÞÞ

1024π8ηðqÞ12ϑ4ð0Þ3

þ ϑ4ð0Þ2ðπ2ð12E2ðqÞ þ 5Þϑð6Þ4 ð0Þ − ϑð8Þ4 ð0ÞÞ þ 5ϑ4ð0Þϑð4Þ4 ð0Þ2
1024π8ηðqÞ12ϑ4ð0Þ3

þ 30π2ð12E2ðqÞ þ 5Þϑð2Þ4 ð0Þ3 − 30ðϑð2Þ4 ð0ÞÞ2ϑð4Þ4 ð0Þ
1024π8ηðqÞ12ϑ4ð0Þ3

: ð4:145Þ

Note that there are only ⌈ nþ2g−2
2

⌉ ¼ 2 defect indices with even vorticity, including the original Schur index I0;5

at k ¼ 0.
The remaining two solutions are logarithmic, given by the S transformation of I0;5 and Idefect

0;5 ðk ¼ 2Þ, where a basis can
be chosen to be

I0;5; STSI0;5; TSTI0;5; Idefect
0;5 ðk ¼ 2Þ; ð4:146Þ

or

I0;5; STSI0;5; Idefect
0;5 ðk ¼ 2Þ; TSTIdefect

0;5 ðk ¼ 2Þ: ð4:147Þ

There are two independent vortex defect indices with odd vorticity Idefect
0;5 ðk ¼ 1Þ and Idefect

0;5 ðk ¼ 3Þ. Let us first look at
the unflavoring limit of the first defect index,

Idefect
0;5 ðk ¼ 1Þ ¼ −

1

ηðτÞ12 ð60E
2
2E4 − 420E2E6 þ 700E8Þ

¼ q
1
2ð1þ 48qþ 774q2 þ 7952q3 þ 61101q4 þ 385200q5 þ…Þ: ð4:148Þ

It is easy to check that it satisfies an equation in the twisted sector,

ðDð4Þq − 220E4D
ð2Þ
q − 6860E6D

ð1Þ
q − 75600E8ÞIdefect

0;5 ðk ¼ 1Þ ¼ 0: ð4:149Þ

Apparently, this equation is just the twisted version of (4.143), where Ek½−11 � are replaced by Ek½þ11 � and applying the
relation E2

4 ¼ 7
3
E8.

To study the second defect index Idefect
0;5 ðk ¼ 3Þ, one has to turn on flavor fugacities since it does not have a smooth

unflavoring limit. The simplest partial flavoring is b1 ¼ b; b2;3;4;5 ¼ 1. It turns out that in this limit there are no flavored
modular differential equations below weight-8, and all the weight-8 equations satisfied by Idefect

0;5 ðk ¼ 1Þ will also have
Idefect
0;5 ðk ¼ 3Þ as an additional solution. We refrain from showing the details of these equations due to their complexity.

2. T 0;6

For T 0;6, the unflavored Schur index I0;6 satisfies a weight-12, sixth order equation,

0¼ ½Dð6Þq − 545E4D
ð4Þ
q − 15260E6D

ð3Þ
q − 164525E2

4D
ð2Þ
q − 2775500E4E6D

ð1Þ
q − 26411000E2

6þ 1483125E3
4�I0;6: ð4:150Þ

The indicial equation gives

ð5 − 12hÞ4ð144h2 − 120h − 119Þ ¼ 0 ⇒ h ¼ 5

12
;
5

12
;
5

12
;
5

12
;−

7

12
;
17

12
: ð4:151Þ

Obviously, the solution with h ¼ 17
12

corresponds to the Schur index. Another nonlogarithmic solution comes from the
nontrivial defect index: In this case, there are ⌈ nþ2g−2

2
⌉ ¼ 2 independent defect indices with even k, and indeed, I0;6 and

Idefect
0;6 ð2Þ are the two independent nonlogarithmic solutions to the modular differential equation (4.151), where the latter

corresponds to one of the h ¼ 5
12
. The remaining four solutions are logarithmic obtained from modular transformation of

I0;6 and Idefect
0;6 ð2Þ. One independent basis can be chosen to be
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I0;6; SI0;6; TSI0;6; T2SI0;6; Idefect
0;6 ð2Þ; SIdefect

0;6 ð2Þ ð4:152Þ

spanning the space of solutions.
There are also two linear-independent defect indices with odd vorticity, Idefect

0;6 ðk ¼ 1Þ and Idefect
0;6 ðk ¼ 3Þ, both with

smooth unflavoring limit

Idefect
0;6 ðk ¼ 1Þ ¼ q

11
12ð1þ 19qþ 64q3=2 þ 203q2 þ 896q5=2 þ 2320q3 þ…Þ; ð4:153Þ

Idefect
0;6 ðk ¼ 3Þ ¼ q

11
12ð1þ 64q1=2 þ 748qþ 4992q3=2 þ 26035q2 þ 1119365=2 þ…Þ: ð4:154Þ

They both satisfy a sixth order unflavored modular differential equation whose explicit form will not be included here.

3. T g;n= 0

The unflavored index I2;0 of the genus-2 theory T 2;0 can be written in terms of the standard Eisenstein series,

I2;0 ¼
1

2
ηðτÞ2

�
E2 þ

1

12

�
: ð4:155Þ

It satisfies a sixth order equation

0 ¼ ½Dð6Þq − 305E4D
ð4Þ
q − 4060E6D

ð3Þ
q þ 20275E2

4D
ð2Þ
q þ 2100E4E6D

ð1Þ
q − 68600ðE2

6 − 49125E3
4Þ�I2;0: ð4:156Þ

Following Sec. II C, there is an additional vortex defect index

Idefect
2;0 ðk ¼ 2Þ ¼ ηðτÞ2: ð4:157Þ

Similar to the g ¼ 0, n ¼ 6 case, the SLð2;ZÞ orbit of I2;0 and ηðτÞ2 forms the complete set of solutions of the sixth order
equation, where an independent basis can be chosen as

I2;0; SI2;0; TSI2;0; T2SI2;0; Idefect
2;0 ð2Þ; SIdefect

2;0 ð2Þ: ð4:158Þ

Note that since ηðτÞ2 is a term in the index I2;0 itself, the other term ηðτÞ2E2 naturally forms another solution as a
consequence.
Similarly, the indices I3;0 and I4;0 of the genus-3 and -4 theories satisfy a 20th and 43rd order modular differential

equation, respectively, whose expressions will not be included here. By direct computation, it can be shown that the Schur
index itself and the defect indices Idefect

g;0 ðk ¼ evenÞ provide a collection of solutions. Note that this equivalently implies that
ηðτÞ2g−2; ηðτÞ2g−2E2;…; ηðτÞ2g−2E2g−2 are g independent solutions to these equations. Their SLð2;ZÞ orbit will supply
additional logarithmic solutions to the equations.
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APPENDIX A: SPECIAL FUNCTIONS

In this appendix, we collect the definitions and a few useful properties of the special functions that appear in the main
text. We often use letters in straight and Fraktur font which are related by

a ¼ e2πia; b ¼ e2πib; … y ¼ e2πiy; z ¼ e2πiz: ðA1Þ
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1. Jacobi theta functions

The Jacobi theta functions are defined as a Fourier series

ϑ1ðzjτÞ ≔ −i
X
r∈Zþ1

2

ð−1Þr−1
2e2πirzq

r2
2 ; ðA2Þ

ϑ2ðzjτÞ ≔
X
r∈Zþ1

2

e2πirzq
r2
2 ; ðA3Þ

ϑ3ðzjτÞ ≔
X
n∈Z

e2πinzq
n2
2 ; ðA4Þ

ϑ4ðzjτÞ ≔
X
n∈Z
ð−1Þne2πinzqn2

2 : ðA5Þ

Throughout this paper, we denote q ≔ e2πiτ. For brevity,
we will frequently omit jτ in the notation of the Jacobi theta
functions. The Jacobi theta functions can be rewritten as a
triple product of the q Pochhammer symbol, for example,

ϑ1ðzÞ ¼ −iz1
2q

1
8ðq; qÞðzq; qÞðz−1; qÞ;

ϑ4ðzÞ ¼ ðq; qÞðzq1
2; qÞðz−1q1

2;qÞ; ðA6Þ

where ðz; qÞ ≔ Qþ∞
k¼0ð1 − zqÞ.

The functions ϑiðzÞ almost return to themselves under
full-period shifts by mþ nτ,

ϑ1;2ðzþ 1Þ ¼ −ϑ1;2ðzÞ; ϑ3;4ðzþ 1Þ ¼ þϑ3;4ðzÞ; ðA7Þ

ϑ1;4ðzþ τÞ ¼ −λϑ1;4ðzÞ; ϑ2;3ðzþ τÞ ¼ þλϑ2;3ðzÞ; ðA8Þ

where λ≡ e−2πize−πiτ. The above can be combined, for
example, into

ϑ1ðzþmτ þ nÞ ¼ ð−1Þmþne−2πimzq−
1
2
m2

ϑ1ðzÞ: ðA9Þ

Moreover, the four Jacobi theta functions are related by
half-period shifts which can be summarized as in the
following diagram:

where μ ¼ e−πize−
πi
4 , and f⟶ag means

either f

�
zþ 1

2

�
¼ agðzÞ or f

�
zþ τ

2

�
¼ agðzÞ ðA10Þ

depending on whether the arrow is horizontal or (slanted)
vertical, respectively.
The functions ϑiðzjτÞ transform nicely under the modu-

lar S and T transformations, which act, as usual, on the

nome and flavor fugacity as ðzτ ;− 1
τÞ 

S ðz; τÞ⟶T ðz; τ þ 1Þ.
In summary,

where α ¼ ffiffiffiffiffiffiffi
−iτ
p

e
πiz2
τ .

2. Eisenstein series

The twisted Eisenstein series (with characteristics ½ϕθ�)
Ek½ϕθ� are defined as a series in q,

Ek≥1

�
ϕ

θ

�
≔ −

BkðλÞ
k!

ðA11Þ

þ 1

ðk − 1Þ!
X0
r≥0

ðrþ λÞk−1θ−1qrþλ
1 − θ−1qrþλ

þ ð−1Þ
k

ðk − 1Þ!
X
r≥1

ðr − λÞk−1θqr−λ
1 − θqr−λ

: ðA12Þ

Here, 0 ≤ λ < 1 is determined by ϕ≡ e2πiλ, BkðxÞ denotes
the kth Bernoulli polynomial, and the prime in the sum
means that when ϕ ¼ θ ¼ 1 the r ¼ 0 term should be
omitted. We also define

E0

�
ϕ

θ

�
¼ −1: ðA13Þ

The standard (untwisted) Eisenstein series E2n is given
by the θ;ϕ → 1 limit of E2n½ϕθ�,

E2nðτÞ ¼ E2n

�þ1
þ1

�
: ðA14Þ

When k is odd, we have instead

E1

�
1

e2πiz

�
¼ 1

2πi
ϑ01ðzÞ
ϑ1ðzÞ

⟶
z→0 1

2πiz
; Ek>1

�þ1
þ1

�
¼ 0:

ðA15Þ
The Eisenstein series with ϕ ¼ �1 enjoys a useful

symmetry property
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Ek

��1
z−1

�
¼ ð−1ÞkEk

��1
z

�
: ðA16Þ

They also transform nicely under z → qz or z → q
1
2z, for example,

En

��1
zq

k
2

�
¼

Xn
l¼0

�
k
2

�
l 1

l!
En−l

� ð−1Þkð�1Þ
z

�
: ðA17Þ

The Eisenstein series is closely related to the Jacobi theta function. Let us define an elliptic P function

P2ðyÞ ≔ −
Xþ∞
n¼1

1

2n
E2nðτÞy2n: ðA18Þ

Then, we have a simple translation

Ek

�þ1
þz

�
¼ ½e− y

2πiDz−P2ðyÞ�kϑ1ðzÞ; Ek

�−1
þz

�
¼ ½e− y

2πiDz−P2ðyÞ�kϑ4ðzÞ; ðA19Þ

Ek

�þ1
−z

�
¼ ½e− y

2πiDz−P2ðyÞ�kϑ2ðzÞ; Ek

�−1
−z

�
¼ ½e− y

2πiDz−P2ðyÞ�kϑ3ðzÞ; ðA20Þ

where ½…�k means taking the coefficient of yk when expanding… in y series around y ¼ 0, and Dn
z acting on ϑi is defined

to be

Dn
zϑiðzÞ ≔

ϑðnÞi ðzÞ
ϑiðzÞ

: ðA21Þ

The Eisenstein series contains simple poles whose residues are easy to work out from the definition. For example,

Res
z→qkþ

1
2

1

z
En

�−1
z

�
¼ 1

ðn − 1Þ!
�
kþ 1

2

�
n−1

; Resz→qk
1

z
En

�þ1
z

�
¼ 1

ðn − 1Þ! k
n−1: ðA22Þ

The relation between the Eisenstein series and Jacobi theta functions is helpful in working out the modular transformation
of the former. In detail, we consider the following transformations:

S∶ τ → −
1

τ
; z →

z
τ
; T∶ τ → τ þ 1; z → z: ðA23Þ

Under the S transformation,

En

�þ1
þz

�
⟶
S
�

1

2πi

�
n
��X

k≥0
1

k!
ð− log zÞkyk

��X
l≥0ðlog qÞlylEl

�þ1
z

���
n

; ðA24Þ

En

�−1
þz

�
⟶
S
�

1

2πi

�
n
��X

k≥0
1

k!
ð− log zÞkyk

��X
l≥0ðlog qÞlylEl

�þ1
−z

���
n

; ðA25Þ

En

�
1

−z

�
⟶
S
�

1

2πi

�
n
��X

k≥0
1

k!
ð− log zÞkyk

��X
l≥0ðlog qÞlylEl

�−1
þz

���
n

; ðA26Þ

En

�−1
−z

�
⟶
S
�

1

2πi

�
n
��X

k≥0
1

k!
ð− log zÞkyk

��X
l≥0ðlog qÞlylEl

�−1
−z

���
n

; ðA27Þ

where ½…�n extracts the coefficient of yn. For the readers’ convenience, here we collect the S transformation of several
lower-weight Eisenstein series,
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E1

�þ1
z

�
⟶
S
τE1

�þ1
z

�
þ z; ðA28Þ

E2

�þ1
z

�
⟶
S
τ2E2

�
1

z

�
− zτE1

�
1

z

�
−
z2

2
; ðA29Þ

E3

�þ1
z

�
⟶
S
τ3E3

�þ1
z

�
− zτ2E2

�þ1
z

�
þ 1

2
z2τE1

�þ1
z

�
þ z3

6
: ðA30Þ

Under the T transformation,

En

�þ1
þz

�
⟶
T

En

�þ1
þz

�
; En

�−1
þz

�
⟶
T

En

�−1
−z

�
; ðA31Þ

En

�þ1
−z

�
⟶
T

En

�þ1
−z

�
; En

�−1
−z

�
⟶
T

En

�−1
þz

�
: ðA32Þ

Combined,

En

�−1
z

�
⟶
STS

�
1

2πi

�
n
��X

k≥0
1

k!
ð− log zÞkyk

��X
l≥0ðlog q − 2πiÞlylEl

�−1
þz

���
n

: ðA33Þ

The transformation of the Eisenstein series under
SLð2;ZÞ implies that they are a generalization of the
well-known modular forms and Jacobi forms. In the theory
of modular/Jacobi forms, there are a few important differ-
ential operators that change the modular weight of a form.
The Serre derivative ∂ðkÞ is defined to be

∂ðkÞ ≔ q∂q þ kE2: ðA34Þ

It maps a weight-k modular form to a weight-(kþ 1) form.
For example,

∂ð2ÞE2 ¼ 5E4þE2
2; ∂ð4ÞE4 ¼ 14E6; ∂ð6ÞE6 ¼ 20E8:

ðA35Þ

One can compose the Serre derivative into the modular

differential operators DðkÞq ,

DðkÞq ≔ ∂ð2k−2Þ ∘… ∘ ∂ð2Þ ∘ ∂ð0Þ: ðA36Þ

Such an operator turns a weight-0 form to a weight-2k
form. It transform covariantly under the standard SLð2;ZÞ
transformation τ → τ0 ≔ aτþb

cτþd,

DðkÞq0 ¼ ðcτ þ dÞ2kDðkÞq : ðA37Þ

APPENDIX B: VERTEX OPERATOR ALGEBRA

In this section, we briefly summarize some notions and
formulas concerning VOAs. For a more rigorous account of
the subject, see, for example, [2,89]. A VOA V is charac-
terized by a linear space of states V (i.e., the vacuum
module) containing a unique vacuum state j0i and a special
state T corresponding to the stress tensor. There is a state-
operator correspondence Y that builds a local field Yða; zÞ

out of any state a ∈ V. We often simply denote the field as
aðzÞ and expand it in a Fourier series15

aðzÞ≔ Yða; zÞ ¼
X

n∈Z−ha

anz−n−ha ; TðzÞ ¼
X
n∈Z

Lnz−n−2:

ðB1Þ

Here the Fourier modes an are linear operators that act on
V, Ln from a Virasoro algebra with central charge c, and ha
is the eigenvalue in L0a ¼ haa. The vacuum state j0i is
such that Yðj0i; zÞ ¼ idV and að0Þj0i ¼ a. For a state a
with integer weight ha, one defines its zero mode
oðaÞ ≔ a0, whereas oðaÞ ¼ 0 when ha is nonintegral.
To compute torus correlation functions, it is a common

practice to consider [2]

a½z� ≔ eizhaYða; eiz − 1Þ ¼
X
n

a½n�z−n−ha ; ðB2Þ

where the “square modes” a½n� are defined by the expan-
sion. Explicitly,

a½n� ¼
X
j≥n

cðj; n; haÞaj; ðB3Þ

where the coefficients c are given by the coefficients of the
expansion

ð1þ zÞh−1½logð1þ zÞ�n ¼
X
j≥n

cðj; n; hÞzj: ðB4Þ

It is worth noting that oða½−ha−n�Þ ¼ 0, ∀ n ∈ N≥1.
Recursion relations for unflavored torus correlation

functions were first studied in [2], and later generalized

15In the math literature, the expansion is often taken to beP
n∈Z anz−n−1.
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to R-graded super-VOAs [30] and flavored correlation functions [32]. They are crucial tools for deriving flavored modular
differential equations. Consider a 1

2
Z-graded super-VOA V containing a ûð1Þ current J with zero mode J0,M a module of

V , and a; b ∈ V are two states of weights ha, hb. If J0a ¼ 0, then16 [6,30]

strMoða½−ha�bÞxJ0qL0 ðB5Þ

¼ strMoða½−ha�j0iÞoðbÞxJ0qL0 þ
Xþ∞
n¼1

E2k

�
e2πiha

1

�
strMoða½−haþ2k�bÞxJ0qL0 : ðB6Þ

Recall that when a is a conformal descendant, oða½−ha�Þ ¼ 0. On the other hand, if the state a is charged with J0a ¼ Qa and
Q ≠ 0, then the recursion formula reads [32,33]

strMoða½−ha�bÞxJ0qL0 ¼
Xþ∞
n¼1

En

�
e2πiha

xQ

�
strMoða½−haþn�bÞxJ0qL0 : ðB7Þ

Another frequently encountered insertion is oðLk
½−2�j0iÞ. In particular,

stroððL½−2�Þkj0iÞqL0− c
24 ¼ PkstrqL0− c

24: ðB8Þ

Here, Pk denotes a kth order (and weight-2k) differential operator on q,

P1 ¼ Dð1Þq ; P2 ¼ Dð2Þq þ c
4
E4; P3 ¼ Dð3Þq þ

�
8þ 3c

2

�
E4D

ð1Þ
q þ 10cE6;…: ðB9Þ

APPENDIX C: NULL STATES IN soð8Þ− 2
The Lagrangian ofN ¼ 2 su(2) super-QCD is (we denote both the hypermultiplet and its scalar components byQ and Q̃)

L ¼ Im

�
τ

Z
d2θd2θ̄trðΦ†eVΦþQ†

i e
VQi þ Q̃†ieVQ̃iÞ þ τ

Z
d2θ

�
1

2
trWαWα þ

ffiffiffi
2
p

Q̃a
iΦb

aQi
b

��
: ðC1Þ

Since the fundamental representation of SUð2Þ is pseudo-real, the hypermultiplet scalars

Qi
a; Q̃a

i ; i ¼ 1…4; a ¼ 1; 2; ðC2Þ

which transform under fundamental representation of flavor group SUð4Þ, can be recombined into a single Qi
a, with

i ¼ 1;…; 8 transformed under 8V of SOð8Þ. From now on, we collectively use Qi
a, i ¼ 1;…; 8 and a ¼ 1, 2 to denote Q

and Q̃. More explicitly, Qi
a refers to Q when i ranges from 1 to 4, otherwise to Q̃, when i ranges from 5 to 8. The moment

map operator of the enhanced flavor group SOð8Þ is

M½ij� ¼ Qi
aQaj: ðC3Þ

It gives soð8Þ−2 currents of the corresponding 2D chiral algebra, as is conjectured in [1]

J½ij� ¼ χðM½ij�Þ; ðC4Þ

where χ is the map from operators in the same SUð2ÞR multiplet with Schur operators to the generators in 2D chiral algebra,
as is defined by .... There are a total of nine independent null states in 2D chiral algebra soð8Þ−2. The first three have
symmetric indices [1]:

J½1j�J½1j� þ J½5j�J½5j� −
1

4
J½mn�J½mn�; ðC5Þ

16Here, all modes are the square modes, which are suitable for torus correlation functions.
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J½2j�J½2j� þ J½6j�J½6j� −
1

4
J½mn�J½mn�; ðC6Þ

J½3j�J½3j� þ J½7j�J½7j� −
1

4
J½mn�J½mn�: ðC7Þ

The other six null states have totally antisymmetric
indices [82]:

J½12�J½56� − J½15�J½26� þ J½25�J½16�; ðC8Þ

J½13�J½57� − J½15�J½37� þ J½35�J½17�; ðC9Þ

J½23�J½68� − J½26�J½38� þ J½36�J½28�; ðC10Þ

J½14�J½58� − J½15�J½48� þ J½45�J½18�; ðC11Þ

J½24�J½68� − J½26�J½48� þ J½46�J½28�; ðC12Þ

J½34�J½78� − J½37�J½48� þ J½47�J½38�: ðC13Þ

There are four commuting suð2Þ subalgebras in soð8Þ−2.
We can choose them to be the Chavalley bases of four
simple roots which are not connected in the extended

Dynkin diagram of soð8Þ. Roughly speaking, the gener-
ators of soð8Þ gain charges under the Cartan of four suð2Þ
subalgebras. Unfortunately, the generators J½ij� of soð8Þ−2
are not eigenvectors of the four suð2Þ’s. Therefore, we use
another definition of soð8Þ:

MSþ SMt ¼ 0: ðC14Þ

All 8 × 8 matrices M form a Lie algebra isomorphic to
soð8Þ. Note that

S ¼
�

0 14×4
14×4 0

�
: ðC15Þ

The isomorphism between J½ij� and M is

J ¼ TMT−1; ðC16Þ

where

T ¼
0@ 14×4ffiffi

2
p 14×4ffiffi

2
p

i14×4ffiffi
2
p −i14×4ffiffi

2
p

1A: ðC17Þ

In the algebra defined by M, the four Cartans in commuting suð2Þ that we choose are listed as follows:

h1 ¼

0BBBBBBBBBBBBBBB@

1
2

0 0 0 0 0 0 0

0 1
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 − 1
2

0 0 0

0 0 0 0 0 − 1
2

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCA
; h2 ¼

0BBBBBBBBBBBBBBB@

1
2

0 0 0 0 0 0 0

0 − 1
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 − 1
2

0 0 0

0 0 0 0 0 1
2

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCA
;

h3 ¼

0BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1
2

0 0 0 0 0

0 0 0 − 1
2

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2

0

0 0 0 0 0 0 0 1
2

1CCCCCCCCCCCCCCCA
; h4 ¼

0BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1
2

0 0 0 0 0

0 0 0 1
2

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2

0

0 0 0 0 0 0 0 − 1
2

1CCCCCCCCCCCCCCCA
: ðC18Þ

The raising operators are chosen to be�
eij o

0 −eji

��
0 eij − eji
0 0

�
0 ≤ i < j ≤ 4: ðC19Þ
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ði; jÞ means a (4 × 4) matrix only has 1 at the position ði; jÞ and 0 at other positions. The lowering operators are their
transpose matrices. We can easily find that they are eigenvectors of h1, h2, and h3, h4. To derive the flavored MDE, we use
the isomorphism T to transform from the bases J½ij� to the basesM. Here we give the flavor modular differential equations,
respectively, to the last three null relations:

½−Db1Db3 þDb1Db4 −Db2Db3 þDb2Db4 ðC20Þ

−2E1

�
1

b1b2b3
b4

�
ðDb1 þDb2 þDb3 −Db4Þ þ 2E1

�
1

b1b2b4
b3

�
ðDb2 þDb1 −Db3 þDb4Þ ðC21Þ

þ8
�
E2

�
1

b1b2b3
b4

�
− E2

�
1

b1b2b4
b3

���
I0;4 ¼ 0; ðC22Þ

½−Db1Db3 þDb1Db4 þDb2Db3 −Db2Db4 ðC23Þ

−2E1

�
1

b1b3
b2b4

�
ðDb1 −Db2 þDb3 −Db4Þ þ 2E1

�
1

b1b4
b2b3

�
ðDb1 −Db2 −Db3 þDb4Þ ðC24Þ

þ8
�
E2

�
1

b1b3
b2b4

�
− E2

�
1

b1b4
b2b3

���
I0;4 ¼ 0; ðC25Þ

and �
D2

b4
þ 4E1

�
1

b24

�
Db4 − 8E2

�
1

b24

��
I0;4 ¼

�
D2

b3
þ 4E1

�
1

b23

�
Db3 − 8E2

�
1

b23

��
I0;4: ðC26Þ

APPENDIX D: FLAVORED MODULAR DIFFERENTIAL EQUATIONS

In this appendix, we collect a few long equations explicitly that were omitted in the main text.

1. T 1;1

In the class-S limit bi → b of the theory T 1;1, the Schur index is given by the formula (2.9). It satisfies several flavored
modular differential equations of different weights.
At weight-2, there is one equation that corresponds to the total stress tensor T ¼ TSug þ Tβγ,

0 ¼
�
Dð1Þq −

D2
b

2
−
�
2E1

�
1

b2

�
þ E1

�−1
b

��
Db − 2E1

�−1
b

�
E1

�
1

b2

�
þ 3E2

�
1

b2

�
þ 2E2

�
I1;1: ðD1Þ

At weight-3, we have

0 ¼
�
D3

b − 4E1

�
1

b2

�
Dð1Þq þ 8E1

�−1
b

�
Dð1Þq þ 6E1

�
1

b2

�
D2

b − 16E2

�−1
b

�
Db

− 12E2Db − 12E1

�−1
b

�
E1

�
1

b2

�
Db − 32E2

�
1

b2

�
Db − 12E1

�−1
b

�
2

E1

�
1

b2

�
− 24E2E1

�
1

b2

�
− 8E1

�
1

b2

�
E2

�−1
b

�
− 8E1

�−1
b

�
E2

�
1

b2

�
þ 48E3

�
1

b2

��
I1;1 ðD2Þ

and
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0 ¼
�
Dð1Þq Db þ 2E1

�−1
b

�
Dð1Þq − 2E2

�
1

b2

�
Db þ E2Db − 2E1

�−1
b

�
E2

�
1

b2

�
þ 6E3

�
1

b2

��
I1;1: ðD3Þ

At weight-4, there are several fairly complicated equations:

0 ¼
�
D4

b þ 8E1

�
1

b2

�
3

Db þ 48E1

�−1
b

�
E1

�
1

b2

�
Dð1Þq − 72E2

�
1

b2

�
Dð1Þq

þ 48Db

�
E1

�−1
b

��
2

E1

�
1

b2

�
þ 264DbE1

�−1
b

�
E2

�
1

b2

�
þ 192DbE1

�
1

b2

�
E2

�
1

b2

�
þ 336DbE3

�
1

b2

�
þ 48

�
E1

�−1
b

��
3

E1

�
1

b2

�
− 192E2E2

�
1

b2

�
þ 336E1

�−1
b

�
E1

�
1

b2

�
E2

�
1

b2

�
þ 288E1

�
1

b2

�
E3

�−1
b

�
− 784E1

�−1
b

�
E3

�
1

b2

�
− 432E1

�
1

b2

�
E3

�
1

b2

�
− 2136E4

�
1

b2

�
þ 96Dð1Þq E2

�−1
b

�
þ 288DbE3

�−1
b

�
þ 1472E1

�−1
b

�
E3

�−1
b

�
− 384E4

�−1
b

�
− 48E2

2

�
I1;1; ðD4Þ

0 ¼
�
D2

bD
ð1Þ
q − 12E1

�−1
b

�
E1

�
1

b2

�
Dð1Þq − 16E2

�−1
b

�
Dð1Þq − 10E2

�
1

b2

�
Dð1Þq − 8E2E1

�
1

b2

�
Db

− 4E2E1

�−1
b

�
Db þ 6E1

�−1
b

�
E2

�
1

b2

�
Db þ 12E1

�
1

b2

�
E2

�
1

b2

�
Db þ 18E3

�
1

b2

�
Db

þ 12E2E2

�
1

b2

�
þ 24E1

�−1
b

�
E1

�
1

b2

�
E2

�
1

b2

�
þ 32E1

�
1

b2

�
E3

�−1
b

�
− 4E1

�−1
b

�
E3

�
1

b2

�
− 24E1

�
1

b2

�
E3

�
1

b2

�
− 74E4

�
1

b2

�
þ 24E1

�−1
b

�
E3

�−1
b

�
þ 64E4

�−1
b

�
þ 4E2

2 − 8E2E1

�−1
b

�
E1

�
1

b2

��
I1;1; ðD5Þ

0 ¼
�
Dð2Þq þ 2E3

�
1

b2

�
Db − 4E2

�−1
b

�
Dð1Þq − 4E3

�−1
b

�
Db

þ 8

3
E1

�−1
b

�
E3

�−1
b

�
þ 16E4

�−1
b

�
þ 2

3
E1

�−1
b

�
E3

�
1

b2

�
− 11E4

�
1

b2

��
I1;1: ðD6Þ

2. T 1;2

Here we consider the bi → b limit. There are two equations at weight-3,

0 ¼
�
D3

b − 32E1

�
1

b2

�
Dð1Þq þ 16E1

�
1

b2

�
D2

b þ 48E1

�
1

b2

�
2

Db − 96E2

�
1

b2

�
Db

− 32E2E1

�
1

b2

�
− 288E1

�
1

b2

�
E2

�
1

b2

�
þ 96E3

�
1

b2

��
I1;2 ðD7Þ

and
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0 ¼
�
DbDq − 6DbE2

�
1

b2

�
þ 4E2Db þ 12E2E1

�
1

b2

�
− 12E1

�
1

b2

�
E2

�
1

b2

�
þ 12E3

�
1

b2

��
I1;2: ðD8Þ

At weight-4, there are two equations,

0 ¼
�
Dð2Þq −

1

8
D2

bD
ð1Þ
q −

3

2
E1

�
1

b2

�
DbD

ð1Þ
q þ 4E2

�
1

b2

�
Dð1Þq þ 2E2D

ð1Þ
q þ 1

4
E2

�
1

b2

�
D2

b þ 3E1

�
1

b2

�
E2

�
1

b2

�
Db

− 8E2E2

�
1

b2

�
− 24E1

�
1

b2

�
E3

�
1

b2

�
− 24E4

�
1

b2

�
− E2

2 − 31E4

�
I1;2 ðD9Þ

and

0 ¼
�
Dð2Þq −DbD

ð1Þ
q E1

�
1

b2

�
þ 4E2

�
1

b2

�
Dð1Þq þ 2E2D

ð1Þ
q −

1

2
E2

�
1

b2

�
D2

b þ
1

2
E2D2

b

þ 2E2E1

�
1

b2

�
Db þ 6E3

�
1

b2

�
Db − 8E2E2

�
1

b2

�
− 24E4

�
1

b2

�
− 4E2

2 − 16E4

�
I1;2: ðD10Þ
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