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Surface defects, flavored modular differential equations, and modularity
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Every 4D N = 2 superconformal field theory 7 corresponds to an associated vertex operator algebra
V(T), which is in general nonrational with a more involved representation theory. Null states in V(7') can
give rise to nontrivial flavored modular differential equations, which must be satisfied by the refined/
flavored character of all the V(7') modules. Taking some A, theories 7, of class S as examples, we
construct the flavored modular differential equations satisfied by the Schur index. We show that three
types of surface defect indices give rise to common solutions to these differential equations and therefore
are sources of V(7 )-module characters. These equations transform almost covariantly under modular
transformations, ensuring the presence of logarithmic solutions which may correspond to characters of

logarithmic modules.
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I. INTRODUCTION

Four-dimensional ~ superconformal field theories
(SCFTs) with N = 2 supersymmetry are fascinating sub-
jects to study, as they are constrained enough to allow
various exact computations and also rich enough to gen-
erate numerous, interesting physical and mathematical
structures.

One remarkable example is the SCFT/vertex operator
algebra (VOA) correspondence between the 4D N =2
SCFTs and 2D VOAs [1], which maps the operator product
expansion (OPE) algebra of the Schur operators in any 4D
SCFT 7 to that of an associated VOA V(7). According to
the correspondence, the Schur limit Z of the 4D N =2
superconformal index equals the vacuum character of the
associated VOA, and the ¢ central charge and the flavor
central charges of 7 are related to the 2D central charge and
the levels of affine subalgebras of V(7)) by simple pro-
portionality

(1.1)

1
¢p = —12¢4p. kyp = _§k4D'

The minus signs imply that whenever the 4D theory is
unitary, the associated VOA will be nonunitary.

Like the Lie algebras, it is interesting to study VOAs from
a representation-theoretic point of view, as they admit many
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or infinite interesting modules. When a VOA is rational,1
namely, when it admits only finitely many irreducible
modules whose characters form a vector-valued modular
function, it could be considered as the chiral (symmetry)
algebra of a rational conformal field theory (RCFT), with its
modules corresponding to the primaries of the RCFT. Outside
the realm of RCFT, the representation theory of a VOA could
be much more complicated. For instance, logarithmic mod-
ules may be present on which L does not act diagonally and
the corresponding character is logarithmic. In general, the
associated VOAs of class-S theories are not rational.”
Fortunately, there are tools that may help explore the
structure of the modules of the associated VOAs. Crucially,
sources of modules can be found in 4D physics. In a 4D
N =2 SCFT 7, one can introduce surface operators that
perpendicularly penetrate the VOA plane at the origin while
simultaneously preserving a 2D N = (2, 2) superconformal
subalgebra of the 4D superconformal algebra [9-13]. It is
conjectured that such a defect corresponds to a nonvacuum
(twisted) module of the associated VOA V(7)) [12-18]. In
particular, the character of such a module should coincide
with the Schur index in the presence of the defect. In cases
where V(7)) have been explicitly known, e.g., when 7 is an

'A rational VOA is a special case of a lisse/ C,-cofinite VOA,
which is a VOA with zero-dimensional associated variety [2-5].
In the SCFT/VOA correspondence, the associated variety of an
associated VOA equals the Higgs branch of the 4D theory [6].
Therefore, the rationality of the associated VOA implies the
absence of the Higgs branch in 4D, and in particular, the absence
of flavor symmetry.

*Theories of class S in general have nontrivial Higgs branches.
For genus-0 theories, the associated VOAs are shown to be
quasilisse [7,8] (i.e., the associated variety has finitely many
symplectic leaves).
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Argyres-Douglas theory, surface defects that arise from the
Higgsing prescription have been identified with the modules
of the associated VOAs. However, in general, it remains
challenging to verify the conjecture.

Another tool that comes in handy is the modular differ-
ential equations. In a RCFT, the chiral symmetry algebra has
finitely many irreducible modules, whose characters y; form
a vector-valued modular form of weight-O with respect to
SL(2,Z) or a suitable subgroup. As a result, any module
character (of the chiral algebra) must satisfy a universal
unflavored modular differential equation whose coefficients
are ratios of Wronskian matrices made out of characters y;
[19,20]. These coefficients are strongly constrained by their
modularity, and this fact has been extensively exploited to
classify RCFTs with a fixed number of chiral primaries
(with or without fermions) [21-28]. Modular differential
equations also arise in the context of SCFT/VOA corre-
spondence. As shown in [6], the stress tensor of the
associated VOA must be nilpotent up to an element ¢ in
the subspace C,(V(7)) and a null state N/, (L_,)"|0) =
N + ¢ for some n € N_,. Combined with Zhu’s recursion
formula [2,29,30] that computes torus one-point functions,
the nilpotency may lead to a nontrivial unflavored modular
differential equation satisfied by the unflavored Schur
index. Such an equation has been exploited to classify
rank-2 4D AN =2 SCFTs [31]. The same reasoning
naturally generalizes to characters of other (twisted) mod-
ules of the associated VOA, and one expects the untwisted
characters to satisfy the same equation, while the twisted
characters satisfy a twisted version of the equation.

When the 4D theory has flavor symmetry, flavor fugac-
ities can be introduced into the Schur index and defect
indices. With the help of the flavored Zhu’s recursion
formula [17,32,33], some null states lead to flavored
modular differential equations (FMDEs). Note that there
are usually additional null states giving rise to a few more
equations besides the one corresponding to the nilpotency
of the stress tensor. The character of any (twisted) V(7')
module is expected to satisfy all of these (twisted versions
of) differential equations simultaneously, and therefore is
heavily constrained.

This paper aims to further explore the relation between
surface defects in a class of 4D N =2 SCFTs and the
module characters of their associated VOAs. For simplicity,
we focus on the class-S theories of type A;: These theories
are the simplest in the sense that their Schur indices and
vortex defect indices (from Higgsing) are known in closed
form in terms of some well-known analytic functions [34].
We construct the (flavored) modular differential equations
that their Schur indices satisfy and study the common
solutions to such equations.

It turns out that there are several physical sources of
common solutions: the Schur index 7, itself obviously,
and vortex defect indices [11] Z{<! (k = even) (namely, with
even vorticity k), the defect indices of Gukov-Witten-type

surface defects [9], and some surface defects related to
modular transformations. Based on these computational
results, we conjecture that these surface defects indeed
correspond to nonvacuum modules of the associated VOA.
Furthermore, vortex defects with odd vorticities are solutions
to some twisted version of the differential equations, and
therefore, it is natural to associate them with the twisted
modules.

Although the presence of additional flavored modular
differential equations makes the special equation (tempo-
rarily called eqy;) from the nilpotency of the stress tensor
seem less prominent, in several examples, we find that eqyy
actually contains all the information on the allowed
flavored characters. The key is modularity. When flavored,
the coefficients of the flavor modular differential equations
are no longer modular forms, but rather quasi-Jacobi forms.
Under suitable modular transformation, eqy; does trans-
form, and it actually generates all the necessary modular
differential equations of lower weights. Schematically,

S(eqni) = Zrmb” (FMDE:s of lower weights)

m,n

(1.2)

m,n*

Together, they determine all the allowed nonlogarithmic
and logarithmic characters.

When unflavored, the presence of logarithmic solutions is
expected whenever the indicial roots are integral spaced,
e.g., by the Frobenius method. See also [7,35,36]. In the
cases we have studied where the Schur and vortex defect
indices have closed-form expressions, these logarithmic
solutions are just modular transformations of the nonlogar-
ithmic solutions, thanks to the modularity of the coefficients
which makes the differential equations covariant (or invari-
ant, up to an overall factor of 7") under suitable modular
transformations. However, the quasi-Jacobiness upon fla-
voring would naively break this logic. Luckily, the covari-
ance can be almost restored by introducing some additional
fugacities y; associated with the flavor central charges, and
this leads to the generation of flavored modular differential
equations of lower weights we just mentioned.

The organization of this paper is as follows. In Sec. II, we
recall some basics of the SCFT/VOA correspondence and
surface defects in 4D N =2 SCFTs. In particular, we
review the closed-form expression for the Schur index of all
Ay class-S theories and the defect indices from Higgsing.
We also recall how modular differential equations arise in
the context of 2D RCFT and 4D SCFT. In Sec. III, we
analyze in detail the Sy system of conformal weighs % (also
known as the symplectic bosons). In both the untwisted and
twisted sectors, we construct flavored modular differential
equations from trivial null states in the vacuum module and
study their common solutions and modularity. In Sec. IV, we
focus on the A, class-S theories 7 ,, and in several simple
examples, we study their associated (flavored) modular
differential equations and the solutions given in terms of
different defect indices. In particular, we conjecture the
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complete set of module characters (as analytic functions) of

80(8)_, and 2D small A’ = 4 superconformal algebra. In
Appendix A, we collect a few definitions on modular/Jacobi
forms and some relevant differential operators.

II. SCFT/VOA CORRESPONDENCE AND MDES

A. The Schur index

Four-dimensional A =2 SCFT has been one of the
most interesting subjects, as it bridges different branches in
mathematical physics. These theories are substantially
constrained by the symmetry which allows exact compu-
tation of many quantities, yet they retain extremely rich
internal mathematical and physical structures. We recall
that the 4D N =2 superconformal algebra 81(2,2|2)’
contains the generators

Pailv Kd”, D, Ma[i, M('l[,),’ R]J, 37 S?, Qlixv Svl{}z'

(2.1)

The (anti)commutation relations can be found in [1].

Two quantities of a4D N = 2 SCFT attract considerable
attention, the S$*-partition function [37] and the super-
conformal index Z(p,q,t) (which is also an $° x S!-
partition function) [38—40],

Z(p, g, 1) = tr(=1)F ps(a=27i=2R~r)

x A2 2R (Rer o= f{02= ) f - (2.2)
Both quantities participate in certain Alday-Gaiotto-
Tachikawa (AGT)-type 4D/2D correspondence when the
theory under consideration is of class & [41—55].4
comparison, the index is much simpler as it is independent
of exactly marginal deformations of the theory. In the
context of the 4D/2D correspondence, the superconformal
index of a theory 7 [£] equals a topological correlator on the
associated Riemann surface X [48]. In different limits, the
superconformal index often enjoys supersymmetry
enhancement, receiving contributions only from states
annihilated by more than two supercharges.

The Schur index of a 4D N = 2 SCFT is the Schur limit
t — g of the full superconformal index Z(p, ¢, ) [1,39] and
can be written simply as a (super)trace over the Hilbert
space of states in the radial quantization,
F PO ST} =202 57} gE-Rpf

T = tr(~1) (2.3)

’In the Euclidean signature, the superconformal algebra is
31t*(4]2) instead.

“The AGT correspondence is also extensively studied in the
presence of surface defects. See, for example, [56,57]. In this
context, the modular property (with respect to the complexified
gauge coupling Tyge = 2 + ;‘%i“i) of the effective superpotential
W is also studied [58], where the modular anomaly equation
[59,60] determines W. See also [61] for an application of the
modular anomaly equation to the Schur index.

Here, E is the conformal dimension, R the SU(2)x-charge
generator defined by 2R = R!; — R?,, and F the fermion
number. Bold letters b and f denote collectively any flavor
fugacities and the associated Cartan generators of the flavor
group that one may include in the trace. Thanks to the
anticommutativity and the neutrality under £ — R (and f) of
the two pairs of supercharges QZ;,S'Z; and Ql_, Sy, the
index is actually independent of f;, f3,, and the (—1)F
insertion leads to vast cancellations between bosonic and
fermionic states. The only contributions to the Schur index
are from the states satisfying the Schur conditions,

{0L,57} =1{0,-,5} =0 E-2R-M*

=r+ M% =0. (2.4)
Here, M* and M% denote the spin under the rotations
within R§3 x, and [R)ZC]!XZ, or in other words, the eigenvalues
of M, " + M*+ and M, * — M ;, respectively. The U(1),
generator r = 5 (R1 | + R?,). These states correspond to the
so-called Schur operators in the 4D theory which are
typically restricted to the [RM «, Plane.

As a superconformal index, the Schur index is invariant
under exactly marginal deformation of the 4D theory.
Exploiting such an independence, the Schur index of
Lagrangian 4D A =2 SCFTs can be easily computed
in the free limit. The result is organized into a contour
integral

T =

(_i)rankg—dim g % rank g daA

—dim g+3rankg
W] 2m'aA (z

x T (a H a+ 5 f{ Zi‘i’aZ(a). (2.5)

a#0 WGR

Here, g denotes the gauge algebra with the Weyl group W,
and R denotes the joint representation of the gauge and
flavor group in which the hypermultiplets transform. The 9;
are the Jacobi theta functions and # the Dedekind #
function. Their definitions and properties are collected in
Appendix A. Throughout this paper, the letters a, b, ... in
Fraktur font are related to the letters a, b, ... by

ey

a, = eeriaA’ bj — eZm‘ﬁ,-’ ) q= e27rir‘ (26)
The integration contour of each integration over a4 is taken
to be the unit circle |a,| = 1, and |b;| = 1. Note that there
is no pole along the integration contour, since the zeroes of
94(3) are given by 3 =%+ m + nz.

The contour integral can be reproduced from a super-
symmetric localization computation on S x S' [62,63]. In
radial quantization, the Euclidean spacetime R* is viewed
as $3 x R where R denotes the radial direction. The Schur
index as a trace over the Hilbert space can be equivalently
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computed by first compactifying the radial R — S! and
placing some appropriate background metric (that depends
on a complex modulus 7z controlling the relative size and
angle between S* and S') and R-symmetry gauge fields.
Let us parametrize S® by a coordinate system ¢,y,0
adapted to the 7T-fibration structure of S°, with ranges
@,x €10,2z] and 6 € [0,3]. The space S ,x S] has a
T2, subspace at § = 0 and another 72, subspace at 0 =2
The path integral of a 4D N =2 Lagrangian SCFT
localizes to an ordinary integral of a 2D path integral on
T(%,,t over flat dynamical gauge fields of the form A ~ adt,

7 o [ o
2ria

a € Cartan of the gauge group, a ~ e>™.

(2.7)
The integrand Z of (2.5) enjoys a crucial property:
ellipticity [64]. By that, we mean that the integrand, as a
meromorphic function of the rank — g variables ay,, is
separately doubly periodic under shifts a, — a, + 7 and
a, — ay + 1 of any one variable ay,,
Z(ag+1) = Z(ay +7) = Z(ay). (2.8)
This fact enables an elementary method to evaluate the
integral exactly and organize the result in terms of finitely
many twisted Eisenstein series and Jacobi theta functions
[34,65] (see also [66]).
In this paper, we will mainly focus on the A, theories
T, of class S associated with a genus-g Riemann surface
with n punctures. Their fully flavored Schur index 7, has

an elegant compact form given by

AN

(=1)" }

a;
J
Jlbj

L ,7( >n+2g -2
2115

n+2g-2

xR Ek[
k=1

Ig,nzl =
(2.9)

B

Here, Z,, is fully flavored with respect to the class-S
description, and b;_; _, denotes the SU(2) flavor fugac-
ities of the n punctures. Coefficients 4 are rational numbers
determined by the following recursion relations:

A8 — e — o 40 =3 =, (2.11)
(even) 2k+1 Bzf
A =0, Z/IM Sy — @ (2.12)

k

Z/sz 822/” m)

f=m

2k+1
2m+1

2k+1
2m+1

Zﬂzf SZ/ m)
(2.13)

Here, B, denotes the nth Bernoulli number, S are rational
numbers that are given by the 2nth coefficient of a y-series
expansion,

(2.14)

B. SCFT/VOA correspondence

The Schur states contributing to the Schur index are
harmonic with respect to the two pairs of supercharges
(QL,S') and (Q,-,5?"). By the state/operator correspon-
dence, any Schur state can be created by a Schur operator
O(0) acting on the unique vacuum. This Schur operator at
the origin (anti)commutes with all four supercharges.
Translating the operator away from the origin typically
breaks this Bogomol'nyi—Prasad—Sommerfield (BPS) con-
dition. However, one may consider moving the operator
along the R3, = C_: plane by the twisted translation [1]

O(z2,2) = e~ O(0)e el (2.15)

where

L, =P, L,=P_-+R}.  (2.16)
The translated Schur operator O(z, 7) remains in the kernel
of two supercharges @, == Q! + §?7,Q, := 0, — S, and
the z dependence is Q, exact. Hence, at the level of
cohomology, O(z) :=[O(z,Z)] is holomorphic in z.
Moreover, their OPE coefficients are also holomorphic,
forming a 2D VOA/chiral algebra on the plane C, : [1]. For
any local unitary 4D A/ = 2 SCFT 7, the associated VOA
V(7)) must be nontrivial and nonunitary, since a component
of the SU(2)% Noether current must be a nontrivial Schur
operator, which gives rise to the stress tensor in the VOA
with a negative central charge c,p = —12¢,p. Furthermore,
any flavor symmetry G in 7 will be associated with an
affine subalgebra §;, C V(7'), whose generators descend
from the moment map operator of the symmetry G, and
they transform in the adjoint representation of G. For the A,
theories 7 = 7, ,, the exact form (2.9) of Schur index Z , ,
highlights several flavor representations in which the VOA
generators transform. In particular, the denominators
9,(2b;) are tied to the SU(2)-adjoint moment map oper-
ators/affine currents of the n puncture, while the E}’s seem
to come from the multifundamentals.

The associated VOA is an important invariant of 4D
N =2 SCFT, constituting a VOA-valued topological
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quantum field theory (TQFT) for theories of class S thanks to
the nontrivial associativity properties descending from the
class-S duality [48,67]. Under the correspondence, the Schur
index of 7 is identified with the character of the vacuum
module of V(7), and it plays a central role in the SCFT/VOA
correspondence. (See, for example, [53,67-76].)

Two-dimensional VOA is an interesting subject in its
own right, say, from the representation-theoretic perspec-
tive. A VOA typically admits many modules besides the
vacuum module. For those constituting a RCFT, there may
be finitely many irreducible modules generated from the
primaries. Unfortunately, the VOAs that arise in the SCFT/
VOA correspondence often do not have nice properties
such as rationality, making their modules less straightfor-
ward to study. However, one may still hope to access their
modules through four-dimensional physics.

In a 4D N =2 SCFT 7, one can insert surface defects
that perpendicularly intersect at the origin with the C plane
where the VOA resides. In particular, one may consider
those preserving N' = (2, 2) superconformal symmetry on
their support. It is generally believed that such defects
correspond to nonvacuum modules of the associated VOA
V(7), since the Schur operators in the 4D theory may act
on the defect operators via bulk-defect OPEs. A quantity
that captures information of such defect systems is the
defect index which we now review.

C. Defect indices

Let us focus on the N/ = (2, 2) superconformal surface
defects supported on the x;, x, plane which preserve the
supercharges Q,-, 5%~ [13]. One can compute the full 4D
N =2 superconformal index in the presence of such a
defect [10], which admits the usual Schur limit t — ¢
[10,13]. In this section, we will briefly review the indices
of three types of surface defects. We will see in a later section
that they all give rise to solutions to the modular differential
equations, and therefore, potentially correspond to VOA
modules.

1. Vortex defects

The vortex defect that we are interested in is labeled by a
natural number k € N. One begins with a 4D N = 2 SCFT
which is usually referred to as the 7 g, and we will take it to
be 7, ,. First we assume n > 1, in which case the theory
contains at least one SU(2); flavor symmetry. This theory is
then coupled to the theory of four hypermultiplets 7, ; by
gauging an SU(2) flavor symmetry associated with a
puncture, by gauging the diagonal of SU(2); and one
SU(2) flavor symmetry of 7 3. The resulting theory is
denoted as 7 yy, which has an additional SU(2) flavor
symmetry, say, the (n + 1)th puncture. One then turns on a
position-dependent vacuum expectation value for the corre-
sponding moment map operator with a profile ~(x; + ix,)*
triggering a renormalization group (RG) flow to the IR. When

k =0, the IR fixed point reproduces the original IR theory
Zr, while for k > 1, the IR fixed point is 7z coupled to a
vortex defect. The Schur index of the resulting IR theory can
be computed by [11,16,51]

2
tnn(e)”

Tdefect (k) = 2(—1) Res sqm == Lo (2.17)

1
bn+l _’qZJr

Inserting the exact formula for Z,, ., one arrives at the
closed form of the defect index [34]5

. i n (T)n+29—2

Ide,fw k)= (-1 —_t 2.19
=S ) 21
n n+1+2g—2~
XZ<Hai> S T (k4 )E,
a—+ \i=1 =1

-1 n+k
X [( ) a'], (2.20)

im1 b;'

where the (twisted) Eisenstein series FE; is defined in
Appendix A. ] are rational numbers defined by

(4 1429-2) T\ (n+142¢-2)
ﬂbp 9 (k) = Z (§> mﬂﬂ 9 .
r—¢ :

(2.21)

Below we list a few simple values of A for the readers’
convenience:

o o k -1
W=t 3hm=5  WE="5
~(4 ko1 4 Kk
Bo=5-5 MW= 5

The exact formula of ZJ*!(k) suggests that the defect
indices are (combinations of) spectral-flow vacuum char-
acter Z,, [34]. In particular, when k = odd, the corre-
sponding flow modules are twisted modules where the
multifundamental generators in the VOA have their con-
formal weights shifted by half-integers, while the affine
currents associated with the n punctures keep their weights
(mod 1). We will observe such a pattern again when we
discuss the flavored modular differential equations.

Although the above construction of a vortex defect
generalizes to g>1, n=0 by cutting a handle and
inserting a 73, the formula (2.19) is only valid for

*Note that k = 0 reproduces the original Schur index Z g

Tl (k =0) =Z,,.

(2.18)
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k= even

n>1. Indeed, with n =1 the poles b — gzt =" are
actually double poles due to the twisted Eisenstein series.’
In more detail,

in(f)29‘1 500 { 1]
T, = WE 2.22
g.1 (251)(1120’ ; ¢ bl ( )

The twisted Eisenstein series involved has simple poles at

by = "3 [see Eq. (A22)], which collide with the
simple poles of the 9,;(2b;). Still, the residue in (2.17)
can be computed using

11 -~
) (ZB)EZ”“[ ] Z

=

Res

E 26
2f+1 =2t

(2.23)

where e, are some rational numbers. Combining with
(A17), we have the following defect indices:

g-1

T4 (k = even) = (7)™ Z cr(k)Eaz, (2.24)
=0

g-1 -1
Igigect(k = Odd) = 1’1(1)29—2 Z C:p(k)Emf |: 1 :| . (225)
=0

Here, c,(k), ¢/,(k) are some rational numbers that can be
worked out explicitly.

Given g and n > 1, there are infinitely many vortex
defects corresponding to k € N. However, we see from the
exact form of Z9¢!(k) that they are all linear combinations
of the fixed structures with different £,

STty )

From the symmetry property (A16), such a structure is

nonzero only when £ = n mod 2 and 7 > 0.”In particular,
n+2q 2

(2.26)

when n = even, only the following [ ===
series contributes:

1 Eisenstein

+1
[157"

+1
[157"

+1
167

E, . E, . (2.27)

3 cee n+2g—

while when n = odd, only

®See also [77] for a discussion on higher order poles in the
context of the Hall-Littlewood index.

"Here we have assumed 1 > 1, and we also define EO[ =
see Appendix A.

—1;

pU

€3, T4

FIG. 1. The dynamic gauge field with a prescribed singular
behavior near the defect plane drawn vertically. ¢ is the angular
coordinate in the x3, x, plane where the associated VOA lives.
The wedge denotes the x;, x, plane on which the surface defect is
supported.

+1
I

+1
I

+1
I

E5 (2.28)

. En+2g—2

contribute, and again, there are [%1 of them. The + 1
in the Eisenstein series is given by (—1)"*%. These
Eisenstein structures are linear-independent functions of
by, ...,by,; hence, for even k or odd k [so that (—1)"*¥ is
fixed], there are [ “*2/~2] linear-independent vortex defect
indices (including the original Schur index corresponding
to k = 0).

A similar analysis can be applied to defect indices with
n = 0. There, the defect indices Z$53e(k) are all linear
combinations of g Eisenstein series [multiplied by (7)%9~2
which is omitted here],

Ey= -1, E,.E,,...Ey, , when kiseven, (2.29)
S Y
L) T RN Tl
—1 .
Ezg_z{ | ] when k is odd. (2.30)

Hence, for n = 0, there will be g independent defect indices
for either parities of k.

2. Gukov-Witten defects

Other types of superconformal surface defects that will
be relevant are the Gukov-Witten surface defects [9], where
the dynamical gauge fields are prescribed with some
singular background profile at a defect plane orthogonal
to the VOA plane. Upon mapping to S) , , x S;, the defect
plane is mapped to the torus 72, C §* x ST at 0 — 2 linking
(not intersecting) the VOA torus TZV, atd = 0. The singular
profile in flat space then translates to a background gauge
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field A ~ a’dg which is singular at the locus 72, since the

Py
@ circle is contractible in S3. See Fig. 1. Once the super-
symmetric localization is performed, the final integral over
flat gauge fields a will be shifted to an integral over a + a’z,

and the Schur index reads

d
I= 7{“2((1 +a'7).

Tmia (2.31)
This effectively shifts (expands or shrinks) the integration
contour away from the unit circles. For small o', the
integral does not change until the integration contour hits
the poles of the integrand Z and residues Res; are picked
up. Schematically, in the presence of different Gukov-
Witten-type surface defects [17],

Tdf ~ T+ "cRes;, (2.32)

where ¢; are numbers that depend on the precise configu-
ration of the singular background value. Therefore, the
residues of the integrand Z can be identified with the Schur
index in the presence of Gukov-Witten-type surface
defects. These residues can be also interpreted as free
field characters of some bcfy systems since the residues
are just ratios of #(z) and 9; functions.

3. Defect indices from S transformation

There is yet another type of surface defect that we will
encounter. We have explained that the Schur index Z ,,(b)
can be computed as an S;M x S} -partition function [62].

In such an interpretation, the flavor fugacities b correspond
to flat background gauge fields B of the flavor symmetry,
roughly of the form B ~ bdt (where b ~ ¢**™?), leading to a
smooth and vanishing background field strength.

Suppose one performs an S transformation on the index
Z,,, mapping

b 1
b—-b =—, 717 =—-. (2.33)
T

The new index SZ(b,7) :=Z,,(2, —1) can also be reinter-
preted as an S* x S'-partition function with a new back-
ground flavor gauge field. Now the background gauge field

b’ = —b(—1) is proportional to the new complex modulus

7 == %, and the background flavor gauge field will be of

the form B’ ~ bdg. Although the gauge field B’ is flat
almost everywhere, it is singular along the torus Tfm
at 0 =7, where the flavor background field strength has
a o-function profile. Therefore, an S-transformed Schur
index SZ (b, 7) can be interpreted as a flavor defect partition
function on the geometry with complex modulus 7'.

D. Modular differential equations

Modular differential equations will play an important
role in our subsequent analysis, and they have already been
a useful tool to study both 2D CFT and 4D N = 2 SCFTs.
There are two major ways where such an object comes
into play.

Rational CFTs are CFTs with finitely many primaries.
Each primary generates an irreducible module of the chiral
symmetry algebra (namely, VOA) with character ch;_; .
The full partition function Z := trgto3iglo— can be
expanded in these module characters,

Z= ZM,-jch,»(r)chj(f), q =¥, (2.34)
ij

where M;; is the pairing matrix independent of g, g. The
full partition function Z is also a T>-partition function
where the torus has complex structure labeled by 7, and
therefore, Z is expected to be invariant under the modular
group SL(2,Z). Consequently, the characters ch; are
required to form a vector-valued modular form of
weight-0 under SL(2,Z) (or its subgroups if fermions
are present [26,27]). For example, for bosonic theory,

h, <_ %) _ zj:sijchj(f).

The §;; form the well-known modular § matrix, from which
one can compute fusion coefficients between the said
primaries by the Verlinde formula [78].

Using the N characters ch; and the differential operator

(2.35)

ng) defined in Eq. (A36), one can write down a “trivial”
ordinary linear differential equation [79]

N-1

Dch; + 3" ¢, DY ch; =0 (2.36)
r=0
using the Wronskian matrices W,,
Chl Ch2 s ChN
D;l)chl D(ql)chz Dél)chN
W, = | DY Vch, DY Vchy Dy Vehy |,
Dng)Chl DSIrH)Ch2 Dng)ChN
D(qN)Ch] DEIN)Chz DEIN)ChN
w
= (=1)NT L, 2.37
b= ()Y (237)
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What is nontrivial about this equation, however, is the fact
that the coefficients ¢, must be weight-(2N — 2r) modular
forms and therefore are severely constrained by modularity.
Note also that the differential equation is homogeneous in
modular weight and therefore transforms covariantly under
suitable modular transformations. Any reducible module of
the given rational VOA is a direct sum of the above finitely
many irreducible modules, and the corresponding module
character must also be a solution to the above modular
differential equation.

This fact has been exploited to classify (bosonic/fer-
mionic) RCFTs [21-28]. A modular differential equation
can be labeled by its order N, and the “total order # of
zeros” of the Wronskian Wy. The parameter 7 takes value
in the fundamental region of the SL(2,Z) (or suitable
subgroups when fermions are involved), and the zeros can
sit at the orbifold points, internal points, or the cusp ico.
The total order of the zeros equals £/6, £ = N — {1}. For
low values of (N, ), there are only a small number of free
coefficients in the modular differential equation due to
modularity. In these situations, it is possible to scan a large
range of values for these coefficients and look for “admis-
sible character solutions” with non-negative integral coef-
ficients when expanded in g series. These solutions are then
tested against more stringent conditions, e.g., by demand-
ing non-negative and integral fusion coefficients.

Another way in which the modular differential equations
arise is through some null states in the vacuum module of a
VOA V. One can insert the zero mode N (o (if nonzero; see
Appendix B for a brief review on notations) of a null state
N into the (super)trace that computes the (super)character
of a module M of V,

0= ster\/'[O]qLo‘ibf' (2.38)
Here we have included flavor fugacities b associated with
the Cartan of the flavor symmetries f. When A takes
certain form, the zero mode N o) can be “pulled out™ of the
trace using Zhu’s recursion formula, and the equation turns
into a (flavored) modular differential equation [2,6,29,32].

For any 4D N = 2 SCFT 7, the associated VOA V(7)
descends from the Schur operators in 4D. These operators
may originate from different superconformal multiplets, and
some are outside of the Higgs branch chiral ring Ry. In
particular, the 2D stress tensor 7' of V(7)) descends from a
component of the SU(2); Noether current in 4D, which
does not belong to Ry. The chiral ring Ry is identical to the
associated variety of V(7'), and as a result, 7 must be
nilpotent up to C,(V(7)) and a null state /' of the VOA [6],
(L2)"[0) = N + .

p € Cy(V(T)), some neN,y.

(2.39)

Inserting this equation into the supertrace, it is believed to
turn into an unflavored modular differential equation for the

unflavored Schur index of 7/vacuum character of V(7).
Such an equation plays an important role in a recent
classification of rank-2 4D N = 2 SCFT [31].

III. fy SYSTEM

Although our focus will be on the a;-type class-S
theories, it proves helpful to begin with a detailed analysis
of the simple theory of the fy system with conformal
weights % The theory is also the associated VOA of a free
hypermultiplet in four dimensions. The f, y OPE reads

1
z=w

P(2)r(w) ~

(3.1)

= Lﬁm7 yn] = 5m+n.0’

where the two fields are expanded in the traditional manner,

p)= > r@)= >

,an_n_h[ﬂ] s
neZ—h|p) n€Z~hly

Bz (3.2)
]

The theory possesses a stress tensor 7" and a U(1) current J
given by

1
——(y0p).
5 (rop)
Note that the stress tensor T is defined as a composite and
also as an element in the subspace C,(fy), since

T= 5 (por) J=(h).  (33)

L,|0) (ﬁ_gy_% - Y_gﬂ_%> 10). (3.4)

where |0) is the vacuum state of the VOA.
The f and y fields carry charges under L, and J,

p 4
L, 1/2 1/2
Jo -1 +1.

The vacuum module of the fy system is simply the Fock
module from acting f_,, 1, 7_, 1 on the vacuum |0),n € N.
We recall that f, 1, 7,1 annihilate [0), ¥n > 0. The

vacuum character, or the Schur index of a free hyper-
multiplet in 4D, is thus,

_ 1) (3.5)

1,1 1
< L qzb + qzb
ch = trgto2:b’0 = q24PE{ } = )
94(b)

I—gq

A. Untwisted sector

Following [29], we consider inserting the zero modes of
the null states J — (yf) and T — 1 ((B0y) — (y0p)) into the
trace. For example,

8 All modes in the trace are taken to be the “square modes”; see
[2,6] for more detail.
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0 = g #tro(J — (yB))g b’

= q_ﬁtr |:J0 — O(y—éﬁ—é|0>):| qLObJO. (36)

The first trace involving J, is nothing but D,, ch, where we
define

Db = b@b (37)

The second term can be easily computed by Zhu’s recursion
relations [2,30],

q—ﬁtr() (y_%/j_%|0> ) qLO bJO

- -1 Lo—%& -1
=Y E, p |wonfyl0))gromb’ = —Ey| " ch.
n=1
(3.8)

Altogether, the vacuum character satisfies a weight-1
flavored modular differential equation,

-1

A similar computation can be performed for the
T - % ((pay) — (yop)) insertion,

0= to(7 =3 (Ban) = () ) 5w, (3.10)

Zhu’s recursion relations leads to a weight-2 equation,

1
DVch — Ez[ , }ch =0. (3.11)

)

and fo> denotes the nth modular differential operator

given in (A36). In particular, DE,I) = qd,. Note that this null
state expresses the stress tensor in terms of an element
(Bay) — (yop) € C,(Py), which precisely corresponds to
the nilpotency of T [6,7].

The above computation generalized to all kinds of
normal ordered products of 7 and J. One simply subtracts
from it its explicit expression in terms of the free fields

Pr. For example, (1) = (B(B(rr))) — (o) + () = 0
gives rise to

<Dg — E, - 2E, {;1}2—2152[_;]%11: 0. (3.12)

Here we used the symmetry property Eeyey ;2] = Eeyen|

Note that the square of E| can be eliminated by combining
the weight-2 null descending from (B(J — (yf))), leaving

<D§+E1 [;]]Db—El [_blr—zEz {_bl} —E2>ch:0.
(3.13)

However, these higher-weight equations are not indepen-
dent equations, since they can be derived from the (3.9) and
(3.11). For example, (3.12) can be obtained from (3.9) by
taking a D, derivative

h+E
b]c 1[1)

D2ch + D,E, { }Dbch =0. (3.14)

Applying the identity

DbEl[_bl} :—2E2[_b1] —El[_blr—Ez, (3.15)

one recovers (3.12).
The vacuum character admits a smooth unflavoring limit,

-1 (1)
ch— 9,(0) .

(3.16)

Consequently, some of the flavored modular differential
equations reduce to the more familiar unflavored modular
differential equations when unflavoring. For example, the
weight-2 equation (3.11) reduces directly to

<D<;> —E, [:1 } >ch(b =1)=0.

However, the weight-1 equation (3.9) does not reduce to a
nontrivial unflavored equation. Instead,

(3.17)

b1 -1 b1
D,ch—0, E, b ch—0; (3.18)

hence, its unflavoring limit is trivial.

B. Twisted sector
Besides the vacuum module in the untwisted sector, one
may also consider twisted modules of the fy VOA. For our
purpose, we consider the %—twisted sector based on a twisted
vacuum |0):. The two fields expand in the following form:

p) =) pu ™ v(@) =D T

nez nez

(3.19)

such that the twisted vacuum |0) 1 is annihilated by 7,ez,,,

Pnez_,- In this sector, T and J still have integer moding;
however, their precise relations with modes of f, y are
shifted. In particular [80],

105020-9



HAOCONG ZHENG, YIWEN PAN, and YUFAN WANG

PHYS. REV. D 106, 105020 (2022)

1
Jo = Z Yib-x + Z Pi¥i = 5 (3.20)
keZ kE€Z5
and
1
Ly = 3 (Z(k = DBy + Z(k - 1)7—kﬂk>
%<0 k=0
1 3
5 (Z(k = DB+ Z(k - l)ﬂ—k}’k) + 3
%<0 =0
(3.21)

The relevant charges are

p v 10)1
Lo 0 1 -1
To -1 +1 -1

With these charges, the character of the twisted Fock
module built from |0), reads [80]

ch, = g sb itrgto~dib’o

1
2
07,—1 1
111 qgb~—+qb . ()
=gq 3h 2q24PE|:7] = —1 .
l—¢q 9,(b)

As before, one can insert the same null states discussed
above into the trace to produce flavored modular differ-
ential equations satisfied by the twisted character ch%. The
only difference from the untwisted case is that now the
conformal weights of f, y are integers, and therefore, all

E,[7] should be replaced by E,[*!]. For example,

(3.22)

+1
0— <D,,+E1{ ; ])ch%, (3.23)
0= (D ~Es|" " | e (3.24)
+1 +1
0= <D§,—E2+E,{ ; ]Db—ZEz[ , Dché. (3.25)

C. Unique character(s)

Now that the (twisted) characters are constrained by an
infinitely many (with only two independent) partial differ-
ential equations, it is natural to ask if there are additional
solutions. It turns out that the equations in the untwisted
and twisted sectors uniquely determine (up to a numerical
coefficient) the corresponding characters. For instance, the
weight-2 equation (3.11) in the untwisted sector is an
ordinary differential equation in g. Recall

-1 1 956) 1 a1, 8(0)
E =4+t —E =D, |-In
2{ ] SRR RO

} . (3.26)

and therefore, Eq. (3.11) can be solved by (as an analytic
function)

n()

ch = C(b) 9,00)"

(3.27)

Finally, the weight-1 equation (3.9) further fixes C(b) to
be independent of b. Similar arguments show that the
twisted character is also uniquely fixed by the weight-1
and -2 equations. At the end of this section, we will see
that the weight-1 equation (3.9) is actually redundant, in
the sense that it can be generated from the weight-2
equation (3.11) through a modular transformation, and
(3.11) (or its twisted version) alone actually encodes all
the character information.

D. Modular properties of the equations

The coefficients of the unflavored modular differential
equations in [6,21-28] are modular forms with respect to
suitable modular groups. Consequently, the equations
transform covariantly under SL(2, Z) (or a subgroup). In
contrast, the coefficients of the flavored modular differ-
ential equations (3.9) and (3.11) are quasi-Jacobi forms,
and their modular properties are less straightforward. For
simplicity, we first look at the twisted sector. The simpler
equation is the weight-1 equation (3.9),

(o8 [o-s

Consider the naive S transformation that acts on the z and b
parameter,

(3.28)

(3.29)

The modular differential equation transforms nontrivially
and noncovariantly under S,

1 1
D, — tDy, El{b] _)b—l_TEl[b}

1 1

Even so, the S-transformed solution remains a solution: In
the case at hand, the S-transformed twisted character differs
from the original by a simple exponential factor,

n(z)
9,(b)

_u2 7(7)
9,(b)

(3.31)

— ie

This transformed twisted character is annihilated by the
transformed equation,
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(e o] ) ()

~(ouem] )G e a e e
:T<Db—|-TE1 [2])1;71((%:0. (3.32)

Phrased differently, after stripping off the exponential
factor in the S-transformed character, the remaining object
is the solution to the original modular differential equation.
At the moment, this statement holds true trivially in the
current case (since the S transformation merely introduces a
simple factor).

A more systematic approach to deal with the modular
properties of flavored modular differential equations is to
introduce an additional fugacity that couples to the affine
level of the current J, in this case, k = —1/2. Define the
y-extended character (using the same symbol)

ch := trgboaaykp’o, (3.33)
This is essentially the original index, since y* is merely a
constant that can be pulled out of the trace.

We further define the SL(2,Z) transformation of the
fugacities (y,b,7) in the following way [81]:

> b 1
(n,b,r)—s>< ——,—,——), (t),b,r)—T>(t),ﬁ,T+1).

T T T
(3.34)

In particular, under the S transformation, the derivatives
transform as

Dy - D) =D + 6D, + B°D,,

Db = Db’ == TDb + ZbDy, (335)

where D, := yo,,

Dych = kch. (3.36)
Therefore, the weight-1 modular differential equation

transforms under S as

+17 s +1
Db+E1 b —)TDb+26Dy+TE1 b +b

—(orn[])

showing that the weight-1 modular differential equation
transforms covariantly once we incorporate the additional y
fugacity. Here we have used the fact that Dch =

kch = —1ch.

(3.37)

The transformation of the weight-2 equation can be
similarly analyzed,

+1 +1
Dy’ —Ez[ b }—SWDE,” +erb+52Dy—72E2[ b ]

+17  p?

(o -s [ ) wwlonr e[ ]). o

In going to the second line we have applied D, = k = — %
Clearly, the weight-2 equation transforms almost cova-
riantly under S, up to a term proportional to the weight-1
equation.

The analysis of the equations in the untwisted sector is
similar but slightly more involved, where the relevant

modular group is I'°(2). Note that under STS € I'°(2),

—17 s7s -1 -1
El{ b ]—)rEl[ b } +5—E1[ b }

Collecting everything, we find covariance for the weight-1
equation,

(3.39)

Db+E1[_bl] - (r—l)(Db+E1{_le, (3.40)

and almost covariance for the weight-2 equation,

e )

A (o =a [ ]) oo 1]))

(3.41)

Again, the weight-1 equation appears on the right-hand side
of the transformed weight-2 equation.

From the earlier discussion, the weight-1 and weight-2
equations are enough to determine the unique character
of the fy system in either the twisted or untwisted sector.
Now we also learn that the weight-2 equation alone
generates the weight-1 equation through the modular
transformation S or STS. Therefore, it appears that the
weight-2 flavored equation, which reflects the nilpotency of
T up to C,(fy), holds all the information of the characters
of the By system.

IV. CLASS S THEORIES OF TYPE A4,

Each A, theory 7 =7, is associated with a vertex
operator algebra V(7) that consists of the Schur operators
on the VOA plane R?ﬁﬁ' The fact that a vortex defect in
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Sec. TIC preserves the supercharges 0,-,5%7, QL ST
implies that the Schur index in their presence equals the
character of a nontrivial V(7") module [13]. As discussed in
Sec. II D and the example in Sec. IIL, null states in V(7')
may lead to (flavored) modular differential equations that
the Schur index must satisfy. By the same logic, the
character of any module M of V(7)) must also satisfy
the same differential equations (or a twisted version of them
in the case of a twisted module).

It is therefore natural to expect that the defect indices
mentioned in Sec. II C also share such a feature, since they
are supposed to be module characters of V(7). We will
show that this is indeed the case by examining several
simple examples by studying the (flavored) modular differ-
ential equations the Schur indices satisfy and looking for
their common solutions.

A . Ty3

The trinion theory 7 5 is the simplest A; theory of class
S, which consists of four free hypermultiplets. The asso-
ciated vertex operator algebra is just the product of four fy
systems [1]. Since we have discussed in detail the pfy
system in Sec. III, here we will be brief. The Schur index of
the A; trinion theory is given by

H34 (6, ibz +b,)

1 )

~am o 2 (L) [ ] )

i=1"i

It is straightforward to find the following modular differ-
ential equations for the Schur index 7 3:

(Db—f—a;iEl[ ;{lbﬁDI =0, i#j#k (42)
< ——ZEz[ 3 alDIm:O. (4.3)

Equations of higher weights can be similarly deduced.
Note that the second equation (reflecting the nilpotency of
the stress tensor) has an unflavoring limit b; — 1 which
reproduces the first order equation in [6], while the weight-
1 equation does not have a nontrivial limit.

The vortex defects labeled by k have indices given by a
simple formula (2.19),

-4 201
E{ ?‘lb?}—wﬂﬂm, k — even,
(4.4)

T = T e S (a)
el e o

The vortex defects labeled by even k& € N have indices
identical to 73 up to some numerical factors, and there-
fore, they all satisfy exactly the same modular equations.
For odd k, the above defect indices can be equivalently
rewritten as

n(z)

g defect(f — .
( 9,(b; £ b, £ b;)

odd) ~ ][ (4.6)

Obviously, this corresponds to nothing but the (product of)
%—twisted module of the four fy systems. Immediately, one
derives the modular differential equations that they satisfy,
for instance,

+1
<Db + Z E, {b b“bﬂ])zm 0, i#j#k (47)

af=+

(-2 o

Similar to the discussion in Sec. III, the weight-2
modular differential equation (4.3) uniquely determines
the relevant characters up to numerical factors. Recall again
that

(4.8)

1 9(0)

= {_bl} 872 94(D) o

—%Ezzqa El 84(5)} (4.9)

and therefore, by the weight-2 equation (4.3)

I 4.1
03 =C(b1,by, by H84 ﬁlj;bz:t[)3) (4.10)

The weight-2 equation (4.2) further fixes C to be constant
in b;. Similarly, the solution in the twisted sector is also
uniquely fixed to be

Fdefect(k=odd) n(t)

= ) 4.11
0.3 149,(b; £ b, +b3) (4.11)
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B. SU(2) theory with four flavors

The theory 7, describes an SU(2) theory coupled to
Ng =4 fundamental hypermultiplets [42]. The flavor
symmetry of the theory is SO(8) = SO(2Ng) that rotates
the eight half-hypermultiplets Q’, transforming in the
(pseudo-real) fundamental representation of the SU(2),
gauge group, where i=1,...,8 is the SO(8) vector
indices, and @ = 1, 2 is the SU(2), fundamental indices.
The moment map M associated with the SO(8) flavor
symmetry transforms under the adjoint adj of SO(8) and
is a gauge-invariant composite of the scalars in the eight
half-hypermultiplets,

M = Q0% (4.12)

This simple structure of M/ implies that within the Higgs
branch chiral ring [82],

(M ® M)sss =(M® M)ssc =0. (4.13)
Moreover, the N' = 1 superpotential of the A = 2 theory
imposes
Note that symm?adj =35, @ 35, @ 35. ® 1 @ 2adj,
and the above four relations give the Joseph ideal.

The associated VOA of 7, is given by the affine

algebra 80(8)_, with central charge ¢ = —14, whose
generators descend from the moment map operator in

the 4D theory. The algebra 30(8)_, is a member of the
affine Lie algebras associated with the Deligne-Cvitanovic
exceptional series

h\/
a]C02C92Cb4Cf4C€6C€7C€8, k:—z—l. (415)
This set of current algebras are quasilisse [7], and their
(unflavored) characters satisfy a (unflavored) modular
differential equation of the form
(D =5(hY +1)(hY = 1)E;)T =0,  (4.16)
where h¥ denotes the dual Coxeter number. For 30(8)_,,
this equation reads
(DY —175E,)T o4 = 0. (4.17)
It is known that 80(8)_, with the central charge ¢ = —14 =
—4 —2 x5 is not rational [36]. Therefore, one would
expect its representation theory to be more involved than
rational VOAs. -
The stress tensor 7 of 30(8)_, is a composite given by
the Sugawara construction [1],

k2d T T ZKAB (JAJB), (4.18)

where K,p is the inverse of the Killing form
KB := K(JA,JB). This equation corresponds to the
Joseph ideal relation in the trivial representation in
(4.14), since T is not in the Higgs branch chiral ring.

1. The equations in the untwisted sector

The Joseph ideal relations (4.13) and (4.14) descend to
nontrivial null states \, in the associated VOA 30(8)_,
and can be inserted into the supertrace str o(N)g"obf. Null
states charged under the Cartan of SO(8) do not have
interesting outcomes; however, those uncharged can lead to
nontrivial modular differential equations.

As a warm-up, let us first consider a simpler partially
unflavored limit where all b; — b. In this limit, the index
corresponds to the supertrace over the vacuum module

IO 4 = Str phithaths+hy qLU—i

- 19’17&2)4 (3152 —4E, [[H +E L;D (4.19)

where h; are the Cartan generators of the four SU(2) flavor
groups associated with the four punctures.

The simplest null state associated with the Joseph ideal is
the Sugawara construction 7 — Y, ;, K, (J%J?) = 0. Upon
inserting into the supertrace, the equation translates into a
weight-2 modular differential equation

o 1o, 1 1 1
0: Dq —BD 2 El bz +E1 b4 Db

(esel ] on e

The remaining three relations corresponding to 35, ; . each
lead to three uncharged null states; however, in the partial
unflavoring limit they do not give rise to any nontrivial
modular differential equation.

At weight-3, there are new null states besides the
descendants of the above Joseph relations. In the partial
unflavoring limit, they give rise to three modular differ-
ential equations, for example,

1 1
(DE,”Db + (Ez — 4E, {bz] —2E, {HDDb
1 1
+ 16 4E3 b2 + E3 b4 10.4 - O

Finally, at weight-4 there is

(4.20)
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I 1 I i
{Dﬁf) + (4153 [bz] +E, [MDD,, - (96E4 {bz} + 12E, LA + 67E4)}IO’4 =0. (4.21)

All the above partially unflavored modular differential equations can be fully refined to depend on all four generic flavor
SU(2) fugacities b;, including addltlonal equations from the 35, ; . Joseph relations which were previously unavailable in
the partially unflavoring limit (83].° For example, the Sugawara condition gives rise to a weight-2 fully flavored modular
differential equation,

no1 1
0= [Dg ) _ 7 (Do Dy, + Dy, Dy, + Dy Dy + D}) - SE [ ] (Dy, — Dy, — Dy, — Dy,

1 1
--E D, + D, +D, +D,)—E D
2 1[b1b2b3b4]( o+ Doy Dy D) 1[172] h“

1 1 1
+(E2+2E2[ , ]+2E2[ }ng[ mz (4.22)
be;m bibybsby b;

For later convenience, we denote the differential operator acting on the index as DS,
Additional Joseph ideal relations corresponding to 35, ; . lead to in total nine equations [83]. Three null states at weight-2
are associated with the 35, relations. They are

JUAg0 I8 gisi) — % Jima] glmn]. (4.23)
JRigRi 4 gisil i) — 411 Jima] i), (4.24)
JBi B 4 g — 411 ] glomn] (4.25)

The three states lead to the following flavored modular differential equations:

2 4
1 1 1 1 1 1

§ -D?> + E —-2E T § -D? +E D, —2E T

- <4 bt l|:bi:| z[le 04 <4 bt 1{2)2} g z{bZD o4

= i=3 i i

and
2 1 1 4
fD D E —FE —1)%D 4.26
e §<+ 2[ Zblbzbgm] ‘[b;% bzbgbj 2.0 b") 20
1D D - E ! E ! - 1Y% D 4.27
o ’“;G z{bjfzb]bzlnbj_ l{b;2b1b2b3b4];(_)j ”) 427
as well as
1D D y E : : y )oiutos D 4.28
_— —_— i3
27h ’”Z(* z{bzb byb3 'b4] l[bﬂblbzb-'bjg( ”) N
Jj=1 J 3 i=1
1D D 3 E ! E ! 3 5 7aay)) 4.29
= — — — —_ i3 .
27hs "4+;<+ Z[b;%,bzbglm] l[b;%lbzb;]bj;( ”> (4.29)

"We thank Wolfger Peelaers for sharing his unpublished results on these equations.
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From the 35, and 35,
JU2Lg56] _ 015l y26] 4 y1251 y116] it follows that

1 1 1 1
(D%" teh [bJD”‘ 8k Lﬂ } >I°‘4 - (D’Z’z Tk [bz]Dbz 8 [ZﬂDI‘“'
1 1 2 2

relations there are also six other similar equations,

For example, from the null state

(4.30)

It will be convenient to reorganize the nine equations from the three 35’s in the following more compact form:

1 1
(08448 ow -6 1))z
i<j i i

0= a;DyDyTos+ Z
B () (o

i<j

k=1

1 1 4
bzk:| +ZE1 |: 271 bz":| ZaiDbi)IOA‘

(4.31)

Here, a; and a; ; are nine arbitrary constants with constraint a; + a, + az + a4 = 0. Let us denote the differential operator

acting on Z, 4 as D%.

At weight-3, there are four independent modular differential equations, where the index is annihilated by the differential

operator

4
1
Z: < 'D,, + EsD,, —2152[b2

Ee i

ij=

Here, c; are four arbitrary constants. Finally, at weight-4 there is one equation

_(p®
o_< 31E4+2ZE3[

l 1

- 12254{ ] —6ZE4{Hba,]>IO4

In the b; — 1 limit, Eq. (4.34) reduces to the unflavored
equation (4.17) where one sends E 44 [ill] — 0 correspond-

ing to the nilpotency of the stress tensor 7" in 35(8)_2 [6,7].

2. The solutions and modular property

It is natural to ask if there are additional solutions to all
these modular differential equations besides the flavored
Schur index. We begin by noting that the second order
unflavored equation (4.17) has an additional solution which
is logarithmic [6,7,35,36]. This can be seen from the
integral spacing of the indicial roots for the anzatz
Z=q*(1+...),

, a 35 5

e =-53 (439

Indeed, the unflavored index can be written as [7,34]

1
} Dy, + 8E; [b? ] ) (4.32)
D, +2 E . 4.33
> amady +23 3 weks ] (433)
4 4
+1
o] (Gpeon) 2208 e o
(4.34)
qaqE4
Toab=1)=3 . 4.36
0,4( ) ’7(1_)10 ( )
Under S transformation,
1 59'9(0) 5iz9\ (0)3
ST L0 g, SiT (
"4 7 960775(7) B\ n(z)? ! 167 r](r)6
o3 (5)(0)
1320 (0)9 @ 3
— —it9;7(0) ), 4.37
tomy  Tgird (0) (4.37)

which is precisely the additional logarithmic solution of the
form if expanded in g series,

gt(a+...)+qe(logg)(d +...).  (4.38)
The fact that the modular transformation of a solution leads

to another solution is guaranteed by the covariance of the
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unflavored modular differential equation under SL(2,Z)
(or a suitable subgroup).

Next we turn to the fully flavored case and consider
additional solutions to all the equations of weight-2, -3,
and -4 discussed above. Similar to the unflavored case, we
will see that there is also a logarithmic solution that arises
from the S transformations of the y-extended Schur index
given by SZ 4. Here, following the discussion in Sec. III,

. k:
we assume a y extension for Z,4 by a factor j-‘:l vi's

where k; = —2 being the critical affine level of each 811(2)
|

affine subalgebra. The presence of a logarithmic solution
can be seen by studying the modular properties of the
modular differential equations. First of all, all ten of the
weight-2 equations are covariant separately under the S
transformation,

S(weight-2) = 72(weight-2). (4.39)

Here we apply the transformation of the derivatives

T
Tl

D((]") — (Tza(zn—Z) + sziDb,- + b%ki - (2n-2) 2_> R

T
o <126<2) + TZBiDbi + blzkl - 22—7[[> o <726<0) + TZBiDbi + b?kl> .

(4.40)

and D;,, — tD), + 2b;k;. The Eisenstein series transforms under S following (A24).
The weight-3 equations (4.32) are almost covariant under § transformation up to combinations of the weight-2 equations.
For example, the weight-3 equation with ¢; = 1, ¢, = ¢3 = ¢4 = 0 transforms under S as

S(Welght—3) = T3 (Welght—3) - 1261(4'1)511;; + D35 (al,- = 0, Ay3 = Aoy = A3gq = 1, ay =

— b, (D¥(ay, =

—lay = a3 =0))

—1, all other d’s = 0)) — 72b3(D3(a;3 = —1, all other d’s = 0))
—72b4(D%(ay, = —1, all other a's = 0)).

(4.41)

Finally, the weight-4 equation is almost covariant under S transformation, up to combinations of weight-2 and weight-3

equations,

S(weight-4) = 7*(weight-4)

4
+7) (weight-3)(¢c; = 2, cjz = 0)
i=1

3
+ 72 Zbg(—zt

+ 1252(

+ Tzzbibj(ﬁs(aij =2,a; =1, other a =0)).

i<j

The (almost) covariance implies that the S transformation
of a solution must also be a solution which is logarithmic
in this case, and therefore, it is potentially a logarithmic

module character of 80(8)_,. As was discussed in Sec. Il
C, SZy4 can be interpreted as a type of surface defect
index.

There are an additional four nonlogarithmic solutions to
all of the above equations [83]. Recall that the fully
flavored Schur index can be computed by the contour
integral

DS + DB (ay; = apy = azy =

4D5 + DB (ay; = apy = azy =

(4.42)

—1,a; =1, other a = 0))
—1, other a =0))

(4.43)

where m; = e*™™ are related to the standard flavor

fugacities in the class-S description,

b b
! m;:b3b4, my :—3

:bb’ =,
ny 102 nmy b, 3 b,

(4.45)
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The integrand Z(a) has four residues,

,,,,,

n(z) n(z)
9y(m; +my) 9 (m; —my,)

(4.46)
4]

These residues also appear in the modular transformation
of 7, 04>

4
SIOA = iTIO,4 + 2i Z ijj’
J=1
0 b 1
(t)w bn T) (t)l - T, T, _> . (447)

T T T

From the discussion in Sec. IIC, R ; can be interpreted as
indices of Gukov-Witten defects with specific singular
boundary behavior at the defect plane.

These four residues R; are actually additional linear-
independent nonlogarithmic solutions to the modular differ-
ential equations. They are conjectured to be the characters of
the four highest-weight modules of 80(8)_,, whose (finite)
highest weights are given by A = w(w; + w3 + w,) — p,
with Weyl reflections w = 1, s} 3 4 [4,34]. Given that R; are
just simple ratios of 9; and 7(z), they can also be viewed as
free field characters of four bcfy systems and provide new
free field realization of 80(8)_, [84]. Unlike the index Z 4
and SZ 4, the residues R; do not have a smooth unflavoring
limit, and therefore, flavoring is necessary to probe their
existence.

It can be shown that the R; and Z,4 are the only
nonlogarithmic solutions to all the weight-2, -3, and -4
equations that we have discussed, by solving them through
an anzatz T = ¢" ", a, (b, ...,b,)q" [83]. It is therefore
natural to conjecture, with the logarithmic solution SZ 4,
that we have found all the (untwisted) module characters

of 30(8)_,,

Nonlogarithmic

10_4 R]

Logarithmic

SZoa

and the tools required to determine them were simply the
flavored modular differential equations (4.22), (4.31),
(4.32), and (4.34).

In fact, the modular differential equation (4.34) alone,
which corresponds to the nilpotency of the stress tensor 7,
actually generates all the equations of lower weights by
modular transformations. Subsequently, they together deter-
mine all the allowed characters of 30(8)_,. So it appears that
all the information about the untwisted characters of

80(8)_, is encoded in one single equation (4.34).

The above solutions transform nicely under modular
transformations. First of all, the residues R; transform in the
one-dimensional representation of SL(2, Z),

. Inii
SR; = iR, TR; = e R;. (4.48)
They satisfy S? = (ST)? = —id.

On the other hand, Z,4 and SZ,, transform in a two-
dimensional representation of SL(2, Z). Denote chy = Z 4,
ch; := 87 4. Then, we have in this basis

(00 (L)
1 0 e 3 e 6

Here we use the convention that gch; = > j=0.1 gijch; for
g € SL(2, Z). The two matrices satisfy (ST)* = S? = 1, as
they should. The two characters chy; form an SL(2,Z7)
invariant partition function

(4.49)

= n(Ch()Chl + CthhO

Z M;jch; ch

i,j=0,1

(4.50)

where n denotes possible multiplicity. The S matrix is
symmetric and unitary; however, it does not give rise to
sensible fusion coefficients since Sy; = 0. We attempt to fix
this by considering a different basis

Ch6 = Cho, Chll = aChO =+ bCh] .

ch) = Z Ujjch;.
j=0,1
(4.51)

Doing so, the SL(2,Z

Z= ZM’ chich, = Z(ZU UM, >ch;(@ (4.52)

and

) invariant partition function reads

el =" (Eng,-kU;})ch;, V geSL(2,Z). (4.53)

7 \jk

With the §" matrix in the new basis, we tentatively define

81,8 Sl

Nf;:ZTv

3

(4.54)

and require N fj to be non-negative integers and M’ to be an
integral. The minimal solution to such a problem is given by

Up =1, Up=0, Uyp=1  Uy==l (455)

such that

105020-17



HAOCONG ZHENG, YIWEN PAN, and YUFAN WANG PHYS. REV. D 106, 105020 (2022)

2 -1
-1 0
x [chj] x [chb] = [ch}]. (4.56)

even k and one with odd k. For those with odd vorticity, we
focus on Z§ee! (k = 1),

2 4 -1
g defect(p — ’7(1) N E
R0 =g ey 2 L) B )
However, it is unclear if such a fusion algebra bears any

sensible mathematical or physical meaning. (4.57)

= 5] e ) = o)

The defect index Z{Z*(k =1) does not satisfy the

equations discussed in the previous section. However, they
In the case at hand, [ === = 1, and therefore, among  do satisfy equations that belong to the twisted sector. To

all defect indices, there is only one independent index with  begin, the defect index has a smooth unflavoring limit,

|

3. The twisted sector
n+29 2

2
TS (k= 1by = 1) = oy )

8729,(0)°9, (0)° [68](0) — 78,(0)95(0)85"(0) + 9,(0)*95).

It is easy to check that it satisfies a weight-4 equation
2) -1 defect
0= |Dy’ —79E4 —96E, ) o5 k= 1,b = 1). (4.58)

Apparently, this is the twisted version of the unflavored equation (4.17).

Next we consider the fully flavored defect index. As discussed in Sec. II C, the exact form (2.19) suggests that the
multifundamentals in the VOA have half-integer conformal weight. One can insert all the weight-2, -3, and -4 null states that
we mentioned above into the supertrace that computes the twisted module character Z§&*(k = 1) and turn them into
flavored modular differential equations. The equations will be almost identical to the ones in the untwisted sector, except
that all the Eisenstein series E,[*'] associated with the multifundamentals should be modified to E,["]. Therefore, the
Sugawara condition leads to an equation

1 1 1 -1
0= [DE,) 7 (Dy, Dy, + Dy, Dy, + Dy, Dy, + Dj ) = EE] b, |(Dy, =Dy, = Dy, = Dy,)
byb3b;

1 -1 1
——El[ ](Db]+Db2+Db3+Db4)—El[b ]D,74

25 bybybs, 2
—1 -1
+ (E2 + 2E, |: by :| +2E, |: :| + 2E, |: :|):|Idefect (4.59)
babyby b1bybsby

while all the nulls from the three 35 relations give rise to

O_Za,]DbDbIO4+Z (Db+4E1{bIZ} [ D

i<j i
o5 (o) (L S e
a=1t \Ni<j s 2:1 bZA 4 =1

Higher-weight equations can be similarly obtained. These equations are almost covariant under S7'S transformations, and
therefore, ST'S transformation of the defect index Idefw(k = 1) provides a logarithmic solution to this set of equations.
There may be additional nonlogarithmic solutions that resemble the residues/free field characters R;; however, we leave
their existence to future study.
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C. N =4 SU(2) theory

The N = 4 theory with an SU(2) gauge group has an
SU(2); flavor symmetry. The corresponding moment map
operator M transforming in the adjoint of SU(2); satisfies
the Joseph relation in the Higgs branch chiral ring,
Additional relations with the Hall-Littlewood chiral ring
operators @, @ also exist,
MRw),=MQQd),=0Qw=0Qd=0. (4.62)

The N =4 theory with SU(2) gauge group has the
small A = 4 superconformal algebra V) _, as its asso-
ciated VOA, with the central charge ¢ = —9. The SU(2)
flavor symmetry leads to an &u(2), _ ;, subalgebra

with generators J4. The Sugawara stress tensor Ty =
W > a5 Kap(JAJB) equals the full stress tensor 7 of

Vr—4. Since the stress tensor descends from 4D outside the
Higgs branch chiral ring, the Sugawara construction
reflects the aforementioned Joseph relation. The above
Hall-Littlewood chiral ring relations are also reflected by
four null states in the VOA at conformal weight 5/3 and 3
[6], which are charged under the Cartan of SU(2);. There
is an additional neutral null state (with A = 3) at conformal
weight-3,

N4 = (046% ), Gy )y + 21 5cd 8IS,

+2J4, — 2L _,J4))[0). (4.63)

The stress tensor 7' is outside of the chiral ring. As
analyzed in [6], it must be nilpotent up to terms in the
subalgebra C,(V—y). This is concretely realized by a null
at conformal weight-4,

Na= <(L—2)2 + eaﬂ(GzS/zGZ/z - Gﬁ5/2(~}’i3/2)

1
- K% =510 ) ) (4.649)
corresponding to a relation in the Higgs branch,
(TT) ~ (K4J2JB)? = 0. (4.65)

Now we turn to the modular differential equations that
follow from the null states. The Schur index of the N = 4
theory is given by the simple expression

¢ 1 1 -1
Iy-a=u(=1)"ghsblo = = E, [ } :

The factor in front of the Eisenstein series can be inter-
preted as a character of a bcfy system [17,85],

i94(b)
Toepy = —=. 4.67
bepy 191 (25) ( )
On the other hand, the Schur index of the N' = 4 theory is a

simple contour integral

T — ?{ da n(t)?
N=4712 2mia94(b

9 (%a) - da
1;[ 94(+a +0) ]{ 2rxia Zla).
(4.68)

Character Z .4, coincides with the residue of the integrand

Resa—>b+%Z(a) ~ Ihc/i;/v (469)
and can be viewed physically as related to the Schur index
in the presence of a Gukov-Witten surface defect in the
N = 4 theory.

Various null states above can be inserted into the trace,
leading to nontrivial modular differential equations. The
Sugawara construction 0 = T' — T'g,, is the simplest exam-

ple, giving a modular weight-2 equation [17,83],

p oV (Lo ke okm, | !
T T 2k+avy\27 T b2

1
+2E1 |:b2:|Db):|IN:4 - 0

Also, the weight-3 and weight-4 null states N4=3, N}

lead to
0= DD, +E “Hpw _ap, 7! 1 6E !
q b 1 b q 3 b 3 b2

+ <E2 +E, Bl] —2E, [blzDD,,]ZAM =0 (4.71)

(4.70)

and

0= (D(f) +%E4> Tys

—1 -1 -1
(1)
+ | —2F D, —4E D, +18E. T
( Z{b} ‘ 3&} ’ 4[17]) N
1 1
+ | BkaBat2Bs | [Dy=9Es| | ) Twse  (472)

There are additional solutions to the above three modular
differential equations. First, we recall that in the unflavor-
ing limit, the Schur index is given by
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Y 95(0)

Tyoab=1) =" ,
4 47 9/(0)

(4.73)

and it satisfies a ['’(2)-modular equation following from
the null state (4.64),

p® _ 18k, —2£,| 7' |[pW -l —
¢ —18Ey=2E; | Dq + 18E4 I In-4=0.
(4.74)

This equation reflects the nilpotency of the stress tensor,
and it is also the unflavoring limit of (4.72), where

+1] =1 7h-! 475
E3 b2 —>0, Db —>0. ( 7 )
The corresponding indicial equation predicts @ = —1/8

and a = 3/8 for the standard anzatz T = ¢*>_, a,q"/>.
The half-integer spacing between a’s implies that among
the two linear-independent solutions, one is logarithmic of
the form

gy ang"? + ¢ logq) ang"?. (4.76)

Such a logarithmic solution is given by the ST'S trans-
formation of the unflavored Schur index,

i 9,(0)
Ty = ——yk 22
=20 50

+ (1 =7)Zpny(b=1). (4.77)

When flavored, there are three equations (4.70)—(4.72) to
be concerned with. One can assume an anzatz for non-
logarithmic solutions of the form

(4.78)

The coefficients a,(b) can be solved order by order, and
one finds that the Schur index 7 ,,_4 and the Gukov-Witten
defect index 7, are the only two solutions (correspond-
ing to @ =3/8 and a = —1/8, respectively) to the three
flavored modular equations [83]. The flavored Schur index
Zpr—4 in the b — 1 limit reproduces the nonlogarithmic
unflavored solution of unflavored equation (4.74), while
the @ = —{ solution Z,,,. does not have a smooth b — 1
limit and is invisible from (4.74). As discussed in [86],
irreducible V,,_, modules from the category O of the small
N =4 superconformal algebra V,-_, were classified:
There are only two, one being the vacuum module, and
the other will be called M.'® From [85,86], the associated

Note that M is different from the module called M ® F in
[86]. Module M ® F = the free bcfy system V.5 in our
notation.

VOA Vj—, is a sub-VOA of the bcpy system V.4,
making V.5, a reducible but indecomposable V, _,
module [86]. The quotient gives precisely the irreducible
module M = V.43, /V)r_4. The two nonlogarithmic solu-
tions Zy_4 and Z,., that we have found precisely
correspond to the irreducible vacuum module V,,_4 and
the reducible but indecomposable module V4, while
Zpepy — L pr—4 1s the character of the irreducible M.

There is also a logarithmic solution to the flavored
modular differential equations given by the ST'S trans-
formation of Z ,_4. To see the presence of such a solution,
let us first analyze the modular property of Eq. (4.70). As
discussed in Sec. III, we consider the y-extended character

3
k=-=.

Tp—4(9.0,7) = y*Tpr_4(6.7), 5

(4.79)

Recall that the auxiliary variable y is associated with the
flavor SU(2) fugacity b, whose affine level is k = 3. We
consider again the S transformation

L
't )

The weight-2 equation (4.70) is actually covariant under S,

S: (y,b,7) > ( (4.80)

(1) 1 ., 1 1
Dq W(ng‘f'kEQ‘f'zkEz |:b2:| +2E1 |:b2 Db

(4.81)
Se(pwo vV (e g !

q 2(k+hv) 2 b 2 2 b2

1
e[ M) wa

This implies that S7Z,_, must be a solution. It is also
invariant under 7. A similar analysis extends to (4.71) and
(4.72), which can be shown to be almost covariant under
STS € T°(2), up to equations in lower modular weights.
Explicitly,

STS(weight-3) = (7 — 1)3(weight-3) — 2b(z — 1)?
x (weight-2),
STS(weight-4) = (7 — 1)*(weight-4) + 2b(z — 1)°
x (weight-3) — 26%(z — 1)?(weight-2).
(4.83)
To conclude, STSZ yr—, furnishes a logarithmic solution
to all three modular equations. We conjecture that we have

found the complete set of solutions and the module
characters of V4,
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Nonlogarithmic Logarithmic

STST \_y

T p—s Liepy

. The logarithmic solution STSZ ,_, may correspond to a
logarithmic module of V,,_4 where the Virasoro zero mode
L does not have a diagonalizable action [86], though the
precise relation will be left for future study.

Like in the case of 33(8)_2, by a modular transformation
STS, the weight-4 equation (4.72) generates all the lower-
weight equations (4.70) and (4.71) that are necessary for
determining the allowed characters. Hence, all the character
information is encoded in one equation (4.72) that reflects
the nilpotency of the stress tensor.

Finally, it is straightforward to show that I°(2) acts
linearly on the two-dimensional space spanned by chy :=
IN:4 and Chl = STSIN:4:

=i 0 0 1
$=1, T2:<2f ) STS:< : 2). (4.84)
I -1 -

o 1o, -1 1 1 -1 1

weight-3

0= < D, + E,D, +E1[

and at weight-4

Here the matrix g;; of an element g € I'’(2) are defined
through action gch; = >, g ; g;;ch;.

D. TLI

1. Untwisted sector

The T, theory is the product of the N =4 SU(2)
theory and a free hypermultiplet. In general, the two sectors
each have their own SU(2) flavor symmetry with separate
flavor fugacities b 5, on which the Schur index depends.
Let us first look at the naive class-S limit b; = b, = b. The
Schur index is given by the formula (2.9),

I, = i%a {_bl }

(4.85)
It satisfies one weight-2, two weight-3, and three weight-4
equations which are collected in Appendix D. For example,
there are equations mirroring those in the A" = 4 theory at
weight-2

() 1,0 -1 I
0: Dq —4E2 b Dq —4E3 b Db+2E3 b2 Db

WS [_I}E[_l}+2E [_1}E{1}+16E [_1} 11E[1DI
39 13 g 3 173 2 “ 4 p2 11

2 (4.86)
bl]p§1> —2E, [[HD,, —2E, Dl ] E, [blz] + 6E; [blzDIl_l, (4.87)
(4.88)

Note that this weight-4 equation reduces in the » — 1 limit the second order unflavored modular differential equation the

reflects the nilpotency of the stress tensor [6],

(4.89)

-1 +1 -1
0= <DE,2)—4E2{ 1 ]DE,1>—11E4[ 1 }+16E4{ 1 Dzl,l(b: 1).

There are additional solutions to this set of equations. First of all, the factor Zg, := —9”8’) in front of 7, is a
nonlogarithmic solution and also coincides with the residue of the integrand that computes 7 ; in a contour integral. Like in
the N = 4 case, Equations (4.86)—(4.88) can be solved order by order through an anzatz Z = ¢" 5", _, a,(b)g>. It turns out
that 7, | and Z, are the only two non-logarithmic solutions.

There are also logarithmic solutions. This can be seen by working out the modular transformation of Egs. (4.86)—(4.88).
For example, (4.86) is covariant under S7'S, while (4.88) is almost covariant

STS(weight-4) = (7 — 1)*(weight-4) — 2(z — 1)3b(weight-3) + 2(z — 1)>b?(weight-2).
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Therefore, STSZ, ; is also a solution, and we believe we
have exhausted all the solutions to the flavored modular
differential equations. Once again, the flavored modular
differential equation corresponding to the nilpotency of T
encodes all the information of all the flavored characters, as
it generates all the necessary equations of lower weight.

Next, we turn on separate flavor fugacities for the
two SU(2) flavor symmetries. The fully flavored Schur
index is just the product of the Schur indices of the two
theories,

1 8,(6y) n()
Zy1(by.by) = ﬂ814(2511)194(52)

_ 194(8y) n(7) [_ }
91(26,) 8,(6,) ' [ by |’

It is straightforward to derive the fully flavored modular
differential equations for this theory by combining the
results in Secs. IVA and IV C. For instance, at weight-2
one has the equation by combining the Sugawara condition
(4.70) and (3.11),

(4.90)

o= oot (Lpr ik, 4 onm,| !
T2k +hV)\2h 2 b2

I -1
+2E,| Dy ) -E T,
L) ==L,

Equations of weight-3 and -4 in Sec. IV C can be easily
carried over from the previous section. The equations in

(4.91)

Sec. IVA without any D(q") also appear here naturally.
Again, there are additional solutions to these equations.
The coefficient of the fully flavored index is given by

Ty = , 4.92
beln” T 9,(26y) 94(6,) (4.92)

which coincides with the residue of the integrand that
computes (4.90). It satisfies all the abovementioned modular
differential equations. The equations are also (almost)
covariant under ST'S transformation, and hence, the trans-
formed index STSZ, (b, b,) gives a logarithmic solution.
We believe that 7,,, STSZ,;, and Z,.p,> form the

complete set of solutions.

2. Untwisted sector

Next, we move on to the twisted sector where we
consider again the b; = b limit. Since [%2‘(’_21 =1 in this
case, there is only one linear-independent vortex defect
index with odd vorticity, which we choose to be
Z{efect(k = 1). In this sector, we should change all the

flavor fundamentals to have integer conformal weights.
Indeed, one can check that the defect index Z{¢*!(k = 1)

satisfies all the above equations with E, [3'] — E,[*!]. For
example, at weight-2, there is

m_1 1 1 1
0= (D) =3D}=Ei| |Dy=2E:| ,|Dy+3Es|

1 1
+2E, —2E, M E, [bz] )I?_elfect(l). (4.93)

At weight-4, there is also

() T om ! !
0: Dq —4E2 b Dq —4E3 b Db+2E3 b2 Db

SN NIRRT
37 b e] T3 ] T 2 ‘b

—11E, Uz } )I??{w(l). (4.94)

What is surprising to observe is that the free field
character Zg, is actually an additional nonlogarithmic
solution to all the equations in both the untwisted sector
and the twisted sector.'' In fact, there are precisely two
linear-independent nonlogarithmic solutions to all the
equations in the twisted sector, the free field character
Is, and the defect index Z¢fe'(k = 1)."> This can be
similarly shown by solving them order by order. Finally, the
equations in the twisted sector are all SL(2,Z) (almost)
covariant, and therefore, logarithmic solutions are present
given by the modular transformations of the vortex
defect index.

E. The genus-2 theory

The genus-2 theory 7,, admits two weak-coupling
limits. One limit is given by gauging two 7,; by an
SU(2) vector multiplet, where one reads off a U(1) flavor
symmetry invisible in the class-S description [1]. The chiral
algebra of 7, ( has been constructed in [87] and later a free
field realization was proposed in [88]. The associated
flavored Schur index is given by the exact formula [34],

" Among all the examples we have examined, this is the only
instance where the free field character walks between both
worlds. We leave its physical or mathematical implication to
future study.

However, unlike that in the untwisted sector, neither of these
solutions has a smooth unflavoring limit. In particular,

n()9(b)

Idefect k=1)=—
=) = (6.0)9,(20)

(4.95)

has a double pole at b = 0. Therefore, there is no unflavored
modular differential equation in the twisted sector.

105020-22



SURFACE DEFECTS, FLAVORED MODULAR DIFFERENTIAL ... PHYS. REV. D 106, 105020 (2022)

zzyoz%@[ﬂ +E1[J;]}E2{+bl] +%E1[+;D. (4.96)

Here, b denotes the U(1) flavor fugacity. Note that the factor in front can be viewed as a free field character of a (bc)?fy
system,

(4.97)

The Schur index satisfies several modular differential equations. At weight-4, we have

| 1 1 1
[dﬁ + D - 2D D2 + 2, [b2]1)§; . 2<E1 [b] 1 2E, {b2]>D(ql)Dh

+4<E2—|—E2B] +EQ[;DDE}> + <—7E2—2E2Lﬂ —SEZ[;DD%,
x <—2E2<E1[H + 8E, UZD + 12E3[;] + 18E3[;2DDb
+ <7E§+4E2<E2[H +4E2L)12D —2<14E4+ 12@{2] +9E4UZD>]22,0 =0. (4.98)

This modular differential equation comes from the null [87]
(BYB~ = J*) +2(D*'Dy) = 4T% — 60°T — 8J*T + 120(JT) — 407> +9(dJ)? + 14J0*J — 50°J. (4.99)

There is no weight-5 equation, even though there are several null states at conformal weight-5. At weight-6, the Schur
index satisfies two modular differential equations. The first one is

1 1
{D((f) + %D,Y)Dg - 3E, MDEPD,, + 6(E2 ~2E, M )DE})Dg (4.100)
(e 26, V02 —12(Ee | ] <5 4 B ] DD 4.101
+2+2b q ~ 21b—3b+3b2 a P (4.101)
1 L
+6( =3E3| | +Es| | |0} (4.102)
, 111 1 1 LN
+(9E? i = 4EEy ||+ 1808, | | =T2Es| | D} (4.103)

1 1 1
+ DV <—6E22 — 49E, + 24E,E, {b] - 72E, [b] + 36E, {bz} >

1 1 1 1 1 1
—3(4E,’E +SELE |: :| + E (—44E |: ] + 16E |: :|> + 216E |: :| — 108E |: :|)
( 2 l|:b:| 441 b 2 3 b 3 bz 5 b 5 b2

1 1 1
- <6E23 — 24E,2E, {b} +3E, <E4 +72E, [b} — 48E, {bZD) (4.104)

- (on,-see] ! -mm ]| see 1))z -o. w109

This equation arises from the weight-6 null in [87]. Another modular differential equation takes the schematic form
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(DS —14D"D% + ..)T,,=0.  (4.106)
Note, however, that this equation does not follow from any
null states in [87] and we shall discard.

Let us turn to additional solutions to the modular
differential equations. It is easy to verify that the free
field character Z ;)24 in front of the Schur index is an
additional solution to the above equations with associated
null states. Like in the previous examples, it also coincides
with the residue of the integrand that computes the
original Schur index (4.96). Recall that the theory has a
duality frame of gluing two copies of 73, where the

Schur index is written as

T =5 f T o

n(z)
x (4.107)
Jl 94(£a, £ ay a3 +2)

}{ H 2ma

The free field character appears as the following residue:

a;)9,(-2a;)

(4.108)

L (peyrpy = Resy o, ay8iRESq, o Res, 15 Z(a. b)

i 9,(6)
= 2758, (35) (4.109)

Note that 7 ;)2 is not annihilated by the second weight-6

modular differential equation which has no associated null
|

0= [Dq ZD{ 42

*12

1
2B+ Y B e | +

and

1 1 1 1
D? +4E1{ } —SEZ{ DI” = (D%, +4E1[ ] —8E2[ DIM.
A 4 S b%

At weight-3, there are three new equations,

1
|:DZ| +6E1 |:b2:|Dil + "':|Il,2 — O
1

There are two more weight-4 equations,

D} +8E :
by 1 b2
1

state, which is somewhat expected. Unfortunately,
although one would expect that the SL(2, Z) transforma-
tion of the index 7, gives an additional logarithmic
solution, the first weight-6 equation does not transform
properly under SL(2,Z). As a result, the S-transformed
1, only satisfies the weight-4 equation. The physical
meaning of the lack of a logarithmic common solution
remains unclear.

F. Tl.z

The Schur index of 7, in its exact form is given by

&y 1,))

(4.110)

n(z)*

1
-t |E
%=1&1(2bi>< Z{blbz]

Note that the factor in front can be interpreted as a free field
character of a pair of fy systems,

I],ZI

n
A =— 4.111
Prbr 191(251)191 B ( )

Noting that [’”’29 27 = 1, there is only one defect index
Z§%e! (k = 0) = I , with even k and one Z{9¢!(1) with
odd k.

1. The untwisted sector

At weight-2, there are two modular differential equations
satisfied by the index 7 ,,

[ o az}Zan ZEl[ ] b (4.112)
b i=1,2 i=1,2
ZEZ[ 2})]11,2 (4.113)
i=1,2
(4.114)
(4.115)
1 5 1 1
Dh —48E2 b2 Dbl +192E3 b2 Dhl —384E4 b2 II,ZZ(bl (—)bz), (4116)
1 1 1
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and a third one, which has a tedious form and schematically
looks like

(DY + (4.117)

As will be noted shortly, the unflavored index 7 ,(b; — 1)
satisfies a third order modular differential equation, which
should also admit a fully flavored refinement. Unfortunately,
we have not obtained its explicit form.

Let us turn to additional solutions to the modular
differential equations. We first point out that the free field
character 7 4, in front of the Schur index is also a solution
to the fully flavored modular differential equations at
weight-2 and Eq. (4.116) at weight-4, but not the
weight-3 and the second one of weight-4. Like in the case
of the SU(2) N = 4 theory or 7 4, the free field character
Z s, also arises as the residue of the integrand in the

contour integral that computes the index 7, ,,

f[ﬁziii;i ]HH—

-'-)II,Z — O

4.118
7{1_[ 2zia; ( )
Explicitly,

Z gy = ReSq, a, 45, +3ReSq, 15, 15 b, 2(a,b). (4.119)

Drawing an analogy with the results in Secs. IV B and
IV C, we conjecture that the free theory of the bcfy system
is actually a module of V(77 ,). Consequently, we expect
that the weight-2 and the weight-4 equations above arise
from actual null states in V(7 |,), while the weight-3

equations and the weight-4 equation (DSf) +...)Z=0do
not, and we shall ignore them from now on.

Next, we look for logarithmic solutions. It is easy to
check that the unflavored index satisfies an unflavored
equation at weight—6,13

The indicial equation based on Z = ¢*(1 + ...) gives
0= (6a—5)(6a+17 = a=—r -2 (4122)
B 60 676 '

Clearly, the @ = 5/6 solution is the unflavored Schur index.
The two linear-independent solutions corresponding to @ =
—é are logarithmic ones of the form

Tiop = q‘%Zanq"/z + ¢ slog an’nq”/z
n n

+ gi(log q)2> ang"?. (4.123)

Now we focus on the three flavored modular differential
equations of weight-2 and weight-4 with conjectural asso-
ciated null states. Under the S transformation (with the
critical affine levels k; = —2 and the y extension as
introduced in Sec. III), both weight-2 equations are covar-
iant,

S(weight-2) = 72(weight-2). (4.124)

The weight-4 equation (4.116) is almost covariant,

12i
weight-4) = % (weight-4) 4 - i weight-2"), (4.125
S ht-4 4 ht-4 3
z

where the weight-2/ equation is defined to be a combination
of the two weight-2 equations,

5 5 1 1
D, = Dj, +4(Er| 5| Dy —Ei| | Dy,
1 2
- 2 b, — E£2 b, 12 =V
by b3

Therefore, the (almost) covariance suggests additional log-
arithmic solutions given by modular transformation of the
(v-extended) Schur index. More explicitly, under S trans-
formation we have

0= (DY) = 220E,D) + 700E¢)T, ». (4.121)
|
N n(z)?
ST1s ==
8779 (2b1)9,(2b,)9,(b; — by)9,(b; + by)

x [—2297 (6, — b,)9

1(51 + 52) - 47[1’[(51

—b,)9)(by —b,)9,(b; +b,)

+7297(by +5,)8,(by = by) + 4izz(b; +6,)9(by +5,)9, (b, — b,)

— 16729, (b; + b,)9,(6; — b,)]
2 2 1
2T, — 26,5y — 1) () a(b; + ab,) { ] 4.126
PO T TE, 90(26) T (26) £ Z R Y (4120
PIn [6], a weight-8 equation was listed instead,
0= (D} —220E,D'P — 2380E¢D\)) + 6000E2)Z, 5 (b — 1). (4.120)
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Similarly, after 7S transformation,

TSI\, = (=1)*PL 5~ (=1)**STy, (4.127)
+(=1)¥3|2¢T, + () > a(b; + ab,)E ! (4.128)
- T =) a a : )
20 Hilgl (2bl> a=+ ! : ! blbg

Before moving on to the modular properties of these solutions, we briefly remark on the completeness of the above
solutions so far. Although the weight-6 fully flavored modular differential equations are currently unavailable, we can look
at the partially unflavoring limit »; — b. In this limit, there is a unique weight—614 flavored modular differential equation that
annihilates 7 5, 7 4,2 and the two logarithmic solutions S7, and 757 ,,

1 1 1 11
0= [Dg) + ﬁD‘b‘Dfll) - 5D(ﬁDi + 5E2D£;>Dg — 14E,DY + S En [lﬂ } p"'p3

1 1 (1) 1 1 1 4
H4E | | (6E2=Ea| | )DDy+ (Ea= 1 Ba| o | ) D}
1 1 1 1 1 3
+§ 3E2E1 b2 —5E2 b2 El b2 +5E3 b2 Db
1 1 1172 1 1 1 )
F3(IBEE | | 435Es| | 438E)| L |Es| | —40E,| | )D]
Al 1 172 1 1 I\
~3\1SB 4+ S4EEy | | +31E,| | ~98E,| | Es| | =208, | | )D)
1 1 1 1
+(2EE | | =928, | |E| | +405| .| )D,
1 1 1 4 5 ) 1 1172
+Ey(=S2E,| | Ea| | +48Es| | Dy =5 (9B -T2E3ES | |~ 8TEs |
4 1 1 1 1
~3E(~137E,| | 18| || |+ 18Es|

caofoms] L] Mo Ma[ L] s L))o )

The S transformation of this equation produces a set of lower-weight flavored modular differential equations whose only
nonlogarithmic solutions are 7 ;(b) and Z 4,2 (b).

Now let us look at the modular properties of the solutions. One can find a simple basis for the SL(2, Z) orbit of the Schur
index,

7)? 1
chg=T5  chyggy =21T15+ ;a(bl + aby) %El {blbg] : (4.130)
Chiogr = 7 ,. (4.131)
In this basis,
Tchy = —(=1)%3ch,, (4.132)
Tchyog ) = (=1)*3(=2¢chg — chygg ), (4.133)

"Some equations of lower weights are collected in Appendix D.
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TChlog,2 = (_1)2/3 (ChO + Chlog.l - Chlog,Z)’ (4134)

and by construction
SChO = Chlog.2’

SChlog,2 = Cho, SChlog,l = Chlog,1~

(4.135)
In the form of matrix gch; :Zj gijch;, we have
-1 0 O 001
T=e¢¥| 2 -1 0|, s=[01 0], (4136
1 1 -1 1 00

which furnishes a three-dimensional representation of
SL(2,Z). The three characters can form an SL(2,Z)
invariant partition function

Z =2chgch, +chychy + 2chychy = Y “M;;chich;. (4.137)
ij

Unfortunately the S matrix does not lead to reasonable
fusion coefficients. One can consider a new basis ch} such
that the pairing matrix M ; 1s integral and the fusion
coefficients Ni.‘j are non-negative integers. Such a new
basis is not unique, and it leads to two possible fusion
algebras,

[chp] x [ehi] = [ehi],  [chi] x [chi] = [chi],

[ehf] x [eh)] = [ehy]. (4.138)
or

[chg] x [ehi] = [ehi].  [ch}] x [ehi] = [chi].

[ch!] x [ch}] = 2[ch’], (4.139)
[chy] x [eh)] = 2[chi] + [chy]. (4.140)

It is unclear if such algebras have physical or mathematical
meaning.

Besides the Schur index and its modular companions, the
residue Z 4,2 transforms in a one-dimensional representa-
tion under SL(2, Z),

SZpp = ~Tigyp> Ty = (D) Ly (4141)
satisfying §? = (ST)* = id.

2. The twisted sector

The defect index Z§%!(k = 1) is a twisted character and
will satisfy corresponding twisted modular differential

equations. Again, these equations can be obtained from
all those in the untwisted sector with all the contributions
E,["!] from the bifundamentals turned into E,[”']. For
example, at weight-2, there is

and one with b| < b,.

G. Other examples

In the previous subsections, we have discussed a few
of the simplest theories with low g, n, where we have
studied their flavored modular differential equations and
the solutions for these equations other than the Schur
index. In the following, we comment on theories with
higher g, n. For simplicity, we shall focus on the unflavored
index and the unflavored modular differential equations [6]
they satisfy.

1 Tys

We start with the theory 7s. The unflavored Schur
index satisfies a weight-8 modular differential equation,

~1
0= [Dg4> —220E,D — <3020E6 + 3840, { 1 DDg”

-1 —172
—144(—35E8+224E8{ 1 ]+144E4[ | ] )]10,5.

(4.143)

This equation has four independent solutions. The indicial
equation for the anzatz ¢" 3", a,q" reads

(h=1Dh*=0 = h=1,0,0,0. (4.144)

The integral spacing suggests the presence of two or
three logarithmic solutions. Clearly, the 7 = 1 solution is
given already by the original unflavored Schur index. It
turns out that there is an additional nonlogarithmic
solution given by the unflavored vortex defect index
with vorticity k = 2,
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~59,(0)9 (0)372(12E,(q) + 5)8." (0) — 29 (0))
10247%7(q)"29,(0)?
94(0)2(72(12E,(q) + 5)95(0) = 95(0)) + 58,(0)95(0)2
" 10247%(9)29, (0)°
3072(12E,(q) + 5)8,(0)* — 30(97(0))29." (0)
* 10247%7(q) 794(0)? '

Tk =2) =

(4.145)

Note that there are only |'"+2"_

at k=0.

The remaining two solutions are logarithmic, given by the S transformation of Z 5 and Z3%!(k = 2), where a basis can
be chosen to be

1 =2 defect indices with even vorticity, including the original Schur index Zs

Zos. STSZ,s, TSTZos.  Zos'(k =2), (4.146)
or
Tos.  STSIys.  I&Ft(k=2),  TSTIEE(k =2). (4.147)

There are two independent vortex defect indices with odd vorticity Z§%e! (k = 1) and Z§%e'(k = 3). Let us first look at
the unflavoring limit of the first defect index,

1
Iost(k=1) = EOL (60E2E, — 420E, E + T00Es)
= (1 +48q + 7742 + 7952¢° + 611014 + 3852004° + ...). (4.148)

It is easy to check that it satisfies an equation in the twisted sector,
(DY) = 220E,DY) — 6860E,D')) — 75600E5) I8! (k = 1) = 0. (4.149)

Apparently, this equation is just the twisted version of (4.143), where E;[7'] are replaced by E["'] and applying the
relation Ej = IEg.

To study the second defect index Ig‘fsfw(k = 3), one has to turn on flavor fugacities since it does not have a smooth
unflavoring limit. The simplest partial flavoring is b; = b, b, 345 = 1. It turns out that in this limit there are no flavored
modular differential equations below weight-8, and all the weight-8 equations satisfied by Igfgfec‘(k = 1) will also have

Zdfect(k = 3) as an additional solution. We refrain from showing the details of these equations due to their complexity.

2. Tys
For T ¢, the unflavored Schur index Z ¢ satisfies a weight-12, sixth order equation,

0=[DY¥ —545E,D" — 15260E,DS) — 164525E2D) — 2775500E, E¢D. — 26411000E2 + 1483125E3]T6.  (4.150)

The indicial equation gives

5 120)4 (144K — 120h —119) =0 = h= >, > > > L 21 4.151
( ) )=0= = T (4.151)

Obviously, the solution with 7 = corresponds to the Schur index. Another nonlogarithmic solution comes from the

nontrivial defect index: In this case, there are ["“q =2

| = 2 independent defect indices with even k, and indeed, 7, ¢ and
Z{eleet(2) are the two independent nonlogarithmic solutions to the modular differential equation (4.151), where the latter
corresponds to one of the 7 = % The remaining four solutions are logarithmic obtained from modular transformation of

Zy6 and Z{%'(2). One independent basis can be chosen to be
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Tosr  STog  TSTog  T?SToe  IEE(2),  STE(2) (4.152)
spanning the space of solutions.
There are also two linear-independent defect indices with odd vorticity, Z{%*(k = 1) and Z{e*!(k = 3), both with
smooth unflavoring limit
Toteet(k = 1) = gi2(1 + 19g + 64¢>/% +203¢% + 8964°/2 +23204° + ...), (4.153)
TEf(k = 3) = gB(1 + 64¢'/2 + T48¢ + 4992¢/% + 26035¢> + 111936%/2 + ...). (4.154)

They both satisfy a sixth order unflavored modular differential equation whose explicit form will not be included here.

3 7,,-
gn=0
The unflavored index 7, of the genus-2 theory 7, can be written in terms of the standard Eisenstein series,
T —1()2E+1 (4.155)
20 = 2’1 7 2T ) .

It satisfies a sixth order equation

0 = [D'Y —305E,D') — 4060EsDYY + 20275E2D{ + 2100E,E¢D\" — 68600(E2 — 49125E3)|17,,.  (4.156)

Following Sec. II C, there is an additional vortex defect index
I85 (k = 2) = n(z)*. (4.157)

Similar to the g = 0, n = 6 case, the SL(2, Z) orbit of 7, and n(7)* forms the complete set of solutions of the sixth order
equation, where an independent basis can be chosen as

Tro,  STyg,  TSIyg,  T?STyo,  I8F(2),  STEF(2). (4.158)

Note that since #7(7)? is a term in the index 7, itself, the other term 7(z)*E, naturally forms another solution as a
consequence.

Similarly, the indices Z5 and Z4 of the genus-3 and -4 theories satisfy a 20th and 43rd order modular differential
equation, respectively, whose expressions will not be included here. By direct computation, it can be shown that the Schur
index itself and the defect indices Z 3?5“‘(/( = even) provide a collection of solutions. Note that this equivalently implies that
n(2)272,n(t)*2E,, ....n(2)*"?E,y,_, are g independent solutions to these equations. Their SL(2,Z) orbit will supply
additional logarithmic solutions to the equations.
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APPENDIX A: SPECIAL FUNCTIONS

In this appendix, we collect the definitions and a few useful properties of the special functions that appear in the main
text. We often use letters in straight and Fraktur font which are related by

a—= eZm'a’ b= eZnib’ y = eZnit]’ 7= eZﬂig' (Al)

105020-29



HAOCONG ZHENG, YIWEN PAN, and YUFAN WANG

PHYS. REV. D 106, 105020 (2022)

1. Jacobi theta functions

The Jacobi theta functions are defined as a Fourier series

0= i 0 (-1yHgE, (A2)
reZ—&-%
9,(3l) = Y eirgs, (A3)
rEZ+2
8 (3lz) = > g, (A4)
nez
8,(3l7) = D (=1)"e¥minig?. (A5)

nez

Throughout this paper, we denote g := ¢>**. For brevity,
we will frequently omit |z in the notation of the Jacobi theta
functions. The Jacobi theta functions can be rewritten as a
triple product of the ¢ Pochhammer symbol, for example,

9,(3) = —iz2q*(¢: 9) (zq: ¢) (z "3 q).
9,(3) = (:9)(z2¢%: 9) (27" ¢%: ).
where (z3¢) = [[[55(1 - zq).

The functions 9;(z) almost return to themselves under
full-period shifts by m + nz,

(A6)

9123 +1)==91,(3), 943+ 1)=+854(3), (A7)

04(3+7)==2914(3). 93(3+7) =+19,5(3). (A8)

where 1= e 2%¢~77 The above can be combined, for
example, into

(3 + mz +n) = (=1)" e Mg Y, (5).  (A9)

Moreover, the four Jacobi theta functions are related by
half-period shifts which can be summarized as in the
following diagram:

91 -5 9y 9,
PNy Ny
194%193—)’[94
PNy Ny

191*>192—>’l91

where u = e~"%¢~%, and f—“g means

cither f <5+%) =ag(3) or f <5+%> =ag(3) (A10)

depending on whether the arrow is horizontal or (slanted)
vertical, respectively.

The functions 9;(z|7) transform nicely under the modu-
lar S and T transformations, which act as usual, on the

nome and flavor fugacity as (2, —1)— (3, 7)—> ! (3,74 1).

T ki
In summary,

—’i()éﬁl <7S 791 1) 6%191

04192 792 4> (& T 192
9

Oﬁ93 ’193 T 793

oz194 794 194

2
where a = \/—zremr .
2. Eisenstein series

The twisted Eisenstein series (with characteristics [%])
E.[%] are defined as a series in ¢,

¢ Bi(4
B || == 24 (A11)
N 1 z/:(r+i)k—19—lqr+/1
(k—1)! 5 1- 0~lqg
A)k-19g
q
_I'Z l_eqrﬁ . (A12)

Here, 0 < A < 1 is determined by ¢ = ¢**, B;(x) denotes
the kth Bernoulli polynomial, and the prime in the sum
means that when ¢ =0 =1 the r =0 term should be
omitted. We also define

Bly|=-1

) (A13)

The standard (untwisted) Eisenstein series E,, is given
by the 6, ¢ — 1 limit of E,[%)],

Ey(7) = E [“} (Al4)
m\T) = L2y +1 .
When k is odd, we have instead
1 "(3) 4~ 1
El{z»]—l.gl(é)s—g 1-, [+]—o.
e2mis | 2mi9(3)  2mig +1
(A15)

The Eisenstein series with ¢ = +1 enjoys a useful
symmetry property
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B | =[] | (Al6)

Z Z

They also transform nicely under z — gz or 7 — ¢z, for example,

+1 " (k\? 1 (=1)*(£1)
E = ~-| —E . Al7
L) =% G 7] A1
The Eisenstein series is closely related to the Jacobi theta function. Let us define an elliptic P function

Pay) == o Eny (" (A18)

n=1

Then, we have a simple translation

+1 y -1 y

Ek{ ] = [e7Ds=P20], 9, (3), Ek[ ] = [e75DsP20)],9,(3), (A19)
+z +z
+1 y -1 y ,

Ey = [e= 0] 9,().  E = [e73P P 0],85(3), (A20)
-z -z

where [...], means taking the coefficient of y* when expanding ... in y series around y = 0, and Dy acting on 9; is defined
to be

8" (s)
D1Y,(3) == — . A21
The Eisenstein series contains simple poles whose residues are easy to work out from the definition. For example,
1 -1 1 1\ ! 1 +1 1
R -E =—— | k+= R -E = k1 A22
I B G N S B v (522

The relation between the Eisenstein series and Jacobi theta functions is helpful in working out the modular transformation
of the former. In detail, we consider the following transformations:

1
S:r—>——,5—>é, T:7—>7+4+1,3—-3. (A23)
Under the S transformation,

+17 1\"[
bl 2> () s

( I )
E, [; = (2%) ' :(Zkzo % (~log Z)"y"> (Zfzo(log q9)’ Y E, _ i | )} E (A25)
LN (o) (Camaral . om

E, [_1 — <i) ' :(Zkzo % (~log Z)"y"> (Zfzo(log q)y'E; _ :i _ )} X (A27)

where [...], extracts the coefficient of y". For the readers’ convenience, here we collect the S transformation of several
lower-weight Eisenstein series,
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[ 4117 +1
El —S>TE1|: :| + EB <A28)
L < | Z
1] s 1 17 2
E2 —>12E2 - 5TE1 -, (A29)
Lz | F4 z 2
H1] s 4 [+ L, [H1] 1, [+l
E3 —>T E3 — 3T E2 +—5 TEl
L z | z z 2 z
53
+Z (A30)

a2 (b (S 2])]

The transformation of the Eisenstein series under
SL(2,7Z) implies that they are a generalization of the
well-known modular forms and Jacobi forms. In the theory
of modular/Jacobi forms, there are a few important differ-
ential operators that change the modular weight of a form.
The Serre derivative d(y) is defined to be

o) = q9,4 + kE,. (A34)
It maps a weight-k modular form to a weight-(k + 1) form.
For example,
a(z)Ez =5E,+ Ez,

6<4)E4 - 14E67 5(6)E6 = 2OE8

(A35)

One can compose the Serre derivative into the modular

differential operators D,(Ik),

(k

Dq ) = a(2k_2) 0...0 0<2> ¢} 0(0) (A36)

Such an operator turns a weight-0 form to a weight-2k

form. It transform covariantly under the standard SL(2, Z)

transformation ¢ — 7’ := &+b
ct+d

DY = (ct+d)* D}, (A37)

APPENDIX B: VERTEX OPERATOR ALGEBRA

In this section, we briefly summarize some notions and
formulas concerning VOAs. For a more rigorous account of
the subject, see, for example, [2,89]. A VOA V is charac-
terized by a linear space of states V (i.e., the vacuum
module) containing a unique vacuum state |0) and a special
state T corresponding to the stress tensor. There is a state-
operator correspondence Y that builds a local field Y (a, z)

Under the T transformation,

[+17 7 (417 =17 7 [—1T
E —>F, , E —F ., (A31
"_+z_ 1_+z_ "_+z_ "_—z_ ( )
(417 [+17 [—1T [—1T
E, LE, . E, LE, . (A32)
L —2 ] | —2 ] | —2 ] | +2 ]
Combined,
(A33)
n

out of any state a € V. We often simply denote the field as
a(z) and expand it in a Fourier series'

alz)=Y(a.z)= Y @M. T(x)=) L,z

neZ—h, nez

(B1)

Here the Fourier modes a,, are linear operators that act on
V., L, from a Virasoro algebra with central charge c, and &,
is the eigenvalue in Lga = h,a. The vacuum state |0) is
such that Y(]0), z) =idy and a(0)|0) = a. For a state a
with integer weight h,, one defines its zero mode
o(a) = ay, whereas o(a) = 0 when h, is nonintegral.

To compute torus correlation functions, it is a common
practice to consider [2]

ale) = Y (@ e = 1) = Sap e (B2)

where the “square modes™ a,; are defined by the expan-
sion. Explicitly,

ap) =Y _c(j.n hy)a;,

j=zn

(B3)

where the coefficients ¢ are given by the coefficients of the
expansion

(14 2)"log(1 + 2)]* = Zc(j, n,h)z.

=

(B4)

It is worth noting that o(aj_;,_,)) =0, ¥ n € Ny;.
Recursion relations for unflavored torus correlation
functions were first studied in [2], and later generalized

In the math literature, the expansion is often taken to be
ZnEZ anz_n_1 .
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to R-graded super-VOAs [30] and flavored correlation functions [32]. They are crucial tools for deriving flavored modular
differential equations. Consider a %Z—graded super-VOA V containing a it(1) current J with zero mode J,,, M a module of
V, and a,b € V are two states of weights h,, h;,. If Joa =0, then'® [6,30]

stryso(ap_y, 1b)x"og"o (B5)
+00 e2m‘ha

= stry0(ag,)[0))o(b)x"0g" + ZEzk[ ! :|StrM0<a[—h,,+2k]b)xJ0qL0- (B6)
n=1

Recall that when « is a conformal descendant, o(a[_ha]) = 0. On the other hand, if the state a is charged with Jya = Qa and
Q # 0, then the recursion formula reads [32,33]

+oo o2ih,
strys0(ap_p,1b)x"0 gk = ; E, [ 0 ]strMo(a[_ha+,1]b)x10qL0. (B7)

Another frequently encountered insertion is o(L’[‘_Z] |0)). In particular,
stro((Li-y))*|0)) g 073 = Pystrgho—s. (B8)

Here, P, denotes a kth order (and weight-2k) differential operator on ¢,

3
P, =D,  P,=DP+ 2E4, Py =D 4 <8 + §> EDY) + 10cE,, .... (BY)

APPENDIX C: NULL STATES IN 80(8)_,
The Lagrangian of N = 2 su(2) super-QCD is (we denote both the hypermultiplet and its scalar components by Q and Q)

L =1Im <1 / dP0d*0u(dTeVd + QleV 0! + 0TeV 0;) + 7 / d*0 Gtrwawa + ﬁQ?ch;Q;',)). (C1)

Since the fundamental representation of SU(2) is pseudo-real, the hypermultiplet scalars

Qi 04, i=1.4, a=1,2, (C2)

which transform under fundamental representation of flavor group SU(4), can be recombined into a single QF,, with
i = 1,...,8 transformed under 8, of SO(8). From now on, we collectively use Qi,i=1,...,8and a = 1, 2 to denote Q
and Q. More explicitly, Q’, refers to Q when i ranges from 1 to 4, otherwise to Q, when i ranges from 5 to 8. The moment
map operator of the enhanced flavor group SO(8) is

Ml = Qi Q4. (C3)
It gives 80(8)_, currents of the corresponding 2D chiral algebra, as is conjectured in [1]

Jliil = )((M[if]), (C4)
where y is the map from operators in the same SU(2), multiplet with Schur operators to the generators in 2D chiral algebra,

as is defined by .... There are a total of nine independent null states in 2D chiral algebra 30(8)_,. The first three have
symmetric indices [1]:

P R |
JUWA Il 4 g5 glsil — Zj[mn]][mn], (C5)

16 . . . .
Here, all modes are the square modes, which are suitable for torus correlation functions.
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1 Dynkin diagram of 80(8). Roughly speaking, the gener-

/] 72 4 gl jli) [mn] glmn] :
JENJEI 4 JOi gl — A_LJ J, (C6)  ators of 80(8) gain charges under the Cartan of four 81t(2)
subalgebras. Unfortunately, the generators J'/ of 30(8)_,

103 g 1 are not eigenvectors of the four 81 (2)’s. Therefore, we use
B3] g3 (7] g177) — Z jlmn] glmn] g ’
ST T 4J S (€7) another definition of 8o(8):
The other six null states have totally antisymmetric MS + SM' = 0. (C14)

indices [82]:

All 8 x 8 matrices M form a Lie algebra isomorphic to

12] 7156 15] 7126 25] 716
JUAJBOf— ULy Rel - g3l e, (C8) 30(8). Note that
JO31g157) — g1s] y 371 4 y35] y(17] (C9) 0 T
S = (C15)
J12317168) _ yi26) i8] 4 y136] 7128). (C10) 1w O
U4 718) _ 7115] y148) - gias] glis). (1) The isomorphism between J/) and M is
24 J168] _ yl26] ylas) | giae] y128]. (C12) J=TMT, (C16)
JBA 8] _ g137) 748 o yia7) 4038). (C13) where
. . P | P
There are four commuting 31(2) subalgebras in 30(8)_,. 2 2
We can choose them to be the Chavalley bases of four T = g —ilu (C17)
simple roots which are not connected in the extended V2 V2
|
In the algebra defined by M, the four Cartans in commuting 81 (2) that we choose are listed as follows:
% 000 O 0 00O % 0O 00 O O 0O
0 % 00 O O OO0 0 —% 00 0 0 0O
0000 O 0O 0O 0O 0 00 O O0O00O0
B — 0000 O O 00O B — 0O 0 00 O O0O0O0
""loooo - o ool 7 Jo o o0 -Loool
0000 0 - % 0 0 0O 0 0 0 O % 0 0
0000 O O 00O 0O 0 00 O O0O00O0
0000 O O 00O 0O 0 00 O O0O00O0
000 O 0O O O 000 O0O0OO0O O O
000 O 0O O O 000 O0O0OO0O 0O o
0 0 % 0O 00 0 O 0 0 % 000 0 O
00 0 - % 0 0 0 O 0 0 0 % 00 0 O
h3 - 5 h4 - (Clg)
000 O 0O O O 000 O0O0OO0OD 0O o
000 O 0O O O 000 0O0OO0O O O
000 O OO0 - % 0 00 0 0O0 0 - % 0
000 O 0O0 O % 000 O0O0O0O O —%
The raising operators are chosen to be
e 0 0 e;—ey
( / )( / ’) 0<i<j<4 (C19)
0 —€j,' 0 0
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(i, j) means a (4 x 4) matrix only has 1 at the position (i, j) and 0 at other positions. The lowering operators are their
transpose matrices. We can easily find that they are eigenvectors of h,, h,, and k3, hy. To derive the flavored MDE, we use
the isomorphism 7 to transform from the bases JI/) to the bases M. Here we give the flavor modular differential equations,
respectively, to the last three null relations:

[~Dy, Dy, + Dy, Dy, — Dy, Dy, + Dy, Dy, (C20)
1 1
-2E, |:b1b2b3:| (Dp, + Dy, + Dy, — Dy,) +2E,; [b1b2b4:| (Dy, + Dy, = Dy, + Dy,) (C21)
by b;
1 1
+8 <E2 |:b,b2b3:| -E, |:b1b2b4 } >]Io,4 =0, (C22)
by by
[=Dy, Dy, + Dy, Dy, + Dy, Dy, — Dy, Dy, (C23)
1 1
_2F, { bty } (Dy, = Dy, + Dy, — Dy,) + 2, [ bibe } (Dy, = Dy, — Dy, + Dy,) (C24)
byby 2b3
1 1
Dby bybs
and
5 1 1 5 1 1
Dh4 +4E1 b2 Db4 - 8E2 b2 10‘4 - Dh3 + 4E1 b2 Db3 - 8E2 b2 10’4. (C26)
4 4 3 3

APPENDIX D: FLAVORED MODULAR DIFFERENTIAL EQUATIONS

In this appendix, we collect a few long equations explicitly that were omitted in the main text.

1. Tl’l

In the class-S limit b; — b of the theory 7' ;, the Schur index is given by the formula (2.9). It satisfies several flavored
modular differential equations of different weights.
At weight-2, there is one equation that corresponds to the total stress tensor T = T,y + Tp,s

w D} 1 -1 -1 1 1
0: D 2 2E1 b2 +E1 b Db—2E1 b El b2 +3E2 b2 +2E2 :Z-]’]. (Dl)

At weight-3, we have

0= |pi_ag |’ p\V 1+ 8E -l Vv 6E,| |D}—16E ~p
b 1 b2 q 1 b 1 b 2 b b

-1 1 1 —172 1 1
—12E,D, — 12E E 32F — 12E E —24E,FE
2 l[b} l{bz} - Z{b} b l{b] 1{1)2} ? ‘[bZ]

—8E, [;}Ez{_ﬂ —8E, {_;]Ez[blz] +48E3[;HIL1 (D2)

and
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-1 1 -1 1 1
0= {Dgl)DbJrZEl[ ., }Dél) —2E2[b2}1)b+E2Db—2El[ , ]Ez[ } +6E3[b2”11,1.

b2

At weight-4, there are several fairly complicated equations:

0= |D*+8E ! 3D 1 48E el oW _sg| L]pw
- b 1 bz b 1 b 1 b2 q 2 b2 q

RN —17 1 1
+48D, (E E| | +264D,E, | |Ey| | +192D,E,| | |E
(8] ) ala) cromn [ ] o] 4 womim |

1 -1 3 1 1
+ 336D, E +48( E E — 192E,FE
’ 3[192} < l[b D l{bz} ? 2[1#]

+ 336E [_I}E{1}E{1}+288E[1]E[_1] T84E [_1}15{1
Hop 15 2 |72 g2 oz 53] g Hop 173 p2

1

— 432E, [bZ

1 1 -1 -1
(1)
]E3[b2] —2136E4{b2} + 96D} Ez[ ) ] +288DbE3[ ., }

-1 -1 -1
+ 1472E1[ ) }E{ ) } —384E4[ ) ] —48E§]IM,

b

o= oo — 1o | T HE L L pw Z16e, | D0 Z 108, [ L0 —sEE | LD
- b—4 1 1 bz q 2 b q 2 b2 q 2451 b2 b

-1 -1 1 1 1 1
caee [ Jouves [V Lovs s L]e] Lo 1] Lo

vona 3] o o[ o3 ][]
~ar [ ]

o] =28 2 o] 2

-1 -1 1
{ ] +64E4[ b } +4E%—8E2E1[ b }El{bzﬂzl-l’

E;
-17 -1
0= —|—2E3 2 [Py =4E;| Dy —4Es| D,
E,

e ol

+24E, [

2. TI,Z

Here we consider the b; — b limit. There are two equations at weight-3,
3 1o L. 1 1
0= |Dy,—-32E| ,|Dg +16E| ,|D,+48E,| | D, —96E;| ,|D,
b b b b
1 1 1 1
—32E,E, p | 288E, b2 E, b2 + 96E; b2 Zis

and
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1 1 1 1 1
0= {Dqu —6DbE2[b2] + 4E,D, + 12E,E, [b2] - 12E1[ ]Ez[ ] + 12E3{b2HILZ.

At weight-4, there are two equations,

2 1 1 3 1 1 1
0— {Dgthng)—iEl[bz DD + 4E, )

1 1 1 1 ,
“8E)Ey| | = 24E| L |Es| | —24E,| | B3

and

1 1 1T
2 1 1 1
0= [DE,)—Dng)El {bz} +4E2{b2}D§,)+2E2DE,)—§E2[b2]D%,+—E2D,2,

2 B (D8)
X ho1 1 1 1
}D§,>+2E2Dé)+zE2[b2 D +3E| ;5 |Ea| 5 |Ds

- 31%:4]11,2 (D9)

1

2

1 1 1 1 ,

F2EE, | o [Dy+6Es | o [Dy=8EE,| | =24Ey| | 4B} ~16E,|T,. (D10)
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