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In this manuscript, we discuss a remarkable phenomenon concerning nonlinear and nonintegrable field
theories in (3þ 1) dimensions, living at finite density and possessing nontrivial topological charges and
non-Abelian internal symmetries (both local and global). With suitable types of Ansätze, one can construct
infinite-dimensional families of analytic solutions with nonvanishing topological charges (representing the
baryonic number) labeled by both two integer numbers and by free scalar fields in (1þ 1) dimensions.
These exact configurations represent (3þ 1)-dimensional topological solitons hosting (1þ 1)-dimensional
chiral modes localized at the energy density peaks. First, we analyze the Yang-Mills-Higgs model, in which
the fields depend on all the space-time coordinates (to keep alive the topological Chern-Simons charge), but
in such a way to reduce the equations system to the field equations of two-dimensional free massless chiral
scalar fields. Then, we move to the nonlinear sigma model, showing that a suitable Ansatz reduces the field
equations to the one of a two-dimensional free massless scalar field. Then, we discuss the Skyrme model
concluding that the inclusion of the Skyrme term gives rise to a chiral two-dimensional free massless scalar
field (instead of a free massless field in two dimensions as in the nonlinear sigma model) describing
analytically spatially modulated hadronic layers and tubes. The comparison of the present approach both
with the instanton-dyon liquid approach and with lattice QCD is shortly outlined.
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I. INTRODUCTION

It is well known that in quantum chromodynamics
(QCD) color confinement is closely related to the existence
of topologically nontrivial configurations (see [1–14] and
references therein), while in the ultraviolet sector quarks
and gluons should be liberated [15–17]. The great advances
in lattice QCD (LQCD henceforth) [18–25] can only
partially compensate the poor analytic control on such
nonperturbative issues arising in the phase diagram of non-
Abelian gauge theories. Therefore, many open problems

would greatly benefit from the presence of explicit sol-
utions relevant to the phase diagram of QCD. In this paper,
we will present a concise list of tools, although these are
also useful when analyzing different kinds of questions.
An area in which the results and tools of LQCD badly

need some further analytic insights is the analysis of the
phase diagram of QCD at finite (and low) temperature and
with baryon chemical potential; one of the main problem-
atic issues being the infamous sign problem (see [26] for
a detailed review). In this case, the methods of AdS=CFT
are not especially effective since, only at high enough
temperatures, supersymmetric Yang-Mills theory gets very
close to Yang-Mills theory (see [27,28] and references
therein). Moreover, besides the huge theoretical interest in
achieving a deeper understanding of this region of the
phase diagram, there are many situations of high phenom-
enological interest (such as heavy-ion collisions, quark-
gluon plasma, neutron stars, and so on) in which novel
analytic techniques would be extremely useful to comple-
ment the available observations. Among these, one of the
most relevant is the appearance of regular-shaped structures
at finite density (called nuclear pasta states; see [29–40])
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and the important transport properties within them, whose
numerical treatment is quite challenging [41–45].
There are two obvious ways to analyze these issues. One

can either begin with the analysis of Yang-Mills theory
(which is more fundamental), or one can start directly with
the nonlinear sigma model (NLSM) and the Skyrme model
(which is the low-energy limit of QCD at leading order in
the large Nc ‘t Hooft expansion [46–51]). These models,
at first glance, are very different, as Yang-Mills theory is
a gauge theory, while the NLSM and the Skyrme model
only possess global symmetries. Thus, one could think that
these two possibilities should be treated with different
methods. Nevertheless, we will show that it is possible to
devise a unified strategy able to identify sectors of the
(3þ 1)-dimensional theories that, at the same time, possess
arbitrary baryonic charge as well as an infinite-dimensional
conformal symmetry. It is quite amusing that the only
difference between the infinite-dimensional conformal
symmetry appearing in Yang-Mills theory and the NLSM
on one side, and Yang-Mills-Higgs and the Skyrme theory,
on the other side, is that, in the former cases, one gets an
effective two-dimensional conformal field theory (CFT),
while in Yang-Mills-Higgs and the Skyrme cases, one gets
a two-dimensional chiral CFT. This intriguing result could
be related to the fact that the Skyrme theory is the low-
energy limit of QCD (and not just of Yang-Mills theory)
and knows about chiral symmetry breaking. Needless to
say, the possibility to use the tools of two-dimensional CFT
in (3þ 1)-dimensional theories (such as Yang-Mills and
Skyrme, which are the prototypes of nonlinear and non-
integrable field theories) open unexpected and novel
perspectives on the analysis of the phase diagram at finite
temperature and chemical potential.
A systematic tool to construct a nonspherical hedgehog

Ansatz suitable to describe finite density effects has been
developed in Refs. [52–61] for the Skyrme model and in
Refs. [62–64] for the Einstein-Yang-Mills case. In the
present article, we will further generalize these results to
extend the space of analytical solutions [and the tools that
allow obtaining relevant physical information of these
systems of topological solitons defined in a (3þ 1)-dimen-
sional finite volume], disclosing the appearance of chiral
conformal degrees of freedom representing modulations of
hadronic tubes and layers. Although, in the present the
paper, we will not discuss the coupling with gravity of the
NLSM and Yang-Mills theories, there are already quite a
few examples in the literature that show that the current
approach is convenient even when the coupling with general
relativity is taken into account (see, for instance, [65–71]).

A. About the new analytical solutions

The considerable interest in constructing analytic sol-
utions in theories with non-Abelian internal symmetries
(both local and global) and nontrivial topological charges
arises from the fact that, in all the theories admitting

topological solitons, such charges have a profound physical
meaning (such as the baryonic charge, as will be discussed
in the following sections). As far as the phase diagram is
concerned, it is crucial to analyze what happens when a
finite amount of topological charge is forced to live within
a limited spatial volume. In this case, practical analytic
tools are extremely welcome due, for instance, to the sign
problem. On the other hand, the common belief is that it is
impossible to develop such tools for (at least) two reasons.
First, one necessarily has to abandon spherically symmetric
Ansätze for the fields. Second, and quite generically, the
requirement of a nonvanishing topological charge increases
the complexity of the field equations to be solved since a
nonvanishing topological density implies that there must be
at least three independent degrees of freedom depending
nontrivially on three different spatial coordinates in (3þ 1)
dimensions. Resumming,
(1) the departure from spherical symmetry (generated

by the presence of “a box” within which the solitons
are forced to live), together with

(2) the requirement of a nonvanishing topological
charge,

reduce considerably the possibility to derive analytic
results on the phase diagram of topologically nontrivial
configurations of theories such as Yang-Mills, NLSM, and
the Skyrmemodel. One could reason as follows: the analytic
tools of two-dimensional CFTwould be handy andwelcome
in analyzing the phase diagram of (3þ 1)-dimensional
Yang-Mills-Higgs theory (or Skyrme model) due to the
difficulties analyzing it even with LQCD. Then, why do not
we assume that the main fields [either Aμ for Yang-Mills or
U ∈ SUð2Þ for the NLSM and Skyrme theory] only depend
on one spatial coordinate and on time (so that one could hope
to use some two-dimensional CFT technologies)?
The answer is that such a naive approach would fail. First

of all, the topological charge (to be defined in the following
sections) would vanish identically, so that one would gain
no information about the phase diagram at finite baryon
density. Moreover, already the head-on collision of (topo-
logically trivial) plane waves depending on only two
coordinates is intractable from the analytic viewpoint,
and numerical methods must be used1 (see [74–80] and
references therein). Hence, at first glance, one might argue
that the analytic study of dynamical processes involving
solitonic configurations with nonvanishing topological
charge in (3þ 1) dimensions is not feasible.
In fact, here we will show that, from the analytic

viewpoint, the above two circumstances (namely, the need
to depart from spherical symmetry and the necessity to
keep alive the topological charge) are an opportunity rather

1For instance, already analysis of head-on collisions of
(1þ 1)-dimensional kinks, which is far simpler than Yang-Mills
theory in (3þ 1) dimensions, can only be dealt with numerically
[72,73].
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than an obstruction. The tools to be developed here give
rise, among other things, to genuine (3þ 1)-dimensional
nonhomogeneous exact solutions representing spatially
modulated hadronic layers and tubes, allowing one to
estimate their contributions to the partition function at
low temperatures and baryon chemical potential and also to
compute relevant quantities.

B. Notation and conventions

In this work, we will use the following convention.
Greek indices run over the space-time dimensions with
mostly plus signature, and latin indices are reserved for
those of the internal space. Also, we work in natural units,
such that the Boltzmann’s constant kB, the reduced Planck’s
constant ℏ, and the speed of light c are set to one.
As we are interested in studying topological solitons at

finite volume, we will use the metric of a box, which in
(3þ 1) space-time dimensions reads

ds2 ¼ −dt2 þ L2
rdr2 þ L2

θdθ
2 þ L2

ϕdϕ
2; ð1Þ

where fr; θ;ϕg are Cartesian dimensionless coordinates
whose ranges will be defined in each case, fLr; Lθ; Lϕg are
constants with dimension of length that fix the volume of
the box in which the solitons are confined, and g ¼
−L2

rL2
θL

2
ϕ will denote the metric determinant. Also we

denote ∇μ as the Levi-Civita covariant derivative con-
structed with the Christoffel symbols, ∂μ as the partial
derivative, and the covariant derivative Dμ acts as

Dμð·Þ ¼ ∂μð·Þ þ ½Aμ; ·�; ð2Þ

with Aμ the components of the non-Abelian connection. We
will consider as the internal symmetry group the SUð2Þ Lie
group,2 whose generators are

tk ¼ iσk; ð3Þ

being σk the Pauli matrices. The matrices ti satisfy the
relation

titj ¼ −δij12 − ϵijktk; ð4Þ

where 12 is the 2 × 2 identity matrix, δij is the Kronecker
delta, and ϵijk is the totally antisymmetric Levi-Civita
symbol.
The fundamental field of the Yang-Mills theory, namely,

the non-Abelian connection A, splits as

A ¼ Aj
μtjdxμ; ð5Þ

while the fundamental field of the NLSM and the Skyrme
model is the scalar field UðxÞ ∈ SUð2Þ, so that

Rμ ¼ U−1
∂μU ¼ Rj

μtj; ð6Þ

is in the suð2Þ algebra.
The relevant topological properties of the solutions that

we will construct in this work are encoded in the Chern-
Simons (CS) density (for the Yang-Mills theory) and in the
baryon charge density (for the NLSMs). These are given,
respectively, by

ρCS ¼ JCS0 ; where

JCSμ ¼ 1

8π2
εμνρσTr

�
Aν

∂
ρAσ þ 2

3
AνAρAσ

�
; ð7Þ

ρB ¼ 1

24π2
ðU−1

∂UÞ3

≡ 1

24π2
εijkTrfðU−1

∂
iUÞðU−1

∂
jUÞðU−1

∂
kUÞg: ð8Þ

The integral of the above densities over a spacelike
hypersurface represents the CS charge and the baryonic
charge of the corresponding configurations,

QCS ¼
Z

ρCS dV; B ¼
Z

ρB dV: ð9Þ

The paper is organized as follows: In Sec. II, we study the
Yang-Mills theory in (3þ 1) dimensions showing that,
with an appropriate Ansatz, the field equations are reduced
to that of a two-dimensional free massless scalar field. We
also offer that the inclusion of a Higgs field converts the
resulting CFT into a chiral theory. In Sec. III, we move to
the study of NLSM in (3þ 1) dimensions, showing that
the theory can be reduced to a two-dimensional CFT. In
Sec. IV, we show that the inclusion of the Skyrme term in
the NLSM defines a chiral CFT for two types of configu-
rations describing nuclear pasta states. In Sec. V, we study
the phase diagram and the contribution of the partition
functions of the analytic topological solitons. The final
section is dedicated to conclusions.

II. YANG-MILLS-HIGGS THEORY IN (3 + 1)
DIMENSIONS

In this section, before moving to the Yang-Mills-Higgs
case (which has not been analyzed previously in the
literature), we will study the Yang-Mills theory in
(3þ 1) dimensions, reviewing the results in Ref. [81],
showing how the field equations can be reduced to that of a
two-dimensional free massless scalar field in (1þ 1)
dimensions keeping alive the topological charge. The
concepts introduced here will be helpful also in the

2Here we will consider the SUð2Þ case, but the present results
can be extended to the SUðNÞ case.
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following sections, where we will show that a similar
construction can also be carried out on NLSMs.

A. Conformal field theory in two dimensions from
pure Yang-Mills theory

The Yang-Mills theory in (3þ 1) dimensions is
described by the action

I½A� ¼ 1

2e2

Z
d4x

ffiffiffiffiffiffi
−g

p
TrðFμνFμνÞ; ð10Þ

where e is the Yang-Mills coupling constant, and the field
strength components Fμν are defined in terms of the non-
Abelian connection Aμ as

Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�:

The field equations of the theory, obtained varying the
action in Eq. (10) with respect to the fundamental field
Aμ, are

∇νFμν þ ½Aν; Fμν� ¼ 0; ð11Þ

while the energy-momentum tensor of the theory turns out
to be

Tμν ¼ −
2

e2
Tr

�
FμαFν

α −
1

4
gμνFαβFαβ

�
: ð12Þ

One of the main goals of this paper is to construct a
formalism able to describe how topologically nontrivial
configurations react when they are forced to live within a
finite box; this issue must be addressed in the finite density
analysis.
The easiest way to take into account finite volume effects

is to use the flat metric defined in Eq. (1), with the ranges

0 ≤ θ ≤ 2π; 0 ≤ ϕ ≤ π; 0 ≤ r ≤ 4π: ð13Þ

The above ranges for the coordinates θ, ϕ, and r are related
to the Euler angle parametrization for SUð2Þ valued fields.
Let us define the following UðxÞ ∈ SUð2Þ field

U ¼ exp

�
pθ

t3
2

�
exp

�
Hðt;ϕÞ t2

2

�
exp

�
qr

t3
2

�
; ð14Þ

where p and q are nonvanishing integers.3 The theory of
Euler angles for SUðNÞ [82–84] tells us that, when p and q
are nonvanishing integers, the range of θ [appearing in the
left factor of the decomposition in Eq. (14)] and the range
of r [appearing in the right factor of the decomposition in
Eq. (14)] must be as in Eq. (13). As far as the central factor

Hðt;ϕÞ is concerned, there are two options. If the field
Hðt;ϕÞ satisfies periodic boundary conditions,

Hðt;ϕ ¼ 0Þ ¼ H0 ¼ Hðt;ϕ ¼ πÞ; ð15Þ

the CS charge vanishes.4 The other boundary condition for
Hðt;ϕÞ arises naturally, taking into account that Hðt;ϕÞ
appears in the central factor of the Euler angles decom-
position of an SUð2Þ element (see [82–84]),

Hðt;ϕ ¼ 0Þ ¼ 0; Hðt;ϕ ¼ πÞ ¼ π; ð16Þ

or

Hðt;ϕ ¼ 0Þ ¼ π; Hðt;ϕ ¼ πÞ ¼ 0:

The option here ensures that the SUð2Þ-valued element U
defined in Eqs. (13), (14), and (16) wraps an integer
number of times around the group manifold of SUð2Þ;
in other words, U has a nonvanishing winding number. In
this case, both the CS charge and the CS density in Eq. (7)
associated with the gauge field will be nontrivial. It is well
known that ρCS defined in Eq. (7) is the “nonperturbatively
induced baryonic charge” of the gauge configuration [85]
(see also [86–88] and references therein).
In order to find an Ansatz such that ρCS defined in

Eq. (7) will be nonzero and, at the same time, the field
equations can be solved analytically, one can follow
Refs. [53,54,60–64,81,89], arriving at the following form
for the Yang-Mills potential:

Aμ ¼
X3
j¼1

λjΩ
j
μtj; U−1

∂μU ¼
X3
j¼1

Ωj
μtj; ð17Þ

where Hðt;ϕÞ in Eq. (14) and the λi functions in Eq. (17)
are explicitly given by

Hðt;ϕÞ ¼ arccosðGÞ; G ¼ Gðt;ϕÞ; ð18Þ

λ1ðt;ϕÞ ¼ λ2ðt;ϕÞ ¼
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ expð2ηÞ
p ¼def λðt;ϕÞ;

λ3ðt;ϕÞ ¼ 1; η ∈ R; ð19Þ

Gðt;ϕÞ ¼ expð3ηÞ Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − expð4ηÞ · F2

p ; F ¼ Fðt;ϕÞ:

ð20Þ

The real parameter η will be fixed by requiring that the CS
charge is an integer.
The option in Eq. (15) gives rise to the following

boundary condition for Fðt;ϕÞ:
3There will be one more restriction on p and q that will be

discussed later on. 4Although the CS density can still be nontrivial.
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Fðt;ϕ ¼ 0Þ ¼ F0 ¼ Fðt;ϕ ¼ πÞ: ð21Þ

In the latter case, the CS charge vanishes. On the other
hand, the option in Eq. (16), in terms of Fðt;ϕÞ, reads

Fðt;ϕ ¼ 0Þ ¼ −
expð−2ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ expð2ηÞp ;

Fðt;ϕ ¼ πÞ ¼ expð−2ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ expð2ηÞp ; ð22Þ

in order to have a nonzero CS charge. In this case, both the
CS charge and the CS density will be nontrivial. Then, we
say that this configuration is topologically nontrivial.
The components of the gauge field can be easily

computed taking into account the well-known expression
of the Ωj

μ in the case of the Euler parametrization. Thus,
explicitly, Aμ reads

Aμ ¼ λðt;ϕÞ
�
t1
2
f− sin ðqrÞdH þ p cos ðqrÞ sinðHÞdθg

þ t2
2
fcos ðqrÞdH þ p sin ðqrÞ sinðHÞdθg

�

þ t3
2
½qdrþ p cosðHÞdθ�; ð23Þ

where

dH ¼ ∂H
∂t

dtþ ∂H
∂ϕ

dϕ:

The fact that dλ ∧ dH ¼ 0, together with the gradients of
the coordinates r, θ, and ϕ are mutually orthogonal,
simplifies many of the computations. The above Ansatz
is the key to getting the paper’s main results, and the rest is
a direct computation.
With the above, the complete set of (3þ 1)-dimensional

Yang-Mills field equations with the Ansatz in Eqs. (14) and
(17)–(20) reduces to

□F≡
�
∂
2

∂t2
−

1

L2
ϕ

∂
2

∂ϕ2

�
F ¼ 0; ð24Þ

which corresponds to the field equation of a free massless
scalar field in two dimensions.

B. Energy-momentum tensor and topological
charge

A direct computation reveals that the topological density
for the solution defined above is given by

ρCS ¼
pq expð3ηÞ

16π2ð1 − expð4ηÞF2Þ3=2
∂F
∂ϕ

; ð25Þ

which is nonvanishing, as long as ∂F
∂ϕ ≠ 0. On the other

hand, the energy density Ttt and the on-shell Lagrangian
Lon-shell read, respectively,

Ttt ¼
p2

e2L2
θ

expð5ηÞ coshðηÞ
��

∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
; ð26Þ

Lon-shell ¼
p2

e2L2
θ

expð5ηÞ coshðηÞ
��

∂F
∂t

�
2

−
1

L2
ϕ

�
∂F
∂ϕ

�
2
�
:

ð27Þ

The full energy-momentum tensor reads

Tμν ¼

2
6664
Ttt 0 0 Pϕ

0 Trr 0 0

0 0 Tθθ 0

Pϕ 0 0 Tϕϕ

3
7775;

where

Trr ¼
p2L2

r

e2L2
θ

exp ð5ηÞ coshðηÞ
��

∂F
∂t

�
2

−
1

L2
ϕ

�
∂F
∂ϕ

�
2
�

¼ −
L2
r

L2
θ

Tθθ; ð28Þ

Tϕϕ ¼ p2L2
ϕ

e2L2
θ

exp ð5ηÞ coshðηÞ
��

∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
;

ð29Þ

Ttϕ ¼ Pϕ ¼ 2p2 exp ð5ηÞ coshðηÞ
e2L2

θ

∂F
∂t

∂F
∂ϕ

: ð30Þ

From the above, one can easily verify that the energy-
momentum tensor is traceless; gμνTμν ¼ 0, as it should be
in Yang-Mills theory in (3þ 1) dimensions. It is also
interesting to note that if one “eliminates” the coordinates r
and θ, the resulting two-dimensional energy-momentum
tensor in the t and ϕ directions is still traceless (as it
happens for a two-dimensional CFT). Explicitly, one can
take Tab defined as

Tab ¼
�
Ttt Pϕ

Pϕ Tϕϕ

�
; a; b ¼ t;ϕ;

as the effective energy-momentum tensor associated with the
massless two-dimensional scalar field F. As it is clear from
Eq. (25), the CS density associated with Fþ þ F− (where
Fþ and F− are the left and right movers mode expansion
defined explicitly below) is the sum of the topological charge
density associated with Fþ plus to one associated with F−
only for small amplitudes, namely, when
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j exp ð4ηÞFðt;ϕÞ2j ≪ 1: ð31Þ

On the other hand, when the temperature is high enough, it is
natural to expect that the thermal fluctuations of Fðt;ϕÞ
violate the above condition. That is why the CS density of
these configurations (which can be interpreted as baryonic
charge density) is only well defined below a specific
temperature.
The CS charge reads

QCS ¼
pq expð3ηÞ

2

�
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − expð4ηÞF2
p

�����
Fðt;πÞ

Fðt;0Þ
: ð32Þ

As it has been already discussed, when Fðt; 0Þ ¼ Fðt; πÞ
the topological charge vanishes. Thus, let us consider the
boundary conditions for Fðt;ϕÞ in Eq. (22). The require-
ment to have an integer topological charge can be expressed
as follows. Introducing the useful auxiliary function

Ωðη;a;bÞ≡expð3ηÞ
2

�
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− expð4ηÞa2
p −

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− expð4ηÞb2

p
�
;

ð33Þ

the topological charge reads

QCS ¼ pq ·Ωðη; a ¼ Fðt; πÞ; b ¼ Fðt; 0ÞÞ:

Taking into account the boundary conditions for Fðt;ϕÞ in
Eq. (22), the quantityΩðη; a ¼ Fðt; πÞ; b ¼ Fðt; 0ÞÞ can be
further simplified, so that one arrives at the following
expression for the topological charge:

QCS ¼ pq: ð34Þ

Consequently, in order to have integer topological charge,
the number pq must be an integer. Here it is worth
emphasizing that, although the field equations in terms
of Fðt;ϕÞ are linear, an important nonlinear effect is
manifest in Eqs. (25), (32), and (31). Indeed, in order
for the CS density in Eq. (25) to be everywhere well
defined, one must require

j exp ð4ηÞFðt;ϕÞ2j ≤ 1: ð35Þ

Since the thermal expectation value of Fðt;ϕÞ2 grows with
temperature, the condition above implies that the partition
function associated with the present family of exact
solutions will be well defined only below a certain critical
temperature beyond which the CS density is not well
defined anymore.

C. Semiclassical considerations

Let us remember the usual mode expansion of the
solutions of Eq. (24). These can be written as

Fþ ¼ ϕþ
0 þ vþ

�
t
Lϕ

þ ϕ

�
þ
X
n≠0

�
aþn sin

�
n

�
t
Lϕ

þ ϕ

��

þ bþn cos

�
n

�
t
Lϕ

þ ϕ

���
; ð36Þ

F− ¼ ϕ−
0 þ v−

�
t
Lϕ

− ϕ

�
þ
X
n≠0

�
a−n sin

�
n

�
t
Lϕ

− ϕ

��

þ b−n cos

�
n

�
t
Lϕ

− ϕ

���
; ð37Þ

where, as usual, Fþ refers to the left movers and F− to the
right movers (v� and ϕ�

0 being integration constants, which
must satisfy three constraints that will be discussed below).
Hence, the most general topologically nontrivial configu-
ration of the present sector arises, replacing F ¼ Fþ þ F−
into Eqs. (14) and (17)–(20). In order to have a clear
physical picture of the composition of solutions, it is
convenient to choose a�n and b�n in such a way that

F̃ðt;ϕ ¼ 0Þ ¼ F̃ðt;ϕ ¼ πÞ ¼ 0;

where F̃ðt;ϕÞ is the part of F ¼ Fþ þ F− coming from the
sum over the integers n in Eqs. (36) and (37). Therefore, the
topological charge in Eq. (32) is nonzero when

vþ − v− ≠ 0:

In particular, v� and ϕ�
0 in Eqs. (36) and (37) must be

chosen as

Fðt;ϕ¼ 0Þ ¼ ϕþ
0 þϕ−

0 þ ðvþ þ v−Þ
t
Lϕ

¼ exp ð−2ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp ð2ηÞp

⇒ vþ þ v− ¼ 0; ϕþ
0 þϕ−

0 ¼ exp ð−2ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp ð2ηÞp ;

ð38Þ

Fðt;ϕ¼ πÞ ¼ exp ð−2ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp ð2ηÞp þ ðvþ − v−Þπ

¼ −
exp ð−2ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp ð2ηÞp ⇒ v− ¼ exp ð−2ηÞ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp ð2ηÞp :

ð39Þ

At a classical level, this is the most straightforward choice
of boundary conditions since it identifies which terms are
responsible for the topological charge and which are not.
At the semiclassical level, it is very tempting to introduce

creation and annihilation operator quantization correspond-
ing to the above mode expansion, as it is usually done in
quantizing a free two-dimensional scalar field. However,
there are some intriguing differences.
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First, in Eqs. (36) and (37), any term in the expansion
corresponds to an exact solution of the (3þ 1)-dimensional
Yang-Mills equations and not just to a solution of the
linearized field equations. Therefore, the Bosonic quantum
operators αþn , ðαþmÞ† and α−n , ðα−mÞ† (which are annihilation
and creation operators for the left and right movers,
satisfying the obvious commutation relations; see [90])
create exact solutions of the semiclassical Yang-Mills
equations. This situation should be compared with the
usual case in which, given a particular solution of the
(3þ 1)-dimensional Yang-Mills equations, the small fluc-
tuations (both at classical and quantum level) around the
given classical configurations are solutions of the linearized
field equations (while they are not solutions of the exact
field equations, unless, of course, the theory is just a free
theory).
Second, the constant terms ϕ�

0 as well as the linear
terms in t and ϕ play an important role. According to
Refs. [85–88], the topological charge can be interpreted as
the baryonic charge of the configuration. If this interpre-
tation is accepted, when the topological charge is odd,
the configuration is a fermion, while when it is even, the
configuration is a boson. This observation has no conse-
quences for the operators ðα�n ; ðα�n0 Þ†Þ since these operators
are bosonic (because the corresponding classical solutions
do not contribute to the topological charge). On the other
hand, the creation and annihilation operators associated
with the solution’s linear part create a boson or a fermion,
depending on whether the topological charge is even or
odd. Hence, it is tempting to quantize ϕ�

0 and v� with
commutators or anticommutators, depending on the value
of the topological charge.

D. Chiral conformal field theory from
Yang-Mills-Higgs theory

Now we will show that the construction presented above
can be directly generalized to the Yang-Mills-Higgs theory,
but with the notable difference that, this time, the theory is
reduced to a chiral CFT in (1þ 1) dimensions instead of
just a CFT.
The Yang-Mills-Higgs theory in (3þ 1) dimensions is

defined by the action

I½A;φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2e2
TrðFμνFμνÞ þ 1

4
TrðDμφDμφÞ

�
:

ð40Þ

Here φ is the Higgs field in the adjoint representation, and
the covariant derivative Dμ has been defined in Eq. (2).
Varying the action with respect to the fields Aμ and φ,
we obtain the field equations of the Yang-Mills-Higgs
theory as

∇νFμν þ ½Aν; Fμν� þ e2

4
½φ; Dμφ� ¼ 0; ð41Þ

DμDμφ ¼ 0 ð42Þ

On the other hand, the energy-momentum tensor is

Tμν ¼ −
2

e2
Tr

�
FμαFν

α −
1

4
gμνFαβFαβ

�

−
1

2
Tr

�
DμφDνφ −

1

2
gμνDαφDαφ

�
: ð43Þ

In order to construct analytical solutions of the Yang-Mills-
Higgs theory in (3þ 1) dimensions, we will use as a
starting point the same Ansatz for the U field and the
connection Aμ introduced for the case without the Higgs
contribution, namely, Eqs. (14) and (17). Now, for the
Higgs field, we must consider the following general form:

φ ¼
X3
j¼1

fjðrÞhjðt;ϕÞtj; ð44Þ

where fj and hj are functions to be found.
A good choice for the functions introduced above that

allows one to reduce significantly the field equations of the
Yang-Mills-Higgs system is the following:

h1ðt;ϕÞ ¼
a
b
hðt;ϕÞ; h3ðt;ϕÞ ¼ a cot ðHðt;ϕÞÞ hðt;ϕÞ

λðt;ϕÞ ;

λ3 ¼ 1; ð45Þ

f1ðrÞ ¼ b cosðqrÞf3ðrÞ; f2ðrÞ ¼ a sinðqrÞf3ðrÞ;
f3ðrÞ ¼ f0r; ð46Þ

where we have defined

h2ðt;ϕÞ ≔ hðt;ϕÞ; λ1ðt;ϕÞ ¼ λ2ðt;ϕÞ ≔ λðt;ϕÞ;

with a, b, and f0 being arbitrary constants.
In fact, it is direct to check that Eqs. (44)–(46), together

with Eqs. (14) and (17), reduce the complete set of Yang-
Mills-Higgs equations to the following decoupled partial
differential equations:

□H ¼
�
∂
2

∂t2
−

1

L2
ϕ

∂
2

∂ϕ2

�
H ¼ 0;

□h ¼
�
∂
2

∂t2
−

1

L2
ϕ

∂
2

∂ϕ2

�
h ¼ 0;

□λ ¼
�
∂
2

∂t2
−

1

L2
ϕ

∂
2

∂ϕ2

�
λ ¼ 0;
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together with

�
∂H
∂t

�
2

−
1

L2
ϕ

�
∂H
∂ϕ

�
2

¼
�
∂H
∂t

−
1

Lϕ

∂H
∂ϕ

��
∂H
∂t

þ 1

Lϕ

∂H
∂ϕ

�
¼0;

ð47Þ
�
∂h
∂t

�
2

−
1

L2
ϕ

�
∂h
∂ϕ

�
2

¼
�
∂h
∂t

−
1

Lϕ

∂h
∂ϕ

��
∂h
∂t

þ 1

Lϕ

∂h
∂ϕ

�
¼ 0;

ð48Þ
�
∂λ

∂t

�
2

−
1

L2
ϕ

�
∂λ

∂ϕ

�
2

¼
�
∂λ

∂t
−

1

Lϕ

∂λ

∂ϕ

��
∂λ

∂t
þ 1

Lϕ

∂λ

∂ϕ

�
¼ 0:

ð49Þ

Additionally, from the Yang-Mills equations, the following
first-order nonlinear equation emerges:

∂λ

∂t
þ tanðHÞλð1−λ2Þ∂H

∂t
¼0⇒ λ

¼� cosðHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð2λ0Þþcos2ðHÞ

p ; ð50Þ

which fixes the function λ in terms of H (here, λ0 is
constant). Hence, the constraint above reduces the number
of chiral modes to two.
Summarizing, with the Ansatz presented above, the

complete set of field equations of the Yang-Mills-Higgs
theory has been reduced to the field equations of three
chiral massless scalar fields in (1þ 1) dimensions, plus a
nonlinear constraint between two of them. Consequently,
these families of exact solutions with nonvanishing topo-
logical charge are labeled by two integers [p and q, which
determine the topological charge in Eq. (34)] and two chiral
massless fields in (1þ 1) dimensions (namely, H and h),
since λ depends onH as in Eq. (50). Quite interestingly, the
inclusion of the Higgs field leads to two-dimensional chiral
massless modes (instead of massless modes).

The energy density Tð1Þ
00 of the above solutions takes the

form

Tð1Þ
00 ¼ ð1þ e2λ0Þ

2

�
csc2ðHÞ

�
a2f20r

2h2cot2ðHÞ

þ e4λ0p2sin4ðHÞ
e2L2

θðe2λ0 þ cos2ðHÞÞ3
��

ð∂tHÞ2 þ 1

L2
ϕ

ð∂ϕHÞ2
�

þ a2f20r
2csc2ðHÞ

�
ð∂thÞ2 þ

1

L2
ϕ

ð∂ϕhÞ2
�

þ a2f20
L2
r
hcsc2ðHÞ½h − 4L2

rr2 cotðHÞ∂tH∂th�
�
; ð51Þ

where ∂t and ∂ϕ stand for derivative, respectively, with
respect to t and ϕ, and the field equations have been used in

order to reduce the last term. Here it is worth noting the
following fact: at a first glance, because the Ansatz reduces
the complete set of Yang-Mills-Higgs field equations to a
set of linear decoupled equations (one forH and one for h),
one could suspect that perhaps the above configurations
of Yang-Mils-Higgs theory are, after all, gauge equivalent
to Abelian noninteracting configurations. However, if this
were the case, then the energy density (which is gauge
invariant) should also be the energy density of two
decoupled chiral massless modes (which is quadratic in
the fields, satisfies linear equations, and only contains
kinetic terms of the chiral fields). In the present case, the
above expression for the energy density clearly manifests
nonlinear interactions between the two main degrees of
freedom H and h.
On the other hand, the CS density becomes

ρCS ¼ −
1

16π2
pq sinðHÞ ∂H

∂ϕ
: ð52Þ

Integrating in the ranges defined in Eq. (13), the topological
charge turns out to be QCS ¼ pq, where we have used the
following boundary conditions:

Hðt;ϕ ¼ πÞ ¼ 0; Hðt;ϕ ¼ 0Þ ¼ π:

III. NONLINEAR SIGMA MODEL IN (3 + 1)
DIMENSIONS

Here and in the following sections, we will discuss the
NLSM and the Skyrme model in (3þ 1) dimensions in the
SUð2Þ case, which is more relevant than Yang-Mills-Higgs
theory as far as the low-energy phase diagram of QCD.
Hence, the primary variable will be an SUð2Þ-valued scalar
field U. We will analyze how one can construct in these
nonintegrable theories an infinite-dimensional family of
exact solutions labeled by two integers, as well as by a free
massless scalar field in two dimensions keeping alive the
topological charge, which (in this case as well) can be
interpreted as the baryonic charge. The key technical point
is to find a suitable Ansatz that, on the one hand, depends
on all the four space-time coordinates (for the topological
density to be nonvanishing) and, at the same time, reduces
the field equations to the field equations of a free massless
scalar field in two dimensions. The high physical interest in
the NLSM can be quickly explained, considering its many
relevant physical applications. In particular, as far as the
present paper is concerned, the model is related to the
low-energy limit of QCD and pion’s dynamics (see [5,6]
and references therein). Thus, the current approach can
provide an infinite family of topologically nontrivial
solutions, allowing the explicit computation of critical
physical quantities (which would be impossible to obtain
from perturbation theory). In fact, in many situations of
physical interest (especially at finite baryon density), both
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perturbation theory and even the powerful tools of LQCD
may fail (see [91–93] and references therein).
The action of the SUð2Þ NLSM in (3þ 1) dimensions is

I½U� ¼ K
4

Z
d4x

ffiffiffiffiffiffi
−g

p
TrðRμRμÞ; ð53Þ

where K is the coupling constant of the NLSM and Rμ has
been defined in Eq. (6). It is worth emphasizing that the
NLSM only possesses global symmetry and is not classi-
cally conformal invariant in (3þ 1) dimensions (unlike
Yang-Mills theory). Nevertheless, despite the enormous
differences between these two theories, an approach similar
to the one described in the previous section also works in
the present case. The field equations obtained varying the
action in Eq. (53) with respect to the U field are

∇μRμ ¼ 0; ð54Þ

and the energy-momentum tensor of the model is

Tμν ¼ −
K
2
Tr

�
RμRν −

1

2
gμνRαRα

�
: ð55Þ

A. CFT in two dimensions from the NLSM

We will use the metric in Eq. (1) whose ranges for the
coordinates can be determined in a similar way as in
Eq. (13) (where the theory of Euler angles came into play).
Let us define the following UðxÞ ∈ SUð2Þ:

U ¼ exp

�
pθ

t3
2

�
exp

�
r
t2
4

�
exp

�
Fðt;ϕÞ t3

2

�
; ð56Þ

where p is a nonvanishing integer (there will be one more
restriction to be discussed later on). The theory of Euler
angles for SUðNÞ [82–84] tells us that the range of θ
[appearing in the left factor of the decomposition in
Eq. (56)] and the range of r [appearing in the central
factor of the decomposition in Eq. (56)] must be

0 ≤ θ ≤ π; 0 ≤ r ≤ 2π: ð57Þ

One can also consider the range of the coordinate ϕ as

0 ≤ ϕ ≤ 2π: ð58Þ

As far as the exponent in the right factor [namely, Fðt;ϕÞ]
is concerned, there are again two options. If the field
Fðt;ϕÞ satisfies periodic boundary conditions, then the
topological charge of the SUð2Þ-valued scalar field U
vanishes [although the topological density in Eq. (8) can
still be nontrivial]. The other boundary condition for
Fðt;ϕÞ arises naturally, taking into account two facts.
First of all, one has to require that physical observables

[built from traces of product of the SUð2Þ-valued field U
and its derivatives] such as the energy-momentum tensor
should be periodic in ϕ and this requirement does not imply
that Fðt;ϕÞ itself is periodic. Second, Fðt;ϕÞ appears in the
right factor of the Euler angles decomposition of an SUð2Þ
element (see, for instance, Refs. [82–84]),

Fðt;ϕ ¼ 0Þ − Fðt;ϕ ¼ 2πÞ ¼ �8qπ; ð59Þ

where q is a nonvanishing integer. The option above
ensures that the SUð2Þ-valued element U defined in
Eqs. (56) and (59) wraps an integer number of times
around the group manifold of SUð2Þ (in other words,U has
a nonvanishing winding number). In this case, the topo-
logical charge and the topological density associated with
U will be nontrivial. Also, in the present section, the term
“topologically nontrivial” refers to configurations with
ρB ≠ 0: the reason is that configurations with vanishing
total baryonic charge but nonvanishing ρB still describe
nontrivial interacting configurations with both regions
having positive and negative charge densities.
It is an astounding and powerful result (due to all the

analytic nonperturbative tools that will become available)
that, despite the nonintegrable character of the NLSM in
(3þ 1) dimensions, the complete set of NLSM field
equations in Eq. (54) corresponding to the Ansatz in
Eq. (56) reduce to the field equation of a free massless
scalar field in two dimensions, keeping alive the topologi-
cal charge density

�
∂
2

∂t2
−

1

L2
ϕ

∂
2

∂ϕ2

�
Fðt;ϕÞ ¼ 0: ð60Þ

It is worth emphasizing that F represents a Goldstone mode
associated with the phase of the two charged pions. In other
words, if one would associate a complex wave function to
the two charged pions (keeping out of such wave function
the neutral pion), then the scalar field F would be the phase
of the wave function.

B. Topological charge and energy density

With the Ansatz in Eq. (56), the topological density and
topological charge, respectively, read

ρB ¼ −
p

32π2
sin

�
r
2

�
∂F
∂ϕ

; ð61Þ

B ¼ −
p
8π

½Fðt;ϕ ¼ 2πÞ − Fðt;ϕ ¼ 0Þ� ¼ �pq: ð62Þ

It is worth noting that the topological charge density in
Eq. (61) has a nontrivial profile depending both on r and on
ϕ. The maximum of ρB are located at r ¼ π and at the
values of ϕ such that ∂F=∂ϕ is maximum: in three spatial
dimensions, these two conditions identify a line. As long as
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∂F=∂ϕ ≠ 0, the topological density is nonzero. Note that
the topological density is a linear function of Fðt;ϕÞ,
different from the Yang-Mills case presented in the pre-
vious section.
The energy density reads

Tσ
00 ¼

K
8

�
1

4

�
1

L2
r
þ 4p2

L2
θ

�
þ
�
∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
; ð63Þ

then the total energy is given by

Eσ ¼
Z ffiffiffiffiffiffi

−g
p

drdθdϕTσ
00;

¼ Γσ þΨσ

Z
2π

0

dϕ

��
∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
; ð64Þ

where

Γσ ¼ Kπ3Lϕ

8LrLθ
ðL2

θ þ 4p2L2
rÞ; Ψσ ¼ Kπ2LrLθLϕ

4
: ð65Þ

On the other hand, the on-shell action becomes

Iσon-shell½F� ¼ −
K
8

Z ffiffiffiffiffiffi
−g

p
drdθdϕ

�
1

4

�
1

L2
r
þ 4p2

L2
θ

�

−
�
∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
: ð66Þ

It is important to note that the energy does not grow linearly
with the topological charge, as can be seen from Eqs. (62)
and (63). This fact indicates that these solutions describe
interacting systems (as otherwise, the energy would be
linear in the topological charge).

C. Conformal field theory and some semiclassical
considerations

The usual mode expansion of the solutions of Eq. (60) is,
of course, the same as in the previous section in Eqs. (36)
and (37), where Fþ refers to the left movers and F− to the
right movers (v� and ϕ�

0 being integration constants that
must satisfy three constraints, which will be discussed
below). Hence, the most general topologically nontrivial
configuration of the present sector arises replacing F ¼
Fþ þ F− in Eqs. (36) and (37) into Eq. (56).
Also, in the present case, the most natural choice

corresponds to take a�n and b�n in such a way that

F̃ðt;ϕ ¼ 0Þ ¼ F̃ðt;ϕ ¼ 2πÞ ¼ 0;

where F̃ðt;ϕÞ is the part of F ¼ Fþ þ F− coming from the
sum over the integers n in Eqs. (36) and (37). Therefore, B
in Eq. (62) is nonzero when vþ − v− ≠ 0. Also, v� in
Eqs. (36) and (37) must be chosen as

Fðt;ϕ ¼ 0Þ ¼ ϕþ
0 þ ϕ−

0 þ ðvþ þ v−Þ
t
Lϕ

⇒ vþ þ v− ¼ 0;

ð67Þ

Fðt;ϕ ¼ 2πÞ ¼ ϕþ
0 þ ϕ−

0 þ ðvþ − v−Þ2π ⇒ vþ − v− ¼ 4q:

ð68Þ

Unlike what happens in the Yang-Mills case, here there is
no constraint on ϕþ

0 þ ϕ−
0 . Hence, the topological charge is

B ¼ pq:

At the classical level, this is the most straightforward
possible choice of boundary conditions, since it allows
us to identify the terms in the expansion modes responsible
for the topological charge and which are not. However,
plenty of different options will be discussed in forthcoming
papers.
Also, in the present case, the semiclassical quantization

of these configurations corresponds to the quantization of
the free massless scalar field Fðt;ϕÞ, with the boundary
conditions described above having a nonvanishing topo-
logical charge. However, as discussed in the previous
sections, some interesting differences exist.
First, in Eqs. (36) and (37) any term in the expansion

corresponds to an exact solution of the (3þ 1)-dimensional
NLSM field equations and not just to a solution of the
linearized field equations. Therefore, the bosonic quantum
operators αþn , ðαþmÞ†, and α−n , ðα−mÞ† (which are annihilation
and creation operators for the left and right movers,
satisfying the obvious commutation relations, see [90])
are quantum operators that create exact solutions of the
semiclassical NLSM field equations.
Second, the constant terms ϕ�

0 as well as the linear terms
in t and ϕ play an important role as these are associated
with classical solutions that carry the topological charge
(while the modes satisfying periodic boundary conditions
do not contribute to the topological charge). Thus, depend-
ing on whether B is odd or even, one should quantize the
modes associated with the linear terms in the expansion of
F as fermionic or bosonic. Hence, when B is odd, F has a
component that should be considered as an emergent
fermionic field.

IV. THE SKYRME MODEL IN (3 + 1) DIMENSIONS

A very natural question is this: does the Skyrme term
spoil the remarkable relation discussed in the previous
section between the simplest two-dimensional CFT and a
nonintegrable theory in (3þ 1) dimensions at finite baryon
density in topologically nontrivial sectors? The importance
of the Skyrme model lies in the fact that the NLSM in flat
space-time does not admit static topologically nontrivial
soliton solutions with finite energy, known as Derrick’s
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scale argument [94]. The Skyrme term is introduced to get
around this problem and stabilize the soliton (skyrmion).
The obvious physical relevance of finite density effects

arises from the difficulties in providing cold and dense
nuclear matter as a function of baryon number density with
a good analytic understanding. The nonperturbative nature
of low-energy QCD prevents (the very complex and
interesting structure of) its phase diagram from being
described in detail (see [95–100] and references therein):
this is the reason why researchers in this area mainly use
numerical and lattice approaches. In particular, a very
intriguing part in the QCD phase diagram, which appears
at finite baryon density,5 is related to the appearance of
ordered structures (similar to the Larkin-Ovchinnikov-
Fulde-Ferrell phase [109]). These ordered structures at
finite density are, by now, a well-established feature (see,
for instance, [110–112] and references therein). These are
just some of the reasons why it is mandatory to shed more
light on these issues with theoretical tools, as often even the
numerical approaches are not effective with high topologi-
cal charges.
Here we will show that the Skyrme term discloses a

remarkable phenomenon: namely, the present construction
still works (with precisely the same Ansatz) but now,
when the Skyrme coupling is nonzero, instead of a two-
dimensional CFT, one gets a two-dimensional chiral CFT;
namely, either left or right movers must be eliminated. This
new result is likely to be related to the fact that the Skyrme
model includes the effects of the low-energy limit of QCD
so that the Skyrme model knows, somehow, about chiral
symmetry breaking.
The Skyrme action is given by

I½U� ¼ K
4

Z
d4x

ffiffiffiffiffiffi
−g

p
Tr

�
RμRμ þ λ

8
½Rμ; Rν�½Rμ; Rν�

�
;

where K and λ are positive coupling constants.6 The field
equations of the model are obtained varying the last action
with respect to the U field; we get

∇μ

�
Rμ þ

λ

4
½Rν; ½Rμ; Rν��

�
¼ 0; ð69Þ

being these three nonlinear coupled second-order partial
differential equations.

The energy-momentum tensor reads

Tμν ¼ −
K
2
Tr

�
RμRν −

1

2
gμνRαRα þ λ

4

�
gαβ½Rμ; Rα�½Rν; Rβ�

−
1

4
gμν½Rα; Rβ�½Rα; Rβ�

��
: ð70Þ

The topological density and charge are defined in Eqs. (8)
and (9). Now, we will study two types of analytical
configurations that will lead to a chiral CFT. The descrip-
tion of the box is based on the metric given in Eqs. (1), (57),
and (58).

A. Chiral conformal field theory from the Skyrme
model. Type-I: Euler Ansatz for the lasagna phase

We will consider, once again, the matter field Ansatz in
Eq. (56). When one plugs Eq. (56) into the Skyrme
equations in Eq. (69), the field equations reduce to

�
∂
2

∂t2
−

1

L2
ϕ

∂
2

∂ϕ2

�
F ¼ 0; ð71Þ

�
∂F
∂t

�
2

−
1

L2
ϕ

�
∂F
∂ϕ

�
2

¼
�
∂F
∂t

−
1

Lϕ

∂F
∂ϕ

��
∂F
∂t

þ 1

Lϕ

∂F
∂ϕ

�
¼ 0:

ð72Þ

As in the NLSM and Yang-Mills cases, the first equation
describes the simplest bosonic CFT in two dimensions.
Thus, from Eq. (71), F ¼ Fþ þ F− (where F� represent
the contributions of the left and right movers). However,
Eq. (72) can be satisfied only by killing either Fþ or F−.
Hence, we still get a two-dimensional CFT, but this time it
is a chiral CFT. Once again, this result is a huge analytic
achievement as the field equations have been reduced
exactly, keeping alive the topological density, to the field
equations of a free massless chiral scalar field in (1þ 1)
dimensions. Also, the topological charge is the same as in
the NLSM case defined in Eq. (62).
In this case, the energy density is given by

Tð2Þ
00 ¼ K

8

�
1

4

�
1

L2
r
þ 4p2

L2
θ

�
þ
�
∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�

þ Kλ
32L2

rL2
θ

�
p2

4
þ
�
1

4
L2
θ þ p2L2

rsin2
�
r
2

��

×

��
∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
��

; ð73Þ

so that the expression for the energy becomes

5See [101–108] and references therein, for the construction of
nonhomogeneous condensates at finite density in chiral pertur-
bation theory.

6The parameters K and λ are related to the meson decay
coupling constant Fπ and the Skyrme coupling e via Fπ ¼ 2

ffiffiffiffi
K

p
and Kλe2 ¼ 1, where Fπ ¼ 141 MeV and e ¼ 5.45.
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Eð2Þ ¼
Z ffiffiffiffiffiffi

−g
p

drdθdϕTð2Þ
00

¼ Γð2Þ þΨð2Þ
Z

2π

0

dϕ

��
∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
; ð74Þ

where

Γð2Þ ¼ Kπ3Lϕ

32LrLθ
ð4L2

θ þ p2ðλþ 16L2
rÞÞ;

Ψð2Þ ¼ KπLϕ

64LrLθ
ðπL2

θðλþ 16L2
rÞ þ 8p2λL2

rÞ: ð75Þ

As in the NLSM, the energy does not grow linearly with the
topological charge, implying the presence of interactions
between particles. Also, the topological charge density is
linear in Fðt;ϕÞ instead of nonlinear, as in the Yang-Mills
case presented in the previous sections. These configura-
tions describe modulated nuclear lasagna layers in which
the periodic part in the mode expansion of the field Fðt;ϕÞ
(which does not carry topological charge) represents the
modulations in the ϕ direction, while the linear part is
responsible for the “bare lasagna” (namely, the lasagna
without modulations that have been analyzed in [113,114]).
Figure 1 shows the energy density of two lasagna-type
configurations, one with modulation and the other without
modulation. It is worth emphasizing that it is also necessary
to introduce a cutoff in the computation of the (semi)
classical partition function because the Skyrme theory is an
effective low-energy model. We will detail this point in the
next section.

B. Chiral conformal field theory from the Skyrme
model. Type-II: Exponential Ansatz for the

spaghetti phase

This time, for the U field, we adopt the standard
(exponential) parametrization of an element of SUð2Þ,
that is,

U�1ðxμÞ ¼ cosðαÞ12 � sinðαÞniti; ð76Þ

where

n1 ¼ sinΘ cosΦ; n2 ¼ sinΘ sinΦ; n3 ¼ cosΘ;

α ¼ αðxμÞ; Θ ¼ ΘðxμÞ; Φ ¼ ΦðxμÞ; nini ¼ 1:

ð77Þ

From Eq. (8) it follows that the topological charge density
takes the following general form:

ρB ¼ −
1

2π2
sin2 α sinΘdα ∧ dΘ ∧ dΦ: ð78Þ

Hence, in order to have topologically nontrivial configu-
rations, we must demand that dα ∧ dΘ ∧ dΦ ≠ 0. On the
other hand, as we want to construct analytical solutions, it is
necessary to have a good Ansatz that significantly reduces
the Skyrme field equations. Considering the approach
developed in [58,59] leads to the following:

α ¼ αðrÞ; Θ ¼ Qθ; Φ ¼ Fðt;ϕÞ;
Q ¼ 2vþ 1; v ∈ N: ð79Þ
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FIG. 1. Energy density with and without modulation of nuclear lasagna configurations with baryonic charge B ¼ 6. For both cases, we
have set K ¼ λ ¼ Lr ¼ Lθ ¼ Lϕ ¼ 1, p ¼ 3, q ¼ 2, and ϕ0 ¼ 0. Left: nuclear lasagna without modulation where ai ¼ bi ¼ 0. Right:
snapshot at t ¼ 0 of nuclear lasagna with a modulation in the ϕ direction where the non-null modulation coefficients were set as
a1 ¼ −a3 ¼ b1 ¼ b2 ¼ 0.1.
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It is a direct computation to verify that, by replacing the
Ansatz defined in Eqs. (77) and (79) into the Skyrme field
equations, one gets the following system of equations:

�
∂
2

∂t2
−

1

L2
ϕ

∂
2

∂ϕ2

�
F ¼ 0; ð80Þ

�
∂F
∂t

�
2

−
1

L2
ϕ

�
∂F
∂ϕ

�
2

¼
�
∂F
∂t

−
1

Lϕ

∂F
∂ϕ

��
∂F
∂t

þ 1

Lϕ

∂F
∂ϕ

�
¼ 0;

ð81Þ

α00 −
Q2

2

ðL2
r − λα02Þ sinð2αÞ

L2
θ þQ2λ sin2ðαÞ ¼ 0: ð82Þ

Once again, the Ansatz in Eqs. (77) and (79) discloses many
remarkable simplifications. Not only does the equation for
α decouple from F [when F satisfies Eqs. (80) and (81)],
but it can be also reduced to a simple quadrature,

dα
dr

¼ �ηðα; E0Þ;

ηðα; E0Þ ¼
�

L2
θ

L2
θ þQ2λsin2ðαÞ

�
E0 −

Q2

2

L2
r

L2
θ

cosð2αÞ
��1

2

;

ð83Þ

where E0 is an integration constant to be fixed by analyzing
the boundary conditions,

Fðt;ϕ ¼ 0Þ − Fðt;ϕ ¼ 2πÞ ¼ 2pπ; ð84Þ

and

αð2πÞ − αð0Þ ¼ mπ; m ∈ Z:

In fact, by integrating Eq. (83) and considering the above
boundary conditions, we get the following equation for E0:

�m
Z

π

0

1

ηðα; E0Þ
dα ¼ 2π:

From the above condition, it is clear that, for large m, the
integration constant E0 scales as m2,

E0 ¼ m2ξ0; ξ0 > 0;

where ξ0 (which can also be interpreted as an integration
constant) does not depend on m for large m.
Moreover, in this case, Eq. (80) describes the simplest

bosonic CFT in two dimensions. Thus, from Eq. (80), F ¼
Fþ þ F− but, once again, Eq. (81) can be satisfied only by
killing either Fþ or F−. Thus, as in the last case, we still get
a chiral massless scalar field in (1þ 1) dimensions. We
stress the very intriguing phenomenon of the appearance of

chiral modes without the presence of any actual edge.
These chiral modes are “hosted” by the hadronic tubes7:
hence these configurations describe modulated nuclear
spaghetti configurations. Indeed, the linear part in the
mode expansion of the field Fðt;ϕÞ is responsible for
the “bare spaghetti,” namely, the nuclear spaghetti without
modulations along the axis that have been analyzed in
[113,114]. On the other hand, the periodic part in the mode
expansion of the field Fðt;ϕÞ (which does not carry
topological charge) represents the modulations of the tubes
in the ϕ direction.
The energy density is given by

Tð3Þ
00 ¼ K

2

�
α02

L2
r
þ
�
Q2

L2
θ

þ
��

∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
sin2ðQθÞ

�
sin2ðαÞ

	

þ Kλ

2

�
Q2

L2
θ

sin2ðQθÞsin2ðαÞ
��

∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
þ α02

L2
r

�
Q2

L2
θ

þ sin2ðQθÞ
��

∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
��	

sin2ðαÞ; ð85Þ

then the total energy is given by

Eð3Þ ¼
Z ffiffiffiffiffiffi

−g
p

drdθdϕTð3Þ
00 ;

¼ Γð3Þ þΨð3Þ
Z

2π

0

dϕ

��
∂F
∂t

�
2

þ 1

L2
ϕ

�
∂F
∂ϕ

�
2
�
; ð86Þ

where

Γð3Þ ¼ mKπ2Lϕ

LrLθ

Z
π

0

dαΩðα; m;QÞ;

Ψð3Þ ¼ mKπLϕ

4LrLθ

Z
π

0

dαΩ̃ðα; m;QÞ;

and

Ωðα;m;QÞ¼ηðα;E0ÞðL2
θþλQ2sin2ðαÞÞþ L2

rQ2

ηðα;E0Þ
sin2ðαÞ;

ð87Þ

7This can be seen as follows: the local maxima of the energy
density [see Eq. (85)], which coincides with the maximum of the
topological density, is found in the center of the tubes, where
sin2ðαÞ sin2ðQθÞ ¼ 1. The chiral massless modes have their
support around these points. On the other hand, when
sin2ðαÞ sin2ðQθÞ ¼ 0, the contribution of the chiral modes to
the energy density vanishes.
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Ω̃ðα; m;QÞ ¼ ηðα; E0ÞλL2
θ sin

2ðαÞ

þ sin2ðαÞ
ηðα; E0Þ

L2
rðL2

θ þ λQ2 sin2ðαÞÞ; ð88Þ

while the topological charge density reads

ρB ¼ 1

2π2
ðsin2ðαÞα0Þðsin ðQθÞÞð∂ϕFÞdr ∧ dðQθÞ ∧ dϕ:

ð89Þ

Note that the positions of the maximum of ρB are located at

Qθ ¼ π

2
þ Nπ; sin2ðαÞ ¼ 1;

(N being an integer) and at the values of r and ϕ such that
both sin2ðαÞα0 and ∂ϕF have maximum. In three spatial
dimensions, these three conditions identify isolated points,
and the same happens for the energy density of these
configurations (as we mentioned above). Taking into
account the boundary conditions satisfied by α and F,
one arrives at the following value of the baryonic charge:

B ¼ mp:

It is important to emphasize that both the energy density
and the topological charge density depend on all three
spatial coordinates: to the best of the authors’ knowledge,
these are the first analytic examples of soliton crystals
in which both the energy density and the baryon
density manifest a genuine three-dimensional behavior.
Figure 2 shows the energy density of two spaghetti-type

configurations, one with modulation and the other without
modulation.

V. PARTITION FUNCTIONS

This section will discuss the semiclassical partition
function associated with some of the families of topologi-
cally nontrivial configurations constructed in the previous
sections. The wording “semiclassical partition functions” in
this section refers to the following: all the exact solutions
described previously are characterized both by some
discrete labels (which determine the baryonic charge)
and (for any possible choice of the discrete labels) by a
massless chiral field F in (1þ 1) dimensions (or two chiral
massless fields in the Yang-Mills-Higgs case). The classical
partition functions will include a sum of

e−βðE−μBBÞ

(where E is the energy of the solution and B is the baryonic
charge) over all the possible discrete labels and (for any
choice of the discrete labels) over the chiral massless
field F, satisfying the boundary conditions defined in the
previous sections, corresponding to the given choice of
discrete labels.8 On the other hand, we can take advantage
of the fact that the massless chiral field F satisfies a linear
equation. This allows us to “promote” the classical partition
function over F to a semiclassical partition function by
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FIG. 2. Energy density with and without modulation of nuclear spaghetti configurations with baryonic charge B ¼ 6. For both cases,
we have set K ¼ λ ¼ Lr ¼ Lθ ¼ Lϕ ¼ 1, p ¼ 1, m ¼ 6, q ¼ 5, and ϕ0 ¼ 0. Left: nuclear spaghetti without modulation, where
ai ¼ bi ¼ 0. Right: snapshot at t ¼ 0 of nuclear spaghetti with a modulation in the ϕ direction, where the non-null modulation
coefficients were set as a1 ¼ −a3 ¼ b1 ¼ b2 ¼ 0.1.

8The main difference between the Yang-Mills-Higgs and
Skyrme cases is that, in the former, two chiral modes contribute
to the total energy, while in the latter, only one.
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quantizing the massless chiral degree of freedom F in the
obvious way.9

We will focus mainly on the Skyrme theory since it is
more directly relevant as far as the low-temperature phase
diagram is concerned (being the Skyrme theory, the low-
energy limit of QCD at leading order in the ‘t Hooft
expansion). The relations with the instanton-dyon liquid
approach [115–118] will be shortly analyzed. A complete
treatment of the quantum partition functions associated
with these families should include (for any member of these
families) the other possible fluctuations (such as small
perturbations of the other 2 degrees of freedom of the
Skyrme model and not just of F). Unfortunately, this task
would involve the computation of functional determinants
in (3þ 1)-dimensional backgrounds, which depend explic-
itly on time and spatial coordinates: such a computation can
be done neither analytically nor numerically. However, it is
worth emphasizing that it is already a quite remarkable fact
that one of the modes (namely, F) can be quantized exactly.
Moreover, the comparison with [115–118] below clearly
shows that the partition function to be defined in the
following sections captures much relevant information.
Schematically, the contribution of the current families of

exact solutions to the partition function Z is

Z ≈
X

over all the
solutions

of the family

exp½−βðECl Sol − μBBCl SolÞ�;

where the sum is over all the solutions of the given family.10

Here ECl Sol is the total energy of a classical solution, BCl Sol
is the baryonic charge of the configuration, β is the inverse
of the temperature T, and μB is the baryon chemical
potential.
In particular, for the lasagna phase constructed from the

Euler representation and for the spaghetti phase constructed
from the exponential representation in the Skyrme model,
the expressions for ECl Sol in Eqs. (74) and (86) can be
written, respectively, as

Eð2Þ
ClSol ≔ Eð2Þ ¼ Γ̃ð2Þ þΨð2Þ

Z
2π

0

��
∂F̃
∂t

�
2

þ 1

L2
ϕ

�
∂F̃
∂ϕ

�
2
�
dϕ;

ð90Þ

where

Γ̃ð2Þ ¼ Γð2Þ þ 64πq2

L2
ϕ

Ψð2Þ;

and

Eð3Þ
ClSol ≔Eð3Þ ¼ Γ̃ð3Þ þΨð3Þ

Z
2π

0

��
∂F̃
∂t

�
2

þ 1

L2
ϕ

�
∂F̃
∂ϕ

�
2
�
dϕ;

ð91Þ

where

Γ̃ð3Þ ¼ Γð3Þ þ 4πp2

L2
ϕ

Ψð3Þ:

Here fΓð2Þ;Ψð2Þg and fΓð3Þ;Ψð3Þg have been defined,
respectively, in Eqs. (74) and (86), and F̃ is the part of
F coming from the sum over the integers n in Eqs. (36) and
(37). It is important to remember that the linear terms in
Eqs. (90) and (91) that come from the modes expansion
of the function F must be nonzero in order to have a
nonvanishing topological charge. Also, it is worth empha-
sizing that the novel solutions presented in the manuscript
with the arbitrary dependence of F on u (which is the
lightlike coordinate orthogonal to the spacelike coordinates
which enter explicitly in the Ansatz) can be considered as
saddle points: from the intuitive viewpoint, the periodic part
of FðuÞ represents the lowest energy normal modes of the
hadronic tubes and layers in very much the same way as a
vibrating string encodes the lowest energy normal modes of
static strings.

A. Partition function for fixed value of the baryonic
charge

In the following, we will focus on the nuclear lasagna
phase, which is slightly simpler to analyze than the spaghetti
phase, using as starting point Eq. (90). The reason is that
the total and free energies associated with hadronic tubes
depend on inverse elliptic functions, while the ones of
hadronic layers depend on functions that are polynomial
in the physically relevant variables (so that these are easier to
handle). On the other hand, the qualitative low-temperature
behavior for large baryonic charges is similar in both cases.
Let us consider a fixed value of the baryonic charge B in

Eq. (62) and let us turn off, momentarily, the baryon
chemical potential μB.
In order to avoid very long algebraic expressions, we

will consider q ¼ p (since this choice keeps the essential
features of the problem). As for fixed values of the discrete
label p, these configurations are characterized by a mass-
less chiral field F in two dimensions; the contribution Zp of
the present family to the Skyrme partition function is

ZpðβÞ ¼
Z

DFZF ¼
Z

DF exp f−βEð2Þ
Cl Solg;

ZF ¼ exp f−βEð2Þ
Cl Solg; ð92Þ

where Eð2Þ
Cl Sol have been defined in Eq. (90) [the case of

hadronic tubes, defined by the energy in Eq. (91), has a

9A more detailed treatment of the partition functions associ-
ated with these families will appear in future publications.

10Here the sum over all the solutions of the family means a sum
over p, q, and F̃.

INFINITE CONFORMAL SYMMETRY AND EMERGENT CHIRAL … PHYS. REV. D 106, 105016 (2022)

105016-15



similar qualitative behavior]. The path integral over the
massless chiral field can be done in the usual way, taking
into account the obvious quantization (see, for instance,
[90]) of the mode expansion for F (here, we will consider
the total baryonic charge to be even to avoid complications
with Grassmann variables associated with ϕ−

0 and v−),

F− ¼ ϕ−
0 þ v−

�
t
Lϕ

− ϕ

�
þ
X
n≠0

�
a−n sin

�
n

�
t
Lϕ

− ϕ

��

þ b−n cos

�
n

�
t
Lϕ

− ϕ

���
: ð93Þ

The corresponding semiclassical partition function for the
hadronic layers (with fixed discrete labels) reads

ZpðβÞ ¼
Xþ∞

n¼1

δðnÞ exp ½−βðΓ̃ð2Þ þΨð2ÞnÞ�; ð94Þ

where the integer n comes from the quantization of the

Hamiltonian,
R
2π
0

h

∂F̃
∂t

�
2 þ 1

L2
ϕ



∂F̃
∂ϕ

�
2
i
dϕ, of the massless

chiral mode and δðnÞ is the corresponding degeneracy
(related to the number partition). Taking into account
Eq. (75), one can rewrite Γ̃ð2Þ and Ψð2Þ as follows:

Γ̃ð2Þ ¼ Σ1 þ Σ2p2 þ Σ3p4;

Ψð2Þ ¼ Σ4 þ Σ5p2; Σ1 ¼
Kπ3LθLϕ

8Lr
;

Σ2 ¼
Kπ3

32LrLθLϕ
ðλþ 16L2

rÞðL2
ϕ þ 32L2

θÞ;

Σ3 ¼
8Kπ2Lrλ

LθLϕ
; Σ4 ¼

Kπ2LθLϕ

64Lr
ðλþ 16L2

rÞ;

Σ5 ¼
KλπLrLϕ

8Lθ
: ð95Þ

The above is useful to separate the terms that depend on the
discrete labels (which are proportional to Σ2, Σ3, and Σ5)
from the terms that do not depend on any discrete label
of the family (which are proportional to Σ1 and Σ4). Note
that the partition function in Eq. (94), when p ≠ q, will be
given by

Zp;qðβÞ ¼ exp

�
−β

�
Σ1þΣ2

ðL2
ϕp

2þ 32L2
θq

2Þ
ðL2

ϕþ 32L2
θÞ

þΣ3p2q2
��

×
Xþ∞

n¼1

δðnÞexp ½−βððΣ4þΣ5p2ÞnÞ�:

Now, in our case (with p ¼ q), Eq. (94) can be written as

ZpðβÞ ¼ exp½−βðΣ1 þ Σ2p2 þ Σ3p4Þ�

×
Xþ∞

n¼1

δðnÞ exp½−βððΣ4 þ Σ5p2ÞnÞ�: ð96Þ

These results are similar to the usual two-dimensional
chiral CFT with the difference that, in the sum over n, the
inverse temperature β has been rescaled by ðΣ4 þ Σ5p2Þ.
If p is fixed, then the result is the usual chiral massless
bosons partition function with rescaled temperature βr ≔
ðΣ4 þ Σ5p2Þβ. However, be aware that we also have to sum
over the label p. Such a partition function can also be
written as

ζðzÞ ∼ exp ð−βðΣ1 þ Σ2p2 þ Σ3p4ÞÞ
Xþ∞

n¼1

δðnÞ expð−βrnÞ;

ð97Þ

where δðnÞ is the degeneracy of the energy level n, which can
be easily obtained (for large n) using the Hardy-Ramanujan-
Cardy formula. The fundamental formula for the asymptotic
growth of the partitions δðnÞ was found a long time ago by
Hardy and Ramanujan [119]: for n ≫ 1, we get

δðnÞ ∼ 1

4
ffiffiffi
3

p
exp

�
π

ffiffiffiffi
2n
3

q �

n
: ð98Þ

Such discrete label n represents exact excitation energies11

(related to the “quanta” of modulations either of the hadronic
layers or of the hadronic tubes) over bare lasagna or spaghetti
configurations. Looking at Eq. (93), the “bare” Euler or
Exponential configurations (which have been discussed
previously in the literature, see [58–60,113,114] and refer-
ences therein) possess an ¼ 0 ¼ bn, while v− ≠ 0 (and
fixed by the boundary condition to have integer baryonic
charge). Since Skyrme theory is the low-energy limit of
QCD, it is natural to introduce a cutoff Δ on the sum over n:
such a Δ can be interpreted as the scale beyond which
the Skyrme model is not a good description anymore.
Therefore, instead of Eq. (97), wewill consider the following
expression:

ζΔðzÞ ∼ exp ð−βðΣ1 þ Σ2p2 þ Σ3p4ÞÞ
XΔ
n¼1

δðnÞ expð−βrnÞ:

ð99Þ

11We use the expression exact excitation energies, since these
chiral modes are not only small excitations on top of hadronic
tubes or layers but, in fact, these configurations are exact
solutions of the full Skyrme field equations. On the other hand,
in the usual cases, one can only study small fluctuations around
topological solitons as solutions of the linearized field equations
around those solitons.
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The Δ depends, in general, both on the temperature and the
chemical potential: Δ ¼ ΔðT; μBÞ. Although we have been
unable to find in the literature a widely accepted expression
for the cutoffΔ ¼ ΔðT; μBÞ as a function of T and μB, in the
following subsection, we will show that reasonable choices
of Δ provide us with analytic results in qualitative agree-
ment, both with the available lattice data [120], as well as
with a different analytical approach [115].

B. Partition function at finite baryon chemical potential

In order to get the full contribution of the present family
to the semiclassical Skyrme partition function with non-
vanishing baryon chemical potential μB, one also has to
sum over p, since p determines the baryon charge B ¼ p2

(remember that we have considered for simplicity q ¼ p).
In this way, we get

Z�¼
Xþ∞

p¼−∞
expð−βðΣ1þðΣ2−μBÞp2þΣ3p4ÞÞ

×
XΔ
n¼1

δðnÞexpð−βrnÞ

⇔Z�¼
Xnmax

n¼1

Xþ∞

p¼−∞
δðnÞexpð−βðΣ1þðΣ2−μBÞp2þΣ3p4ÞÞ

×expð−βðΣ4þΣ5p2ÞnÞ; nmax¼ΔðT;μBÞ: ð100Þ

The above double sum is clearly convergent since it is
possible to exchange the order of the sums. As we will see
below, the cutoff nmax ¼ ΔðT; μBÞ can be fixed in such a
way to achieve a qualitative agreement with the description
of LQCD for the phase diagram. Note that, unlike what
happens in LQCD, in the present approach the inclusion of
the baryon chemical potential is not harmful.
It is worth emphasizing the intriguing similarities of

the present partition function with the semiclassical parti-
tion functions computed using the Poisson duality and the
instanton-dyon liquid approach in supersymmetry (SUSY)
Yang-Mills theory (see [115–118] and references therein).
Let us consider first the case in which Lr

Lϕ
is very small

ðLr
Lϕ

≪ 1Þ so that Σ3 can be neglected [see Eq. (95)]. In this

case (which corresponds to a box that is much longer in the
ϕ direction than in the r direction), if one analyzes Eq. (11)
at page 5 of Ref. [115], one can see that the label k (and the
corresponding sum) of Zinst in that reference is analogous to
the sum over n in Eq. (100) in the present approach, as k

appears linearly in the exponent of Zinst as n in Eq. (100).
On the other hand, the label n of Zinst (and the correspond-
ing sum) in Eq. (11) of Ref. [115] is analogous to our
topological sums over p since the label n appears quad-
ratically in the exponent of Zinst of Ref. [115], as p in our
case. The only two relevant differences between the present
expressions and Zinst are the following. First, in the sum in
Eq. (11) of Ref. [115], there is the factor ðβ=g2Þðk3=βMÞ3,
where M is defined below Eq. (11) of Ref. [115], while in
our case we have the degeneracy factor δðnÞ. The factor
arises from the one-loop effects around the instantons and
can be computed explicitly thanks to the powerful results
made available by SUSY, which are basic building blocks
in the approach introduced in [116,117]. However, in the
low-energy/temperature limit of QCD, there is no SUSY, so
the computations of one-loop effects are far more compli-
cated. It is worth reminding the reader that each term in the
expansion in Eq. (93) corresponds to an exact solution of
the Skyrme field equations (with energy and baryon
densities depending on all three spatial coordinates in a
nontrivial way), so that, for any fixed n in Eq. (100), one
should compute the corresponding one-loop determinant
around this nontrivial nonsupersymmetric background. This
fact, together with the lack of SUSY, makes the computation
of this one-loop determinant unfeasible in our case. Second,
in the present approach, we have introduced a cutoff on the
sum over n, as the Skyrme model is not valid anymore at
very high temperature/energies, while SUSY Yang-Mills
theory is well behaved in the UV. Despite these differences,
we find the similarities between the two approaches quite
striking. On the other hand, if Lr

Lϕ
is not very small, then the

thermodynamical behavior of the present families of topo-
logically nontrivial configurations will deviate from the
predictions of the instanton-dyon liquid approach (when
the adimensional parameter Lr

Lϕ
plays a key role). The very

rich but quite complicated phase diagram associated with
these families will be analyzed in a future publication.
The idea of the present section is to provide sound pieces

of evidence that the families of topologically nontrivial
configurations constructed in the previous sections have a
reasonable thermodynamical behavior. In order to get an
idea of the thermodynamical behavior of these modulated
topological solitons, we can approximate the sums in
Eq. (100) by integrals [in the limit in which Lr

Lϕ
≪ 1, so

that Σ3 can be neglected; see Eq. (95)], arriving at the
following formula:

ZGPðμ̃B; TÞ ¼ exp ð−βΣ1Þ
Z

ΔðT;μBÞþ1

1

dn δðnÞ exp ð−βΣ4nÞ
Z þ∞

−∞
dp exp ð−p2βðΣ5n − μ̃BÞ − βΣ3p4Þ

¼ exp ð−βΣ1Þ
2

ffiffiffiffiffi
Σ3

p
Z

ΔðT;μBÞþ1

1

dn δðnÞ exp
�
β

�ðnΣ5 − μ̃BÞ2
8Σ3

− Σ4n

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nΣ5 − μ̃B

p
K1=4

�
βðnΣ5 − μ̃BÞ2

8Σ3

�
; ð101Þ
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where μ̃B ≔ μB − Σ2, KnðzÞ denotes the modified Bessel
function of the second kind, and δðnÞdn gives the number
of states with energies between n and nþ dn. Note that the
condition Σ2 þ Σ5 > μB must be fulfilled. Also, we have
introduced a þ1 in the upper integration limit of n for
numerical analysis reasons.
The integral in Eq. (101) cannot be computed exactly.

Since we have to evaluate it numerically, we can consider
the following generalized form of δðnÞ. For this section, let
us consider a modified expression of Eq. (98) as follows:

δðnÞ∼ 1

4
ffiffiffi
3

p
exp


 ffiffiffiffi
2n
3

q
π
�

ðna þ b2Þ ; as n →∞; a; b ∈ R>0:

ð102Þ

The original formula in Eq. (98) recovers by setting a ¼ 1
and b ¼ 0. Substituting Eq. (102) into Eq. (101), we get

ZGPðμ̃B;TÞ≈
exp



−βΣ1 þ

ffiffiffiffi
2n
3

q
π
�

8
ffiffiffi
3

p
Z

ΔðT;μBÞþ1

1

dnfðn;μBÞ;

ð103Þ

where

fðn; μBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nΣ5 − μ̃B

p
ffiffiffiffiffi
Σ3

p ðna þ b2Þ exp
�
β

�ðnΣ5 − μ̃BÞ2
8Σ3

− Σ4n

��

× K1=4

�
βðμ̃B − nΣ5Þ2

8Σ3

�
: ð104Þ

By considering the expansion Lr=Lϕ ≪ 1, the last function
reduces to

fðn; μBÞ ≈
2

ffiffiffi
π

p
e−nβΣ4

ðna þ b2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðμ̃B − nΣ5Þ

p ; as Σ3 ≪ 1:

ð105Þ

The partition function in Eq. (103) with the expansion
Σ3 ≪ 1 allows one to extract different thermodynamical
properties of the present families of “dressed” topological
solitons: we will compare the results obtained from the
above partition function with the available numerical
results from LQCD. Before doing that, we should note
that the explicit dependency on the temperature in the limit
of integration through the cutoff ΔðT; μBÞ can also be
considered as a modification in the Hamiltonian with
additional explicitly T-dependent terms. As it was shown
by Gorenstein and Yang [121], this kind of modification
produces specific changes in some thermodynamics func-
tions. At finite chemical potential, a generalization of the
solution of Gorenstein and Yang modifies the entropy S and
the internal energy U as [122]

S0ðV; T;ΔðT; μBÞÞ≡ SðV; T;ΔðT; μBÞÞ −
∂Δ
∂T

�
∂A
∂Δ

�
V;T

;

ð106Þ

U0ðV;T;ΔðT;μBÞÞ≡UðV;T;ΔðT;μBÞÞ− T
∂Δ
∂T

�
∂A
∂Δ

�
V;T

;

ð107Þ

where AðV; TÞ is identified with the free energy obtained
from the standard formula

AðμB; T; VÞ ¼ −T logZGPðμB; T; VÞ: ð108Þ

All the other thermodynamics functions are unchanged and
can be found from AðμB; T; VÞ using the standard thermo-
dynamics relations. In order to compare our simulations
with LQCD, we are particularly interested in computing the
pressure

P ¼ −
�
∂A
∂V

�
T
; ð109Þ

with V ¼ 8π3LrLθLϕ being the finite volume. In the limit
of a T-independent Hamiltonian, the last term in Eq. (106)
has to be zero, so that the standard expressions of the
statistical mechanics are recovered.
As is well known, perturbative QCD calculations should

describe, at extremely high temperatures and chemical
potential, the quarks and gluons degrees of freedom: the
quark-gluon plasma. To make our results comparable with
perturbative QCD computations, at those energies, we will
also add to the pressure and entropy the perturbative terms,
to order g2, computed in the perturbative QCD approach
[123,124], given by

S0ðV;T;ΔðT;μBÞÞ

¼ SðV;T;ΔðT;μBÞÞ−
∂Δ
∂T

�
∂A
∂Δ

�
V;T

þ
�
π2ð7NcNf þ 4NgÞ

45
−
Ngð4Ncþ 5NfÞ

144
g2
�
T3; ð110Þ

P ¼ −
�
∂A
∂V

�
T
þ
�
π2ð7NcNg þ 4NgÞ

180

−
Ngð4Nc þ 5NfÞ

576
g2
�
T4; ð111Þ

where g is the coupling constant of QCD, Ng ¼ ðN2
c − 1Þ,

Nc is the number of colors, andNf is the number of flavors.
A possible choice of the cutoff ΔðT; μBÞ at a fixed

chemical potential that allows one to compare closely our
results to LQCD data is
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ΔðT; μBÞ ¼ 0.050 × logð0.712 − 2.148T þ 0.294T2

þ 79.971T−1 þ 14.254T−2 þ 25.413e−1.605TÞ;
ð112Þ

where we have fixed μB ¼ 0.1. In the present case, the
temperature has energy units (our energy unit is 100 MeV,
as is common in QCD), so that the first term inside the
logarithmic is dimensionless, the second coefficient has
inverse energy units [2.148 × ð100 MeVÞ−1], and so on.
On the other hand, it would be nice to determine the precise
functional form of ΔðT; μBÞ from first principles: we hope to
come back to this interesting issue in a future publication. In
the meantime, our aim is only to show that the partition
function associated with the configurations described in the
previoussectionscanberelevantas simplechoicesofΔðT; μBÞ
and give rise to good qualitative agreement with LQCD.
Now, one of the primary thermodynamic observables

that we compute is the pressure P according to the formula
in Eq. (110). With the expression of ΔðT; μBÞ above, the
starting value for P=T4 at T in ≡ 0.480 is given by
Pin=T4

in ¼ 0.942. The results at different values of T are
shown in Fig. 3. The comparison of this plot can be made
with those from Refs. [125–127]. Another crucial thermo-
dynamic observable of our interest is the entropy S related to
the pressure by basic thermodynamics relations. The starting
point of the entropy at T in ¼ 0.480 is Sin=T3

in ¼ 1.679. The
entropy per unit of T3 is shown in Fig. 3.
Clearly, these plots exhibit good qualitative agreement

with the results of LQCD of those references. We will come
back to a more detailed analysis of the low-temperature
behavior of the present topologically nontrivial configura-
tions in a future publication.

VI. CONCLUSIONS AND PERSPECTIVES

In the present work, we constructed exact and topologi-
cally nontrivial solutions of the Skyrme and Yang-Mills-
Higgs theory at finite baryon density in (3þ 1) dimensions.

These analytic configurations are characterized both by two
discrete labels (determining the baryonic charge) and by a
massless chiral field F in (1þ 1) dimensions (in the Yang-
Mills-Higgs case, there are two chiral massless modes).
Physically, the chiral massless modes characterize exact
excitations on top of hadronic layers and tubes. Thus,
nontrivial modes of F represent either hadronic tubes,
which are not homogeneous along the axis of the tubes,
or hadronic layers, which are not homogeneous in the
directions tangent to the layers themselves. In other words,
the chiral massless modes hosted in the topologically
nontrivial configurations constructed in the previous sec-
tions represent “exact” excitations, since these chiral modes
are not only small excitations on top of hadronic tubes or
layers, but these configurations are exact solutions of the
full Skyrme field equations with nontrivial topological
density (the same is true in the Yang-Mills-Higgs case).
This situation should be compared with the usual circum-
stances when one can only study small fluctuations around
topological solitons as solutions of the linearized field
equations around those solitons. Hence, these are the first
exact analytic examples describing ordered arrays of
(3þ 1)-dimensional topological solitons with nontrivial
inhomogeneities. In the case of the Skyrme model, the
plots of the energy and baryon densities of the two types of
solutions show that these configurations are appropriate to
describe inhomogeneous nuclear pasta states, where chiral
modes modulate the tubes and layers.
From the technical viewpoint, the fact that the present

approach can reduce the complete set of field equations of
the Skyrme model in (3þ 1) dimensions to the equation of
a massless chiral field in (1þ 1) dimensions (keeping
alive the baryonic charge) opens the remarkable possibil-
ity to use tools from CFT in (1þ 1) dimensions to analyze
the low-temperature behavior of QCD. We have discussed
the semiclassical grand canonical partition function asso-
ciated with one of the present families. We have calculated
(by approximating the partition function of the hadronic

FIG. 3. Plots of the pressure normalized by T4 and the entropy normalized by T3 as functions of the temperature T. We run our
simulations with the values μB ¼ 0.1, V ¼ 1, Ng ¼ N2

c − 1, Nc ¼ 3; Nf ¼ 2; g ¼ 0.1; a ¼ 1; b ¼ 0.
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layer with a suitable one-dimensional integral) the pres-
sure and the entropy, obtaining an excellent qualitative
agreement with results from LQCD. Our results also allow
discussing out-of-equilibrium features in the low-energy
limit of QCD in (3þ 1) dimensions using the well-
established tools of two-dimensional CFT (see [128]
and references therein). We will analyze these issues in
a future publication.
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