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As a contribution to the subject of the information loss paradox in (1þ 1)-dimensional gravitational
systems, we study a model of (1þ 1)-dimensional dilaton gravity derived from the four-dimensional
Einstein-Hilbert action by dimensional reduction. The reduced action involves the cosmological constant
and admits black hole solutions. After including the backreaction of quantum fields to one-loop order, we
solve the semiclassical field equations perturbatively and compute the quantum correction to the Hawking
temperature. We consider the quantum extremal surface approach and invoke the “island rule” to compute
the fine-grained entropy of the Hawking radiation for an eternal Schwarzschild black hole and demonstrate
that it follows the unitary Page curve.
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I. INTRODUCTION

It is widely believed that the resolution of the informa-
tion loss paradox [1] could be the key to gaining a deeper
insight into the quantum nature of gravity and, in particular,
the microscopic origin of the black hole entropy [2–4]. The
standard calculation done by Hawking [5] predicts that,
due to the thermal character of the Hawking radiation, the
process of black hole formation and evaporation breaks the
principle of unitary time evolution and leads to a monotonic
increase of the fine-grained entanglement entropy of the
radiation even beyond the Bekenstein-Hawking (BH)

entropy limit, SBH ¼ AðhorizonÞ=4Gð4Þ
N (we set c ¼ ℏ ¼

kB ¼ 1, and Gð4Þ
N stands for the Newton’s constant in four

spacetime dimensions), which, on the other hand, mono-
tonically decreases due to evaporation.
Various models of (1þ 1)-dimensional dilaton gravity,

such as Jackiw-Teitelboim [6,7] and Callan-Giddings-
Harvey-Strominger (CGHS) [8], have proved to be very
useful for analytical investigation of the process of black
hole formation and evaporation. This is because, after
integrating out fluctuations of the matter fields and includ-
ing one-loop quantum corrections, field equations can be
made exactly solvable by introducing suitable correction
terms, as in Russo-Susskind-Thorlacius (RST), Bose-
Parker-Peleg (BPP), and CGHS models [9–12]. The results
suggest that information does indeed get lost in the process

of black hole evaporation, signaling the breakdown of
unitarity. A more comprehensive account of dilaton gravity
models can be found in [13,14].
However, the requirement of information conservation

implies that the entanglement entropy of the quantum fields
outside the black hole should not exceed the course-grained
limit set by SBH and must follow the so-called Page curve
instead [15,16]. How this kind of behavior might arise is a
topic that has received a lot of attention recently.
One proposal that stands out is based on the idea that the

fine-grained entropy of the Hawking radiation can receive
an extra contribution from the so-called island [17–20]. The
state of Hawking radiation, corresponding to a spatial
region R outside the black hole, is standardly described
by a density matrix obtained by taking a partial trace over
the degrees of freedom in the complementary region R̄;
an island I ⊂ R̄ is supposed to be a part of R̄ that should
be excluded when taking the partial trace. According to the
minimal quantum extremal surface (QES) prescription
[21–23], the fine-grained (FG) entropy of the Hawking
radiation corresponding to R is given by the “island
formula,”

SFGðRÞ ¼ min
I

�
ext
I

�
Að∂IÞ
4GN

þ SmatterðR ∪ IÞ
��

; ð1Þ

where SmatterðR ∪ IÞ stands for the semiclassical entangle-
ment entropy of the quantum fields with support on R ∪ I,
and Að∂IÞ is the area of the I’s boundary surface (it need
not be the event horizon). The island is a surface that
extremizes the generalized entropy functional in the square
brackets of (1). If there are several such quantum extremal
surfaces, the prescription dictates that we should pick the
one that minimizes the generalized entropy.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 105015 (2022)

2470-0010=2022=106(10)=105015(12) 105015-1 Published by the American Physical Society

https://orcid.org/0000-0002-7312-3154
https://orcid.org/0000-0002-6974-445X
https://orcid.org/0000-0002-8656-1030
https://orcid.org/0000-0003-0675-1836
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.105015&domain=pdf&date_stamp=2022-11-18
https://doi.org/10.1103/PhysRevD.106.105015
https://doi.org/10.1103/PhysRevD.106.105015
https://doi.org/10.1103/PhysRevD.106.105015
https://doi.org/10.1103/PhysRevD.106.105015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Apart from its holography origins, the island rule gains
additional support from considerations regarding the gravi-
tational path integral. Namely, the replica trick [24–26]
applied to gravitational systems leads to new kinds of
saddle points, the so-called replica wormholes, for which
bulk wormholes connect different copies of spacetime.
These new saddle point configurations give rise to islands
[27,28], and the unitary Page curve comes as a non-
perturbative effect from replica wormholes.
In the semiclassical limit, the partition function of the

geometry with replicas is dominated by the one giving
the minimum entropy. In this way, the replica trick for
gravitational theories gives rise to the same formula (1) as
the holographic QES prescription. Since the replica worm-
hole is merely a consequence of the replica trick in models
with gravitation, the island rule is expected to be applicable
to any kind of black hole. So far, the island rule has been
studied mainly in (1þ 1)-dimensional models, which offer
a tractable treatment of the entanglement entropy of the
Hawking radiation [17–20,27–43], but also in higher-
dimensional models [44–48]. Some other interesting results
can be found in Refs. [49–53].
The paper is organized as follows. In the following

section, we study, in some detail, a model of (1þ 1)-
dimensional dilaton gravity derived from Einstein-Hilbert
action by dimensional reduction. Section III analyzes the
contribution of one-loop quantum corrections to the energy-
momentum tensor for matter fields. Focusing on the eternal
Schwarzschild black hole solution, we compute quantum
corrections to the metric, the position of the horizon, and
surface gravity in Sec. IV. Finally, in Sec. V, we derive the
Page curve using the island rule. A conclusion and some
proposals for future work are given in Sec. VI.

II. DIMENSIONALLY REDUCED
EINSTEIN-HILBERT MODEL

The dimensionally reduced Einstein-Hilbert (DREH)
model is a (1þ 1)-dimensional model of dilaton gravity
obtained from the usual four-dimensional Einstein-Hilbert
(EH) action by using a spherically symmetric ansatz and
integrating out the angles. It is similar in some ways to the
CGHS model of dilaton gravity [8]. In particular, it admits
black hole solutions.
Dimensional reduction is a well-known procedure, and

we only give a brief review. More technical details can be
found in [54]. Start with the standard EH action in four
spacetime dimensions,

SEH ¼ 1

16πGð4Þ
N

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
Rð4Þ; ð2Þ

where Gð4Þ
N is the four-dimensional Newton’s constant,

gð4ÞAB ðA;B ¼ 0; 1; 2; 3Þ is the four-dimensional metric, and
Rð4Þ is the four-dimensional curvature scalar.

Consider the following spherically symmetric ansatz for
the metric:

ds2 ¼ gμνdxμdxν þ λ−2e−2ϕ½dθ2 þ sin2 θdφ2�; ð3Þ

where μ, ν ¼ 0, 1, and gμν depends only on x0 and x1. The
dilaton field ϕ is related to the radial coordinate r¼ λ−1e−ϕ,
and λ2 is a constant parameter that will play the role of the
cosmological constant in the reduced theory.
Using the ansatz (3), we can straightforwardly derive

the relation between the curvature scalar R of the reduced
(1þ 1)-dimensional theory and the curvature scalar Rð4Þ of
the four-dimensional theory,

Rð4Þ ¼ Rþ 2ð∇ϕÞ2 þ 2λ2e2ϕ − 2e2ϕ□e−2ϕ: ð4Þ

Also, we have

d4x
ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
¼ d2xdθdφ

ffiffiffiffiffiffi
−g

p e−2ϕ

λ2
sin2 θ: ð5Þ

The reduced dilaton gravity action (up to a surface term),
which will be denoted by Sϕ, comes down to

Sϕ ¼ 1

4GN

Z
d2x

ffiffiffiffiffiffi
−g

p ½e−2ϕðRþ 2ð∇ϕÞ2Þ þ 2λ2�; ð6Þ

where we introduced GN ≡ λ2Gð4Þ
N as Newton’s constant of

the reduced theory.
Later we will take quantum corrections into account, and

for that purpose we introduce the conformal matter term Sm
for a massless scalar field f minimally coupled to gravity.
Therefore, the final form of the classical DREH action is
given by

SDREH ¼ Sϕ þ Sm

¼ 1

4GN

Z
d2x

ffiffiffiffiffiffi
−g

p ½e−2ϕðRþ 2ð∇ϕÞ2Þ þ 2λ2�

−
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p ð∇fÞ2: ð7Þ

Classical field equations are obtained by varying SDREH
with respect to gμν, ϕ, and f, yielding, respectively,

½2∇μ∇νϕ − 2∇μϕ∇νϕþ gμνð3ð∇ϕÞ2 − 2□ϕ − λ2e2ϕÞ�e−2ϕ

¼ 2GNT
ðfÞ
μν;class; ð8Þ

ð∇ϕÞ2 −□ϕ ¼ R
2
; ð9Þ

□f ¼ 0; ð10Þ
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with the classical energy-momentum tensor for the matter
field f,

TðfÞ
μν;class ¼

−2ffiffiffiffiffiffi−gp δSm
δgμν

¼ ∇μf∇νf −
1

2
gμνð∇fÞ2: ð11Þ

Now we will show that the vacuum solution of the
classical field equations is, in fact, a Schwarzschild black
hole. Consider the following static ansatz for the metric
in ðt; rÞ coordinates,

ds2 ¼ −h0ðrÞdt2 þ
dr2

h0ðrÞ
; ð12Þ

and r ¼ λ−1e−ϕ. The curvature scalar for this metric is
R ¼ −∂2rh0, and the dilaton equation (9) becomes

∂
2
rh0 þ

2

r
∂rh0 ¼ 0; ð13Þ

which gives us the form of the unknown function h0ðrÞ,
up to two undetermined constants,

h0ðrÞ ¼ A −
C
r
: ð14Þ

Additionally, from (8) in the rr case we get

h0ðrÞ ¼ 1 − r∂rh0ðrÞ; ð15Þ

implying that A ¼ 1 and leaving C undetermined; the tt
equation does not impose any additional constraint. Thus,
we obtained a Schwarzschild black hole solution in two
dimensions. In four dimensions, the constant C is related

to the mass of the black hole C ¼ 2MGð4Þ
N ; therefore, in

two dimensions, we have C ¼ 2MGN
λ2

. The full metric is
given by

ds2 ¼ −
�
1 −

2MGN

λ2r

�
dt2 þ dr2

1 − 2MGN
λ2r

: ð16Þ

From now on, we will use the notation r0 ¼ 2MGN
λ2

for the
classical horizon radius, so that h0ðrÞ ¼ 1 − r0

r .

III. QUANTUM CORRECTIONS
IN THE DREH MODEL

Having established the classical DREH model, we
consider the quantization of matter fields (a single massless
scalar field in this case) on the classical background
geometry of the Schwarzschild black hole. Quantum

corrections come in the form of Polyakov-Liouville (PL)
action [55],

SPL ¼ −
ℏ
96π

Z
d2x

Z
d2x0

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p

× RðxÞGðx − x0ÞRðx0Þ; ð17Þ

where Gðx − x0Þ stands for Green’s function for
the massless Klein-Gordon equation in curved (1þ 1)-
dimensional spacetime. This action represents a one-loop
effective action obtained by integrating out fluctuations of
the massless scalar field,

e
i
ℏSPL ¼

Z
Dχe

i
ℏ

R
d2x

ffiffiffiffi−gp ½−1
2
ð∇χÞ2�; ð18Þ

and it can be converted into a local form by introducing an
auxiliary field ψ ,

SPL ¼ −
ℏ
96π

Z
d2x

ffiffiffiffiffiffi
−g

p ½2Rψ þ ð∇ψÞ2�; ð19Þ

which is on shell equivalent to (17), the field equation of the
auxiliary field being

□ψ ¼ R: ð20Þ

The full action for the one-loop quantum DREHmodel is
given by

S ¼ SDREH þ SPL: ð21Þ

Variation of SPL in terms of gμν gives us a quantum
correction to the energy-momentum tensor for the scalar
field f,

hΔTðfÞ
μν i ¼ −2ffiffiffiffiffiffi−gp δSPL

δgμν
¼ ℏ

48π

�
−2∇μ∇νψ þ∇μψ∇νψ

þ gμν

�
2□ψ −

1

2
ð∇ψÞ2

��
: ð22Þ

To define hΔTðfÞ
μν i ¼ hΨjΔTðfÞ

μν jΨi, we also need to specify
the quantum state jΨi that we are considering. The full
energy-momentum tensor consists of the classical part and
the one-loop quantum correction coming from the PL
effective action,

TðfÞ
μν ¼ TðfÞ

μν;class þ hΔTðfÞ
μν i: ð23Þ

The metric equation (8) changes only due to this
quantum correction of the energy-momentum tensor,
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½2∇μ∇νϕ − 2∇μϕ∇νϕþ gμνð3ð∇ϕÞ2 − 2□ϕ − λ2e2ϕÞ�e−2ϕ

¼ 2GN

�
∇μf∇νf −

1

2
gμνð∇fÞ2 þ ℏ

48π

�
−2∇μ∇νψ þ∇μψ∇νψ þ gμν

�
2□ψ −

1

2
ð∇ψÞ2

���
: ð24Þ

On the other hand, the dilaton equation (9) remains the
same because we treat ϕ as a purely classical field.
The DREH model is derived directly from the physically

relevant EH action. However, an important aspect of this
model is that it cannot be made exactly solvable by adding
suitable correction terms in the action, and one has to
use the perturbation technique as in [54,56,57]. Quantity
ϵ ¼ ℏ

48π is a natural perturbation parameter.
The classical metric is given by (12) with h0ðrÞ ¼

1 − r0=r. We are interested in finding an eternal black
hole solution at one-loop order. For that we introduce
two functions φðrÞ and mðrÞ, while keeping the definition
r ¼ λ−1e−ϕ, and assume the following static ansatz for the
metric:

ds2 ¼ −hðrÞe2ϵφðrÞdt2 þ dr2

hðrÞ ; ð25Þ

with

hðrÞ ¼ h0ðrÞ þ
ϵmðrÞ
r

¼ 1 −
r0
r
þ ϵmðrÞ

r
: ð26Þ

The curvature scalar is

R ¼ −∂2rh − 2ϵh∂2rφ − 3ϵ∂rh∂rφ − 2ϵ2hð∂rφÞ2: ð27Þ

From the modified field equations for the metric (which
now include the backreaction to one-loop order), we get

dm
dr

¼ −
T̃ðfÞ
tt

h0
; ð28Þ

2rh0
dφ
dr

¼ h0T̃
ðfÞ
rr þ T̃ðfÞ

tt

h0
; ð29Þ

where we introduced T̃ðfÞ
μν ¼ 2GN

λ2ϵ
TðfÞ
μν . The dilaton equation

reduces to an identity, and it has no bearing for further
analyses.

Since components of the energy-momentum tensor TðfÞ
μν

are already of order ϵ, we can use classical metric
components in this perturbative order. First, we need to
solve the □ψ ¼ R equation perturbatively for the auxiliary
field. From the result (27), we get

∂rðh∂rψ þ ∂rhÞ ¼ 0; ð30Þ

and, therefore

∂rψ ¼ C − ∂rh
h

; ð31Þ

where C is an undetermined constant that is related to the
quantum state of the radiation.
We can now use (22) to compute the quantum correc-

tions to the energy-momentum tensor up to first order in ϵ.
They are given by

hΔTðfÞ
rr i ¼ ϵ

C2 − ð∂rh0Þ2
2h20

; ð32Þ

hΔTðfÞ
tt i ¼ ϵ

�
C2

2
−
1

2
ð∂rh0Þ2 þ 2h0∂2rh0

�
; ð33Þ

up to an undetermined constant C.

IV. ETERNAL BLACK HOLE SCENARIO

Now we are ready to consider the eternal Schwarzschild
black hole solution, where an incoming energy flux
balances energy loss due to Hawking evaporation. For a
distant observer (i.e., in asymptotically flat coordinates),
the black hole appears to be in thermal equilibrium with its
environment, which corresponds to the Hartle-Hawking
(HH) state of the radiation. On the other hand, in Kruskal
coordinates x�, the jHHi state represents the vacuum. This
condition will determine the value of the integration
constant C mentioned earlier.
First we compute the ϵ correction to the horizon’s

position rH ¼ r0 þ ϵrð1Þ, as determined by the condition

grrðrHÞ ¼ 0; i:e:; hðrHÞ ¼ 1 −
r0
rH

þ ϵmðrHÞ
rH

¼ 0;

ð34Þ

yielding

rð1Þ ¼ −mðr0Þ: ð35Þ

Therefore, the new position of the horizon is

rH ¼ r0 − ϵmðr0Þ: ð36Þ

To make a transition to Kruskal coordinates, we have
to find the quantum correction to the surface gravity. The
redshift factor is
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V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνξμξν

q
¼ ffiffiffiffiffiffiffiffi

−gtt
p ¼

ffiffiffiffiffiffiffiffiffiffiffi
he2εφ

p
; ð37Þ

and the surface gravity [note that hðrHÞ ¼ 0] is

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∇VÞ2

q
¼

ffiffiffiffiffiffi
grr

p
∂rV ¼ 1

2
∂rheϵφ

¼ 1

2r0

�
1þ ϵ

�
φðr0Þ þ ∂rmðr0Þ þ

mðr0Þ
r0

�
þOðϵ2Þ

�
:

ð38Þ

The metric can be represented in a conformal form,

ds2 ¼ −hðrÞe2ϵφðrÞdt2 þ dr2

hðrÞ

¼ hðrÞe2ϵφðrÞ
�
−dt2 þ dr2

h2ðrÞe2ϵφðrÞ
�

¼ hðrÞe2ϵφðrÞð−dt2 þ dr2�Þ; ð39Þ

where we introduce the tortoise coordinate

r� ¼
Z

e−ϵφðrÞ

hðrÞ dr: ð40Þ

Since hðrHÞ ¼ 0, this integral diverges at r ¼ rH. Note also

that κ ¼ 1
2
ðdhdr eϵφÞjH, which means that dhðrHÞ

dr ≠ 0. By
expanding the integral near the horizon rH we get

r� ¼
1

2κ

Z �
1

r − rH
−
�
1

2

h00

h0
þ ϵ

dφ
dr

�				
H
þ oðr − rHÞ

�
dr

¼ 1

2κ

�
r
rH

þ ln

�
r
rH

− 1

�
þ ϵαðrÞ

�
; ð41Þ

where ϵαðrÞ represents the part of the integral that does
not diverge at the horizon, and α ¼ αð0Þ þ ϵαð1Þ þOðϵ2Þ.
Therefore, to first order in ϵ we can write

r� ¼
Z

1 − ϵðφðrÞ þ mðrÞ
r−r0

Þ
1 − r0

r

dr: ð42Þ

In asymptotically flat coordinates σ� ¼ t� r�, the
metric becomes

ds2 ¼ −hðrÞe2ϵφðrÞdσþdσ−: ð43Þ

Finally, in Kruskal coordinates κx� ¼ �e�κσ� , it can be
represented as

ds2 ¼ −he2ϵφ
dσþ

dxþ
dσ−

dx−
dxþdx−

¼ −he2ϵφ
dxþdx−

−κ2xþx−

¼ −he2ϵφ−2κr�dxþdx− ¼ −e2ρdxþdx−; ð44Þ

with the conformal factor

ρðxÞ ¼ 1

2
ln hþ ϵφ − κr�: ð45Þ

The equation □ψ ¼ R for the auxiliary field in Kruskal
coordinates is simply ∂þ∂−ðψ þ 2ρÞ ¼ 0, which is solved
by ψ ¼ −2ρþ FþðxþÞ þ F−ðx−Þ, where we introduced
two arbitrary functions F�ðx�Þ.
The quantum corrections to the energy-momentum

tensor in x� coordinates are given by

hΔTðfÞ
��i ¼ 4ϵ½∂2�ρ − ð∂�ρÞ2 − t�ðx�Þ�; ð46Þ

hΔTðfÞ
þ−i ¼ −4ϵ∂þ∂−ρ; ð47Þ

where t�ðx�Þ ¼ 1
2
∂
2
�F� − 1

4
ð∂�F�Þ2 is a function related

to the state of the quantum fields. Under a conformal
coordinate transformation y� ¼ y�ðx�Þ the energy-
momentum tensor changes according to (we only consider
the quantum correction)

hΔTðfÞ
��ðyÞi ¼

�
dx�

dy�

�
2

hΔTðfÞ
��ðxÞi: ð48Þ

For the conformal factor ρ, on the other hand, we have the
following transformation law:

ρðyÞ ¼ ρðxÞ þ 1

2
ln
dyþ

dxþ
dy−

dx−
: ð49Þ

Together, these give us the transformation law for t�,

t�ðy�Þ ¼
�
dx�

dy�

�
2
�
t�ðx�Þ −

1

2
Dx�½y��

�
; ð50Þ

with the Schwarzian derivative defined by

Dx�½y�� ¼
ðy�Þ000
ðy�Þ0 −

3

2

�ðy�Þ00
ðy�Þ0

�
2

; ð51Þ

where the derivatives are with respect to x�.
The vacuum state of quantum fields and the corresponding

set of creation/annihilation operators depend on the refer-
ence frame, i.e., on the coordinate system. If we introduce
normal ordering of the energy-momentum operator for one
choice of the vacuum state j0; xi, say in coordinate system
x�, the energy-momentum operator can be decomposed as
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T̂ðfÞ
��ðx�Þ≕ T̂ðfÞ

��ðx�Þ∶þ h0; xjT̂ðfÞ
��ðx�Þj0; xi: ð52Þ

If we make a transition to another coordinate system y�, the
energy-momentum tensor will not, in general, be normally
ordered. The transformation law for the normally ordered
part is given by

∶T̂ðfÞ
��ðy�Þ ≔

�
dx�

dy�

�
2
�
∶T̂ðfÞ

��ðx�Þ∶þ
ℏ
24π

Dx�½y��
�
: ð53Þ

Comparing (50), (52), and (53), we can establish the
following relationship:

h0; xj∶T̂ðfÞ
��ðx�Þ∶j0; xi ¼ −ϵt�ðx�Þ; ð54Þ

which provides an interpretation for the quantity t�. In
particular, since jHHi is the vacuum state in Kruskal
coordinates, i.e., jHHi ¼ j0; xi, we have

hHHj∶T̂ðfÞ
��ðx�Þ∶jHHi ¼ −ϵt�ðx�Þ ¼ 0: ð55Þ

Since we already have a factor of ϵ in (46), we only need
to consider ∂�ρ at the leading (classical) order, which is
simply

∂�ρ ¼ 1

2h
∂�h − κ∂�r� ¼

1

4κx�

�
r0
r2

−
1

r0

�
: ð56Þ

This gives us

hΔTðfÞ
��i ¼ ϵ

ðr − r0Þ2
r4ðx−Þ2 ðr2 þ 2r0rþ 3r20Þ; ð57Þ

hΔTðfÞ
þ−i ¼ ϵ

4r30ðr − r0Þ
r4xþx−

: ð58Þ

On the other hand, in Schwarzschild coordinates,

hΔTðfÞ
rr i ¼ ∂xμ

∂r
∂xν

∂r
hΔTðfÞ

μν i

¼
�
∂xþ

∂r

�
2

hΔTðfÞ
þþiþ

�
∂x−

∂r

�
2

hΔTðfÞ
−−i

þ 2
∂xþ

∂r
∂x−

∂r
hΔTðfÞ

þ−i ¼
ϵ

2l2

�
1

r20
−
�
r0
r2

�
2
�
: ð59Þ

Since ∂rh0 ¼ r0
r2, from (32) we can directly identify the

constant C as being equal to 1
r0
, which is what we have

expected. Now we have to determine the functions mðrÞ
and φðrÞ.
Having computed the quantum corrections to the

energy-momentum tensor, Eqs. (28) and (29) become
simple differential equations,

dm
dr

¼ GN

λ2r20

�
7

�
r0
r

�
3

−
�
r0
r

�
2

−
�
r0
r

�
− 1

�
; ð60Þ

dφ
dr

¼ GN

λ2r20r

�
3

�
r0
r

�
2

þ 2

�
r0
r

�
þ 1

�
; ð61Þ

with solutions

mðrÞ ¼ GN

λ2r0

�
−
7

2

�
r0
r

�
2

þ r0
r
þ ln

r0
r
−

r
r0

�
þ C1; ð62Þ

φðrÞ ¼ GN

λ2r20

�
−
3

2

�
r0
r

�
2

− 2
r0
r
− ln

r0
r

�
þ C2: ð63Þ

We can also calculate the function αðrÞ defined in Eq. (41),

αðrÞ ¼ GN

λ2r20

�
5

2

r
r0

þ
�
1 −

r
r0

−
r0

r − r0

�
ln

r
r0

�
: ð64Þ

Note that αðrHÞ ¼ 3GN
2λ2r2H

does not diverge at the horizon,

as we have already mentioned. FunctionsmðrÞ and φðrÞ are
both defined up to an undetermined integration constant,
C1 and C2, respectively. Note that φðrÞ diverges as
r → þ∞, which means that the metric does not appear
to be asymptotically flat. A way to deal with this issue is
to introduce a cutoff. Take FðrÞ ≔ φðrÞ − C2 and define
some characteristic dimension of space L, such that
φðrÞ ¼ FðrÞ − FðLÞ; now φ → 0 as r → L. This fixes
the asymptotic behavior of the constant C2. We can choose
C2 ¼ GN

λ2r2
0

ln r0
L . FunctionmðrÞ also diverges, but this is not a

problem since mðrÞ
r is what actually appears in the metric.

We can also determine the constant C1 by introducing
another length scale l, which should naturally be of order of
Planck length, but this will not be important for further
consideration. We can set C1 ¼ G

λ2r0
ln l

r0
.

Finally, the position of the horizon and the surface
gravity are given by

rH ¼ r0 − ϵmðr0Þ ¼ r0 þ ϵ

�
7GN

2λ2r0
− C1

�
ð65Þ

¼ r0 þ
ϵGN

λ2r0

�
7

2
þ ln

r0
l

�
; ð66Þ

κ ¼ 1

2r0

�
1þ ϵ

�
φðr0Þ þ ∂rmðr0Þ þ

mðr0Þ
r0

��

¼ 1

2r0

�
1þ ϵ

�
C2 þ

C1

r0
− 3

GN

λ2r20

��
ð67Þ

¼ 1

2r0

�
1 −

ϵGN

λ2r20

�
3þ ln

L
l

��
: ð68Þ
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We see that the horizon gets shifted due to quantum
corrections. Also, since TBH ¼ κ=2π, the last equation
implies that the black hole temperature acquires a quantum
correction.

V. PAGE CURVE IN DREH MODEL

Time dependence of the fine-grained entropy of the
Hawking radiation, as given by the QES formula (1),
essentially depends on the evolution of the spatial region
I ∪ R, where I is to be determined by the variational
method. We will consider two separate cases: one for which
I ¼ ∅ the whole time (no island), and the other when the
island appears at some point; the latter will give the unitary
Page curve.

A. No-island case

Let us first consider the situation with no island. In this
case, we expect to reproduce the original Hawking’s
prediction. For an eternal black hole in Kruskal coordi-
nates, the semiclassical entanglement entropy of the
Hawking radiation can be computed as in [12], using
the following formula (see Appendix A for some details):

Smatter ¼
1

12
ln
ðxþR − xþL Þ2ðx−R − x−LÞ2

δ4e−2ρRe−2ρL
: ð69Þ

Labels R=L correspond to the right/left asymptotically flat
region of spacetime, as shown in Fig. 1. We can also work
in ðt; r�Þ coordinates, or even ðt; rÞ, since r� ¼ r�ðrÞ.
Coordinates on the cutoff surface are then either ðt; bÞ or
ðt; b�Þ. Parameter δ is a UV cutoff.
To recover the time dependence of the fine-grained

entropy SFG along the cutoff surface, we make a transition
to asymptotically flat coordinates that involves the modi-
fied surface gravity κ,

κxþR ¼ eκðtþb�Þ; ð70Þ

κx−R ¼ −e−κðt−b�Þ; ð71Þ

κxþL ¼ −eκð−tþb�Þ; ð72Þ
κx−L ¼ e−κð−t−b�Þ: ð73Þ

In the DREH model, we have ρ ¼ 1
2
ln hþ ϵφ − κr�.

Since b is equal in the two asymptotically flat regions, it
follows that ρR ¼ ρL and we get

SFG ¼ Smatter ¼
1

6
ln
4hðbÞ cosh2 ðκtÞ
ðκδÞ2e−2ϵφðbÞ : ð74Þ

Regularization of the UV divergences is effected by
demanding that SFGð0Þ ¼ 0, i.e.,

SFG ¼ 1

3
ln ½cosh ðκtÞ�: ð75Þ

In the beginning of the evaporation (in the neighborhood
of t ¼ 0), the entropy behaves as SFG ¼ 1

6
ðκtÞ2. However,

we are more interested in the late-time limit, κt ≫ 1.
As in other dilaton gravity models [38,58,59], SFG grows
linearly,

SFG ≈
1

3
κt −

1

3
ln 2: ð76Þ

Thus, we conclude that the fine-grained entropy of the
radiation increases monotonically, which is in agreement
with the original Hawking’s result, but in contrast with the
RST and BPP models, the DREH model predicts that the
surface gravity acquires quantum correction.

B. Island case

In the presence of an island, the relevant region consists
of two disjoint parts and we have to use the following
formula (see Appendix A for some details):

Smatter ¼
1

6
ln

d212d
2
23d

2
14d

2
34

δ4d224d
2
13e

−ρ1e−ρ2e−ρ3e−ρ4
; ð77Þ

with

d2ij ¼ ðxþi − xþj Þðx−i − x−j Þ: ð78Þ
The position of the island is given by ðt0; a�Þ in the

asymptotically flat region on the right. In the left region,
the corresponding point is symmetrical with respect to the
vertical axis. Again, we vary with respect to t0 and a�.
In asymptotically flat coordinates, the position of the

region A in Fig. 2 is given by

κxþRb ¼ eκðtþb�Þ; κx−Rb ¼ −e−κðt−b�Þ; ð79Þ
κxþLb ¼ −eκð−tþb�Þ; κx−Lb ¼ e−κð−t−b�Þ; ð80Þ
κxþRa ¼ eκðt0þa�Þ; κx−Ra ¼ −e−κðt0−a�Þ; ð81Þ
κxþLa ¼ −eκð−t0þa�Þ; κx−La ¼ e−κð−t0−a�Þ: ð82ÞFIG. 1. Position of the region (A) in which the inaccessible

degrees of freedom live.

PAGE CURVE FOR AN ETERNAL SCHWARZSCHILD BLACK … PHYS. REV. D 106, 105015 (2022)

105015-7



Now we consider the late-time stage of the evaporation
process. As in the case with no island, we have that
d2
23
d2
14

d2
24
d2
13

→ 1 (see Appendix A), which means that the entropy

formula comes down to

Smatter ¼
1

6
ln

�
d412
δ4

e2ρae2ρb
�
: ð83Þ

After making the substitutions for ρ and d12, the above
formula becomes

Smatter ¼
1

6
ln
hðaÞhðbÞðeκðtþb�Þ − eκðt0þa�ÞÞ2ð−e−κðt−b�Þ þ e−κðt0−a�ÞÞ2

ðκδÞ4e2κðb�þa�Þe−2εðφðaÞþφðbÞÞ : ð84Þ

The surface term does not depend on t0, so we can
immediately perform extremization over t0. For late times,
it holds that t0 ¼ t as in [11]. Now the formula for Smatter
becomes

Smatter ¼
1

3
ðρa þ ρbÞ þ

2

3
ln ðeκb� − eκa�Þ − 2

3
ln ðκδÞ: ð85Þ

The surface term of the generalized entropy reads

A½I�
4Gð4Þ

N

¼ 2
4πλ2a2

4GNℏ
: ð86Þ

This is exactly the Bekenstein-Hawking entropy. Note that
we have the combination λ2=GN, since the formula holds in
four dimensions. The factor of 2 comes form having two
asymptotically flat regions.
Therefore, the generalized entropy is

Sgen ¼
2πλ2a2

GNℏ
þ 1

3
ðρa þ ρbÞ þ

2

3
ln ðeκb� − eκa�Þ− 2

3
ln ðκδÞ:

ð87Þ

Now, we extremize in terms of the position a�,

∂a�Sgen ¼
�
4πλ2a
GNℏ

þ 1

3

dρðaÞ
dr

�
da
da�

−
2

3

κ

eκðb�−a�Þ − 1
¼ 0;

ð88Þ

which gives us

�
aþ 4ϵGN

λ2
dρðaÞ
dr

�
hðaÞeϵφðaÞ ¼ 8ϵGN

λ2
κ

eκðb�−a�Þ − 1
: ð89Þ

We expect to find QES near the horizon. In the case
of eternal black hole it should be outside the horizon.
So we write a ¼ rH þ x, where rH is a quantum corrected
position of the horizon, and x ≪ rH. Then we can expand
the left-hand side of Eq. (89) with respect to small x, up to
the first order. We get

lhs ≈
�
rH þ 4ϵGN

λ2
dρ
dr

				
H

�
hðrHÞeϵφðrHÞ

þ
�
rH þ 4ϵGN

λ2
dρ
dr

				
H

��
dh
dr

eϵφðrHÞ
�				

H
x: ð90Þ

The first term vanishes since hðrHÞ ¼ 0 by a definition
of a horizon position. While, in the second term, we have
ðdhdr eϵφÞjH ¼ 2κ, by a definition of the surface gravity. Now,
we consider the right-hand side of Eq. (89) and expand
e2κa� near the horizon,

e2κa� ≈ e2κr�ðrHÞ þ 2κ

�
e2κr�

dr�
dr

�				
H
x

¼ 2κxe1þϵðαðrHÞ−φðrHÞÞ lim
r→rH

� r
rH
− 1

hðrÞ
�

¼ 2κxe1þϵαðrHÞ e−ϵφðrHÞ

rHh0ðrHÞ
¼ x

rH
e1þϵαðrHÞ: ð91Þ

The right-hand side of Eq. (89) now becomes

rhs ≈
8ϵκGN

λ2
e−κb�eκa� ð1þ e−κb�eκa�Þ

¼ 8ϵκGN

λ2

� ffiffiffiffiffiffi
x
rH

r
e
1
2
ð1þϵαðrHÞÞ−κb� þ x

rH
e1þϵαðrHÞ−2κb�

�
:

ð92Þ

FIG. 2. Position of the island (I) and the disconnected region
(A) in which the inaccessible degrees of freedom live.

ÐORĐEVIĆ, GOČANIN, GOČANIN, and RADOVANOVIĆ PHYS. REV. D 106, 105015 (2022)

105015-8



Using Eqs. (90) and (92) and solving for x, we get

x ¼ 1

rH

ð4ϵGN
λ2rH

Þ2e1−2κb�þϵαðrHÞ

½1þ 4ϵGN
λ2rH

ðdρdr jH − 1
rH
e1−2κb�þϵαðrÞÞ�2 : ð93Þ

Using Eqs. (45) and (64), and remembering that ϵ ¼ ℏ
48π,

we get the position of the island,

a ¼ rH þ 1

rH

�
ℏGN

12πλ2rH

�
2

e1−2κb�

×

�
1þ ℏGN

6πλ2r2H

�
19

16
þ e1−2κb�

��
: ð94Þ

Note that the result (94) exactly coincides with [45] in
the leading order of ϵ expansion. The main difference is
that we have also included backreaction of the radiation,
which means that quantum corrections do not spoil the
fact that an island appears close to the (quantum cor-
rected) horizon.
Now we can determine the behavior of the fine-

grained entropy. At late times, and expanding around rH,
we get

SFG ¼ SgenðrHÞ −
ℏGN

36πλ2r2H
e1−2κb� þOðℏ2Þ: ð95Þ

The second term can be neglected since it is of order OðℏÞ,
and we are left with

SFG ¼ 2πλ2r2H
GNℏ

þ 1

3
ðρH þ ρbÞ þ

2

3
ln
eκb�

κδ
ð96Þ

¼ 2

�
πλ2r2H
GNℏ

þ 1

12
ln

e4κb�

ðκδÞ4e−2ρHe−2ρb
�
: ð97Þ

Comparing with Eqs. (B2), (B5), and (B6), we have
Sgen ¼ 2SBH, as expected. The fine-grained entropy of
the radiation is therefore

SFG ¼ min

�
1

3
κt; 2SBH

�
: ð98Þ

To determine the Page time, we use the classical value of
entropy since the quantum correction is dwarfed in the
large M limit. The Page time tP is determined by

1

3
κctP ¼ 2πc3λ2r20

GNℏ
; ð99Þ

and so

tP ¼ 96πM3G2
N

ℏλ4c4
: ð100Þ

VI. CONCLUSION

We studied a model of two-dimensional dilaton gravity
related to four-dimensional Einstein-Hilbert action by
dimensional reduction. The Page curve is successfully
reproduced for an eternal Schwarzschild black hole. The
fine-grained entropy of the radiation grows monotonically
until it reaches the course-grained Bekenstein-Hawking
limit; after that, it remains equal to 2SBH. An important
aspect of the DREH model is that the Hawking temperature
acquires a quantum correction, which is not the case, for
example, in the related BPP model. Further investigation
might include analysis of a more realistic scenario involving
an evaporating black hole or dimensional reduction of the
electromagnetic field coupled to gravity and the analysis of
quantum corrections to the Reissner-Nordstrom solution or
anti–de Sitter–Schwarzschild black hole. Another important
observation is that Hawking’s result for the generalized
entropy, which corresponds to the no-island case, can also be
reproduced using Wald’s formula that treats entropy as a
Noether charge (see Appendix B). It would be interesting to
consider a modification of Wald’s entropy formula to include
the island scenario.

ACKNOWLEDGMENTS

A. G., D. G., and V. R. acknowledge the funding pro-
vided by the Faculty of Physics, University of Belgrade,
through the grant by the Ministry of Education, Science,
and Technological Development of the Republic of Serbia.

APPENDIX A: ENTANGLEMENT
ENTROPY FORMULA

Here we give a brief review of the derivation of the
QFT entanglement entropy formula [denoted by Smatter in
the Eq. (1)], closely following the account of [12]. For
that matter, let us first recall Unruh’s result for the entropy
of a uniformly accelerating observer in Minkowski
spacetime, also known as the Rindler observer. If the
world line of a Rindler observer belongs to the right
Rindler wedge, the observer cannot access the degrees of
freedom that live in the causally disconnected left Rindler
wedge. After tracing out the inaccessible degrees of
freedom, the Minkowski vacuum, which is a pure vacuum
state for all inertial observers, reduces to a thermal state
for a Rindler observer. The von Neumann entropy of this
reduced state is known as entanglement entropy, and it is
given by

Sent ¼
1

12
ln
Xþ
maxX−

max

δ2
; ðA1Þ

where X�
max stand for IR cutoffs in the light cone

directions, while δ represents a UV cutoff.
The next step is to generalize the previous formula to

include an arbitrary inaccessible region of Minkowski
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spacetime, see Fig. 3. As shown in [12], the appropriate
generalization is

Sent ¼
1

12
ln
ðxþ2 − xþ1 Þ2ðx−2 − x−1 Þ2

δ4
: ðA2Þ

The curved spacetime version of the entanglement entropy
formula can be obtained in two steps. First, one can find how
formula (A2) looks in some other flat spacetime coordinates
y� ¼ y�ðx�Þ, and then conclude that the same formula
holds in curved spacetime as well. Since the calculation is
the same as in Minkowski coordinates, one gets

Sent ¼
1

12
ln
ðyþ2 − yþ1 Þ2ðy−2 − y−1 Þ2

δ̂4
; ðA3Þ

where δ̂ is a UV cutoff in y coordinates. However, this is
not a proper UV cutoff since it varies from one point of
spacetime to another. It transforms as a length, so it is easy
to transform it back to globally flat Minkowski coordinates.
In conformal gauge, ds2 ¼ −e2ρdyþdy−, this yields

Sent ¼
1

12
ln
ðyþ2 − yþ1 Þ2ðy−2 − y−1 Þ2

δ4e−2ρ1e−2ρ2
: ðA4Þ

Since one can choose to define δ in locally flat coordinates,
it is easy to conclude that formula (A4) holds in curved
spacetime as well.
In the case when an island is present, there exist two

disjoint regions of spacetime (see Fig. 4) that one has to
take into account. Using a similar reasoning as in [12]
one can obtain the following formula for entanglement
entropy:

Sent ¼
1

6
ln

d212d
2
23d

2
14d

2
34

δ4d224d
2
13e

−ρ1e−ρ2e−ρ3e−ρ4
; ðA5Þ

where d2ij ¼ ðxþi − xþj Þðx−i − x−j Þ is Minkowski distance
between two end points of the two inaccessible regions.
The formula (A5) holds in curved spacetime as well.
In the late-time limit, one can show that

d223d
2
14

d224d
2
13

→ 1: ðA6Þ

Using the coordinate transformations (79)–(82), this yields

d223d
2
14

d224d
2
13

¼ 16e2κðb�−a�Þ
cosh2ðκtÞcosh2ðκt0Þ

ðeκðtþb�Þ þ e−κðt0þa�ÞÞ2ðeκðb�−tÞ þ eκðt0−a�ÞÞ2 ≈ 1; t; t0 → ∞: ðA7Þ

It is also easy to show that d12 ¼ d34, ρ1 ¼ ρ4, and
ρ2 ¼ ρ3 in this case. Using these results, Eq. (A5)
reduces to

Sent ¼
1

6
ln

�
d412
δ4

e2ρ1e2ρ2
�
: ðA8Þ

APPENDIX B: WALD’S ENTROPY

In Wald’s formulation, the entropy of a black hole is
understood as a charge at the horizon. It is given by

SWald ¼ −2π
Z
H
dA

∂L
∂Rμνρσ

εμνερσ; ðB1Þ

FIG. 3. Position of the region (A) in which the inaccessible
degrees of freedom live.

FIG. 4. Position of the disconnected region (A) in which the
inaccessible degrees of freedom live.
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where εμν is a binormal satisfying εμνε
μν ¼ −2, dA is the

infinitesimal area element of the event horizon, and L is the
Lagrangian density defining the theory. A direct calculation
in the case of (7) yields

SWald ¼
πλ2r2H
GNℏ

−
1

12
ψðrHÞ: ðB2Þ

Solving the equation for the auxiliary field ψ in Kruskal
coordinates yields ψ ¼−2ρþFþðxþÞþF−ðx−Þ. Functions
F�ðx�Þ can be calculated using the definition of the HH
state, namely, t�ðx�Þ ¼ 0. This gives us

1

2
∂
2
�F� −

1

4
ð∂�F�Þ2 ¼ 0: ðB3Þ

Solving the equation yields

F�ðx�Þ ¼ −2 ln
x� þ c�

δ
þ d�; ðB4Þ

where c� and d� are integration constants. We want to
interpret constants c� as positions in spacetime. To make ψ
invariant under the local Lorentz transformations, we
need to choose dþ þ d− ¼ −2ρc. After implementing this
condition, we get

ψðrÞ ¼ − ln
ðxþ þ cþÞ2ðx− þ c−Þ2

δ4e−2ρe−2ρc
; ðB5Þ

where c� should be chosen at the cutoff surface that
defines a region of space that belongs to the black hole
(see Figs. 1 and 2). This means that κ2cþc− ¼ −e2κb� .
To compute Wald’s entropy, we have to evaluate (B5)
at the horizon where xþH ¼ x−H ¼ 0. Wald’s entropy can
thus be seen as quantum corrected Bekenstein-Hawking
formula,

SWald ¼
πλ2r2H
GNℏ

þ 1

12
ln

ðe2κb� Þ2
ðκδÞ4e−2ρHe−2ρb : ðB6Þ
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