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From statistical mechanics the trace of the thermal average of any energy-momentum tensor is
(T*,) = ToP/oT —4P. The renormalization group formula (7*,) = f(gy)0P/dgy for QCD with

massless fermions requires the pressure to have the structure, P = T*

0 ¢n(gM)[]n(%)]", where

the factor 47 is for later convenience. The functions ¢, (gy,) for n > 1 may be calculated from ¢, (g,,) using
the recursion relation ne, (gy;) = —f(gpr)dp,—1/dgy- This is checked against known perturbation theory
results by using the terms of order (gy)%, (9a:)°, (gar)* in ¢po(gar) to obtain the known terms of order (g,,)*,
(9m)° (gp1)® in @, (gs;) and the known term of order (g,,)® in ¢, (gy,). The above series may be summed
and gives the same result as choosing M = 4xT, viz. T*¢(gapr)-
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I. INTRODUCTION

For a symmetric energy-momentum tensor 7** the
dilation current S = T* x, and the four conformal currents
K% = x>T% — 2x*T#x, are conserved if the energy-
momentum tensor is traceless:

9,8 =T+,
9K = —2xT*,.

The classical energy-momentum tensor for QCD with
massless fermions is traceless but quantum corrections
introduce a renormalization scale that spoils the conserva-
tion of scale and conformal currents and renders the trace
nonzero [1].

The trace of the thermally averaged energy-momentum
tensor is (T#,) = u — 3P where u = (T%) is the energy
densityand P = —>73_ (T";) /3 is the pressure. The relation

exp(BPV) = Z = Tr{e "}

between the pressure and the partition function implies that

0 (H)

—_— P = e—— = -
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or equivalently

P

The trace of the energy-momentum tensor becomes

oP
(T) = u—3P =T —4P. (1)

For non-Abelian gauge fields with massless fermions the
pressure has the form

P =T'®(gy.M/T). (2)

where M is the renormalization scale. From (1) the trace of
the energy-momentum tensor is

;0D

) =T~
T =157

(3)
One would expect the calculation of ® to be primary and
the trace anomaly only an afterthought. However, with the
theorem of Drummond et al. [2] that

oP

(T",) = ﬂ(gM)@

(4)

the anomaly becomes predictive in that the combination of
(3) and (4) gives

0o 0o

T—zﬁ(gM)ag—M, (5)

oT

which is Eq. (3.11) of Drummond et al. [2].
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Note that (4) is similar to the zero temperature operator
identity T*, = p(gy)0L/0gy.

Section II shows how Eq. (5) ensures that P is inde-
pendent of the renormalization scale M and requires P to
have the structure shown in the abstract. Section III tests the
recursion relation using known results for ¢q(gy,) from
perturbation theory to calculate the three known terms in
¢1(gy) and the only known term of ¢, (gy,) and illustrates
how to improve perturbation theory.

II. STRUCTURE OF P

A. Independence of the renormalization scale M

As indicated in Eq. (2) the renormalization scale appears
in ® through ¢, and through r = M/T. The full M
derivative of @ is

®
w22 _ pdom 02
dM dM 0gy|,

dr o®

9m

In the first term use Mdgy;/dM = f(gy); in the second,
use Mdr/dM = r and ro®/or = —To®/dT so that

dd o

Md_M :ﬂ(gM)@

0P

Im

r

after using Eq. (5).

Comment: One can reverse the argument and derive the
anomaly relation (4) of Drummond et al. [2] by starting
with the assertion that P is a physical quantity and must
therefore be independent of the renormalization scale.

B. Origin of [In(M/T)]"

Since ®(g,,, M/T) is independent of M, it must be only
a function of T/Aqcp. It is convenient to consider ® as a
function ¢ of In(E7/Aqgcp), where & is some constant

D(gp. T/M) = ¢po(In(ET/Aggep))s (8)
and to introduce variables

U= ln(M/AQCD),
v=In(M/ET). 9)

The running coupling is a function of u determined by
B(gy) = dgy/du; @ is a function of u — v:

D(gy, M/T) = po(u — )

_ 200:(_1')71 dn¢0<u) U", (10)
n=0 :

n du”

after a Taylor series expansion. The definition

(=1)"d"$o(gm)
n! du”

$n(gm) = (11)

allows the series to be written as

@l /T) =St (31 )] " (12)

n=0

The recursion relation n¢, (gy) = —d¢,_, /du, which fol-
lows from (11), may be expressed as

d¢n—1

Tt ez (13)

Bulons) =~ Plow)

One can confirm directly that the series (12) satisfies
d®/dM = 0.
Comment: If & is changed to &, then

M M g
In[ =) =In({—= In( = |. 14
“(:T) “(é’T) i “(é) 1
The binomial theorem allows the series (12) to be expressed
in terms of powers of In(M/ET) with modified func-

tions ¢, (ga)-
Comment: From u — 3P = T°0®/dT it follows that the

energy density and entropy density are

0D
=T4 30+ T—], 15
u [ + 0T] ( )
15L4))
=T340+ T—]. 1
s [ + GT] (16)

III. RESULTS FROM PERTURBATION THEORY

The O(g?,) term in P was calculated by Shuryak [3]; the
O(g3,) term by Kapusta [4]; to this order there was no
In(M/T). The O(g},) term was calculated by Arnold
and Zhai [5]; the O(g3,) by Zhai and Kastening [6]; in
both cases In(M/T) appeared. The same result was
obtained by Braaten and Nieto [7] using hard thermal loop
resummation.

At O(g,) nonperturbative magnetic screening effects
arise [8—10]. Kajantie ef al. [11] were able to calculate the
O(g8;) perturbative terms and found both In(M/T) and
In>(M/T). A convenient reference that discusses all the
results is Sec. 8.4 of Kapusta and Gale [12].

A. Checks against known results

For comparison with the published results from pertur-
bation theory it is convenient to insert a prefactor in the
series expression for the pressure and choose & = 4x:
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(o]

P=EAT S g o) [1(%)] (17)

n=0

where d, is the dimension of the adjoint representation.
With the order (g,,)% (ga)>, and (gy,)* terms of ¢y (gar),

the recursion relation (13) gives the first three terms of

¢1(gy) and the first term of ¢, (g, ). Using the notation

$P (gy) for the O(gy)* term in ¢, (gy) the necessary
inputs are

2 5
Cb(<)2> (gm) = — <ZZ> <CA + 2SF>,

& (gy) = (%) (Cy + Sp)¥216//3,
" (gm) = (i’”) {48C4(Cy + Sp)InW + R},
where W = (gy,/27)+/(C4 + Sp)/3 and

R = C,24Rl + CASFR2 + S%:R?, + SZFR4' (18)

The coefficients R; are given in [5,12] in terms of Riemann
zeta functions and the Euler constant. For later comparison
with [11] it is convenient to employ the approximate
numerical values

R, = 79.2626,
Ry = —0.6914,

R, = 18.9212,
R, = 9.6145. (19)

The standard notation [12] for SU(N) with n; fermions in
the fundamental representation is dy = N> —1, C, = N
dr = Nny, Sp=ns/2, Sy = (N* = 1)ng/4N. The first
two terms in the beta function are

Blgm) = —Pogys — P19 +
11 4 )
bo= <_CA _§SF>/(4”) )

p=(Fa-Fes a5 )@t

The predictions of the recursion relation (13) are

d
A 3 aw) = gy Erﬁ(@ (9m)
d
B. ¢\ (9u) = Bodiy gqsé” (9)-
M
d
C. ¢(16)(9M) = Bogus Efﬁ?) (9a)

d
+ﬂlg,5w—¢é”<gm,
gM

D. ¢( )(QM) (21)

fﬁogM ¢§4)(9M)-
M

The result for A,

g 22 47 20
9\ (o) = (ﬁ) { G5~ CaSrg+Si5 . (22)

agrees with [5-7,11].
The result for B,

(5) Ium Cy+Sp\'/?
o - (1) (€59

x (C3176 + C,Sp112 — $264),

(23)

agrees with [6,7,11].
The result for C is

6
o ) =3 (%) { (Fea-350 )

11 4
(24)

To compare this with [11] it is necessary to evaluate (24) for
SU@3):

6
'\ (gy) =4 <Z—Z> {432 (11 —gnf> <1 +énf> InW

325 49 2

3 "
(25)

Substituting the numerical values of R gives the final result

6
&\ (921) :4(%) {432(11 —gnf> (1 +énf> In W

+8882—11.61861; —29.1767n% +0.1 152@}.

(26)
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In [11] the O(g,) results are expressed in terms of (@, /7)?
and In(M/2xT). When [11] is reexpressed in terms of
(gu/47)° and In(M/4xT), it agrees completely with
Eq. (26).

The final calculation D gives

6 5 11 4 2
(22 (et )

For SU(3) with n; multiplets of fermions

6 5 2 2
¢26)(9M>:_<Z—Z> 1452<1+Enf> (1—571]”) > (28)

which is exactly the same as [11].

B. Improving perturbation theory
At order (gy)® nonperturbative effects appear in

¢E)6)(gM) but not in (/5(,6) (gu) or ¢§"J (gum) calculated above.
The argument of Linde [8,9,12] shows that certain dia-
grams that appear to be of order (g, )* with k > 6 are so
infrared sensitive that nonperturbative magnetic shielding
will render them of order (g,,)®. Thus ¢(()6) (gu) receives
contributions from diagrams with infinitely many loops.
Nevertheless ¢o(gy,) is still a series of the form

=3 (gu). (29)

k=0

The k =1 term vanishes; the k = 2 term is the first to
depend on g,,. Because the beta function begins with

(gu)?, the recursion relation (13) implies that ¢(()k> (gpr) will
generate terms of order (g,,)*"**[In(M /4xT)]". The series
(17) for P may be considered a double series:

szT‘*f:iqﬁz"*" [(ﬁ)] (30)

k=0 n=0
Perturbative calculations through order (gy,)’
210 (gy) for 2n +k < 5

determine

2d 5 %(5 —k)
Pk<5 AT4Z

2 2 ¢ (o [n(%)] (31)

The difference between PE}ZSS) nd P** is not small

[n]
[6,7,13].
There is no need to terminate the sum over n; one can
easily compute the full sum

P(k<5 T dA T4 25: i 1211-&-1(

k=0 n=0

wofn( )] e

The input is of the form

o (gu) = (Z—Z) {Ak + B In [Z_A; (Ca +SF)/3] }

(33)
where A; = 0 and B, is the only nonzero By for k < 5. As

before, define u = In(M/Aqcp). At large M, one can use
(9m)* = [Bou]~" and the parametrization

1
B (9w) = 73 (ay + by In ). (34)

The nth order derivatives of ¢(gy,) required by Eq. (11)
give

n 1 ds,
¢}(12 +k)<gM) = W |:akSn - 2Ebk + Snbk In I/l:| s
_ T(n+k/2)
" onl(k/2) (35)

With v = In(M/4zT) Eq. (10) requires the sum

> (1) (36)

n=0

By the ratio test this sum converges for |v/u| < 1, which is
satisfied provided M >  /4xT Aqgcp and 42T > Agep. The

result is
LS n —k/2
3, (3) - [1 —3] . (37)
— u u

Applying d/dk as required in (35) gives

d
plkss) =T %A Z 7 la + by In(u —v)].  (38)

The dependence on the renormalization scale M disap-
pears since u — v = In(42T/Aqcp). When a; and by are
expressed in terms of Ay, By, and u — v = (Byga,r)”", the
result is

5
pkss) T dA T AA 4 Z (947[]")

{Ak + Bk In |:g;ﬂr

ma+&vﬂ} (39)
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or more concisely

72d 2 k
plkss) — TAT4 E ¢<() )(9;4)
k=0

In short, convergence of the infinite sum on n in (30) is

automatic; whether a finite number of gbék) (gp) in the series
for (29) for ¢y (gy) is a good approximation, i.e., whether
perturbation theory is reliable, is an open question [13].
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