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We work perturbatively with an interacting quantum field theory comprised of two distinct scalar fields.
In this theory, we introduce a sudden quench of the mass of one of the scalars at time t0. Also, the quartic
interaction between the two scalars is turned on at time tin. These break time-translation invariance. In this
setup we examine the effects of the relative ordering of t0 and tin on composite operator mixing. We study
how such operator mixing affects features of the scalar potential. We find that the late time effective
potential can be sensitive enough to the quenches to trigger phase transitions.
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I. INTRODUCTION

We exist out of equilibrium, yet most physics tools are
mostly developed keeping in mind equilibrium scenarios.
Our universe is expanding and hence the quantum
fluctuations on top of it are essentially describable via
time-dependent couplings which drive the theory into
nonequilibrium regimes [1,2]. This is the regime of
quantum quenches. The effective field theory is described
by the finite set of operators which are commensurate with
the symmetries, and in equilibrium, one has the luxury of
Poincaré invariance: which limits operators to local ones.
However, when the high energy theory becomes subjected
to nonequilibrium (as with time-dependent couplings
arising in an expanding spacetime) then one does not
have time translation symmetry, and the effective theory is
no longer local.
The quantum quench, which specifies the time depend-

ence of the couplings can either be sudden or smooth with a
characteristic timescale. The physics of quenches have
recently garnered a lot of attention in condensed matter
systems due to controllable cold atom experiments. In these
set-ups critical quenches have been carried out which result
in universal scalings as predicted by Kibble and Zurek
[3,4]. There are very few analytically tractable examples for
KZ scalings and hence most studies have been limited to
either free field theories [5–9] or exactly solvable large N

models [10,11], or holographic setups [12]. The mecha-
nisms for these scalings are still poorly understood since
they focus on observables which are strongly theory
dependent. The observables for time-dependent systems
are correlation functions instead of scattering amplitudes,
since unlike in a time-translation invariant system the
S-matrix is not definable.
In this work, we look at the structure of composite

operators in the nonequilibrium theory and try to draw
universal lessons. In particular, we consider a generically
interacting theory whose couplings are quenched inde-
pendently. This essentially excites the system, taking us
away from adiabaticity. Therefore, in this setting even if we
want to integrate out certain heavy field loops, we cannot
completely get rid of them from the effective low energy
theory. This is because the excitement caused due to the
quench also creates heavy field excitations, which are part
of the in-state [13]. Hence, the time-evolving light field
operators, which are now computed using the Schwinger-
Keldysh contour [14] or the in-in formalism, involve the
creation and annihilation of heavy fields. There is a
nontrivial operator mixing which contains detailed infor-
mation about the quench. There are new types of diver-
gences involving time derivatives of the quenched
couplings, and RG flows due to a particular quench may
trigger quench protocols of other couplings at different
scales [15]. Renormalization in the presence of time-
dependent couplings also arises in the general case of
QFT in curved spacetime as explored in [16–19].
Such operator mixings have previously also been

explored in the context of the interacting double scalar
(g2ϕ2χ2) model [20]. The interaction gets turned on at a
particular time tin, which is how the system is driven into
nonequilibrium. The authors found by looking into in-in
correlators that the ϕ2ðt; xÞ operator (at leading order in
interaction coupling) mixes with χ2ðtÞ as well as with
χ2ðtinÞ. However, the renormalization group conditions can
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be chosen in a way such that the χ2ðtÞ mixing vanishes at
the one loop order, though there is no way to get rid of
χ2ðtinÞ from the mixing. This latter mixing is a signature of
memory of the quench event. The coefficient of this term,
the kernel Kðt − tinÞ, is explicitly nonlocal, and shows a
power law decay inmϕðt − tinÞ, wheremϕ is the mass of the
ϕ field. At very late-times, with proper RG conditions,
there is therefore no nontrivial mixing [at Oðg2Þ], and
hence no tell-tale signatures of the quench in the relevant
effective potential. In the setup of our present work, we
work with the same double scalar model, however, making
departures in two different directions:
(1) We introduce a mass quench in one of the fields.

This is done independently from the interaction
quench, viz. the mass quench occurs at some time
t0 which is generically different from the time of the
interaction quench.

(2) The effect of the mass quench is treated nonpertur-
batively. This is both important (as the mass operator
is more relevant) as well as possible (as the time-
dependent free theory is still quadratic).

Our results show a variety of interesting features, some
of which we summarize below:
(1) There is memory of both the quench events: the mass

quench as well as the interaction quench in the
operator mixing. In the composite operator ϕ2ðt; x⃗Þ
the signature of this is the presence of χ2ðtinÞ which
comes with its own nonlocal memory kernels. The
kernels are different depending on the order of the
quenches. However, both these kernels decay at
large times away from the quench events and hence
disappear from late-time perturbative physics. The
presence of memory right after the quench is a
signature of the deep non-Markovian characteristic
of nonequilibrium QFT [21].

(2) As with the interaction quench, we once again have
the mixing with the local operator: χ2ðtÞ. However,
unlike [20], this time there is no RG condition which
can make this go away. This is because, in addition to
the logarithmic divergence, the coefficient also con-
tains finite terms arising purely due to the mass
quench. This term, therefore, affects late-time phys-
ics. Thus, the signatures get carried over into the
effective potential, and hence these very early-time
quenches can play a crucial role in deciding the late-
time phase structure of the quantum field configura-
tion. This possibility is very tantalizing when put in
the context of quantum fluctuations during inflation.

We would like to clarify that the main reason we have
investigated sudden quenches rather than smooth ones, is
due to technical advantage rather than a physical one, as a
renormalizable theory comes with an UV cutoff. However
the sudden quench allows for an exact determination of the
nonequilibrium propagators as the initial state is an
uncorrelated one. On the other hand, only certain smooth

quench protocols can be treated exactly, else one has to use
either adiabatic perturbation theory, or linear response/
Kubo formula which does not allow for extracting time
physics.
In the sections to follow, we proceed with the following

outline: In Sec. II we work out the nonequilibrium Greens
function for a time-dependent quantum harmonic oscillator.
This will directly apply to the scalar field theory with the
mass quench and will allow us to determine the free
propagators along the Keldysh contours. Section III intro-
duces the model that we focus on and the quench protocols.
After defining the Feynman rules on the Keldysh contour,
we proceed in this section to compute the one loop effect of
the interaction on operator mixings for the different quench
sequences. Next in Sec. IV we discuss the renormalization
and late-time analytical form of the perturbative mixing.
We also evaluate various contributions to the composite
operator numerically and point out crucial dependencies on
the details of the quench protocol. Section V deals with the
impact of the nontrivial mixing on the effective potential
and explicitly analyzes how the mass quench can affect the
late-time phase diagram of the theory. We end with
conclusions in Sec. VI.

II. SIMPLE HARMONIC OSCILLATOR WITH
TIME DEPENDENT HAMILTONIAN

In momentum space, the free scalar field theory is a set of
independent quantum harmonic oscillators. We will need
the nonequilibrium Green’s functions for the free scalar
field due to mass quench. Hence, in this section, we
compute the analogous correlators for the single oscillator,
which we will employ to compute the Green’s functions for
the free scalar field. If the frequency of a simple harmonic
oscillator is suddenly quenched from ω0 to ω at time t ¼ t0
[22,23], then its Hamiltonian carries an explicit time-
dependence which can be described as

HðtÞ ¼ 1

2
p2 þ ω2ðtÞ

2
q2; ð2:1Þ

with ω2ðtÞ ¼ θðt0 − tÞω2
0 þ θðt − t0Þω2. The time depend-

ence is captured within the Heaviside theta functions. Away
from t0, the Hamiltonian in each region (for t < t0 as well
as for t > t0) assumes the usual time-independent form, but
with different frequencies (ω0 for t < t0 and ω for t > t0) in
the two regions. Therefore, the initial Hamiltonian before
quench ðt < t0Þ is

Hin ¼
1

2
p2 þ 1

2
ω2
0x

2:

In the Heisenberg picture, the time evolution of position
operator x for t < t0 can be expressed in terms of creation
and annihilation operators, a†in and ain, as
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xðt < t0Þ ¼
1ffiffiffiffiffiffiffiffi
2ω0

p ðe−iω0ðt−t0Þain þ eiω0ðt−t0Þa†inÞ; ð2:2Þ

where the annihilation operator acts on the ground state
configuration of the initial states to give 0, i.e., ainj0ini ¼ 0.
This allows us to recast the Hamiltonian as

Hin ¼
�
a†inain þ

1

2

�
ω0: ð2:3Þ

The expression for the final Hamiltonian, after the quench
ðt > t0Þ, is given as

Hout ¼
1

2
p2 þ 1

2
ω2x2:

Once again, the Heisenberg picture position operator in
t > t0 can again be expressed as

xðt > t0Þ ¼
1ffiffiffiffiffiffi
2ω

p ðe−iωðt−t0Þaout þ eiωðt−t0Þa†outÞ; ð2:4Þ

where aoutj0outi ¼ 0 since j0outi is the ground state of the
final Hamiltonian. It is obvious that j0ini ≠ j0outi. Hout can
be rewritten in terms of a†out and aout as

Hout ¼
�
a†outaout þ

1

2

�
ω: ð2:5Þ

When ω0 ¼ ω then ain ¼ aout, otherwise they are differ-
ent. However using a Bogoliubov transformation one can
recast aout as a linear combination of ain and a†in as shown
below:

aout ¼ A1ain þ A2a
†
in: ð2:6Þ

We compute the Bogoliubov coefficients by matching the
Heisenberg operators at quench time t0. Explicit compu-
tation of the Bogoliubov coefficients yields [23]:

A1 ¼
ω − ω0

2
ffiffiffiffiffiffiffiffiffi
ωω0

p ; A2 ¼
ωþ ω0

2
ffiffiffiffiffiffiffiffiffi
ωω0

p : ð2:7Þ

Using the above result to replace A1;2 by coefficients
dependent on ω0 and ω in Eq. (2.6) and substituting for
aout in Eq. (2.4) we get,

xðt > t0Þ ¼ ½uinðtÞain þ u�inðtÞa†in�; ð2:8Þ

with,

uinðtÞ ¼
1ffiffiffiffiffiffiffiffi
2ω0

p
�
cosðωðt − t0ÞÞ −

iω0

ω
sinðωðt − t0ÞÞ

�
:

ð2:9Þ

Combining the position operators, see Eqs. (2.2) and
(2.8) for the two regions (t < t0 and t > t0) using Heaviside
θ-functions we obtain,

xðtÞ ¼
�
θðt0 − tÞ e

−iω0ðt−t0Þffiffiffiffiffiffiffiffi
2ω0

p þ θðt − t0ÞuinðtÞ
�
ain

þ
�
θðt0 − tÞ e

iω0ðt−t0Þffiffiffiffiffiffiffiffi
2ω0

p þ θðt − t0Þu�inðtÞ
�
a†in:

ð2:10Þ

The expectation value of two position operators at different
times t1 and t2 in the in-vacuum state takes the form as

h0injxðt1Þxðt2Þj0ini

¼
�
θðt0 − t1Þ

e−iω0ðt1−t0Þffiffiffiffiffiffiffiffi
2ω0

p þ θðt1 − t0Þuinðt1Þ
�

×

�
θðt0 − t2Þ

eiω0ðt2−t0Þffiffiffiffiffiffiffiffi
2ω0

p þ θðt2 − t0Þu�inðt2Þ
�
: ð2:11Þ

It is worth mentioning that always in the limit ω ¼ ω0, i.e.,
for no quench, the above two-point correlation function
assumes the same form as the correlation function of the
two position operators at different times for a harmonic
oscillator with time-independent frequency, i.e.,

h0injxðt1Þxðt2Þj0ini ¼
1

2ω
e−iωðt1−t2Þ: ð2:12Þ

III. COMPOSITE OPERATOR MIXING THROUGH
(NON)LOCAL KERNELS

As alluded to in the introduction, the operator correlators
are the observables in the in-in formalism. In a quantum
field theory, there are infinite operators which can be
organized in scales of relevance. Among the members of
this infinite set, the composite operator built by squaring
the fundamental field: ϕ2ðt; x⃗Þ, is the simplest nontrivial
one, which contributes to the energy. In an interacting QFT
this operator generically exhibits nontrivial mixing with
other fundamental fields in the theory. This arises when, in
the connected Feynman diagrams involving ϕ2, there are
loops consisting of the other fundamental fields. Clearly
this originates due to interaction between the different
fundamental fields, and usually results in nontrivial
renormalization group flow of the composite operator.
The flow decides among other things the measurable
critical exponents associated with various physical observ-
ables where ϕ2 contributes. It is far from understood how
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operator mixing takes place in out of equilibrium. In what
follows, we have studied the mixing of ϕ2 in systems where
time-translation invariance is broken explicitly by multiple
quantum quenches.

A. Model description and Green’s functions

We consider a simplified framework consists of two real
scalar fields ϕ and χ with different mass parameters, and the
Lagrangian for the system can be written as

L ¼ L0½ϕ; χ� þ Lint½ϕ; χ� −
λϕ
4!

ϕ4 −
λχ
4!
χ4; ð3:1Þ

where L0 describes the free-field Lagrangian and Lint
encapsulates the interaction between the two fields, i.e.,

L0½ϕ;χ� ¼
1

2
ð∂μϕ∂μϕÞ−

1

2
m2ðtÞϕ2þ 1

2
ð∂μχ∂μχÞ−

1

2
M2χ2;

Lint½ϕ;χ� ¼ −
g2

2
ϕ2χ2: ð3:2Þ

The only internal symmetry respected by the Lagrangian is a
Z2 symmetry for each of the fields that filters out terms
containing odd powers of either field from the Lagrangian.
Terms such as quartic self-interaction of the fields does not
contribute in the operator mixing of ϕ2 but will be of
significance when the impact of composite operator mixing
on the scalar potential is discussed. Also, the term linear in
both fields, i.e., the ϕχ coupling can be removed through
global rotations of the two fields followed by field
redefinitions.

The breaking of time-translation invariance has been
accomplished in two ways:
(1) By imposing an explicit initial time tin as the lower

limit of the time integral present in the path integral.
Since we are looking at the composite operator ϕ2,
this is equivalent to quenching the interaction term
by suddenly turning on the interaction at time t ¼ tin
[20]. Based on this, one can write the action as,

S½ϕ; χ� ¼
Z

∞

−∞
dt

Z
d3 xðL0½ϕ; χ�

þ Θðt − tinÞLint½ϕ; χ�Þ: ð3:3Þ

(2) Additionally, we suddenly change the mass of the ϕ
field from m0 to m at a time t ¼ t0 which we have
referred to as the mass quench of the scalar field
throughout the paper.

The breaking of time-translation invariance prompts us
to follow the Schwinger-Keldysh (or the in-in) formulation.
This results in doubling the degrees of freedom for both
ϕðxÞ and χðxÞ (through the introduction of ϕ�ðxÞ and
χ�ðxÞ). On the Schwinger-Keldysh contour Fig. 1, the
action is expressed as:

S ¼
Z

∞

tin

dt
Z

d3x½L½ϕþ; χþ� − L½ϕ−; χ−��

¼
Z

∞

tin

dt
Z

d3x

�
1

2
ð∂μϕþÞð∂μϕþÞ −

1

2
m2ϕ2þ þ 1

2
ð∂μχþÞð∂μχþÞ −

1

2
M2χ2þ −

g2

2
ϕ2þχ2þ

−
1

2
ð∂μϕ−Þð∂μϕ−Þ þ

1

2
m2ϕ2

− −
1

2
ð∂μχ−Þð∂μχ−Þ þ

1

2
M2χ2− þ g2

2
ϕ2
−χ

2
−

�
: ð3:4Þ

Free scalar field theory can be described as the superposition of independent momentummodes, each of which evolves as
a simple harmonic oscillator. Consequently, the propagators of a scalar field and that of a harmonic oscillator can be related
by a Fourier transform,

Gϕ
−þðx; yÞ ¼ hϕðxÞϕðyÞi ¼

Z
d3k⃗
ð2πÞ3 e

−ik⃗·ðx⃗−y⃗ÞGϕ
−þðk⃗; t1; t2Þ;

Gϕ
þ−ðx; yÞ ¼ hϕðyÞϕðxÞi ¼

Z
d3k⃗
ð2πÞ3 e

−ik⃗·ðx⃗−y⃗ÞGϕ
þ−ðk⃗; t1; t2Þ: ð3:5Þ

Here, x ¼ ðt1; x⃗Þ, y ¼ ðt2; y⃗Þ, t1 ≡ x0 and t2 ≡ y0. We assume that the initial density matrix ρin is the vacuum state of free
field theory. The Green’s functions in the momentum space are expressed as [see Eq. (2.11)]

Gϕ
−þðk⃗;t1;t2Þ¼

�
θðt0− t1Þ

e−iω0kðt1−t0Þffiffiffiffiffiffiffiffiffiffi
2ω0k

p þθðt1− t0Þuinðk⃗;t1Þ
��

θðt0− t2Þ
eiω0kðt2−t0Þffiffiffiffiffiffiffiffiffiffi

2ω0k
p þθðt2− t0Þu�inðk⃗;t2Þ

�
¼Gϕ

þ−ðk⃗;t2;t1Þ:

ð3:6Þ

FIG. 1. Closed time contour C.
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In the above equation, uinðk⃗; tiÞ and u�inðk⃗; tiÞ, i ¼ 1, 2 are
the functions defined in Eq. (2.9) with the momentum
dependence explicitly highlighted, i.e.,

uinðk⃗; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ω0k

p
�
cosðωkðt− t0ÞÞ−

iω0k

ωk
sinðωkðt− t0ÞÞ

�
:

ð3:7Þ

Here, ω0k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

0

q
and ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
are the

frequencies of the ϕ field before and after the mass quench.
The propagators for χ fields can similarly be written as:

Gχ
−þðx; yÞ ¼ hχðxÞχðyÞi ¼

Z
d3k⃗
ð2πÞ3 e

−ik⃗·ðx⃗−y⃗ÞGχ
−þðk⃗; t1; t2Þ;

Gχ
þ−ðx; yÞ ¼ hχðyÞχðxÞi ¼

Z
d3k⃗
ð2πÞ3 e

−ik⃗·ðx⃗−y⃗ÞGχ
þ−ðk⃗; t1; t2Þ:

ð3:8Þ

In this case, the momentum space Green’s functions for the
χ fields have the following simple form:

Gχ
−þðk⃗; t1; t2Þ ¼

e−iΩkðt1−t2Þ

2Ωk
¼ Gχ

þ−ðk⃗; t2; t1Þ; ð3:9Þ

with Ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þM2

p
being the frequency. The time

ordered and anti-time ordered propagators of the fields
can be expressed respectively by the linear combinations of
the Green’s functions defined in Eqs. (3.5) and (3.8) as

Gϕ;χ
þþðx; yÞ ¼ θðx0 − y0ÞGϕ;χ

−þðx; yÞ þ θðy0 − x0ÞGϕ;χ
þ−ðx; yÞ;

Gϕ;χ
−−ðx; yÞ ¼ θðx0 − y0ÞGϕ;χ

þ−ðx; yÞ þ θðy0 − x0ÞGϕ;χ
−þðx; yÞ:

ð3:10Þ

The Feynman rules corresponding to the ϕ� and χ�
fields, the different propagators of ϕ and χ, Gϕ;χ

ij fields
with i; j ∈ fþ;−g, and for the vertices of the quartic
interactions—ϕ2þχ2þ and ϕ2þχ2− have been depicted in
Figs. 2–4 respectively.

B. Effect of the chronology of quenches
on operator mixing

In [20], an expression for ϕ2ðtÞ in terms of χ2ðtÞ, χ2ðt0Þ,
χ2ðtinÞ was obtained when time-translation symmetry was
broken by explicitly switching on the ϕ-χ quartic inter-
action at time tin.

Here, we outline the effect of introducing a sudden
quench of the mass of ϕ field (m0 → m) at t0 in addition to
switching on the quartic interaction at tin and highlight the
differences between two specific cases—(1.) t0 < tin and
(2.) tin < t0.
To obtain the expression for ϕ2ðtÞ in terms of χ2ðtÞ,

χ2ðt0Þ, χ2ðtinÞ, it is necessary to first compute the sum of all
possible connected Green’s functions of the form
hϕiðtÞϕjðtÞχkðt1Þχlðt2Þic (the subscript c denotes con-
nected correlators) with i; j; k; l ∈ fþ;−g. Thus there will
be 24 ¼ 16 different correlation functions. It must be noted
that in both the cases taken into account in our analysis:
t0 < tin or tin < t0, the other time instances involved in the
four-point correlation function hϕiðtÞϕjðtÞχkðt1Þχlðt2Þic,
i.e., t; t1; t2 always maintain the chronology t0; tin < t <
t1 < t2. We restrict ourselves to the cases with t > t0; tin
because we are interested in late-time physics. Also,
t1; t2 > t must hold so that there is no effect of the external
states on the operator mixing.
We commence by first computing hϕ2þðtÞχþðt1Þχþðt2Þic.

At order Oðg2Þ, it receives contributions from the one-loop
diagrams L1 and L2 shown in Fig. 5. Two additional
diagrams, L0

1 and L
0
2 which differ from L1 and L2 only with

respect to the exchange p⃗1 ↔ p⃗2 also contribute to this

FIG. 2. Symbols corresponding to the ϕ�, and χ� fields.

FIG. 3. Diagrammatic representation of Green’s functions
Gϕ;χ

ij ðx0; y0Þ with i; j ∈ fþ;−g.

FIG. 4. Feynman diagrams corresponding to contact inter-
actions.
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correlation function. A detailed description of the loop
calculations has been summarized in Appendix A. In the
calculations shown below, we delve into the explicit details
for only hϕ2þðtÞχþðt1Þχþðt2Þic, for the other 15 correlation
functions hϕiðtÞϕjðtÞχkðt1Þχlðt2Þic similar steps must be
followed. It must be emphasized that each of the other 15
correlation functions can be calculated using diagrams
similar to L1, L2 (along with their momentum-exchanged
(p⃗1 ↔ p⃗2) counterparts).

1. Case 1: t0 < tin ≤ t < t1 < t2, Fig. 6

The leading order term on the right hand side for
hϕ2þðtÞχþðt1Þχþðt2Þic in this case, obtained after evaluating
the time integrals in the calculation of loop diagrams, see

Appendix A, is comprised of an integrand of order 1=jk⃗j3.
We can identify four-point correlation functions of χ in the
result, each multiplied by a time-dependent coefficient as
shown below:

L1 þ L2 þ L0
1 þ L0

2 ¼
��

eiΩp1
ðt1−tinÞ

2Ωp1

eiΩp2
ðt2−tinÞ

2Ωp2

�
c1ðtin; t0; tÞ þ

�
e−iΩp1

ðt1−tinÞ

2Ωp1

e−iΩp2
ðt2−tinÞ

2Ωp2

�
c2ðtin; t0; tÞ

þ
�
eiΩp1

ðt−t1Þ

2Ωp1

eiΩp2
ðt−t2Þ

2Ωp2

�
c3ðtin; t0; tÞ

�
þ p⃗1 → p⃗2; ð3:11Þ

which implies the following:

hϕ2þðtÞχþðt1Þχþðt2Þic ¼ hχ2−ðtinÞχþðt1Þχþðt2Þicc1ðtin; t0; tÞ þ hχ2þðtinÞχþðt1Þχþðt2Þicc2ðtin; t0; tÞ
þ hχ2þðtÞχþðt1Þχþðt2Þicc3ðtin; t0; tÞ: ð3:12Þ

Here, the connected four-point correlation functions of χ have been identified as:

hχ2−ðtinÞχþðt1Þχþðt2Þic ¼
eiΩp1

ðt1−tinÞ

2Ωp1

eiΩp2
ðt2−tinÞ

2Ωp2

þ ðp⃗1 → p⃗2Þ;

hχ2þðtinÞχþðt1Þχþðt2Þic ¼
e−iΩp1

ðt1−tinÞ

2Ωp1

e−iΩp2
ðt2−tinÞ

2Ωp2

þ ðp⃗1 → p⃗2Þ;

hχ2þðtÞχþðt1Þχþðt2Þic ¼
eiΩp1

ðt−t1Þ

2Ωp1

eiΩp2
ðt−t2Þ

2Ωp2

þ ðp⃗1 → p⃗2Þ: ð3:13Þ

The time-dependent coefficients are each, in fact, integrals over the momentum k⃗, with the integrands being functions of ωk

and ω0k. Absorbing the coupling constant g2 within these coefficients allows us to write them as:

FIG. 5. One-loop diagrams (i) L1 and (ii) L2 that contribute to
the four-point correlation function hϕ2þðtÞχþðt1Þχþðt2Þic at order
Oðg2Þ. The ⨁ denotes the composite operator ϕ2þðtÞ.

FIG. 6. The chronology of events in the first case. Here, t0
corresponds to the time when mass quench occurs, tin indicates
the time when the interaction between ϕ and χ fields is turned on
and t refers to the time of the measurement. t1, t2 correspond to
the external states.

FIG. 7. The chronology of events in the second case. Once
again, t0 corresponds to the time when mass quench occurs, tin
indicates the time when the interaction between ϕ and χ fields is
turned on and t refers to the time of the measurement. t1, t2
correspond to the external states.
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c1ðtin; t0; tÞ ¼
g2

8

Z
d3k⃗
ð2πÞ3

1

ω2
kω0k

�
cosωkðt− t0Þ þ i

ω0k

ωk
sinωkðt− t0Þ

�
2
�
cos2ωkðtin − t0Þ − i

ðω2
k þω2

0kÞ
2ωkω0k

sin2ωkðtin − t0Þ
�
;

c2ðtin; t0; tÞ ¼
g2

8

Z
d3k⃗
ð2πÞ3

1

ω2
kω0k

�
cosωkðt− t0Þ− i

ω0k

ωk
sinωkðt− t0Þ

�
2
�
cos 2ωkðtin − t0Þ þ i

ðω2
k þω2

0kÞ
2ωkω0k

sin2ωkðtin − t0Þ
�
;

c3ðt0; tÞ ¼ −
g2

8

Z
d3k⃗
ð2πÞ3

1

ω2
kω0k

�
ðcosωkðt− t0Þ þ i

ω0k

ωk
sinωkðt− t0ÞÞ2

�
cos 2ωkðt− t0Þ − i

ðω2
k þω2

0kÞ
2ωkω0k

sin2ωkðt− t0Þ
�

þ
�
cosωkðt− t0Þ− i

ω0k

ωk
sinωkðt− t0Þ

�
2
�
cos 2ωkðt− t0Þ þ i

ðω2
k þω2

0kÞ
2ωkω0k

sin2ωkðt− t0Þ
��

: ð3:14Þ

In the limit of no mass quench, i.e., for m0 → m, we,
these simplify considerably:

c1ðtin; t0; tÞ →
g2

8

Z
d3k⃗
ð2πÞ3

1

ω3
k

e2iωkðt−tinÞ;

c3ðt0; tÞ → −
2g2

8

Z
d3k⃗
ð2πÞ3

1

ω3
k

;

c2ðtin; t0; tÞ →
g2

8

Z
d3k⃗
ð2πÞ3

1

ω3
k

e−2iωkðt−tinÞ: ð3:15Þ

After repeating similar steps for all 16 correlation functions
hϕiðtÞϕjðtÞχkðt1Þχlðt2Þic with i; j; k; l ∈ fþ;−g, summing
them and setting ϕþ ¼ ϕ− ¼ ϕ, as well as χþ ¼ χ− ¼ χ to
return to a description in terms of the physical fields ϕ and
χ [20], we find that

hϕ2ðtÞχðt1Þχðt2Þic
¼ ðc1ðtin; t0; tÞ þ c2ðtin; t0; tÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K1ðt−tinÞ

hχ2ðtinÞχðt1Þχðt2Þic

þ c3ðt0; tÞ|fflfflfflffl{zfflfflfflffl}
c3ðt−t0Þ

hχ2ðtÞχðt1Þχlðt2Þic: ð3:16Þ

The nonlocal and local kernels have been identified as,
ignoring terms of Oð1=jk⃗j5Þ:

K1ðt − tinÞ ¼ c1ðtin; t0; tÞ þ c2ðtin; t0; tÞ

≈
g2

8

Z
d3k⃗
ð2πÞ3

ω2
k þ ω2

0k

ω4
kω0k

cosð2ωkðt − tinÞÞ;

ð3:17Þ

c3 ≈ −
g2

8

Z
d3k⃗
ð2πÞ3

ω2
k þ ω2

0k

ω4
kω0k

: ð3:18Þ

The relation between the four-point correlators allows us to
write the following relation between composite operators in
terms of (non)local kernels:

ϕ2
RðtÞ¼ϕ2ðtÞþK1ðt− tinÞχ2ðtinÞþc3χ2ðtÞþcounterterms:

ð3:19Þ

In the above, ϕ2ðtÞ arises from the disconnected diagram,
where ϕðtÞ is the bare field. The counterterms are necessary
to renormalize the divergence within c3. Details pertaining
to the renormalization of c3 as well the features of K1 have
been discussed in Sec. IV.

2. Case 2: tin < t0 < t < t1 < t2, Fig. 7

The leading order term on the right-hand side for
hϕ2þðtÞχþðt1Þχþðt2Þic, obtained after evaluating the time
integrals in the calculation of loop diagrams, is once again
comprised of integrands of order 1=jk⃗j3. We proceed in a
manner similar to Case 1 by expressing the result as a
combination of four-point correlation functions of χ and by
studying the behavior of their time-dependent coefficients.

L1þL2þL0
1þL0

2¼
��

eiΩp1
ðt1−tinÞ

2Ωp1

eiΩp2
ðt2−tinÞ

2Ωp2

�
c01ðtin;t0;tÞ

þ
�
e−iΩp1

ðt1−tinÞ

2Ωp1

e−iΩp2
ðt2−tinÞ

2Ωp2

�
c02ðtin;t0;tÞ

þ
�
eiΩp1

ðt−t1Þ

2Ωp1

eiΩp2
ðt−t2Þ

2Ωp2

�
c03ðtin;t0;tÞ

�
þ p⃗1→ p⃗2; ð3:20Þ

which implies the following:

hϕ2þðtÞχþðt1Þχþðt2Þic ¼ hχ2−ðtinÞχþðt1Þχþðt2Þicc01ðtin; t0; tÞ þ hχ2þðtinÞχþðt1Þχþðt2Þicc02ðtin; t0; tÞ
þ hχ2þðtÞχþðt1Þχþðt2Þicc03ðtin; t0; tÞ: ð3:21Þ
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The four-point correlation functions of χ above are the same as the ones defined in Eq. (3.13). The difference between Case
1 and 2 appears within the time-dependent coefficients which for Case 2 are written below:

c01ðtin; t0; tÞ ¼
g2

8

Z
d3k⃗
ð2πÞ3

1

ω3
0k

e2iω0kðt0−tinÞ
�
cosωkðt− t0Þ þ i

ω0k

ωk
sinωkðt− t0Þ

�
2

c02ðtin; t0; tÞ ¼
g2

8

Z
d3k⃗
ð2πÞ3

1

ω3
0k

e−2iω0kðt0−tinÞ
�
cosωkðt− t0Þ− i

ω0k

ωk
sinωkðt− t0Þ

�
2

c03ðt0; tÞ ¼ −
g2

8

Z
d3k⃗
ð2πÞ3

1

ω2
kω0k

�
ðcosωkðt− t0Þ þ i

ω0k

ωk
sinωkðt− t0ÞÞ2

�
cos2ωkðt− t0Þ− i

ðω2
k þω2

0kÞ
2ωkω0k

sin2ωkðt− t0Þ
�

þ
�
cosωkðt− t0Þ− i

ω0k

ωk
sinωkðt− t0Þ

�
2
�
cos2ωkðt− t0Þ þ i

ðω2
k þω2

0kÞ
2ωkω0k

sin2ωkðt− t0Þ
��

: ð3:22Þ

In the limit of no mass quench, i.e., for m0 → m, we obtain

c01ðtin; t0; tÞ →
g2

8

Z
d3k⃗
ð2πÞ3

1

ω3
k

e2iωkðt−tinÞ; c03ðt0; tÞ → −
2g2

8

Z
d3k⃗
ð2πÞ3

1

ω3
k

;

c02ðtin; t0; tÞ →
g2

8

Z
d3k⃗
ð2πÞ3

1

ω3
k

e−2iωkðt−tinÞ: ð3:23Þ

After evaluating all 16 correlation functions hϕiðtÞϕjðtÞχkðt1Þχlðt2Þic with i; j; k; l ∈ fþ;−g, summing them and setting
ϕþ ¼ ϕ− ¼ ϕ, as well as χþ ¼ χ− ¼ χ to return to a description in terms of the physical fields ϕ and χ [20], we can identify
the time-dependent kernel:

hϕ2ðtÞχðt1Þχðt2Þic ¼ ðc01ðtin; t0; tÞ þ c02ðtin; t0; tÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K2ðt−t0;t0−tinÞ

hχ2ðtinÞχðt1Þχðt2Þic þ c03ðt0; tÞ|fflfflfflffl{zfflfflfflffl}
c0
3
ðt−t0Þ

hχ2ðtÞχðt1Þχlðt2Þic; ð3:24Þ

(ignoring terms of Oð1=jk⃗j5Þ), we can identify the nonlocal and local kernels as:

K2ðt− t0;t0− tinÞ¼c01ðtin;t0;tÞþc02ðtin;t0;tÞ

≈
g2

8

Z
d3k⃗
ð2πÞ3

�
ω2
kþω2

0k

ω2
kω

3
0k

cosð2ω0kðt0− tinÞÞcosð2ωkðt− t0ÞÞ−
1

ωkω
2
0k

2sinð2ω0kðt0− tinÞÞsinð2ωkðt− t0ÞÞ
�
;

ð3:25Þ

c03 ≈ −
g2

8

Z
d3k⃗
ð2πÞ3

ω2
k þ ω2

0k

ω4
kω0k

: ð3:26Þ

Once again, the relation between the four-point correlators
informs the mixing of operators weighted by local and
nonlocal kernels:

ϕ2
RðtÞ ¼ ϕ2ðtÞ þ K2ðt − t0; t0 − tinÞχ2ðtinÞ

þ c03χ
2ðtÞ þ counterterms: ð3:27Þ

As before, ϕ2ðtÞ arises from the disconnected diagram,
with ϕðtÞ being the bare field and counterterms are
necessary to renormalize the divergence within c03. The

characteristics of K2 and details pertaining to the renorm-
alization of c03 have been discussed in Sec. IV.

3. Comparison of the two cases

Using the expressions for K1ðt − tinÞ, c3, K2ðt − t0; t0 −
tinÞ and c03, we can conduct a straightforward comparison of
the two cases while imposing various limits on t0, tin and t.
However, before doing so, the following points must be
emphasized:
(1) In case 1, the ordering t0 < tin < t holds. Therefore,

while we can take the limits t → tin and t0 → tin
separately, setting t → t0 will automatically imply that
all three events, i.e., mass quench, interaction quench
and themeasurement are occurring at the same instant.
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(2) On the other hand, for case 2, we have the ordering
tin < t0 < t. As a consequence, we cannot take the
limit t → tin directly, i.e., the limits t → t0 and
tin → t0 must be taken separately to describe the
simultaneous occurrence of the three events.

Keeping the above points in mind, we can deduce relations
between the local and nonlocal kernels and also obtain
simplified forms for them.
(1) For case 1, it is clear from Eqs. (3.17) and (3.18),

that there exists a direct relation between c3 and K1

when we set t → tin in case 1, i.e., c3 ¼ −K1ð0Þ. As
a consequence of this, no operator mixing occurs

hϕ2ðtÞχðt1Þχðt2Þic
¼ ðK1ðtin − tinÞ þ c3Þhχ2ðtinÞχðt1Þχðt2Þic
¼ ðK1ð0Þ − K1ð0ÞÞhχ2ðtinÞχðt1Þχðt2Þic
¼ 0: ð3:28Þ

This property holds irrespective of whether mass
quench has occurred or not, even though K1ð0Þ still
contains a signature of the mass quench on account
of the integrand being a function of both ωk and ω0k.

(2) For case 2, while we cannot directly set t → tin,
even if we inspect the situation where t → t0 and
tin → t0 hold simultaneously, we notice that
K2ð0; 0Þ þ c03 ≠ 0. This turns into equality only
when ωk ¼ ω0k is also enforced, i.e., when no mass
quench occurs.

(3) In the event of no mass quench, i.e., m0 ¼ m and
consequently ωk ¼ ω0k, the results of [20] are
reproduced for both cases:

K1ðt− tinÞ ⟶
ωk¼ω0k

Kðt− tinÞ; c3 ⟶
ωk¼ω0k−Kð0Þ;

K2ðt− t0;t0− tinÞ ⟶
ωk¼ω0k Kðt− tinÞ; c03 ⟶

ωk¼ω0k−Kð0Þ:
ð3:29Þ

where time-dependent kernel is

Kðt − tinÞ ¼
g2

4

Z
d3k⃗
ð2πÞ3

cosð2ωkðt − tinÞÞ
ω3
k

: ð3:30Þ

IV. ANALYSIS OF (NON)LOCAL KERNELS

In this section we evaluate the local as well as nonlocal
kernels, discussed in Sec. III, that facilitate operator
mixing.

A. Numerical estimation of the kernels

Both K1 and K2, see Eqs. (3.17) and (3.25), contain
oscillatory functions in the integrand, weighted by
momentum dependent factors. Computing these integrals

in a closed form is difficult. In [20], the kernel had been
identified in terms of Meijer-G functions. In Appendix B,
we have done a similar identification in terms of Meijer-G
functions after doing a Taylor series expansion of the
integrand assuming a small mass quench. In this section,
on the other hand, we highlight the general features of K1

and K2 by evaluating the integrals numerically. A graphi-
cal demonstration of K1 (scaled down by g2=2) as a
function of t − tin has been provided in Fig. 8 and high-
lights a decaying and oscillating profile. Similarly, K2

(scaled down by g2=2) as a function of t − t0 for fixed
choices of the interval t0 − tin has been displayed in Fig. 9.
Note that initially the nonlocal kernels exhibit “jolts” that
soon equilibrate. This jolt can be ascribed to the
assumption of the initial uncorrelated state, see [24] for
a similar effect. One can also notice oscillatory behaviors.
The different choices of t0 − tin influence the location of
the peak, but ultimately each of the profiles decays for
large-(t − t0).

FIG. 8. Plot displaying ð2=g2ÞK1 as a function of ðt − tinÞ. The
parametersm0 andm have been fixed at constant values. It can be
seen that K1 vanishes at later time.

FIG. 9. Plot displaying ð2=g2ÞK2 as a function of ðt − t0Þ for
three different choices of the interval ðt0 − tinÞ. The parameters
m0 and m have been fixed at constant values. Similar to K1, the
kernel K2 also vanishes at a later time.
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B. Renormalization of divergent integrals

From Eqs. (3.18) and (3.26), it is evident that c3 ¼ c03.
So, their features can be studied together. The integration
over k⃗ generates a logarithmic ultraviolet divergence that
along with the appropriate counter-terms, see Eqs. (3.19),

(3.27), renormalizes the composite operator in both the
cases. Here, c3 and c03 contain divergent and finite parts.
The result of evaluating the k-integral in the expression for
c3 (and c03), which we will denote as c̃3 can be split based
on whether m > m0 or m < m0 as follows:

c̃3 ¼ −
g2

16π2

�
log

�
Λ2

m2
0

�
þ log 4 −

1

2
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −m2
p �

m2
0 − 4m2

m

�
cos−1

�
m
m0

��
; for m < m0;

¼ −
g2

16π2

�
log

�
Λ2

m2
0

�
þ log 4 −

1

2
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

0

p �
m2

0 − 4m2

m

�
cosh−1

�
m
m0

��
; for m > m0: ð4:1Þ

Here Λ denotes the large momentum cutoff. From this complete expression, we choose the counterterms (mimicking MS
scheme) judiciously by absorbing the divergent as well as the universal constant terms to ensure that operator mixing does
not occur in the no mass quench limit,1 i.e.,

cCT3 ¼ c̃3ðm → m0Þ ¼ −
g2

16π2

�
log

�
Λ2

m2
0

�
þ log 4 − 2

�
: ð4:2Þ

Next, the finite part of c̃3 can be identified as cfinite3 ¼ c̃3 − cCT3 and the explicit form can be written as:

cfinite3 ¼ −
g2

16π2

�
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −m2
p �

m2
0 − 4m2

m

�
cos−1

�
m
m0

�
þ 3

2

�
; for m < m0;

¼ −
g2

16π2

�
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

0

p �
m2

0 − 4m2

m

�
cosh−1

�
m
m0

�
þ 3

2

�
; for m > m0: ð4:3Þ

If we denote the change in mass after quench by Δm, i.e., if m ¼ m0 þ Δm, then by defining a dimensionless parameter
x ¼ −Δm=m0 and substituting m ¼ m0ð1 − xÞ in Eq. (4.3) we obtain,

cfinite3 ¼ −
g2

16π2

�
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð2 − xÞp �

3 − 8xþ 4x2

ðx − 1Þ
�
cos−1ð1 − xÞ þ 3

2

�
; for m < m0;

¼ −
g2

16π2

�
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 2Þp �

3 − 8xþ 4x2

ðx − 1Þ
�
cosh−1ð1 − xÞ þ 3

2

�
; for m > m0: ð4:4Þ

It can be seen clearly that the condition (x < 1) must hold,
otherwise m will become negative. A plot of cfinite3 as a
function of x has been shown in Fig. 10. It can be seen from
the figure that cfinite3 becomes largely negative as x → 1, i.e.,
in the limit of vanishing m. The curve passing through the
origin signifies the absence of operator mixing at no mass
quench limit.

FIG. 10. Plot displaying ð8=g2Þcfinite3 as function of
x ¼ −Δm=m0.

1Note that for generic time dependent couplings, λðtÞ, there are
new counterterms proportional to derivatives of the coupling [15].
In general counter-terms involving more than one derivative of
the couplings become necessary, for a comprehensive account we
refer the reader to Ref. [17].
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V. IMPLICATIONS OF OPERATOR MIXING
FOR THE χ POTENTIAL

In this section, we demonstrate how the operator mixing
of one field can affect the potential of other one for a two
scalar field simplified system. Though the impact is
mutual, we highlight the deformation of χ potential due
to the ϕ2ðtÞ operator mixing. It must be mentioned that
initially the χ potential is parabolic since M2; λχ > 0. We
investigate, in this section, whether the ϕ2ðtÞ operator
mixing can flip the sign of the χ2 term, leading to a wine-
bottle shaped potential for χ. This would imply a hint of
possible phase transition or spontaneous breaking of any
underlying symmetry, induced by the operator mixing, as
an artifact of mass and interaction quenches. It must be
emphasized that phase transitions of this nature are
intricate as one is no longer limited to ground state
physics.
Having obtained the operator mixing for case 1 as given

in Eq. (3.19), we can substitute it back into the Lagrangian
given in Eq. (3.1). The potential for the χ field, up toOðg2Þ,
assumes the following form:

VðχÞ ¼
�
1

2
M2 þ 1

2
m2cfinite3

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a1

χ2 þ
�
1

4!
λχ

�
χ4

þOðg2n; n > 2Þ: ð5:1Þ

Note that we have ignored the term proportional to g2cfinite3

as well as the one proportional to g2K1, as those are
∼Oðg4Þ. Therefore, for boundedness of the potential we
need λχ > 0. Next if a1 > 0 we have the usual parabolic
profile of the potential. The other interesting possibility is
to have a1 < 0, which implies:

a1 < 0 ⇒ ðcfinite3 m2 þM2Þ < 0 ⇒ cfinite3 < −
M2

m2

⇒ cfinite3 < −
p

ð1 − xÞ2 ; ð5:2Þ

where we have defined, m ¼ m0ð1 − xÞ as earlier and
p ¼ M2=m2

0 a dimensionless parameter. Figure 11 depicts
the profile of the quantity a1 for some fixed values of p and
varying x. In order to plot a1 the values of the Lagrangian
parameters g and λχ are kept less than unity so that
perturbative expansion in terms of these parameters
remains valid. The values of x and p are chosen in the
anticipation of the change in the shape of the potential. So,
for two choices of ðx; pÞ, a1 remains positive and the shape
of the potential is parabolic and for the other two choices, it
takes the shape of a wine-bottle. In Fig. 12, we have
presented how the shape of χ potential changes for different
benchmark points chosen from Fig. 11.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have discussed the impact of mass and
interaction quenches, at times t0 and tin respectively, in
operator mixing and noted its consequences on the effective
potential. We computed the nonequilibrium Green’s func-
tions in the closed time path formalism, having treated the
mass quench exactly in the free propagator. Our free theory
computation boiled down to computing correlators analo-
gous to that of a harmonic oscillator with time-dependent
frequency. The Z2 invariant Lagrangian which we
have considered, comprises of two scalar fields ϕ and χ.
We have performed our analysis assuming two time

FIG. 11. Plot of ½ð1 − xÞ2cfinite3 þ p� as a function of x and for
some fixed values of p. The inset figure highlights the (x, p)
parameter space that allows for negative a1. The points inside the
shaded region correspond to potentials with the shape of a wine-
bottle, those lying outside correspond to parabolic potential.
Points chosen from the inset have been suitably highlighted on
the main plot.

FIG. 12. Plot of VðχÞ as a function of χ, for the four specific
choices of x and p highlighted in Fig. 11.
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orderings: t0 < tin ≤ t < t1 < t2 (interaction quench occurs
after mass quench) and tin < t0 < t < t1 < t2 (mass
quench occurs after interaction quench). We have estimated
the ϕ2ðtÞ operator mixing for these two cases. The times t1,
t2 are external operator times with which we find the
mixings. To obtain the mixings we computed the one loop
contributions to the four-point correlation function,
hϕ2

i ðtÞχjðt1Þχkðt2Þi, considering all allowed diagrams
and for all i; j; k ∈ fþ;−g. All our answers depend
explicitly on the quench parameters which include the
changing mass of the ϕ field, the event times, t0; tin and the
value of field χ at tin. In the process, we have identified the
time-dependent kernels ðK1;2Þ and mixing coefficients
ðc3; c03Þ. The kernels as well as the mixing coefficient
contain similar UV divergences, which can be taken care of
by employing suitable counterterms for both cases. The
mixing of the ϕ2ðtÞ operator, at leading order in the
interaction, inherits the kernel’s time dependence weighted
by the value of the χ2ðtinÞ. More interestingly, the mixing
now also contains a finite part of c3; c03 ¼ cfinite3 weighted
by the dynamical field χ2ðtÞ. This finite piece as a function
of Δm ¼ m −m0 grows negative and hence can flip the
sign of the quadratic piece in the effective potential of χ.
Therefore, the mass quench of the ϕ field can trigger the
possibility of late-time phase transitions in the configura-
tion of χ. Looking ahead, there are several interesting
natural directions and possible applications that we
now list.
An unresolved puzzle in the context of inflation is the

continuing oscillations present in the CMB data for low
multipole moments [25]. We have seen that quenches in the
action can trigger memory effects in effective potentials,
leading to oscillatory behaviors in time. Quench setups are
natural in our expanding universe [17,26], hence it is quite
conceivable that the primordial oscillations generically
arise in our universe due to interacting quantum fields
out of equilibrium.
An obvious generalization of our setup is to consider

smooth quenches characterized by an amplitude and a rate.
Interesting and universal scalings are known to emerge near
the breakdown of adiabaticity controlled by the quench
protocol [12]. We expect that the memory kernels will get
imbued with characteristic scalings, that may indicate the
presence of any phase transitions if present. Another
generalization of the quench protocol is toward incorpo-
rating multiple quenches whose physics is quite different

than a single quench [27]. In particular, thermalization can
occur exponentially fast and the integrable nature of a
system gets washed out very quickly.
The discussion of symmetries itself becomes compli-

cated out of equilibrium as the dynamics is no longer
confined to the ground state.2 This is closely tied with the
generation of an effective thermalization of the system, that
can, in most cases, explicitly restore spontaneously broken
symmetries, see however [28]. The connection with
quenches comes via the eigenstate thermalization hypoth-
esis [29] which posits that every finite density energy
eigenstate is approximately thermal. Any out of equilibrium
scenario necessarily involves excited states, hence it
is natural that an interacting system may effectively
thermalize.
Finally, to draw the correct physics lessons, we need to

go beyond perturbative methods. This may be possible in
large N theories when the system becomes exactly solv-
able. Recently, [30,31] have resummed loop contributions
to the in-in correlators using the Weisskopf-Wigner
method. It will be important to use this tool in our setup
to find the nonperturbative results in time dependence.
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APPENDIX A: DETAILS OF LOOP
CALCULATIONS

The contribution from the one-loop diagrams of Fig. 5
(L1 and L2), as well as the additional diagrams (L0

1 and L0
2)

obtained on exchanging p⃗1 and p⃗2, to the four-point
correlation function hϕ2þðtÞχþðt1Þχþðt2Þic can be expressed
as the following integrals:

L1 þ L0
1 ¼ 2 ×

−ig2

2

Z
d3k⃗
ð2πÞ3

Z
∞

tin

dτ½Gϕ
þþðk⃗; t; τÞGϕ

þþðP⃗ − k⃗; t; τÞGχ
þþðp⃗1; τ; t1ÞGχ

þþðp⃗2; τ; t2Þ� þ ðp⃗1 ↔ p⃗2Þ; ðA1Þ

L2 þ L0
2 ¼ 2 ×

ig2

2

Z
d3k⃗
ð2πÞ3

Z
∞

tin

dτ½Gϕ
þ−ðk⃗; t; τÞGϕ

þ−ðP⃗ − k⃗; t; τÞGχ
−þðp⃗1; τ; t1ÞGχ

−þðp⃗2; τ; t2Þ� þ ðp⃗1 ↔ p⃗2Þ: ðA2Þ

2The ground state characterizes the equilibrium phase of matter.
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The nontrivial form of the Green’s functions of the ϕ field, due to the sudden quench of its mass, makes it difficult to
evaluate these integrals. The full expansion of the integrand, after multiplication of the terms within the Green’s functions,
leads to a large number of terms but the presence of θ-functions, see Eqs. (3.6) and (3.10), splits the full integral into
multiple pieces with various limits of integration and one can then write,

For case 1:

L1 þ L0
1 ¼ 2 ×

−ig2

2

Z
d3k⃗
ð2πÞ3

�Z
t

tin

dτ
eiΩp1

ðτ−t1Þ

2Ωp1

eiΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; tÞuinðP⃗ − k⃗; tÞu�inðk⃗; τÞu�inðP⃗ − k⃗; τÞ

þ
Z

t1

t
dτ

eiΩp1
ðτ−t1Þ

2Ωp1

eiΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; τÞuinðP⃗ − k⃗; τÞu�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ

þ
Z

t2

t1

dτ
e−iΩp1

ðτ−t1Þ

2Ωp1

eiΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; τÞuinðP⃗ − k⃗; τÞu�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ

þ
Z

∞

t2

dτ
e−iΩp1

ðτ−t1Þ

2Ωp1

e−iΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; τÞuinðP⃗ − k⃗; τÞu�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ
�
þ ðp⃗1 ↔ p⃗2Þ; ðA3Þ

L2 þ L0
2 ¼ 2 ×

ig2

2

Z
d3k⃗
ð2πÞ3

�Z
∞

tin

dτ
e−iΩp1

ðτ−t1Þ

2Ωp1

e−iΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; τÞuinðP⃗ − k⃗; τÞu�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ
�
þ ðp⃗1 ↔ p⃗2Þ:

ðA4Þ

For case 2:

L1 þ L0
1 ¼ 2 ×

−ig2

2

Z
d3k⃗
ð2πÞ3

�Z
t0

tin

dτ
e2iω0kðτ−t0Þ

2ω0k

eiΩp1
ðτ−t1Þ

2Ωp1

eiΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; tÞuinðP⃗ − k⃗; tÞ

þ
Z

t

t0

dτ
eiΩp1

ðτ−t1Þ

2Ωp1

eiΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; tÞuinðP⃗ − k⃗; tÞu�inðk⃗; τÞu�inðP⃗ − k⃗; τÞ

þ
Z

t1

t
dτ

eiΩp1
ðτ−t1Þ

2Ωp1

eiΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; τÞuinðP⃗ − k⃗; τÞu�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ

þ
Z

t2

t1

dτ
e−iΩp1

ðτ−t1Þ

2Ωp1

eiΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; τÞuinðP⃗ − k⃗; τÞu�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ

þ
Z

∞

t2

dτ
e−iΩp1

ðτ−t1Þ

2Ωp1

e−iΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; τÞuinðP⃗ − k⃗; τÞu�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ
�
þ ðp⃗1 ↔ p⃗2Þ; ðA5Þ

L2 þ L0
2 ¼ 2 ×

ig2

2

Z
d3k⃗
ð2πÞ3

�Z
t0

tin

dτ
e−2iω0kðτ−t0Þ

2ω0k

e−iΩp1
ðτ−t1Þ

2Ωp1

e−iΩp2
ðτ−t2Þ

2Ωp2

u�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ

þ
Z

t∞

t0

dτ
e−iΩp1

ðτ−t1Þ

2Ωp1

e−iΩp2
ðτ−t2Þ

2Ωp2

uinðk⃗; τÞuinðP⃗ − k⃗; τÞu�inðk⃗; tÞu�inðP⃗ − k⃗; tÞ
�
þ ðp⃗1 ↔ p⃗2Þ: ðA6Þ

For both case 1 and case 2, the total contribution to the
correlation function is obtained after summing up
L1 þ L0

1 þ L2 þ L0
2. Eqs. (A3)–(A6) are further simplified

by appropriately substituting for uin, u�in using Eq. (3.7)

and by working in a large-k⃗ limit which implies:
ðP⃗ − k⃗Þ2 þm2 ≈ k⃗2 þm2. Subsequently, the integration
over τ can be done using computational tools such as
Mathematica [32]. After the integration, the result can be

further filtered by keeping only the leading and sublead-
ing powers of k⃗ in the numerator as well as the denom-
inator. Finally, ignoring all terms except the ones of
the order 1=jk⃗j3, we can identify four-point correlation
functions of χ along with their time-dependent
coefficients. This procedure ultimately leads to the con-
tents of Eqs. (3.11) and (3.20) for case 1 and case 2
respectively.
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APPENDIX B: SERIES EXPANSION OF THE
KERNELS FOR SMALL MASS QUENCH

Expansion of the postquench mass of the ϕ field (m)
around the prequench mass (m0) as m ¼ m0 þ δm, assum-
ing a small δm, leads to the following relation between ωk
and ω0k:

ωk ¼ ω0k þ δωk with δωk ¼
m0

ω0k
δm:

Based on this, the kernels K1 and c3, defined in
Eqs. (3.17) and (3.18), respectively, can also be expanded,
up to linear order in δm as:

K1ðt− tin; tin− t0Þ¼
g2

4

Z
d3k⃗
ð2πÞ3

cos2ω0kðt− tinÞ
ω3
0k

−
g2m0

4
δm

�
3

Z
d3k⃗
ð2πÞ3

cos2ω0kðt− tinÞ
ω5
0k

þ2

Z
d3k⃗
ð2πÞ3 ðt− tinÞ

sin2ω0kðt− tinÞ
ω4
0k

�

¼ g2

32π
G2;0

1;3ðz2j; 3=20;0;1=2Þ−
g2δm
32πm0

�
3G2;0

1;3ðz2j; 5=21;0;1=2Þ− z
d
dz

½G2;0
1;3ðz2j; 5=21;0;1=2Þ�

�
; ðB1Þ

c3ðt; t0Þ ¼ −
g2

4

Z
d3k⃗
ð2πÞ3

1

ω3
0k

þ 3m0g2

4

Z
d3k⃗
ð2πÞ3

1

ω5
0k

δm

¼ −
g2

8π2

2
64− Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þm2
0

p þ log

�
Λ
m0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2
0

s �375þ g2

8π2m0

δm; ðB2Þ

where, z ¼ m0ðt − tinÞ, withm0 assumed to be a constant and Λ is the UV cutoff. It must be noted that the zeroth order term
is the same as what was reported in [20].
For case 2, the kernels K2 and c03, see Eqs. (3.25) and (3.26), can similarly be expanded:

K2ðt− tin;tin− t0Þ¼
g2

4

Z
d3k⃗
ð2πÞ3

cos2ω0kðt− tinÞ
ω3
0k

−
m0δmg2

4

�Z
d3k⃗
ð2πÞ3

cos2ω0kðt− tinÞ
ω5
0k

þ
Z

d3k⃗
ð2πÞ3 2ðt− t0Þ

sin2ω0kðt− tinÞ
ω4
0k

�

¼ g2

32π
G2;0

1;3ðz2j; 3=20;0;1=2Þ−
δmg2

32πm0

�
G2;0

1;3ðz2j; 5=21;0;1=2Þ−z
d
dz

½G2;0
1;3ðz2j; 5=21;0;1=2Þ�þðtin− t0Þ

d
dz

½G2;0
1;3ðz2j; 5=21;0;1=2Þ�

�
;

ðB3Þ

c03ðt; t0Þ ¼ −
g2

4

Z
d3k⃗
ð2πÞ3

1

ω3
0k

þ 3m0g2

4

Z
d3k⃗
ð2πÞ3

1

ω5
0k

δm

¼ −
g2

8π2

�
−

Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

0

p þ log

�
Λ
m0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2
0

s ��
þ g2

8π2m0

δm: ðB4Þ

The k⃗-integrals within each of these expressions can be rewritten in terms of Meijer-G functions. In Table I, we have listed
the relevant Meijer-G functions and their asymptotic functional forms.

TABLE I. Meijer-G functions corresponding to the integrals present in the Kernel definitions, along with their
asymptotic limits. For the limiting cases, we have only reported the first nonzero term of the series expansion. Here,
z ¼ m0ðt − tinÞ.
Meijer-G function Large z limit Small z-limit

G2;0
1;3ðz2j; 3=20;0;1=2Þ − z−3=2ffiffiffiffi

2π
p ðcos ð2zÞ þ sin ð2zÞÞ − 4

π ð1þ γE þ logðzÞÞ
G2;0

1;3ðz2j; 5=21;0;1=2Þ − z−3=2ffiffiffiffi
2π

p ðcos ð2zÞ þ sin ð2zÞÞ 4
3π

d
dz ½G2;0

1;3ðz2j; 5=21;0;1=2Þ� −2 z−3=2ffiffiffiffi
2π

p ðcos ð2zÞ − sin ð2zÞÞ 16z
π ðγE þ logðzÞÞ
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