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Forrenormalizable theories with asingle coupling constant regularized by higher derivatives we investigate
the coefficients at powers of logarithms present in the renormalization constants assuming that divergences are
removed by minimal subtractions of logarithms. According to this higher-derivatives and minimal-
subtractions-of-logarithms (HD 4 MSL) renormalization prescription, the renormalization constants include
only powers of In A /u, where A and p are the dimensionful regularization parameter and the renormalization
point, respectively. We construct general explicit expressions for arbitrary coefficients at powers of this
logarithm present in the coupling constant renormalization and in the field renormalization constant which
relate them to the #-function and (in the latter case) to the corresponding anomalous dimension. To check the
correctness, we compare the results with the explicit four-loop calculation made earlier for ' =1
supersymmetric quantum electrodynamics and (for the supersymmetric case) rederive a relation between
the renormalization constants following from the Novikov, Shifman, Vainshtein, and Zakharov equation.
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I. INTRODUCTION

Quantum corrections in most field theory models are
divergent in the ultraviolet region. In renormalizable
theories these divergences can be eliminated by redefin-
ing coupling constants, fields, masses, and gauge param-
eters [1]. However, the renormalization procedure admits
a certain degree of arbitrariness. The renormalization
constants are defined ambiguously because they depend
on a regularization and a subtraction scheme. For in-
stance, in the case of using dimensional regularization
[2-5] ultraviolet divergences have the form of & poles,
and one of the simplest renormalization prescriptions (the
minimal subtraction (MS) scheme) is to include only pole
terms into the renormalization constants [6]. It is impor-
tant that various divergent contributions to the renorm-
alization constants are not independent [6]. Namely, the
coefficients at higher ¢ poles in a certain order of the
perturbation theory are determined by the coefficients at
the lower poles in the previous orders. The corresponding
recurrence relations often referred to as the pole equations
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reveal that all coefficients at the higher order poles can
eventually be expressed in terms of the residua of the
simple poles. The latter, in turn, are totally determined by
the renormalization group functions (RGFs), i.e., by the
p-functions and the anomalous dimensions.

The pole equations have also been generalized to
different cases including nonrenormalizable theories
[7-11]. Similar relations can be written for logarithms
in the renormalized Green’s functions [12]. In the case of
using regularizations formulated in D = 4 [13] relations
between various divergences analogous to those following
from the pole equations should also appear, but, to the
best of our knowledge, they have been little studied in
literature. However, in certain situations the use of the
dimensional technique can be inappropriate. For example,
dimensional regularization explicitly breaks supersym-
metry [14], while dimensional reduction [15] in its
mathematically consistent version causes the loss of
supersymmetry in higher orders of perturbation theory
[16—19]. On the other hand, an invariant regularization of
the supersymmetric theories can be constructed with the
help of the higher (covariant) derivative method [20,21].
It can be formulated explicitly in terms of the N =1
superfields [22,23] and in A = 2 harmonic superspace
[24]. For a long time it was believed that the higher
derivative regularization is ill-suited for multiloop
calculations, mainly due to significant complication of
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Feynman rules for vertices. Despite this, a lot of such
calculations (see, e.g., [25-33]) for N’ = 1 supersymmet-
ric gauge theories have been made to date. Moreover, the
higher covariant derivative regularization appeared to be a
very important ingredient of the all-loop perturbative
derivation of the Novikov, Shifman, Vainshtein, and
Zakharov (NSVZ) p-function [34-37] for N' = 1 super-
symmetric gauge theories made in [38—41]. It was shown
[41] that some all-loop NSVZ schemes (i.e., the ones in
which the NSVZ g-function is valid in all orders) in non-
Abelian cases are given by the higher-derivatives and
minimal-subtractions-of-logarithms (HD + MSL) pre-
scription [42]. This means that a theory is regularized
by higher covariant derivatives and a renormalization
procedure is performed with the help of minimal sub-
tractions of logarithms [43,44]. Thus, the HD 4+ MSL
scheme is an obvious analog of the MS scheme in the case
of using the dimensional technique, but instead of ¢ poles
the renormalization constants include only powers of
In A/p, where A is a dimensionful parameter of the higher
derivative regularization and u is a normalization point.
Therefore, it is reasonable to assume that in the HD +
MSL scheme it is possible to write the relations between
the coefficients at powers of In A/u similar to those that
follow from the pole equations. Obtaining these relations
in the HD + MSL scheme from the renormalization group
equations (see, e.g., [1,12]) is the main purpose of this
paper. We are going to investigate them in the context of
both coupling constant and field renormalizations.

The paper is organized as follows. In Sec. II we
describe the renormalization of the coupling constant
and introduce the HD 4+ MSL boundary conditions. The
explicit expressions for the coefficients at powers of
In A/u in the coupling constant renormalization (depend-
ing on the coefficients in the perturbative expansion of the
p-function) are derived in Sec. III. Similar expressions for
the coefficients in the field renormalization are obtained in
Sec. IV. Some examples are considered in Sec. V. In
particular, in Sec. VA we compare the general expressions
for the coefficients with the known results for NV = 1
supersymmetric quantum electrodynamics (SQED) in
the four-loop approximation for the coupling constant
renormalization and in the three-loop approximation for
the matter superfield renormalization. Next, in Sec. VB
we derive the equation relating the renormalizations of
the coupling constant and of the matter superfields
following from the NSVZ equation for N'=1 SQED.
The similar investigation for non-Abelian N = 1 super-
symmetric gauge theories with a single coupling is made
in Sec. V C. In the Appendix we present expressions for
the coefficients at powers of In A/u which appear in the
functions Ina/qy and (a/qy)® (for an arbitrary real
number §), where a and a, are the renormalized and
bare coupling constants, respectively.

II. THE COUPLING CONSTANT
RENORMALIZATION AND THE HD + MSL
PRESCRIPTION

We consider a 4D renormalizable gauge theory with a
single dimensionless coupling constant @ = /47, assum-
ing that all divergences are logarithmical and the higher
derivative method [20,21] is used for the regularization.
This regularization is introduced by adding a term with
higher powers of (covariant) derivatives to the Lagrangian.
As a result, higher powers of momenta appear in the
denominators of the propagators ensuring the (superficial)
ultraviolet convergence of the integrals coming from all
diagrams beyond the one-loop approximation. According
to [45], the remaining one-loop divergences and subdiver-
gences can be regularized by inserting certain Pauli-Villars
determinants into the generating functional. (The form of
the Pauli-Villars determinants in the supersymmetric case
can be found in [46,47].) We always assume that the masses
of the Pauli-Villars fields M; are proportional to the
parameter A present in the higher derivative term, and
the ratios M;/A do not depend on the coupling constant.
This implies that the only independent dimensionful
parameter A is present in the regularized theory.

Divergences appearing in quantum corrections are
absorbed into the renormalization of coupling constant,
fields, and other parameters. In particular, the renormaliza-
tion of the coupling constant is written as

= (1)

where the bare coupling constant is marked by the subscript
0 and Z, = Z,(a,In A/p) is the charge renormalization
constant. The relation between the renormalized and bare
coupling constants can be presented in the form

n—1

11 A A
a:a—0+31,0+31,11n—+za3 1ZBMlnm;, (2)

n=2 m=0

where B, ,, are numerical coefficients. Note that these
coefficients are not uniquely defined due to their depend-
ence on a subtraction scheme. The HD + MSL renormal-
ization prescription [42] can be defined by the boundary
conditions

Zi(ap.InA/p=0) =1, (3)

where Z; denotes all renormalization constants of the
theory under consideration. In particular, from the boun-
dary condition for Z, we obtain

alag, InA/u=0) = a. (4)

This implies that in the HD + MSL scheme

(5)
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FIG. 1.

Similar to the pole equations valid in the MS scheme in
the case of using the dimensional technique, we expect that
the coefficients at higher powers of In A/u are determined
by the ones at the lower powers in the previous orders of
perturbation theory and, eventually, by the coefficients at
In' A/u [12]. For the considered HD + MSL scheme this is
schematically depicted in Fig. 1. The coefficients B, |,
with n > 1 (of the terms containing af In" A/u) correspond
to the leading logarithm approximation and form the main
diagonal. Based on the analogy with the pole equations we
expect that for n > 2 these coefficients can be expressed in
terms of B, ; and By ;. The second diagonal is formed by
the coefficients B, ,, with n > 1 of the terms containing
ag“ In" A/u. For this diagonal the coefficients at higher
powers of In A/ appear to be determined by B3 ;, B; , and
B ;. In the next section we will show how this can be
derived for an arbitrary coefficient of any diagonal and
present the corresponding explicit expressions.

III. COEFFICIENTS IN THE COUPLING
CONSTANT RENORMALIZATION

In this paper we will (standardly) define RGFs in terms
of the renormalized coupling constant. In particular, the
P-function is given by the expression

da(ag, In A/p)

pla) = dIny

: (6)

ap=const

where the derivative is taken at a fixed value of the bare
coupling constant. Note that in the HD 4+ MSL scheme
RGFs defined in terms of the renormalized couplings

The coefficients B, ,, in the coupling constant renormalization [see Eq. (2)] in the HD + MSL scheme. For m > 2 they are not
independent and can be expressed in terms of the coefficients B, ;.

coincide with the ones defined in terms of the bare
couplings after a formal replacement a — ag, see [42]
for details.

Differentiating Eq. (2) with respect to In u and using the
definition (6) we obtain the equation

pla) 4 (1
a2 B dll’l/l a ap=const

0 n—1
A
=B+ Z ap! Z mB,, ,,In"! —. (7)
n=2 m=1 H

Next, we substitute into this equation the standard
perturbative expansion for the f-function

Py =3 pra ®)
n=1

and formally set A = u. Then, taking into account the
boundary condition (4) it is possible to relate the coef-
ficients of the f-function to the coefficients of the series (2)
in the HD + MSL scheme,

ﬂn:Bn,l’ n2z 1. (9)

To express the remaining coefficients B, , with n >
m > 2 in terms of f3,, we substitute the expansion (8) into
the left-hand side of Eq. (7) and differentiate the resulting
equation (p — 1) times (p > 2) with respect to Iny at a
fixed value of the bare coupling constant,
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AP~ k1 © n—1 A
Zﬂkdln/ﬂ - = ; )3 —1)...(m = p +1)0[m — p|B,,,In P;. (10)
Here
0, m<p,
Olm— p| = 11
m-n={} ">} )

is the Heaviside step function, and we took into account that the coefficients £, do not depend on In A/pu. It is convenient to
represent the derivatives in the left-hand side of Eq. (10) using the chain rule,

d
dlinp

da d d & d
=L pla) == w1 L 12
dinp da " ;ﬂ”a da (12)

agp=const

With the help of this equation we obtain

dar- 1 k 1
dln/ﬂ’ T ( Z /}k,; ](ka 1+1 ) ( Z /))k,; 2 kp+1 ) (Z/} a 1+1 a — )’ (13)

kp1=1 kpo—1

where the derivatives with respect to a act on everything that stands to the right of them. After calculating these derivatives
the considered expression can be written as

Al @ ® ®
T S k=1 > (k=1+k)Bi, > (k=1+k +k)By, ...
nu =1 =1 ozl
x Z (k=1+k +ky+ -+ kp_z)ﬂkp_lak—1+k1+k2+-..+kp_1' (14)

kp-1

Next, we set A = p in Eq. (10) and use the HD + MSL boundary condition (4). Then only terms with m = p in the
right-hand side of Eq. (10) survive, so that

= > = oI
ZﬁkZ k=18 Y (k=1+k)B, > (k=1+ki +k)pi,... D (k=1+k+k+-+k,o)p a0
k=2 k=1 k=1 k=1 kp =1
P'Z“W 'B n+p.p* (15)
Equating the coefficients at the same powers of @, in Eq. (15) we obtain the explicit expression for B, , , with n > 1
and p > 2,
n+1
Byipp = (=1)""! Zﬁkz ~1) ﬁklz — 1 k)BY (k=1 4k +k)f,
k=2 kK ks
XY (k=14ki+hky+-+k )b , (16)
k kyt+kyttk,_=n+p—k

p—1

where the sums over the indices k; are taken only over the positive integers satisfying the condition
ky +ky+ -+ k,_y = n+ p— k. Besides, we set the upper limit of summation over k equal to n + 1 since the higher
values obviously do not meet this condition.

For the lowest values of n (corresponding to the main and two subleading diagonals) the coefficients (16) can be
presented in a different form,
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1
Bl+p.p = (_l)p_l;ﬂf 1ﬂ2§

Bz+p,p = (_l)p_l(ﬁlln_lf% + (Hp -

Byipp = (=1)p~! L 1)

p+3 _
+ <—+Hp+1(Hp+1 -2) _Hp+1.2>9[l9 =357 3ﬂ%}v

p+1

where the Heaviside step function is given by Eq. (11), and
the generalized harmonic numbers are defined as

P q
—. 20

For s =1 they correspond to the usual harmonic
numbers H, = H, ;. Some particular values of the gener-
alized harmonic numbers are presented in Table I.

Then, for the lowest coefficients in the second and third
subdiagonals in the coupling constant renormalization
we get

H,,

1
Byr, = —pif3 — Eﬁ%;
3 3
Bs, = —§ﬂ1ﬂ4 - iﬂzﬁy
5
Bss = pif; + gﬁlﬁg;
10 1
B3 = 2p1p4 + ?ﬂlﬁzm + 5@2
3 13 »»
Bg4 = —pips — Eﬂ]ﬂﬁ
5 65 35
By4 = —Eﬂ?ﬂat - Eﬂ%ﬂz% - ﬁmﬁ%- (21)

In the Appendix using the method described in this
section we find the coefficients at powers of InA/u in
the expressions Ina/a, and (a/ay)S (for an arbitrary real
number S). The results are given by Egs. (A10) and (A11),
respectively.

IV. COEFFICIENTS IN THE FIELD
RENORMALIZATION

Similarly, it is possible to find explicit expressions for the
coefficients in the field renormalization constants. Let us
denote such a constant by Z. Then we can present In Z as
the series

A A o0 n A
InZ|alay,In—),In— | = E ol g CppmIn™—. (22)
< < 0 ,Ll> //l) n=1 0m=0 ’ H

(17)
1olp = 2187 F3); (18)

5 {ﬂf‘lm +2(H, = 1)0lp = 257 paps
(19)

The corresponding anomalous dimension is defined
in terms of the renormalized coupling constant by the
equation

dInZ
r(a) = (23)
dln,u ap=const
and has the perturbative expansion
y(@) = raa", (24)
n=1

where the coefficients y, do not contain In A/u. From the
other side, substituting the expression (22) into Eq. (23) we
obtain the anomalous dimension as a function of the bare
coupling constant,

A > n A
vl ala ,ln—>> ==Y a'y mC,, In"'—. (25
(o)) =22 e

Next, we equate Egs. (24) and (25) and repeat the
reasoning of Sec. III. Namely, it is necessary to differentiate
the resulting equation (p — 1) times with respect to In 4, set
u = A, and apply the HD + MSL boundary conditions (3)
and (4). Equating the coefficients of the terms with the
same powers of a; we obtain explicit expressions for the
coefficients C,, ,, in the HD + MSL scheme,

Cn.O =05 Cn,l = ~Vns n>1; (26)
TABLE I. Some lower values of the generalized harmonic
numbers H, .

p

s 1 2 3 4 5 6 7
11 3 u 25 137 49 363

2 6 12 60 20 140
2 1 5 49 205 5269 5369 266681

4 36 144 3600 3600 176400
3 1 9 251 2035 256103 28567 9822481

8

0~
(=)}

1728 216000 24000 8232000
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n+1

1
Coipp= <—1)P;Zyk2kﬁk§j(k +k)BL Y (k+ ki + ko)By, ..
k=1 k

ky

XY (k+ky +ky+ e+ k)P

kp—l

Their structure is very similar to Eq. (16) except for the
presence of the coefficients y, instead of g in the first sum
and slightly different numerical factors. Actually, making
the formal replacement

Yk = —Prs (28)

in the first sum of Eq. (27) one can obtain the coefficient

k3

. nz0,
ki+ky+-+k,_=n+p—k

Using Eq. (27) it is possible to derive explicit expres-
sions for all coefficients in certain diagonals. In particular,
the coefficients corresponding to the main and two sub-
leading diagonals can be presented in the form

-nHr
Cp,p = %ﬂf 17/1; (29)

Cl+p,p = (_l)p(ﬁzl’_IJ/Z + (Hp - 1)9[17 - 2]ﬁ11)_2ﬂ271);

B, 1pp from C, ., . (30)
|
p+1 _ _ p—1
Coripp = (—1)”% {ﬁf ys +0lp -2 ((2Hp+1 = 3)para + ﬁﬁsﬂ)
p+3 _
" <m + HI’+1(H17+1 -2)- Hp+l.2> Olp - 3]ﬂf 3ﬂ%71 } (31)

where the generalized harmonic numbers H , ; are defined by Eq. (20). In particular, from Egs. (30) and (31) we obtain that
the lowest coefficients in the second and third subdiagonals are written as

1
Cso=pira + Eﬂzh;

5
Cy3 = —ﬁ%h - gﬂlﬁzh;

3 1
Cyp = Eﬁﬂz + pays + §ﬁ3712

7 1
Cs3 = —2ﬂ%73 - gﬁlﬂz}’z = BBy — Eﬁ%ﬁ;

13 5 47 3 35
Csa=Pir+ Eﬂ%ﬂzh; Cos = 55?73 + Eﬁ%ﬁz}’z + Eﬂ%ﬂﬁ/l + ﬂﬂlﬂ%yl- (32)
V. EXAMPLES

A. Renormalization of A"=1 SQED with N, flavors

Let us compare the general expressions obtained in the previous sections with the results of explicit multiloop
calculations made for ' =1 SQED with N, flavors regularized by higher derivatives. The three-loop anomalous
dimension of the matter superfields for this theory was found in [25]. After that, the four-loop f-function was constructed
with the help of the NSVZ equation. The results in the HD + MSL scheme are given by the equations

pla) Ny aN; o [Nf A
7:74’7—; 7+(Nf)2 11’16l+1+7
3N, 3 A
+% [2f+ (Ny)? <lna +3+ c> T (Nf)3<(lna +1)? —ZZ+D1 Ina +D2>} + O(a*); (33)
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a ol Ay a1 3
y(a):—;—l—;{i—i—Nf(lna—i-l—f—?)}—;[E—l—Nf(lna—i—Z—i—C)
A
+ (Ns)? <(lna +1)2 - 72 +D,Ina+ D2>] + O(a), (34)

where a, A, A,, C, Dy, and D, are some parameters which depend on a particular version of the higher covariant derivative
regularization. Explicit expressions for them can be found in [25]. For example, a = M /A, where M is the mass of the
Pauli—Villars superfield (needed for removing residual one-loop divergences).

The equations describing the coupling constant and matter superfield renormalizations in the HD 4+ MSL scheme in the
considered case are written as

1 1 Ny A Ny A a3Ns[1, A A A Ni A
—:—+—fln—+a02'fln——a03f “In=+Ns(Ina+1+= In—+ L=
a ay T U 7 H |2 u 2 u 2 u
SN, L. A 3 A A A
O 2 4 N (na+2+C) 2+ (V)2 (na+ 1?2 -22 4 D na+D, ) In=
|2 u ‘ 4 I ‘ 4 U
A A (Np)? A
+ (Ny)? <lna +1 —l——l) In>— + an-% —] + O(ad); (35)
2 U 3 u
A a2l A A A N A
an:@In——a—g “In=+Ns(lna+1+= In—=+ L=
uo w2 p 2 o2 pu
o 1, A 3 A A A
+ﬂ—(3)|:§1H;+Nf(lna+z+c>ln;—f—(Nf)2<(lna+1)2—72+D11HQ+D2>111;
A A (Ng)? SA
+ (Ny)? <lna +1+ 2‘) ln2; + %lﬁ M} +O(a). (36)

From Eqgs. (33)—(36) we obtain that in the HD + MSL scheme the coefficients of the S-function and of the anomalous
dimension are given by the expressions

N
P =B :—f§
/4
N
Pr =By, I—zf;
b4

Ny 1 A
Ps = Bs, = 3 {§+Nf<lna+1+7>};

N, |1 3 A
ﬂ4:B4’1:”—{{§+Nf<lna+Z+C)+(Nf)2<(lna+l)z—f—l—Dllna—l—Dz)]; (37)
rn=-Cu=--;

1 A
}’2——C2]—;|:§+Nf<lna+1+7>:|,

1 3 , . A
]/3:—C3’1:—; §+Nf lna—i—z—i—C +(Nf) (lna—l—l) —I—l—Dllna—i—Dz . (38)

Substituting them into Eq. (16) [or, equivalently, into the relevant equations in (21)] we obtain the expressions for the
coefficients at higher powers of In A/u in the coupling constant renormalization,

(Ny)?
273

1
B, = —E/ﬁ/”z == (39)
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1 (Ny)?
Byr = —pif3 — Eﬂ% = 7;;

A
<lna +1 +7‘); (40)

(Ny)?

1
B4z = 3/”%/32 =34 (41)

The coincidence of these values with the coefficients in
Eq. (35) confirms the correctness of the general equations
presented above.

Similarly, substituting Eqs. (37) and (38) into Eq. (27) or
Eq. (32) we find the coefficients at higher powers of In A/u
in InZ,

Ny

1
CHry=— = —— 42
2,2 2,3171 2 ( )
1 (N;)? A
Cso =piya +5 Py = j; Ina+1+="); (43)
2 b3 2
1 (Ny)?
C3,3 = _§ﬁ%71 = —3”3 . (44)

Again, these values are exactly the same as the coef-
ficients in Eq. (36), so that the general equations derived
earlier really produce the correct result for the theory under
consideration.

B. Constraints on the renormalization constants
following from the NSVZ f-function
for A" =1 SQED with Ny flavors

As another example, we consider N' = 1 SQED with N ¥
flavors and check a relation between the renormalizations
of the coupling constant and of the matter superfields
following from the exact NSVZ f-function [48,49]

pla) _ Ny

(12 T

(1= 7(a)). (45)

According to [42], for the considered theory in the
HD + MSL scheme the NSVZ equation is valid in all
orders, although for an arbitrary renormalization prescrip-
tion this is not in general satisfied. Using Eqgs. (8) and (24)
we see that in the Abelian case due to the NSVZ equation
the S-function in a certain loop is related to the anomalous
dimension in the previous loop,

Ny

Pos1 = - (46)

Vn-

Substituting the expression for y, following from this
equation into Eq. (27) and comparing the result with
Eq. (16) we see that the coefficients at higher powers of
In A/u satisty the constraints

Ny

Byipiip = 7Cn+p.p7 nz0,

p=2.  (47)
Taking into account that By ; = N;/x and using the
HD + MSL boundary conditions (3) and (4) we obtain the

relation

N, A
0= <B]’1 —f) In—
)

(e8] n Nf A
+ Z a(r)l Z (Bn—H,m - 7 Cn,m> In"™ ;
n=1 m=1

(48)

Exactly this equation is obtained after integrating the
NSVZ p-function (45) with respect to Inu, again, taking
into account Egs. (3) and (4). Therefore, Egs. (16) and (27)
have been verified by a nontrivial all-order calculation.

C. Constraints on the renormalization constants
following from the NSVZ fg-function for non-Abelian
N =1 supersymmetric theories

In the non-Abelian case the NSVZ f-function [34-37]
for N’ =1 supersymmetric theories with a simple gauge
group G and the chiral matter superfields in the represen-
tation R is given by the expression'

plad) 3G =TWR) +CR/y/ @A/ o
@ 27(1 — Coa/27) ’
where
tr(TAT?) = T(R)5*;  (TT*)/ = C(R)/:
FACD fBCD = C, 5AB; r=dimG = 4. (50)

According to [41], it is also valid in all-loops in the
HD + MSL scheme. Note that, in general, for non-Abelian
theories RGFs can also depend on Yukawa couplings A/%
abbreviated with A. However, in this paper we consider
theories with a single coupling constant, so that below we
will omit the dependence on A. Then we rewrite the NSVZ
equation in the form

ﬁi_(;) + % (3¢, - T(R)) +ﬁC(R)/y/(a) 0 a

(51)
and substitute the expansions (8) and (24) into it. Equating

the coefficients at the same powers of the coupling constant
a gives the equations

'The NSVZ equations for theories with multiple gauge
couplings can be found in [50].
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1
B = s (3C, = T(R));

C, 1

= — i — > .
:Bn+l 2ﬂ_ﬁn 2xr nz 1 (52)

C(R)ij(7n>ji’

The solution of the recurrence relations (52) is written as

C,\" 1 LG\ .
Puit = (2—;) b —Z—MC<R)/Z<2—;> (ra-s)j’- (53)

k=0

With the help of Eq. (52) and the expressions (16), (27),
and (A10) we obtain the equation relating coefficients in
the expansions of 1/a, Ina/ay, and (In Z)ji,

C, . 1 . ,.
Bn+l+p,p = _ﬂ n+p.p + 2_7”C(R)i](cn+p,p)j ’
n>0, p>1. (54)

Taking into account that By, = —(3C, —T(R))/2n
and using Egs. (2), (22), and (Al) this relation can be
presented as

1 1 1 A 1 . .
e —4+—(3C, = T(R))In=——C(R)/(InZ)
a3y BC = T(R) IS = C(R)(nZ),
C2 a
—In—=0. 55
+277,' nao ( )

It exactly coincides with the equation obtained after
integrating Eq. (51) with respect to Inu and taking into
account the HD + MSL boundary conditions (3) and (4).
This fact can be considered as a very nontrivial correctness
test of the calculations made in this paper.

VI. CONCLUSION

In this paper we present explicit expressions for the
coefficients at powers of In A/ in the renormalization of
the coupling constant and fields for renormalizable theories
with a single coupling in the HD + MSL scheme (assuming
that the corresponding divergences are logarithmical). In
the HD + MSL scheme a theory is regularized by higher
covariant derivatives, and divergences are removed by
minimal subtractions of logarithms, when only (InA/u)*
with k > 1 are included into the renormalization constants.
This subtraction scheme is similar to minimal subtraction
in the case of using the dimensional technique, and the
expressions obtained in this paper [Eqgs. (16) and (27)] are
analogous to the solutions of the pole equations. They
express coefficients at various powers of In A/u in terms of
the coefficients of the f-function and (in the case of the
field renormalization) of the anomalous dimension. As a
test, we have verified that these expressions correctly
reproduce the coefficients in the renormalization of ' = 1
SQED with N/ flavors in the four-loop approximation for
the p-function and in the three-loop approximation for the
anomalous dimension of the matter superfields. Note that

in the HD + MSL scheme RGFs of N' = 1 supersymmetric
theories satisfy the NSVZ relation in all orders [41]. As
was demonstrated in this paper, the relation between the
renormalizations of the coupling constant and of the chiral
matter superfields following from the NSVZ equation can
be constructed with the help of the equations derived in this
paper. Moreover, for various theories these equations can
be used for multiloop calculations as a nontrivial test of
the correctness. Also in the case of using the dimensional
technique with A # u, where A is the dimensionful
regularization parameter, (see, e.g., [51-53]) it would be
interesting to compare the coefficients at powers of 1/¢ and
In A/u. Possibly, the equations obtained in this paper can
be useful for this purpose.
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APPENDIX: THE COEFFICIENTS IN THE
EXPANSIONS OF Ina/ay AND (a/ay)’

Repeating the reasoning of Sec. III in the HD + MSL
scheme it is possible to write the coefficients in the
expressions

[e] n » A
lnaﬁ = Z al Z B, In"— and (Al)
0 n=1 m=1 H
YV =1+ S B m 2 A2
G) =yl o

in terms of f,. Note that the case considered in Sec. III
corresponds to § = —1,
By =B

p=>2. (A3)

n,m»

First, we differentiate the expressions (A1) and (A2) with
respect to In y at a fixed value of the bare coupling constant
a and substitute the perturbative series for the f-function
into the resulting expressions,

d InZ = ) = iﬂka";
=1

dingy oy «

(A4)

: (ﬁ) = (a0) 55857 p(a) = (a0) 5S> pra .
k=1

(AS)
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Then, we differentiate these equations (p — 1) times with respect to Inu and, after that, set y = A,

§ ﬂkdh‘l,up 1 dln,ul’ E ao E Bnmln _' ,A; (A6)
dar- 1 k+S dar 0 n A
) E _ E n (S) 1m
aO) S ﬂk dln p—1 — d]nﬂl’ 8 ao . Bn,mln ;ﬂ:A (A7)

Calculating the derivatives [in the left-hand side for this purpose we use Eq. (14)] gives the equations

0 (cs] 0

ket ky eyt
Zﬂkaﬂkl Z<k+k1>ﬁk22<k+k1+k2>ﬁk3..- STkt ki kot k) T
k=1 ko= k=1 kp1=1
DY B (A8)
n=0
SS B k)8, D (k- SHk B Dkt Stk 4ko)Bre D (kb Stky kot k,0)By ag T
k=1 k=1 k=1 k=1 kpi=1
—1rp!> ai B, (A9)
n=0

Equating the coefficients at the same powers of the coupling constant @, we obtain the required expressions for the
coefficients in Egs. (Al) and (A2),

n+1

Biipy = Zﬁkaﬂklz (k+ k)i, > (k+ ki + ko) .
k3
XY (kA ki Akt k)i ; (A10)
k,,_l k1+k2+--<+kp,|:n+p—k
s n+1
BY),, = P—Zﬁkz (k+ )8 > (k+ S+ k)i, > (k+S+k +k)py, ...
ks k3
XY (k+S+k+h+ k) , (Al1)
k kyt+ky+tk,_=n+p—k

p-1

where n > 0 and p > 1. Certainly, for § = —1 Eq. (A11) gives the expressions (9) for p = 1 and (16) for p > 2. Note that
from Eq. (A11) we obtain

(=1”

S(S+1)...(S+p—1)p, (A12)

so that BS)) =0 for all p > 2.
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