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The relativistic spin-0 matter field is quantized in the background of a straight cosmic string with
nonvanishing transverse size. The most general boundary condition ensuring the impenetrability of the
matter field into the interior of the cosmic string is shown to be the Robin condition with a boundary
parameter varying arbitrarily from point to point of the boundary. The role of the bound states in the
spectrum of solutions to the Fock-Klein-Gordon equation is elucidated. We derive, in the general case, an
analytic expression for the total magnetic flux, which is induced in the vacuum in the cosmic string
background. Further numerical analysis and the requirement of physical plausibility are shown to restrict
ambiguity, which is due to the boundary condition. The dependence of the induced vacuum magnetic flux
on the string flux and tension, as well as on the transverse size of the string, is analyzed.
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I. INTRODUCTION

Considerable attention is always paid to the study of
nonperturbative effects in quantum systems, arising as a
consequence of the interaction of quantized fields with
various configurations of classical fields. Especially inter-
esting is the influence of configurations with nontrivial
topology (domain walls, vortices, monopoles, or, in gen-
eral, topological defects) on the properties of quantum
systems. In the course of spontaneous breaking of a
continuous symmetry, a confined region of the false
vacuum of the appropriate Higgs field forms a locus of
trapped energy, i.e., a topological defect, which can serve as
a background for quantum matter fields. There is a need,
in this regard, to take into account the finite size of a
topological defect and to set up a boundary condition on its
edge. An approach might be to employ a family of the most
general boundary conditions, ensuring the impenetrability
of quantum matter fields into the interior of a topological
defect; in mathematical parlance, this means the condition

of self-adjointness for the appropriate quantum-mechanical
operator of one-particle energy. Then a task is to discover
effects that are induced by the topological defect in the
ground state of the quantum matter system in the general
case, while a further analysis with the requirement of
physical plausibility of obtained results is aimed to restrict
an arbitrariness in the choice of boundary conditions. In
this way, there is a possibility to achieve the unambiguous
determination of the influence of the topological defect on
quantum matter.
In the present paper, a topological defect in the form

of the Abrikosov-Nielsen-Olesen vortex [1,2] is consid-
ered. Such defects are known in cosmology and astrophys-
ics under the name of cosmic strings; they emerge in
the aftermath of phase transitions with spontaneous gauge
symmetry breaking during evolution of the early Universe
[3,4]. Cosmic strings, starting from a random tangle, evolve
into two different sets: the unstable one, which consists of a
variety of string loops decaying by gravitational radiation,
and the stable one, which consists of several long, approx-
imately straight strings spanning the horizon; see, e.g.,
reviews in [5,6]. Although observational bounds predict a
negligible contribution of cosmic strings to large scale
inhomogeneity, such as the angular distribution in the
cosmic microwave background radiation, their evolution
brings distinct astrophysical effects, in particular, they
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produce detectable gravitational waves [7], gamma-ray
bursts [8], and high-energy cosmic rays [9]. The interest
in cosmic strings is augmented by theoretical findings that
they are demanded in the framework of the superstring
theory inspired cosmological models, i.e., the brane-world
models of inflation [10–12]. While the Universe undergoes
phase transitions at energy scales much higher than the
scale of grand unification, such supermassive cosmic
strings can be produced, opening new observational win-
dows; see [13,14].
Vortex-type defects are widely discussed in the context

of condensed matter physics as well; in particular, they
can be viewed as disclinations in nanoconical structures.
A development in material science of this century provides
a remarkable link between condensed matter and high-
energy physics, which is caused to a large extent by the
experimental discovery of graphene—a two-dimensional
crystalline allotrope formed by a monolayer of carbon
atoms [15,16]. It is well established by now that a sheet
of graphene is always corrugated and covered by ripples
that can be either intrinsic or induced by roughness of a
substrate [17]. A single topological defect (disclination)
warps a sheet of graphene, rolling it into a nanocone, which
is similar to the transverse section of a spatial region out of
a cosmic string; see, e.g., [18–21].
Spin-0 quantized fields in various aspects are a subject

of study in cosmology and astrophysics. They are present
in all unified field theory models, appearing as possible
types of matter, in particular, as dilatons and inflatons in
the early Universe, as candidates to describe dark matter,
and as possible Bose-Einstein condensates. Our purpose
is to study the influence of a vortex-type defect on the
ground state of the surrounding quantum relativistic
bosonic (scalar or pseudoscalar) matter. The induced
ground state magnetic flux will be found, and its
dependence on the gauge flux and the string tension,
as well as on the defect size and the choice of boundary
conditions, will be analyzed. We show that the boundary
conditions allowing for the existence of bound states are
incompatible with the physically plausible behavior of
the induced ground state magnetic flux.
In the next section, we define the current and the

magnetic field strength that are induced by a cosmic string
in the vacuum of quantum relativistic bosonic matter. In
Sec. III, we determine the most general boundary condition
ensuring the impossibility for matter to penetrate through
the edge of the string core and display an appearance of
bound states in addition to continuum ones. The analytic
expression for the induced vacuum magnetic flux in the
general case is derived in Sec. IV. In Sec. V, the numerical
study of the analytic expression is carried out, and we show
that the range of the boundary parameter values is restricted
by requiring the physically plausible behavior for the flux.
Finally, the results are summarized and discussed in
Sec. VI. The details of derivation of the asymptotics of

the flux at small values of the transverse size of the string
are given in the Appendix.

II. DEFINITIONS AND PRELIMINARIES

The operator of the second-quantized relativistic spin-0
field in a static (ultrastatic) background is presented as

Ψ̂ðx; tÞ ¼
XZ
λ

1ffiffiffiffiffiffiffiffi
2Eλ

p ½e−iEλtψλðxÞâλ þ eiEλtψ�
λðxÞb̂†λ �; ð1Þ

where natural units ℏ ¼ c ¼ 1 are used, â†λ and âλ (b̂†λ
and b̂λ) are the spin-0 particle (antiparticle) creation and
destruction operators satisfying commutation relations

½âλ; â†λ0 �− ¼ ½b̂λ; b̂†λ0 �− ¼ hλjλ0i; ð2Þ

and λ is the set of parameters (quantum numbers) speci-
fying the state; wave functions ψλðxÞ form a complete set
of solutions to the stationary Fock-Klein-Gordon equation,

½−∇2 þm2 þ ξRðxÞ�ψλðxÞ ¼ E2
λψλðxÞ; ð3Þ

∇ is the covariant derivative involving the bundle con-
nection, RðxÞ is the curvature scalar, Eλ > 0 is the energy
of the state, and symbol

PR
λ

in (1) denotes summation over

discrete and integration (with a certain measure) over
continuous values of λ. The current that is induced in
the vacuum is defined through the vacuum expectation
value of the anticommutator of the field operators,

jðxÞ≡ 1

2i
hvacjf½Ψ̂†ðx; tÞ;∇Ψ̂ðx; tÞ�þ

− ½∇Ψ̂†ðx; tÞ; Ψ̂ðx; tÞ�þgjvaci

¼ −i
XZ
λ

ð2EλÞ−1fψ�
λðxÞ½∇ψλðxÞ� − ½∇ψλðxÞ��ψλðxÞg;

ð4Þ

where the vacuum is conventionally defined by relation

âλjvaci ¼ b̂λjvaci ¼ 0: ð5Þ

A straight, infinitely long cosmic string in its rest frame
is characterized by two parameters, the gauge flux

Φ ¼
Z
core

dσ · ∂ × VðxÞ ð6Þ

and tension (or linear density of mass)

M ¼ 1

16πĢ

Z
core

dσ RðxÞ: ð7Þ
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Here, VðxÞ is the vector potential of the gauge field
corresponding to the spontaneously broken gauge sym-
metry, Ģ is the gravitational constant, and the integration is
over the transverse section of the string core. Without loss
of generality, the string core is assumed to have the form of
a tube of radius r0. A tube in three-dimensional space can
be obviously generalized to a (d − 2) tube in d-dimensional
space by adding extra d − 3 dimensions as longitudinal
ones. Space outside the string core is locally flat (R ¼ 0)
but non-Euclidean, with squared length element

ds2 ¼ dr2 þ ð1 − 4ĢMÞ2r2dφþ dz2d−2; ð8Þ

where r and φ are the polar coordinates on a surface that is
transverse to the string, and zd−2 are the Cartesian coor-
dinates in the longitudinal directions. Such a space can be
denoted as a conical one, since its transverse section is
isometric to the surface of a cone with the deficit angle equal
to 8πĢM. In general, the values of the deficit angle are
bounded from above by 2π, whereas they are unbounded
from below (surplus angle can be arbitrarily large),

−∞ < 8πĢM < 2π: ð9Þ

If we return to real cosmic strings in three-dimensional
space, then the tension (and, consequently, the deficit angle)
surely has to be non-negative; moreover, the observation of
discontinuities in the cosmic microwave background radi-
ation imposes the stringent upper bound M ≲ 10−7Ģ−1 (see
[22]). However, negative values of M and corresponding

saddlelike conical spaces, as well as positive values ofM up
to ð4ĢÞ−1, can be of some physical interest. Various nano-
conical structures arise in a diverse set of condensed
matter systems known as the Dirac materials, ranging from
honeycomb crystalline allotropes (graphene [16], silicene,
germanene [23], and phosphorene [24]) to high-temperature
cuprate superconductors [25] and topological insulators [26];
in particular, a saddlelike conical space effectively emerges
due to a radial disgyration in the A phase of superfluid He3;
see [27].
Matter is assumed to interact with a cosmic string in

the minimal way; i.e., the covariant derivative takes form
∇ ¼ ∂ − iẽV þ i

2
ω, where ẽ is the appropriate coupling

constant and ω is the affine connection. In the gauge with
the only one nonvanishing component,

Vφ ¼ Φ
2π

; ð10Þ

the Laplace-Beltrami operator takes the form

∇2 ¼ r−1
∂

∂r
r
∂

∂r
þ ð1 − 4ĢMÞ−2r−2

�
∂

∂φ
−
iẽΦ
2π

�
2

þ
�

∂

∂zd−2

�
2

; ð11Þ

and we obtain the following expression for a general
solution to (3), describing a state belonging to the con-
tinuous spectrum:

ψknpðxÞ ¼ ð2πÞð1−dÞ=2eip·zd−2einφð1 − 4ĢMÞ−1=2
× ½sinðμnÞJjn−ẽΦ=ð2πÞj=ð1−4ĢMÞðkrÞ þ cosðμnÞY jn−ẽΦ=ð2πÞj=ð1−4ĢMÞðkrÞ�; ð12Þ

where 0 < k < ∞, −∞ < pj < ∞ (j ¼ 1; d − 2), E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2 þm2

p
, n ∈ Z (Z is the set of integer numbers), and JρðuÞ

and YρðuÞ are the Bessel functions of order ρ of the first and second kinds. Parameter μn has to be determined from the
boundary condition at r ¼ r0; see the next section. In the case of a vanishing transverse size of the string, relation

μnjr0¼0 ¼ π=2 ð13Þ
is assumed, then the wave function in this case is regular at r ¼ 0, obeying orthonormality condition

Z
ddx

ffiffiffi
g

p
ψ�
knpðxÞjr0¼0ψk0n0p0 ðxÞjr0¼0 ¼

δðk − k0Þ
k

δn;n0δ
d−2ðp − p0Þ: ð14Þ

Substituting (12) into (4), we obtain the induced vacuum current due to the contribution of the continuous spectrum, and
this part possesses an angular component as the only nonvanishing one,

jðCSÞφ ðrÞ ¼
Z

dd−2p
Z

∞

0

dkkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2 þ k2

p X
n∈Z

�
n −

ẽΦ
2π

�
jψknpðxÞj2: ð15Þ

It is obvious from (12) and (15) that jðCSÞφ ðrÞ is a periodic function of the string flux,Φ (6), with a period equal to 2π=ẽ; i.e.,
it depends on quantity
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F ¼ ẽΦ
2π

−
��

ẽΦ
2π

��
; 0 ≤ F < 1 ð16Þ

and not on ½½ẽΦ
2π ��, where ½½u�� denotes the integer part of

quantity u. Such a periodicity certainly is a manifestation

of the renowned Aharonov-Bohm effect [28,29]. Defining
quantity

ν ¼ ð1 − 4ĢMÞ−1 ð17Þ
and inserting (12) into (15), we rewrite the latter as

jðCSÞφ ðrÞ ¼ ð2πÞ1−d
Z

dd−2p
Z∞

0

dkkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2 þ k2

p X
n∈Z

νðn − FÞ½sin2ðμnÞJ2νjn−FjðkrÞ

þ sinð2μnÞJνjn−FjðkrÞYνjn−FjðkrÞ þ cos2ðμnÞY2
νjn−FjðkrÞ�: ð18Þ

If the angular component of the induced vacuum current
is the only nonvanishing one, then the magnetic field
strength in the longitudinal directions, B3…d

I ðrÞ, is also
induced in the vacuum, as a consequence of the Maxwell
equation,

r
ν

∂

∂r
B3…d
I ðrÞ ¼ −ejφðrÞ; ð19Þ

where e is the electromagnetic coupling constant that, in
general, differs from ẽ. The total flux of the induced
vacuum magnetic field is then given by expression

ΦI ¼ ν−1
Z2π

0

dφ
Z∞

r0

dr rB3…d
I ðrÞ: ð20Þ

Induced vacuum current, as well as consequent magnetic
field, in the background of a vortex-type defect attracted
attention several decades ago in view of its anticipated
relevance to the Aharonov-Bohm effect. In the pioneering
study in [30–38], a simplifying unphysical assumption of
the vanishing transverse size (r0 ¼ 0) and tension (M ¼ 0)
of the vortex was employed. It was realized that the total
induced vacuum magnetic flux is finite in the d ¼ 2 case
and infinite in the physically interesting d ¼ 3 case. The
problem of removing the above restriction, i.e., going
over to r0 > 0 and M ≠ 0, was completely solved for
the vacuum of a spin-1=2 quantized matter field in the
d ¼ 2 case [39] and in the d ¼ 3 case [40]. In the present
study, we consider the same problem for the vacuum of a
spin-0 quantized matter field in the d ≥ 2 case.

III. SELF-ADJOINTNESS OF THE LAPLACE-
BELTRAMI OPERATOR AND CHOICE OF

BOUNDARY CONDITIONS

Our attention is drawn to the Laplace-Beltrami operator,
because, in the case of relativistic bosonic matter, the
relevant quantum-mechanical operator is that of one-particle
energy squared, see (3). Defining a scalar product as

ðχ̃; χÞ ¼
Z
X

ddx
ffiffiffi
g

p
χ̃�χ; ð21Þ

we get, using integration by parts,

ðχ̃;∇2χÞ ¼ ð∇2χ̃; χÞ þ
Z
∂X

dσ · ½χ̃�ð∇χÞ − ð∇χ̃Þ�χ�; ð22Þ

where ∂X is a hypersurface bounding the d-dimensional
spatial region X. Operator ∇2 is Hermitian (or symmetric in
mathematical parlance),

ðχ̃;∇2χÞ ¼ ð∇2χ̃; χÞ; ð23Þ

if relation

Z
∂X

dσ · ½χ̃�ð∇χÞ − ð∇χ̃Þ�χ� ¼ 0 ð24Þ

holds. The latter can be satisfied in various ways by
imposing different boundary conditions for χ and χ̃.
However, among the whole variety, there may exist a
possibility that a boundary condition for χ̃ is the same as
that for χ; then operator ∇2 is self-adjoint. The action of a
self-adjoint operator on functions of its domain of definition
results in functions of the same domain only, and, therefore,
a multiple action and functions of such an operator can be
consistently defined. The spectral theorem (see, e.g., [41]) is
valid for self-adjoint operators only, and this allows one to
construct unitary exponents of them; see also [42].
In the case of a connected boundary, condition (24)

implies

n · ½χ̃�ð∇χÞ − ð∇χ̃Þ�χ�jx∈∂X ¼ 0; ð25Þ

where n is the unit normal to boundary ∂X. Defining

χ� ¼ n · ∇χ � i
n · x

χ; χ̃� ¼ n · ∇χ̃ � i
n · x

χ̃; ð26Þ
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we rewrite (25) as

i
2
n · xðχ̃�þχþ − χ̃�−χ−Þjx∈∂X ¼ 0: ð27Þ

The latter condition is satisfied by imposing linear
conditions

ðχ−−ΞχþÞjx∈∂X¼0; ðχ̃−−Ξχ̃þÞjx∈∂X¼0; jΞj2¼1:

ð28Þ

Using parametrization Ξ ¼ e2iθ, we rewrite (28) as1

��
cos θ
n · x

þ sin θ n · ∇
�
χ

�����
x∈∂X

¼ 0;

��
cos θ
n · x

þ sin θ n · ∇
�
χ̃

�����
x∈∂X

¼ 0: ð29Þ

One can recognize that (29) is actually the Robin boundary
condition, with θ ¼ 0 corresponding to the Dirichlet con-
dition (perfect reflectivity of the boundary) and θ ¼ �π=2
corresponding to the Neumann condition (absolute rigidity
of the boundary). The condition is periodic in the value of θ
with the period equal to π, and the range of θ can be
restricted to −π=2 ≤ θ < π=2.
Parameter θ can be regarded as the self-adjoint extension

parameter. It should be emphasized that the values of this
parameter may, in general, vary from point to point on
the boundary. In this respect the “number” of self-adjoint
extension parameters is infinite; moreover, it is not count-
able but is of power of a continuum. This distinguishes the
case of an extended boundary from the case of an excluded
point, when the number of self-adjoint extension param-
eters is finite, being equal to n2 for the deficiency index
equal to ðn; nÞ; see, e.g., [42]. Defining the quantum-
mechanical current of matter as

JλðxÞ ¼ −ifψ�
λðxÞ½∇ψλðxÞ� − ½∇ψλðxÞ��ψλðxÞg; ð30Þ

we note that imposing the self-adjoint extension condition
(29) on ψλ results in the vanishing of the normal component
of the current at the boundary,

n · JλðxÞjx∈∂X ¼ 0: ð31Þ

Thus, the Robin boundary condition with the position-
dependent boundary parameter is the most general one
ensuring the impenetrability of a connected boundary for a
spin-0 matter field. It should be noted that, in the case of a
disconnected two-component boundary, the requirement of

self-adjointness allows for a penetrable boundary, but
the influx of quantum matter through one boundary
component has to be equal to its outflux through another
one; see [43,44].
In the case of a cosmic string, the boundary condition

takes form2

��
cos θ þ sin θ

r∂
∂r

�
χ

�����
r¼r0

¼ 0;

��
cos θ þ sin θ

r∂
∂r

�
χ̃

�����
r¼r0

¼ 0: ð32Þ

Imposing this condition on wave function (12), we deter-
mine parameter μn as

tan μn ¼ −
½ðcot θ þ r ∂

∂rÞYνjn−FjðkrÞ�jr¼r0

½ðcot θ þ r ∂

∂rÞJνjn−FjðkrÞ�jr¼r0

: ð33Þ

As was already noted, the values of parameter θ, in general,
depend on φ and zd−2. As a consequence, current (18)
additionally depends on φ and zd−2 via the dependence of
μn (n ∈ Z) on φ and zd−2. To be more precise, we assume
the following ansatz for a solution to the stationary Fock-
Klein-Gordon equation in the cosmic string background:

ψknpðxÞ ¼ ð2πÞð1−dÞ=2eip·zd−2einφfnðkrÞ; ð34Þ

where function fnðkrÞ is the solution to equation

�
−
1

r
∂

∂r
r
∂

∂r
þ ν2

r2
ðn − FÞ2 − k2

�
fnðkrÞ ¼ 0 ð35Þ

and obeys boundary condition

��
cos θ þ sin θ

r∂
∂r

�
fnðkrÞ

�����
r¼r0

¼ 0: ð36Þ

Note also that, by taking the limit of r0 → 0 in (33),
we justify assumption (13).
In the case of minfF; 1 − Fg < ν−1 cot θ < ∞, in addi-

tion to solutions with k > 0, see (12), there are solutions
with k ¼ iκn, where κn is determined by relation

��
cos θ þ sin θ

r∂
∂r

�
Kνjn−FjðκnrÞ

�����
r¼r0

¼ 0; ð37Þ

KρðuÞ is the Macdonald function of order ρ. These
solutions correspond to bound states on a surface that is
transverse to a cosmic string,

1Note that, in the case of a disconnected two-component
boundary, the most general boundary condition depends on four
parameters; see [43].

2The impenetrability of the string core, on the one hand, is a
consequence of the self-adjointness of the quantum-mechanical
operator of energy squared. On the other hand, it is inevitable,
since the vacuum of a spin-0 quantized matter field is not defined
inside the string core.
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ψ ðBSÞ
κnnpðxÞ ¼ ð2πÞð1−dÞ=2eip·zd−2einφ

ffiffiffiffiffi
2ν

p

r0
× ½Kνjn−Fjþ1ðκnr0ÞKνjn−Fj−1ðκnr0Þ − K2

νjn−Fjðκnr0Þ�−1=2Kνjn−FjðκnrÞ: ð38Þ

The dependence of κn on the value of νjn − Fj for fixed values of θ is illustrated in Fig. 1. For fixed values of θ and p,

there is no more than one bound state for each value of n, and their energies, EðBSÞ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2 − κ2n

p
, are in the gap

below the continuum,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2 − ½cot2θ − ν2ðn − FÞ2�r−20

q
< EðBSÞ

n <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
: ð39Þ

Note that, in the limit of a vanishing transverse size of the string, wave function (38) vanishes at νjn − Fj > 1, whereas it is
novanishing at νjn − Fj < 1.3

Avariation of θ with φ can be moderate enough, so that a dependence of κn on φ can be neglected. Then, substituting (38)
into (4), we obtain

jðBSÞφ ðrÞ ¼ 2ð2πÞ1−d
r20

Z
dd−2p

X
n∈Z

νðn − FÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2 − κ2n

p Θðcot θ − νjn − FjÞK2
νjn−FjðκnrÞ

Kνjn−Fjþ1ðκnr0ÞKνjn−Fj−1ðκnr0Þ − K2
νjn−Fjðκnr0Þ

; ð40Þ

where

ΘðuÞ ¼
�
1; u > 0

0; u < 0

	

is the step function. Thus, the induced vacuum current in
the cosmic string background is

jφðrÞ ¼ jðCSÞφ ðrÞ þ jðBSÞφ ðrÞ; ð41Þ

with jðCSÞφ and jðBSÞφ given by (18) and (40), respectively. It
should be noted that the integral in (40), as well as that in
(18), is divergent at jpj → ∞ (logarithmically at d ¼ 3 and
as a power at d > 3). However, we shall show that these
divergences cancel each other in the sum in (41). Note also
that a variation of θ with zd−2 can be moderate enough,
so that a violation of translational invariance along the
longitudinal directions can be regarded as negligible. Then
the induced vacuum magnetic field strength is in the
longitudinal directions, as is given by (19).

IV. INDUCED VACUUM MAGNETIC FLUX:
ANALYTIC EXPRESSIONS

We present induced vacuum current jφðrÞ (41) as

jφðrÞ ¼ jðaÞφ ðrÞ þ jðbÞφ ðrÞ; ð42Þ
where

jðaÞφ ðrÞ ¼ ð2πÞ1−d
Z

dd−2p

×
Z∞

0

dkkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2 þ k2

p X
n∈Z

νðn − FÞJ2νjn−FjðkrÞ

ð43Þ

3It should be noted that, in the case of an infinitely thin string,
the requirement of self-adjointness of the Laplace-Beltrami
operator allows for regular and irregular square integrable at
r ¼ 0 modes. The deficiency index can be (n, n) with
n ¼ 0; 1; 2;…, depending on the values of ν and F. In particular,
it is (2, 2) for ν ¼ 1; see, e.g., [45,46].

0 1 2 3 4 5

1

2

3

4

FIG. 1. The value of the root of Eq. (37) as a function of
νjn − Fj: curves from top to bottom correspond to θ ¼ π=16;
π=8; π=4; 3π=8.
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and

jðbÞφ ðrÞ ¼ ð2πÞ1−d
Z

dd−2p
Z∞

0

dkkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2 þ k2

p X
n∈Z

νðn − FÞ

× fcos2ðμnÞ½Y2
νjn−FjðkrÞ − J2νjn−FjðkrÞ� þ sinð2μnÞJνjn−FjðkrÞYνjn−FjðkrÞg þ jðBSÞφ ðrÞ: ð44Þ

The Bessel functions JρðuÞ and YρðuÞ in (43) and (44) are expressed through the modified Bessel function IρðuÞ and the
Macdonald function KρðuÞ, and the integration is extended to negative values of k as well, −∞ < k < ∞; see [47]. Such an

integral can be regarded as the integral over the real axis in the complex k plane. In the case of jðaÞφ ðrÞ (43), the integrand as a
function of the complex k variable possesses branching points at k ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and the integration path over the real

axis is continuously deformed to envelope a cut on the imaginary axis from i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
to i∞. In this way, we get

jðaÞφ ðrÞ ¼ 4

ð2πÞd
Z

dd−2p
Z∞

mjpj

dq qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

jpj
q X

n∈Z
νðn − FÞIνjn−FjðqrÞKνjn−FjðqrÞ;

mjpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
: ð45Þ

Using relation (see [48])

IρðuÞKρðuÞ ¼
1

2

Z∞

0

dy
y
exp

�
−
u2

2y
− y

�
IρðyÞ

and the Schläfli contour representation for IρðyÞ, one can perform the summation over n and then perform the integrations.
The final result,

jðaÞφ ðrÞ ¼ −
8

ð4πÞðdþ1Þ=2
mðdþ1Þ=2

rðd−3Þ=2

�
1

2π

Z∞

0

duKðdþ1Þ=2½2mr coshðu=2Þ�

×
sinhðu=2Þ

½coshðu=2Þ�ðd−1Þ=2
sinðνFπÞ sinh½νð1 − FÞu� − sin½νð1 − FÞπ� sinhðνFuÞ

coshðνuÞ − cosðνπÞ

þ 1

ν

X½½ν=2��
l¼1

Kðdþ1Þ=2½2mr sinðlπ=νÞ� cosðlπ=νÞ
½sinðlπ=νÞ�ðd−1Þ=2 sinð2FlπÞ

	
; ð46Þ

was obtained in [49] for the case of 0 < ν ≤ 2, while additional terms appearing at ν > 2 were obtained in [50]. Further,
we get

B3…dðaÞ
I ðrÞ ¼ eν

Z∞

r

dr0

r0
jðaÞφ ðr0Þ ¼ −

4eν

ð4πÞðdþ1Þ=2

�
m
r

�ðd−1Þ=2� 1

2π

Z∞

0

duKðd−1Þ=2½2mr coshðu=2Þ� sinhðu=2Þ
½coshðu=2Þ�ðdþ1Þ=2

×
sinðνFπÞ sinh½νð1 − FÞu� − sin½νð1 − FÞπ� sinhðνFuÞ

coshðνuÞ − cosðνπÞ

þ 1

ν

X½½ν=2��
l¼1

Kðd−1Þ=2½2mr sinðlπ=νÞ� cosðlπ=νÞ
½sinðlπ=νÞ�ðdþ1Þ=2 sinð2FlπÞ

	
ð47Þ

and
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ΦðaÞ
I ¼ 2π

ν

Z∞

r0

dr rB3…dðaÞ
I ðrÞ ¼ −

e

ð4πÞðd−1Þ=2
�
m
r0

�ðd−3Þ=2� 1

2π

Z∞

0

duKðd−3Þ=2½2mr0 coshðu=2Þ�
sinhðu=2Þ

½coshðu=2Þ�ðdþ3Þ=2

×
sinðνFπÞ sinh½νð1 − FÞu� − sin½νð1 − FÞπ� sinhðνFuÞ

coshðνuÞ − cosðνπÞ

þ 1

ν

X½½ν=2��
l¼1

Kðd−3Þ=2½2mr0 sinðlπ=νÞ�
cosðlπ=νÞ

½sinðlπ=νÞ�ðdþ3Þ=2 sinð2FlπÞ
	
: ð48Þ

In the case of the vanishing string tension ν ¼ 1, the results for jðaÞφ ðrÞ and B3…dðaÞ
I ðrÞwere obtained more than two decades

ago, see [37,38],

jðaÞφ ðrÞ
���
ν¼1

¼ 32 sinðFπÞ
ð4πÞðdþ3Þ=2

mðdþ1Þ=2

rðd−3Þ=2

Z∞

1

dv

vðdþ1Þ=2 Kðdþ1Þ=2ð2mrvÞ sinh½ð2F − 1ÞarccoshðvÞ� ð49Þ

and

B3…dðaÞ
I ðrÞ

���
ν¼1

¼ 16e sinðFπÞ
ð4πÞðdþ3Þ=2

�
m
r

�ðd−1Þ=2 Z∞

1

dv

vðdþ3Þ=2 Kðd−1Þ=2ð2mrvÞ sinh½ð2F − 1ÞarccoshðvÞ�; ð50Þ

whereas the flux is given by expression

ΦðaÞ
I

���
ν¼1

¼ 4e sinðFπÞ
ð4πÞðdþ1Þ=2

�
m
r0

�ðd−3Þ=2 Z∞

1

dv

vðdþ5Þ=2 Kðd−3Þ=2ð2mr0vÞ sinh½ð2F − 1ÞarccoshðvÞ�: ð51Þ

For generic ν, we find out that flux ΦðaÞ
I (48) in the limit of a vanishing transverse size of the string is finite in the d ¼ 2

case only, while otherwise a divergence occurs,

lim
r0→0

ΦðaÞ
I jd¼2 ¼

e
4m

I3ðF; νÞ; ð52Þ

ΦðaÞ
I jd¼3 ¼

r0→0

e
4π

½− lnðmr0Þ�I3ðF; νÞ; ð53Þ

and

ΦðaÞ
I jd>3 ¼

r0→0

eΓðd−3
2
Þ

2ð4πÞðd−1Þ=2 r
3−d
0 IdðF; νÞ; ð54Þ

where

IdðF; νÞ ¼ −
1

2π

Z∞

0

du
sinhðu=2Þ

½coshðu=2Þ�d
sinðνFπÞ sinh½νð1 − FÞu� − sin½νð1 − FÞπ� sinhðνFuÞ

coshðνuÞ − cosðνπÞ −
1

ν

X½½ν=2��
l¼1

cosðlπ=νÞ
½sinðlπ=νÞ�d sinð2FlπÞ;

ð55Þ

and ΓðuÞ is the Euler gamma function. The integration and summation in (55) can be performed in the case of the odd d
values; see the Appendix. In particular, we obtain
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lim
r0→0

ΦðaÞ
I

���
d¼2

¼ e
6m

�
F −

1

2

�
Fð1 − FÞν2; ð56Þ

ΦðaÞ
I

���
d¼3

¼
r0→0

e
6π

½− lnðmr0Þ�
�
F −

1

2

�
Fð1 − FÞν2; ð57Þ

ΦðaÞ
I

���
d¼5

¼
r0→0

e
12ð2πÞ2 r

−2
0

�
F −

1

2

�
Fð1 − FÞν2

�
1

3
þ 1

5

�
1

3
þ Fð1 − FÞ

�
ν2
	
; ð58Þ

ΦðaÞ
I

���
d¼7

¼
r0→0

e
180ð2πÞ3 r

−4
0

�
F −

1

2

�
Fð1 − FÞν2

�
4

3
þ
�
1

3
þ Fð1 − FÞ

�
ν2 þ 1

7

�
1

3
þ Fð1 − FÞ þ F2ð1 − FÞ2

�
ν4
	
; ð59Þ

ΦðaÞ
I

���
d¼9

¼
r0→0

e
810ð2πÞ4 r

−6
0

�
F −

1

2

�
Fð1 − FÞν2

�
4þ 49

15

�
1

3
þ Fð1 − FÞ

�
ν2

þ 2

3

�
1

3
þ Fð1 − FÞ þ F2ð1 − FÞ2

�
ν4 þ 1

15

�
1

3
þ Fð1 − FÞ þ 10

9
F2ð1 − FÞ2 þ 5

9
F3ð1 − FÞ3

�
ν6
	
; ð60Þ

and so on; note the positive definiteness of all terms in curly brackets in (58)–(60). Note also that (55) can be calculated
exactly for all d values in the case of a vanishing string tension, see [51],

IdðF; 1Þ ¼
sinðFπÞ
2

ffiffiffi
π

p
�
F −

1

2

�
Γðd−1

2
þ FÞΓðdþ1

2
− FÞ

Γðd
2
þ 1ÞΓðdþ1

2
Þ : ð61Þ

Turning now to the θ-dependent piece of the induced vacuum current, see jðbÞφ ðrÞ (44), the integral over k is transformed
into the integral over a contour enveloping the upper imaginary semiaxis on the complex k plane. In this way, we get

jðbÞφ ðrÞ ¼ 8

ð2πÞdþ1

Z
dd−2p

X
n∈Z

νðn − FÞ
X
�

�Zmjpj

0

dq qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

jpj − q2
q e∓iνjn−Fjπ

�
cos2ðμnÞjk¼�iq �

i
2
sinð2μnÞjk¼�iq

�
K2

νjn−FjðqrÞ

þ
Z∞

mjpj

dq qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

jpj
q e∓iνjn−Fjπ

�
�icos2ðμnÞjk¼�iq −

1

2
sinð2μnÞjk¼�iq

�
K2

νjn−FjðqrÞ
	
þ jðBSÞφ ðrÞ; mjpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
:

ð62Þ

In view of relation

X
�
e∓iνjn−Fjπ

�
cos2ðμnÞjk¼�iq �

i
2
sinð2μnÞjk¼�iq

�
¼ −

π2

κnr20

Θðcot θ − νjn − FjÞδðq − κnÞ
Kνjn−Fjþ1ðκnr0ÞKνjn−Fj−1ðκnr0Þ − K2

νjn−Fjðκnr0Þ
; ð63Þ

the contribution of the integral over q from 0 to mjpj cancels j
ðBSÞ
φ ðrÞ (40). Using relation

X
�
e∓iνjn−Fjπ

�
�icos2ðμnÞjk¼�iq −

1

2
sinð2μnÞjk¼�iq

�
¼ −πCνjn−Fjðθ; qr0Þ; ð64Þ

where

Cρðθ; vÞ ¼
½ðcot θ þ v∂vÞIρðvÞ�
½ðcot θ þ v∂vÞKρðvÞ�

; ð65Þ

we obtain the following expression for the remaining piece, after integration over p:
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jðbÞφ ðrÞ ¼ −
8

ð4πÞðdþ1Þ=2
1

Γðd−1
2
Þ
Z∞

m

dq qðq2 −m2Þðd−3Þ=2
X
n∈Z

νðn − FÞCνjn−Fjðθ; qr0ÞK2
νjn−FjðqrÞ; ð66Þ

note that a zero in the denominator of Cρðθ; vÞ (65) is to be treated with the principal value prescription. It should be noted
also that terms with νjn − Fj < 1 in the integrand of jðBSÞφ ðrÞ (40), unlike terms with νjn − Fj > 1, are finite in the limit of a
vanishing transverse size of the string. However, as has been just remarked, they, as well as others, are canceled out, and the
θ-dependent piece of the current, as is clear from (65) and (66), is vanishing in this limit,

lim
r0→0

jðbÞφ ðrÞ ¼ 0: ð67Þ

Further, we get the θ-dependent piece of the induced vacuum magnetic field strength,

B3…dðbÞ
I ðrÞ ¼ eν

Z∞

r

dr0

r0
jðbÞφ ðr0Þ

¼ −
4eν

ð4πÞðdþ1Þ=2
1

Γðd−1
2
Þ
Z∞

m

dq qðq2 −m2Þðd−3Þ=2
X
n∈Z

sgnðn − FÞCνjn−Fjðθ; qr0Þ½K2
νjn−FjðqrÞ þ qrWνjn−FjðqrÞ�;

ð68Þ

where sgnðuÞ ¼ ΘðuÞ − Θð−uÞ is the sign function and

WρðvÞ ¼ KρðvÞ
d
dρ

Kρ−1ðvÞ − Kρ−1ðvÞ
d
dρ

KρðvÞ; ð69Þ

this piece also vanishes in the r0 → 0 limit. Thus, the θ-independent pieces, jðaÞφ ðrÞ (46) and B3…dðaÞ
I ðrÞ (47), can be

regarded as corresponding to the case of an infinitely thin cosmic string.
As to the appropriate flux,

ΦðbÞ
I ¼ 1

ν

Z2π

0

dφ
Z∞

r0

dr rB3…dðbÞ
I ðrÞ; ð70Þ

we obtain the following expression for it:

ΦðbÞ
I ¼ −

2e

ð4πÞðdþ1Þ=2
r3−d0

Γðd−1
2
Þ
Z2π

0

dφ
Z∞

mr0

dv vðv2 −m2r20Þðd−3Þ=2
X
n∈Z

sgnðn − FÞCνjn−Fjðθ; vÞ

× ½νjn − FjKνjn−Fjþ1ðvÞKνjn−Fj−1ðvÞ − ðνjn − Fj þ 1ÞK2
νjn−FjðvÞ − vWνjn−FjðvÞ�: ð71Þ

The total induced vacuum magnetic flux,

ΦI ¼ ΦðaÞ
I þΦðbÞ

I ; ð72Þ

decreases as the transverse size of the string increases, r0 → ∞. Since, as a consequence of (67), ΦðbÞ
I vanishes in the limit

of the vanishing transverse size of the string, the behavior of the total flux in this limit is governed by that of ΦðaÞ
I , and

relations (52)–(54) and, consequently, (56)–(60) are relevant forΦI. In the case of ν−1 cot θ < minfF; 1 − Fg (in particular,
in the cases of Dirichlet and Neumann boundary conditions), the total flux as a function of r0 does not change sign, being
finite for d ¼ 2 and for d > 2, except r0 ¼ 0. In the case of ν−1 cot θ > jn0 − Fj (n0 ∈ Z), the total flux can be rewritten as
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ΦI ¼ −
2e

ð4πÞðdþ1Þ=2
r3−d0

Γðd−1
2
Þ
Z2π

0

dφ
Z∞

mr0

dv vðv2 −m2r20Þðd−3Þ=2
X
n0∈Z

sgnðn0 − FÞΘðcot θ − νjn0 − FjÞCνjn0−Fjðθ; vÞ

× ½νjn0 − FjKνjn0−Fjþ1ðvÞKνjn0−Fj−1ðvÞ − ðνjn0 − Fj þ 1ÞK2
νjn0−FjðvÞ − vWνjn0−FjðvÞ� þ Φ̃I; ð73Þ

where terms with the principal value prescription are explicitly exhibited as a finite sum over n0. Coefficient Cνjn0−Fjðθ; vÞ
changes sign in the vicinity of point vn0 ,

Cνjn0−Fjðθ; vÞjv∼vn0 ¼ −ðv − vn0 Þ−1fvn0 ½Kνjn0−Fjþ1ðvn0 ÞKνjn0−Fj−1ðvn0 Þ − K2
νjn0−Fjðvn0 Þ�g−1; ð74Þ

where vn0 is a root of equation, cf. (37),

��
cos θ þ sin θ

v∂
∂v

�
Kνjn0−FjðvÞ

�����
v¼vn0

¼ 0: ð75Þ

As a consequence of the sign change of Cνjn0−Fjðθ; vÞ, the
total flux in the case of 2 ≤ d ≤ 3, as a function of r0,
becomes infinite at points r0 ¼ m−1vn0 . These peculiarities
will be studied in more detail in the next section. Note that
the peaks at points r0 ¼ m−1vn0 are absent in the case of
d > 3, and thus, in this case, the behavior of terms with a
zero in the denominator in (71) is qualitatively the same as
that of other ones.

V. INDUCED VACUUM MAGNETIC FLUX:
NUMERICAL RESULTS

As is clear from (48) and (71), the induced vacuum
magnetic flux is odd under change F → 1 − F, where F is
defined by (6). In the d ¼ 2 case, neglecting the transverse

size of a cosmic string, one obtains (56) for ΦðaÞ
I and zero

for ΦðbÞ
I ; thus, the maximal absolute value for the flux is

attained at two points that are symmetric with respect to
F ¼ 1=2,

F� ¼ 1

2

�
1� 1ffiffiffi

3
p

�
: ð76Þ
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FIG. 2. Dimensionless induced vacuum magnetic flux at mr0 ¼ 10−2 as a function of F: (a) θ ¼ −π=4, d ¼ 2, (b) θ ¼ −π=4, d ¼ 3,
(c) θ ¼ −π=2, d ¼ 2, (d) θ ¼ −π=2, d ¼ 3. Parameter ν takes values 2, 1, and 1=2 for solid, dash-dotted, and dashed lines,
correspondingly; the values for the case of ν ¼ 1=2 in (a) and (b) are multiplied by 10; vertical lines correspond to F ¼ F�.
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Such a behavior of the flux as a function of F remains
qualitatively the same, when the transverse size of the
string is taken into account, although the position of the
maximum in the flux absolute value is shifted, depending

on r0, ν, and θ. To illustrate this, we display the F
dependence of the dimensionless flux in the d ¼ 2 and
d ¼ 3 cases at r0 ¼ 10−2 m−1 and several values of ν
and θ in Fig. 2.
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FIG. 3. Dimensionless vacuum flux at cot θ ≤ 0, F ¼ Fþ, and d ¼ 2: (a) ν ¼ 1=2, (b) ν ¼ 1, (c) ν ¼ 2. Parameter θ takes values
−π=2, −3π=8, −π=4, −π=8, 0 from top to bottom.
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FIG. 4. Dimensionless vacuum flux at cot θ ≤ 0, F ¼ Fþ, and d ¼ 3: (a) ν ¼ 1=2, (b) ν ¼ 1, (c) ν ¼ 2. Parameter θ takes values
−π=2, −3π=8, −π=4, −π=8, 0 from top to bottom.
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Fixing F ¼ Fþ, let us now consider the behavior of
induced vacuum magnetic flux as a function of the trans-
verse size of the string. Results at cot θ ≤ 0 in the case
of d ¼ 2 and several values of ν are presented in Fig. 3.
As boundary conditions vary from Dirichlet (θ ¼ 0) to
Neumann (θ ¼ −π=2), the flux monotonically increases in
the region of small mr0; note a bend near mr0 ¼ 0 in the
case of θ ¼ −π=2. The region where flux is somewhat
essential increases with the increase of ν. A situation is
qualitatively the same in the case of d ¼ 3, see Fig. 4, with
a distinction that flux diverges at mr0 → 0; see (57). In the
realistic case of ν ≈ 1, the values of e−1ΦI exceeding 10−3

are reached at mr0 < 5 × 10−2 for the Dirichlet condition
and atmr0 < 25 × 10−2 for the Neumann one; note that the
case of ν ¼ 1 was considered for the Dirichlet condition
in [51] and for the Neumann one in [52].
The situation drastically changes at 0 < cot θ < ∞. The

results for flux in the case of d ¼ 2 at several values of θ and
ν are presented in Figs. 5–7. As positive θ decreases starting

from the value of π=2, more and more terms with a zero in
the denominator contribute; see (73). Before integration, as
well as after it, these terms change sign, see (74), at the
points of zeros that are determined by (75). The integration
starts from mr0, and each time, as increasing mr0 passes
point vn0 , the principal value prescription becomes decom-
pensated just to the right of these points, giving rise to
infinite peaks in the integral. As ν decreases, the number
of peaks increases: more values of n0 satisfy inequality
ν−1 cot θ > jn0 − Fj. The situation looks somewhat different
in the case of d ¼ 3, and the appropriate results for flux are
presented in Figs. 8–10. The behavior of integrands con-
taining factors with a zero in the denominator is qualitatively
the same with only the distinction that an overall factor of
ðv2 −m2r20Þ−1=2 is missing in this case. Therefore, a con-
tribution of intervalmr0 < v < vn0 might not be sufficient to
outweigh a contribution of the opposite sign from v > vn0 .
As a consequence, the flux can be of the same sign from both
sides of the infinite peaks at mr0 ¼ vn0 .
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FIG. 5. Dimensionless vacuum flux at 0 < cot θ < ∞, F ¼ Fþ, d ¼ 2, and ν ¼ 2: (a) θ ¼ 3π=8, (b) θ ¼ π=4, (c) θ ¼ π=8, (d) is an
enlarged part of (c).
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To illustrate this, let us consider the case of θ ¼ 3π=8, F ¼ Fþ, and ν ¼ 1, when the sum over n0 in (73) reduces to the
only one term, n0 ¼ 1,

Gdðmr0Þ ¼ emd−3
Z∞

mr0

dv gdðvÞ; ð77Þ

where

gdðvÞ ¼ −
v½v2ðmr0Þ−2 − 1�ðd−3Þ=2

ð4πÞðd−1Þ=2Γðd−1
2
Þ CF−

�
3π

8
; v
�
½F−K1þF−

ðvÞKFþðvÞ − ð1þ F−ÞK2
F−
ðvÞ − vWF−

ðvÞ�: ð78Þ

We display both (78) and (77) at d ¼ 2 and at d ¼ 3 in
Fig. 11. Although the behavior of g2ðvÞ and g3ðvÞ in the
vicinity of v1 is qualitatively the same, the behavior of
integrals G2ðmr0Þ and G3ðmr0Þ differs due to an integrable
divergence of g2ðvÞ at mr0. Note a symmetry with respect

to point v ¼ v1 in the d ¼ 3 case; see Figs. 11(b) and 11(d).
This signifies that relation ðv − v1Þg3ðvÞ ¼ 0.0152 holds
with high precision for interval 0.07 < v < 0.09. Note
also that gdðvÞ at d > 3 is evidently integrable at
v ¼ v1 ¼ mr0.

mr0
0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

(a) (b)

0.5 1.0 1.5 2.0

-2

-1

1

2
(c)

mr0

mr0

0.5

0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.1

0.2

0.3

0.4
m eI/ m eI/

m eI/

FIG. 6. Dimensionless vacuum flux at 0 < cot θ < ∞, F ¼ Fþ, d ¼ 2, and ν ¼ 1: (a) θ ¼ 3π=8, (b) θ ¼ π=4, (c) θ ¼ π=8.
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Returning to the total induced vacuum magnetic flux
in the d ¼ 3 case, see Figs. 4 and 8–10, we note that
the infinite peak of the positive sign to the right of point
mr0 ¼ 0 exists, although it is hardly visible on some plots
due to its narrowness; the numerical calculations start from
the minimal value of mr0 equal to 10−3, and the width of
the peak can be less than this value in some cases.
As to the d ≥ 4 case, the numerical analysis shows that

integrals corresponding to separate terms in the sum over n
in (71) are infinite due to divergence at v → ∞; see, in
particular, (77) at d ≥ 4. However, due to the sign chang-
ing, these divergencies are canceled upon summation of the
whole series.

VI. SUMMARY

In the present paper, we have considered a magnetic field
that is induced by a cosmic string in the ground state of
quantum relativistic bosonic (scalar or pseudoscalar) matter.
The transverse size of the string is taken into account, and

the string is obviously generalized to a (d − 2) tube in
d-dimensional space by adding extra d − 3 dimensions as
longitudinal ones. The most general boundary conditions
ensuring the impenetrability of matter to the interior of
the string is shown to be the Robin condition with one
parameter θ varying arbitrarily from point to point of the
boundary. Provided that the variation of θ is moderate
enough, we find that a current circulating around the string
and a magnetic field strength directed along the string are
induced in the ground state; they decrease exponentially at
large distances from the string. We also find the total induced

ground state magnetic flux, which is given by (72), withΦðaÞ
I

and ΦðbÞ
I given by (48) and (71), respectively. These results

provide a field-theoretical realization of the Aharonov-
Bohm effect [28,29], since they depend on F (16); i.e.,
they depend periodically on gauge flux Φ (6) with period
equal to 2π=ẽ. The ground state characteristics are smooth
continuous functions of F, vanishing at F ¼ 0; 1

2
, and 1, and

being odd under change F → 1 − F. They depend on
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FIG. 7. Dimensionless vacuum flux at 0 < cot θ < ∞, F ¼ Fþ, d ¼ 2, and ν ¼ 1=2: (a) θ ¼ 3π=8, (b) θ ¼ π=4, (c) θ ¼ π=8.
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parameter ν (17), which is related to string tensionM (7); the
range of ν, in general, is 0 < ν < ∞; see (9).
It should be noted that, for 0 < cot θ < ∞, in addition to

the continuum state solutions to the Fock-Klein-Gordon
equation in the cosmic string background, there are
solutions corresponding to bound states on a surface that
is transverse to the string. We show in the process of
calculation of vacuum characteristics that their direct
contribution is canceled; see (62) and (63). However, the
bound states reveal themselves in the manner of a smoking
gun, through zeros in the denominators of coefficients
Cρðθ; vÞ (65), which are to be treated with the principal
value prescription when integrated over v. The appearance
of these zeros results in a thoroughgoing distinction of the
case of 0 < cot θ < ∞ from that of cot θ ≤ 0.
The numerical analysis of the expression for induced

vacuum magnetic flux, obtained in Sec. IV, is carried out in
Sec. V. Restricting ourselves to constant values of θ, we find
that the flux decreases significantly at large values ofmr0. In
the case of cot θ ≤ 0, the flux is of the same sign, as mr0
varies from 0 to∞, see Figs. 3 and 4; it is finite at d ¼ 2 and
diverges logarithmically at d ¼ 3 in the limit ofmr0 → 0. In
contrast to this, the flux in the case of 0 < cot θ < ∞ is a
sign changing function of mr0; see Figs. 5–10. Moreover, it
diverges at points mr0 ¼ vn0 , where vn0 are the above-
mentioned zeros in the denominators; see (74) and (75).
The number of these points is determined by inequality
ν−1 cot θ > jn0 − Fj. The position of the rightmost infinite
peak of the flux is shifted to region mr0 > 1, as ν−1 cot θ
increases; for instance, this happens at π

4
> θ > π

8
in the case

of F ¼ F� [where F� is given by (76)] and 1
2
< ν < 2.

Note that, as is clear from the numerical results, the
minimal absolute values for the induced vacuum magnetic
flux in the cosmic string background are attained with the use
of the Dirichlet boundary condition. Hereof, appealing in
somewhat sense to an analog of the Occam’s razor principle,
we can eliminate thevariety of boundary conditions by giving
preference to that of Dirichlet, as the most plausible one in
view of its minimal effect on the vacuum. However, more
stringent arguments are given below that allow us to restrict
the set of boundary conditions with more definiteness.
The transverse size of a cosmic string is of the order of

correlation length, r0 ∼m−1
H , where mH is the energy scale

of spontaneous symmetry breaking, i.e., the mass of the
appropriate Higgs boson. It looks hardly plausible that a
topological defect (cosmic string) influences surrounding
quantum matter with the matter particle mass m exceeding
the Higgs particle mass mH. For instance, a cosmic string
that is formed at the grand unification scale can polarize
the vacuum of quantum matter in the electroweak model,
whereas a would-be cosmic string corresponding to the
electroweak symmetry breaking has no impact on the
vacuum of quantum matter in the grand unified model.
The more implausible is an enormous influence, i.e.,
infinite peaks in the induced vacuum magnetic flux at

m > mH. This reasoning allows us to exclude the range of
boundary parameters corresponding to 0 < cot θ < ∞ as
that leading to unphysical consequences.
Thus, we are left with the range of boundary parameters

corresponding to cot θ ≤ 0, when the induced vacuum
magnetic flux attains visible values at m ≪ mH; see
Figs. 3 and 4. The effect is minimal for the case of the
Dirichlet condition θ ¼ 0, slightly and monotonically
increasing, as the boundary parameter gradually evolves
in value to the Neumann condition θ ¼ −π=2. This result
has to be compared with that for the case of magnetic field
that is induced by a cosmic string in the vacuum of quantum
relativistic fermionic matter; see [39,40]. In the latter case,
the most general boundary condition involves one at d ¼ 2
[39] and four at d ¼ 3 [40] parameters varying arbitrarily
from point to point of the boundary, and the requirement of
finiteness for the induced vacuum magnetic flux removes
completely the ambiguity in the choice of boundary
conditions. We conclude that the impact of a topological
defect (cosmic string) on quantum matter differs signifi-
cantly for bosons and fermions. If bosons and fermions are
assigned to a representation of a supersymmetry group,
then this supersymmetry is violated by the vacuum effects
in the cosmic string background.
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APPENDIX: CASE OF A THIN COSMIC STRING

Only the pieces with superscript (a) are relevant for this

case. Starting from jðaÞφ ðrÞ (45), we recall that summation

FIG. 12. Singularities of the integrand in (A1) on the complex z
plane out of the origin are simple poles on the imaginary axis;
they are denoted by crosses. Contour C consists of two horizontal
lines and circles around the simple poles with 0 < jIm zj < π.
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over n is performed by using the Schläfli contour integral representation for IρðuÞ; see [49] for details. Generically,
we obtain

jðaÞφ ðrÞ ¼ 1

ð4πÞðdþ1Þ=2
mðdþ1Þ=2

rðd−3Þ=2
1

2πi

Z
C

dzh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sinh2ðz=2Þ

p iðdþ1Þ=2 Kðdþ1Þ=2

�
2mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sinh2ðz=2Þ

q �
sinhðzÞ sinh½νðF − 1

2
Þz�

sinhðνz=2Þ ; ðA1Þ

where contour C results from merging two different Schläfli contours for the modified Bessel functions of orders
νðn − FÞ > 0 and −νðn − FÞ > 0; see Fig. 12. The contribution of horizontal lines yields the integral over u in (46), while
the contribution of circles yields the sum over l in (46). Further, we get

B3…dðaÞ
I ðrÞ ¼ eν

2ð4πÞðdþ1Þ=2

�
m
r

�ðd−1Þ=2 1

2πi

Z
C

dzh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sinh2ðz=2Þ

p iðdþ3Þ=2Kðd−1Þ=2

�
2mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sinh2ðz=2Þ

q �
sinhðzÞ sinh½νðF− 1

2
Þz�

sinhðνz=2Þ

ðA2Þ

and

ΦðaÞ
I ¼ e

8ð4πÞðd−1Þ=2
�
m
r0

�ðd−3Þ=2 1

2πi

Z
C

dzh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sinh2ðz=2Þ

p iðdþ5Þ=2Kðd−3Þ=2

�
2mr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sinh2ðz=2Þ

q �
sinhðzÞ sinh½νðF − 1

2
Þz�

sinhðνz=2Þ :

ðA3Þ

Taking the asymptotics of ΦðaÞ
I (A3) at r0 → 0, we obtain (52)–(54), where IdðF; νÞ is presented as

IdðF; νÞ ¼
1

16πi

Z
C

dzh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sinh2ðz=2Þ

p i
dþ1

sinhðzÞ sinh½νðF − 1
2
Þz�

sinhðνz=2Þ : ðA4Þ

In the case of odd values of d, a singularity of the integrand at z ¼ 0 is an isolated pole. Contour C in this case can be
continuously deformed to encircle the origin, and we get

I2nþ1ðF; νÞ ¼
ð−1Þn
8πi

∳ dz coshðz=2Þ sinh½νðF − 1
2
Þz�

½sinhðz=2Þ�2nþ1 sinhðνz=2Þ : ðA5Þ

Taking a residue of the simple pole at the origin, we obtain (56)–(60).
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