
Radiative gravastar with Gibbons-Hawking temperature

Ken-ichi Nakao ,1,2 Kazumasa Okabayashi ,1 and Tomohiro Harada 3

1Department of Mathematics and Physics, Graduate School of Science, Osaka City University,
3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

2Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka City University,
Sumiyoshi, Osaka City 558-8585, Japan

3Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan

(Received 16 August 2022; accepted 14 October 2022; published 10 November 2022)

We study the quantum particle creation in a toy model of spherically symmetric gravitational collapse
whose final product is not a black hole but a gravastar. Precedent studies revealed that even in the case of
the gravitational collapse to form a horizonless ultracompact object, thermal radiation named transient
Hawking radiation is generated at the late stage of the gravitational collapse, and a sudden stop of
collapsing motion to form a horizonless ultracompact object causes one or two bursts of quantum particle
creation. The very different behavior of the model studied in this paper from the precedent ones is quantum
radiation with a thermal spectrum from the gravastar between two bursts. The temperature of the radiation
is not the same as the Hawking one determined by the gravitational mass of the system but the Gibbons-
Hawking one of the de Sitter core inside the gravastar.
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I. INTRODUCTION

The gravitational collapse to form black holes is one of
the most important and fascinating subjects in the physics
of strong gravity and has gathered special interests. Recent
observational developments have led to a more activity
research field of the black hole physics; the observations
through gravitational waves [1,2] and the imaging of the
so-called black hole shadow [3] gave us very impressive
evidence of the existence of black hole candidates in our
universe.
The black hole is defined as a complement of the causal

past of the future conformal infinity, and its boundary is
called the event horizon [4,5]. This definition captures the
essence of the black hole and the event horizon. On the
other hand, any observational confirmation of the black
hole defined in such a manner is impossible [6,7]. Exactly
speaking, the gravitational waves observed by LIGO and
Virgo were generated by not black hole binaries but
collapsing objects; what was taken through EHT is not a
direct image of a black hole but an image of collapsing
matter (see, for example, Appendix A of Ref. [8]). This is
true also for semiclassical processes which are quan-
tum phenomena in classical spacetime. The Hawking
radiation is a celebrated example which is regarded as a
characteristic of the black hole [9,10]. However, Paranjape
and Padmanabhan studied a free quantum field in the
gravitational collapse to form a static horizonless spherical
ultracompact object with a hollow inside and showed that
even if no black hole eventually forms, radiation power
whose value is the same as that of the Hawking radiation is

generated at the late stage of the gravitational collapse [11].
The study by Barceló, Liberati, Sonego and Visser [12]
revealed that the quantum radiation studied by Paranjape
and Padmanabhan has the thermal spectrum of the
Hawking temperature. Even quantum radiation with ther-
mal spectrum is not an evidence of a black hole but merely
implies it is a black hole candidate.
What we can observationally confirm is that the black

hole candidate is a black hole mimicker. The black hole
mimicker is a horizonless ultracompact object observatio-
nally very similar to a black hole. Various black hole
mimickers have been proposed (see e.g., Ref. [6]). The
situation studied by Paranjape and Padmanabhan is
regarded as a formation process of a black hole mimicker.
One of the present authors, T.H., in collaboration with
Cardoso and Miyata, studied the quantum particle creation
in the similar situation to that studied by Paranjape and
Padmanabhan [13]. They showed that the two bursts of the
particle creation occur due to the stop of the gravitational
collapse in addition to the thermal radiation revealed by
Paranjape and Padmanabhan. Kokubu and T.H. studied the
quantum field which interacts with the collapsing object
[14] in the spacetime similar to that studied in Ref. [13].
They also studied the case in which the interaction between
the quantum field and the collapsing object is represented
as the reflection boundary condition for the mode func-
tion at the surface of the collapsing object. Their study
revealed that, even in this case, the transient Hawking
radiation is generated, and furthermore only one burst of
the particle creation due to the stop of the collapse
occurs. In Refs. [11,13,14], the gravitational collapse of
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the spherically symmetric object with hollow inside, or in
other words, an infinitesimally thin spherical shell were
studied. By contrast, the present authors studied the free
quantum field in the gravitational collapse of the spheri-
cally symmetric object composed of homogeneously dis-
tributed matter enclosed by an infinitesimally thin crust,
which will be called the OHN model [15]. The result
obtained in Ref. [15] is basically the same as the results in
Refs. [13]: the homogeneous distribution of matter does not
affect the time variation of the radiation power of the
quantum particle creation even though the homogeneous
component dominates the total mass of the system.
The final product of the OHN model is the spherically

symmetric ultracompact horizonless object composed of
homogeneously distributed matter with infinitesimally thin
crust. The equation of state of the homogeneous matter is
p ¼ −ρ=3, where p and ρ are the pressure and the energy
density, respectively. By contrast, in this paper, we consider
an OHM type model, but the final product is a gravastar. The
gravastar is one of black holemimickerswhichwas proposed
by Mazur and Mottola in order to solve problems related to
the black hole (e.g., the information loss problem) [16]. Its
inside is occupied by the dark energy of p ¼ −ρ < 0, or
equivalently, the cosmological constant and hence the
geometry of its inside is equivalent to that of the de Sitter
spacetime.
This paper is organized as follows. In Sec. II. we briefly

review the quantum particle creation of the massless scalar
field in the spherically symmetric spacetime and give a
formula to calculate the radiation power in the spacetime
with a homogeneous star. In Sec. III, we explain the model
of the gravastar formation through the gravitational col-
lapse of a spherically symmetric dust star. In Sec. IV, we
show an example of quantum particle creation in the
gravastar formation process, and briefly see what happens
in the present model. In Sec. V, we estimate the radiation
power in the radiative gravastar phase and its duration.
Section VI is devoted to summary. Five Appendices are
given at the end of the paper; Appendices A and B are for
the readers unfamiliar to this topic, whereas Appendices C,
D and E show the detail of the calculations.
We adopt the natural unit c ¼ ℏ ¼ 1. Newton’s gravi-

tational constant and the Boltzmann constant are denoted
by G and kB, respectively. The sign convention of the
metric follows the textbook written by Wald [17].

II. QUANTUM PARTICLE CREATION

We study the quantum dynamics of the massless scalar
field ϕ in the spherically symmetric spacetime by the so
called semiclassical treatment in which the effect of the
quantumfield on the classical spacetimegeometry is ignored.

A. Radiation power

We consider the quantum particle creation in the spheri-
cally symmetric asymptotically flat spacetime. By adopting

the double null coordinates, the infinitesimal world interval
can be written in the following form:

ds2 ¼ −h2ðu; vÞdudvþ r2ðu; vÞdΩ2; ð1Þ

where u and v are the retarded and the advanced time
coordinates, respectively, whereas dΩ2 is the round metric.
In the case of the Minkowski spacetime, h ¼ 1 and the
areal radius r agrees with ðv − uÞ=2, and hence u ¼ v at the
symmetry center r ¼ 0. By contrast, in general dynamical
cases, the symmetry center r ¼ 0 is not v ¼ u but

v ¼ FðuÞ: ð2Þ

In order to study the quantum effect in this spacetime, we
consider the massless free scalar field which is the simplest
model but is sufficient for the present purpose. The
Lagrangian density is given as

L ¼ −
1

2

ffiffiffiffiffiffi
−g

p
gμνð∂μϕÞ∂νϕ; ð3Þ

where gμν, gμν and g are the metric tensor, its inverse and its
determinant, respectively. The average of radiation power
of the massless scalar field due to the quantum effect caused
by the spacetime curvature is estimated through the expect-
ation value of the stress-energy-momentum tensor Tμν as

PðuÞ ¼
I
r→∞

h0jðT̂uu − T̂vvÞj0ir2dΩ ¼ 1

48π
κ2ðuÞ; ð4Þ

where, being a prime to be a derivative with respect to u,

κðuÞ ≔ −
F00ðuÞ
F0ðuÞ ; ð5Þ

and we have ignored the total derivative term in P, since it
does not contribute the total radiated energy. This expres-
sion is derived by invoking the S-wave approximation
whose sketch is given in Appendix A. It is known that if the
adiabatic condition jκ0j=κ2 ≪ 1 is satisfied, the spectrum of
the radiation is thermal with the temperature [12]

kBT ¼ κ

2π
: ð6Þ

B. How to calculate radiation power in the case
of a homogeneous star

The outside of the star is assumed to be vacuum. By
Birkhoff’s theorem, the outside domain is described by the
Schwarzschild geometry whose metric is given as

ds2 ¼ −fðrÞdt2 þ dr
fðrÞ þ r2dΩ2

¼ −fðrÞðdt2 − dr2�Þ þ r2dΩ2; ð7Þ
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where

fðrÞ ¼ 1 −
2GM
r

; ð8Þ

and

r� ¼
Z

dr
fðrÞ ¼ rþ 2GM ln jr − 2GMj: ð9Þ

The null coordinates are defined as

u ¼ t − r� and v ¼ tþ r�: ð10Þ

As mentioned, the inside of the spherical star is assumed
to be homogeneous and so is described by the Robertson-
Walker geometry whose metric is given as

ds2 ¼ a2ðηÞ½−dη2 þ dχ2 þ Σ2ðχÞdΩ2�; ð11Þ

where

ΣðχÞ ¼
8<
:

sin χ for positive curvature space;

χ for flat space;

sinh χ for negative curvature space:

ð12Þ

The null coordinates are defined as

U ≔ η − χ and V ≔ ηþ χ: ð13Þ

We denote the proper time along the world line of the
surface of the star by τ. Then by using the coordinates
outside the star, the world line of the surface of the star,
which is a curve with constant round coordinates, is
represented in the form

u ¼ usðτÞ ¼ tsðτÞ − rsðτÞ − 2M ln jrsðτÞ − 2GMj; ð14Þ

v ¼ vsðτÞ ¼ tsðτÞ þ rsðτÞ þ 2M ln jrsðτÞ − 2GMj; ð15Þ

whereas, by using the coordinates inside the star, the world
line of the surface of the star is represented as

U ¼ UsðτÞ ¼ ηsðτÞ − χsðτÞ; ð16Þ

V ¼ VsðτÞ ¼ ηsðτÞ þ χsðτÞ: ð17Þ

Since the coordinate system we adopt here is different
from that of Eq. (1), we show how to derive F00=F0 in
detail. The ingoing radial null with v ¼ vin ¼ constant and
V ¼ V in ¼ constant hits the surface of the star at τ ¼ τin.
After the radial null arrives at the origin χ ¼ 0, it becomes
the outgoing null with U ¼ Uout ¼ V in and u ¼ uout and
again hits the surface of the star at τ ¼ τout. Then, we
denote

_Uout ¼ _UsðτoutÞ; _V in ¼ _VsðτinÞ; _uout ¼ _usðτoutÞ
and _vin ¼ _vsðτinÞ; ð18Þ

where a dot represents a derivative with respect to the
proper time τ. Since we have

1 ¼ dV in

dUout
¼

_V indτin
_Uoutdτout

; ð19Þ

we obtain

_Vin

_Uout

¼ dτout
dτin

: ð20Þ

Then, we have

dvin
duout

¼ _vin
_uout

dτin
dτout

¼ _vin
_uout

_Uout

_V in

: ð21Þ

We define Aout and Bin as

Aout ≔
_Uout

_uout
and Bin ≔

_V in

_vin
: ð22Þ

Then, we have

F0ðuoutÞ ¼
dvin
duout

¼ Aout

Bin
: ð23Þ

By differentiating this expression with respect to u, we have

F00ðuoutÞ ¼
dF0ðuoutÞ
duout

¼ Aout

Bin _uout

�
d lnAout

dτout
−

_Uout

_V in

d lnBin

dτin

�
:

ð24Þ

Hence, by defining Cout and Din as

Cout ≔ −
1

_uout

d lnAout

dτout
; ð25Þ

Din ≔ −
1

_vin

d lnBin

dτin
; ð26Þ

we obtain

κðuoutÞ ≔ −ðlnF0Þ0ðuoutÞ ¼ Cout −
Aout

Bin
Din: ð27Þ

The world line of the surface of the star is represented as

η ¼ ηsðτÞ; ð28Þ

χ ¼ χsðτÞ ð29Þ
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in the inside coordinates, and

t ¼ tsðτÞ; ð30Þ

r ¼ rsðτÞ; ð31Þ

in the outside coordinates. Denoting the scale factor at the
surface aðηsÞ by as, we have

dηs
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_χ2s þ

1

a2s

s
; ð32Þ

dts
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p
fðrsÞ

; ð33Þ

and hence we obtain

_Us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_χ2s þ

1

a2s

s
− _χs; ð34Þ

_Vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_χ2s þ

1

a2s

s
þ _χs; ð35Þ

_us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p
− _rs

fðrsÞ
; ð36Þ

_vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p
þ _rs

fðrsÞ
: ð37Þ

We introduce the following quantities:

A ≔
_Us

_us
¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_r2s þ fðrsÞ
q

þ _rs
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_χ2s þ
1

a2s

s
− _χs

!
; ð38Þ

B ≔
_Vs

_vs
¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_r2s þ fðrsÞ
q

− _rs
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_χ2s þ
1

a2s

s
þ _χs

!
; ð39Þ

C ≔ −
1

_us

d lnA
dτ

¼ −
1

_Us

dA
dτ

¼ −

 
̈rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_r2s þ fðrsÞ
p −

χ̈sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_χ2s þ 1

a2s

q
!� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_r2s þ fðrsÞ
q

þ _rs
�

−
GM_rs

r2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p þ 1

a3s

das
dηs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p
þ _rsffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_χ2s þ 1
a2s

q
− _χs

; ð40Þ

D ≔ −
1

_vs

d lnB
dτ

¼ −
1

_Vs

dB
dτ

¼
 

̈rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p −
χ̈sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_χ2s þ 1
asðηsÞ

q
!� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_r2s þ fðrsÞ
q

− _rs
�

−
GM_rs

r2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p þ 1

a3s

das
dηs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p
− _rsffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_χ2s þ 1
a2s

q
þ _χs

: ð41Þ

Then, we have

Aout ¼ AðτoutÞ; Bin ¼ BðτinÞ;
Cout ¼ CðτoutÞ; Din ¼ DðτinÞ: ð42Þ

III. GRAVASTAR FORMATION THROUGH
DUST COLLAPSE

As already mentioned, we consider the gravastar for-
mation through the gravitational collapse of a spherically
symmetric star. The time evolution of the star is divided
into three phases. In the first phase, the star is composed of
homogeneously distributed dust and begins collapsing
from the momentarily static configuration. We call this
period the collapsing phase. In the second phase, the speed
of the gravitational collapse slows down. This period is
called the slowing-down phase. The ingredient of the star is
not the dust in this phase. Finally, the star stops collapsing
and becomes a static gravastar. We call this period the
gravastar phase. We explain the details of the model below.

A. Collapsing phase

The gravitational collapse of a spherically symmetric star
composed of homogeneous dust is described by the
Oppenheimer-Snyder solution. The metric inside the star
is given by Eq. (11) with ΣðχÞ ¼ sin χ. The surface of the
dust sphere is χs ¼ χi ¼ a positive constant, and we have

a ¼ GM
sin3 χi

ð1þ cos ηÞ; ð43Þ

τ ¼ GM
sin3 χi

ðηþ sin ηÞ; ð44Þ

where M is a positive constant representing the gravita-
tional mass of the star, and the domain of η is restricted to
η ≥ 0. In this model, a black hole forms when rs ¼
as sin χi ¼ 2GM is satisfied, or equivalently,

η ¼ ηbh ≔ π − 2χi ð45Þ

is satisfied. Note that χi should be less than π=2 so that ηbh
is positive.
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B. Parameters to determine the duration
and characteristic radius of each phase

As mentioned, we assume that the gravitational collapse
stops before the formation of a black hole at η ¼ ηbh, and
the star eventually becomes a gravastar. We represent the
conformal time ηG at which the star becomes the static
gravastar by introducing a small positive parameter ϵ as

ηG ¼ ηbh − ϵ2: ð46Þ

By introducing a positive parameter β, the conformal time
ηS at which the collapsing motion begins slowing down
denotes

ηS ¼ ηG − ϵ2β ¼ ηbh − ϵ2 − ϵ2β ð47Þ

so that ηS < ηG. Thus, the collapsing phase, the slowing-
down phase and the gravastar phase are 0 ≤ η < ηS,
ηS ≤ η < ηG, and ηG ≤ η, respectively.
The areal radius of the star at the beginning of the

slowing-down phase, rs ¼ RS, is given as

RS ¼ GM
sin2 χi

ð1þ cos ηSÞ ð48Þ

Note that the areal radius of the gravastar, RG, is also a free
parameter of the model. By introducing a parameter α
restricted to 0 < α < 1, we represent it as

RG ¼ GM
sin2 χi

f1þ cos ½ηS þ ð1 − αÞϵ2β�g

¼ GM
sin2 χi

½1þ cosðηG − αϵ2βÞ� ð49Þ

so that RS > RG. Note that both RS and RG are larger than
the gravitational radius 2GM and approach 2GM in the
limit of ϵ → 0.

C. Gravastar phase

Before mentioning the detail of the slowing-down phase,
we describe the gravastar as a final product in the present
model. The gravastar is a horizonless ultracompact object
composed of the dark energy with the equation of state
p ¼ −ρ < 0, or equivalently, the positive cosmological
constant, which is enclosed by an infinitesimally thin crust
[16,18]. In the present model, the equation of state of the
crust is assumed to be determined through Darmois-Israel
junction condition (see Appendix B) [19]. Due to the
assumption of the spherical symmetry, the inside of the
gravastar is described by the de Sitter geometry. The scale
factor of the de Sitter spacetime in the coordinate system of
Eq. (11) with Σ ¼ sin χ is given as

aðηÞ ¼ 1

H sin ðη − ηcÞ
; ð50Þ

where ηc < η < π þ ηc, ηc is a constant determined later,
and H is the so called Hubble parameter of the de Sitter
spacetime which is related to the positive cosmological
constant Λ by

H ¼
ffiffiffiffi
Λ
3

r
: ð51Þ

The final state of the gravastar is static, and its areal radius
is equal to RG expressed as Eq. (49). Due to the relation
rs ¼ as sin χs, the relation RG ¼ as sin χs should be satis-
fied for the static gravastar. Hence, we have

χs ¼ arcsin ½HRG sinðηs − ηcÞ� ð52Þ

in the final state. Note that χs is not constant. It should also
be noted that an inequality

RG < H−1 ð53Þ

should hold so that the timelike Killing vector in the de
Sitter spacetime is tangent to the surface of the gravastar.
In the original scenario of the gravastar, H−1 is almost

equal to 2GM [16]. Thus, for simplicity, we assume here

H2R2
G ¼ 2GM

RG
: ð54Þ

By using formulas given in Appendix B, we find that this
condition leads to the equation of state of the crust whose
surface energy density Sð0Þð0Þ vanishes and tangential
stresses Sð2Þð2Þ and Sð3Þð3Þ is given as

Sð2Þð2Þ ¼ Sð3Þð3Þ ¼
3M

8πR2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRGÞ

p : ð55Þ

The crust of the gravastar does not satisfy reasonable
energy conditions, e.g., the dominant energy condition
(see Ref. [17]). However, the possibility of such a gravastar
model may not be excluded, since the gravastar model is a
proposal by assuming some unknown framework beyond
Einstein’s theory, in which the effective stress-energy-
momentum tensor does not necessarily satisfy the reason-
able energy conditions.
Here, we determine ηc. From Eqs. (45) and (46), the

formation time of the static gravastar is equal to ηG ¼ π −
2χi − ϵ2. Equation (50) implies that as diverges in the limit
of η − ηc → π, and hence the static gravastar appears in
ηG < η < π þ ηc, or equivalently, π − ð2χi þ ϵ2Þ < η <
π þ ηc. As a result, we find that the inequality

ηc > −ð2χi þ ϵ2Þ ð56Þ
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should hold. The variation of the areal radius of the star
in the slowing-down phase, RG − RS, is approximately
given as

RG − RS ≃ −
GM sinð2χi þ ϵ2Þ

sin2 χs
ð1 − αÞϵ2β: ð57Þ

We impose that the variation of χs in the slowing-down
phase is the order of max½ϵ2; ϵ2β�:

sin χsjηs¼ηG
− sin χi ¼ HRG sinðηG − ηcÞ − sin χi

¼ Oðmax ½ϵ2; ϵ2β�Þ < 0; ð58Þ

where, since χs is a decreasing function of ηs in the
gravastar phase, we have also imposed the last inequality,
i.e., the variation of χs is negative. Thus, for example, we
put ηc as

ηc ¼ −
�
χi þ

3

2
ϵ2
�
; ð59Þ

so that Eq. (58) holds (see Eq. (D4) in the case of
0 < β < 1), where we assume χi > ϵ2.

D. Slowing-down phase before gravastar formation

We determine the behavior of the star for the slowing-
down phase, ηS < η < ηG. We assume both the radial
coordinates χs and rs of the surface of the star are C3

functions of ηs. Then, we represent χs as

sinχs¼
8<
:
sinχi for0<ηs≤ηS

sinχiþ
P

3
n¼0cnðηs−ηSÞnþ4 ηS<ηs<ηG

HRGsinðηs−ηcÞ forηG≤ηs<ηcþπ

:

ð60Þ
where putting

Sχ ≔ HRG sinðηG − ηcÞ; ð61Þ

Cχ ≔ HRG cosðηG − ηcÞ; ð62Þ

the coefficients cn are given as

c0 ¼
1

6ϵ8β
½210ðSχ − sin χiÞ − 90Cχϵ

2β − 15Sχϵ4β þ Cχϵ
6β�;

ð63Þ

c1¼
1

2ϵ10β
½−168ðSχ−sinχiÞþ78Cχϵ

2βþ14Sχϵ4β−Cχϵ
6β�;
ð64Þ

c2 ¼
1

2ϵ12β
½140ðSχ − sinχiÞ− 68Cχϵ

2β − 13Sχϵ4β þCχϵ
6β�;
ð65Þ

c3 ¼
1

6ϵ14β
½−120ðSχ − sin χiÞ þ 60Cχϵ

2β

þ 12Sχϵ4β − Cχϵ
6β�: ð66Þ

Since the world line of the surface of the star should be
timelike,

���� dχsdηs

���� < 1 ð67Þ

should hold. As shown below, this condition con-
strains the parameter β. Since the period ηS < ηs < ηG ¼
ηS þ ϵ2β is the slowing-down phase, we introduce a
normalized time coordinate γ for this phase, which is
defined as

ηs ¼ ηS þ γϵ2β; ð68Þ

where γ increases from 0 to 1. Then, by differentiating
Eq. (60), we have

cos χs
dχs
dηs

¼ γ3
�
140ð1 − γÞ3ðSχ − sin χiÞϵ−2β

þ ð70γ3 − 204γ2 þ 195γ − 60ÞCχ

− ð1 − γÞð14γ2 − 25γ þ 10ÞSχϵ2β

þ 1

6
ð1 − γÞð7γ2 − 11γ þ 4ÞCχϵ

4β

	
ð69Þ

We are only interested in the case of 0 < ϵ ≪ 1. In the limit
of ϵ → 0þ, we have

cos χs → cos χi; ð70Þ

Cχ → − cos χi; ð71Þ

Sχ → sin χi; ð72Þ

and

ðSχ−sinχÞϵ−2β→

8>><
>>:
−1

2
αcosχi for 0<β<1

−ð1þ 1
2
αÞcosχi for β¼1

−cosχilim
ϵ→0

ϵ−2ðβ−1Þ ¼−∞ for β>1

ð73Þ

Hence, 0 < β ≤ 1 should be imposed so that Eq. (67) holds
for very small positive ϵ. Further careful investigation
shows that β ¼ 1 should be excluded (see Appendix C).
Hence, hereafter, we assume

0 < β < 1: ð74Þ
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We represent rs as

rs ¼

8>><
>>:

GM
sin2χi

ð1þ cosηÞ for 0< ηs ≤ ηS

RG þP3
n¼0Cnðηs − ηGÞnþ4 for ηS < ηs < ηG

RG for ηG ≤ ηs < ηc þ π

:

ð75Þ

where putting

Sr ≔
GM
sin2 χi

sin ηS; ð76Þ

Cr ≔
GM
sin2 χi

cos ηS; ð77Þ

the coefficients Cn are given as

C0 ¼
1

6ϵ8β
½210ðRS − RGÞ − 90Srϵ2β − 15Crϵ

4β þ Srϵ6β�;
ð78Þ

C1 ¼
1

2ϵ10β
½168ðRS − RGÞ − 78Srϵ2β − 14Crϵ

4β þ Srϵ6β�;
ð79Þ

C2 ¼
1

2ϵ12β
½140ðRS − RGÞ − 68Srϵ2β − 13Crϵ

4β þ Srϵ6β�;
ð80Þ

C3 ¼
1

6ϵ14β
½120ðRS − RGÞ − 60Srϵ2β − 12Crϵ

4β þ Srϵ6β�:
ð81Þ

The scale factor as is given by

as ¼
rs

sin χs
: ð82Þ

Since the radial coordinates χs and rs and the scale factor
a are explicitly expressed as functions of ηs as in Eqs. (60),
(75), and (82), we represent the derivatives of them with
respect to τ by using their derivatives with respect to ηs.
From the normalization condition a2ð_η2s − _χ2s Þ ¼ 1, we
have

_ηs ¼
1

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðdχsdηs

Þ2
q : ð83Þ

By using this relation, we obtain

_χs ¼ _ηs
dχs
dηs

¼ 1

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðdχsdηs

Þ2
q dχs

dηs
; ð84Þ

χ̈s ¼
1

a2s ½1 − ðdχsdηs
Þ2�2

d2χs
dη2s

−
1

a3s ½1 − ðdχsdηs
Þ2�

das
dηs

dχs
dηs

; ð85Þ

_rs ¼ _ηs
drs
dηs

¼ 1

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðdχsdηs

Þ2
q drs

dηs
; ð86Þ

̈rs ¼
1

a2s ½1 − ðdχsdηs
Þ2�2



d2rs
dη2s

þ dχs
dηs

�
drs
dηs

d2χs
dη2s

−
d2rs
dη2s

dχs
dηs

��

−
1

a3s ½1 − ðdχsdηs
Þ2�

das
dηs

drs
dηs

: ð87Þ

From Eq. (82), we have

das
dηs

¼ as

�
1

rs

drs
dηs

− cot χs
dχs
dηs

�
; ð88Þ

As shown in Appendix E, the dominant energy condition
does not hold in this phase for 0 < ϵ ≪ 1.

E. Time coordinate outside the star

In order to see the η-dependence of ts, we need to solve
the following differential equation:

dts
dηs

¼ dτ
dηs

_ts ¼
1

fðrsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
drs
dηs

�
2

þ a2sfðrsÞ


1 −

�
dχs
dηs

�
2
�s
:

ð89Þ
In the dust collapsing phase, 0 < ηs < ηS, this equation
becomes

dts
dηs

¼GM cosχi
sin3 χi

�
1þ 2sin2 χiþ cosηsþ

4sin4 χi
cosηsþ cos2χi

�
:

ð90Þ
This differential equation can be analytically solved, and
we have

ts ¼
GM cos χi
sin3χi



ð1þ 2sin2χiÞηs þ sin ηs

þ 2sin3χi
cos χi

ln

���� cot χi þ tan ηs
2

cot χi − tan ηs
2

����
�
; ð91Þ

where we have chosen the integration constant so that ts
vanishes at ηs ¼ 0.
In the static gravastar phase, ηs > ηG, Eq. (89) becomes

dts
dηs

¼ 1

H sin ðηs − ηcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

G sin2 ðηs − ηcÞ
p : ð92Þ

This differential equation can also be analytically integrated
and we obtain
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ts ¼
1

2H
ln

����HRGsin2ðηs − ηcÞ þ 1 − cosðηs − ηcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

Gsin
2ðηs − ηcÞ

p
HRGsin2ðηs − ηcÞ − 1 − cosðηs − ηcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

Gsin
2ðηs − ηcÞ

p ����þ tc; ð93Þ

where tc is an integration constant. For the slowing-down phase, ηS < ηs < ηG, we need to numerically integrate Eq. (89). In
order that the time coordinate ts of the surface of the star is continuous at ηs ¼ ηG, the integration constant tc should satisfy

tc ¼
Z

ηG

ηS

1

fðrsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
drs
dηs

�
2

þ a2sfðrsÞ


1 −

�
dχs
dηs

�
2
�s
dηs

þ GM cos χi
sin3χi



ð1þ 2sin2χiÞηS þ sin ηS þ

2sin3χi
cos χi

ln

���� cot χi þ tan ηS
2

cot χi − tan ηS
2

����
�

−
1

2H
ln

����HRGsin2ðηG − ηcÞ þ 1 − cosðηG − ηcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

Gsin
2ðηG − ηcÞ

p
HRGsin2ðηG − ηcÞ − 1 − cosðηG − ηcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

Gsin
2ðηG − ηcÞ

p ����: ð94Þ

IV. AN EXAMPLE AND CLASSIFICATION
OF RADIAL NULL GEODESICS

In Fig. 1, we show an example of the radiation power
detected in the asymptotic region r ≫ 2GM as a func-
tion of time t; χi ¼ 0.1, α ¼ β ¼ 0.5, and ϵ ¼ 10−4 are
assumed. We numerically checked that the world line of the
surface of the collapsing object is timelike in this case. The
initial radius at ηs ¼ 0 is equal to 2GM= sin2 χi ≃ 200GM.
From this figure, we find that there are three characteristic
periods divided by two bursts of the quantum particle
creation. In the first period, the radiation power P increases
from almost zero and eventually becomes the value of the
so-called Hawking radiation

PH ¼ 1

48πð4GMÞ2 : ð95Þ

This value is kept until the first burst. Since the adiabatic
condition jκ0j ≪ κ2 holds at this stage, the spectrum is
thermal one with the so-called Hawking temperature

kBTH ¼ 1

8πGM
: ð96Þ

Thus, following Refs. [13,14], we call this radiation the
transient Hawking radiation. In the period between the first
and second bursts, the radiation power P becomes small but
does not vanish; later, we will discuss this nonvanishing
radiation power in detail. After the second burst, the
radiation power P vanishes completely.
As mentioned, we adopt the S-wave approximation in

order to estimate the radiation power of quantum particle
creation. In this approximation scheme, the flux of particles
detected at the asymptotic region comes from the nontrivial
deformation of the phase of the spherically symmetric
mode function propagating from the past null infinity to the
future null infinity. Figure 2 depicts the spacetime diagram
by using the coordinates ðη; χÞ. The black solid curve is the
world line of the surface of the star. Blue lines represent the
radial null geodesics along which the spherically symmetric
mode function propagate: each null geodesic is categorized
into the following five classes:

(i) Class I: null geodesics categorized into this class
enter and come out from the star in the collaps-
ing phase.

(ii) Class II: null geodesics categorized into this class
enter the star in the collapsing phase and come out
from the star in the slowing-down phase.

(iii) Class III: null geodesics categorized into this class
enter the star in the collapsing phase and come out
from the star in the gravastar phase.

(iv) Class IV: null geodesics categorized into this class
enter the star in the slowing-down phase and come
out from the star in the gravastar phase.

(v) ClassV: null geodesics categorized into this class enter
and come out from the star in the gravastar phase.

FIG. 1. The radiation power P in the case of χi ¼ 0.1,
α ¼ β ¼ 0.5, and ϵ ¼ 10−4 is depicted as a function of time t.
PH and PGH are the values of the radiation power of the Hawking
radiation with the gravitational mass M and that of the Gibbons-
Hawking radiation with the Hubble constant H, respectively.
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The mode function along the null geodesic in Class I causes
the transient Hawking radiation if the null comes out
from the star in the very late stage of the collapsing phase.
The mode function propagating along the null geodesics in
Class II causes the first burst, i.e., the post-Hawking burst
named in Ref. [13]. The mode function along the null
geodesics in Class III causes the nonvanishing radiation.
The mode function along the null geodesics in Class IV
causes the second burst. The mode function along the null
geodesics in Class V causes no particle creation, since these
null geodesics only go through the static domain.
The occurrence of the two bursts of the quantum particle

creation is a common feature to both the present study and
precedent ones [13,15]. By contrast, the nonvanishing
radiation in the period between two bursts is the character-
istic of the present model, since there is no radiation in this
period in the models investigated in the precedent studies.
The gravastar has already formed in the causal past of the

asymptotic observer after the first burst, and therefore this
radiation can be attributed to the gravastar formation. We
call this period the radiative gravastar phase. Details of
this phase will be discussed in the next subsection.
The complicated temporal variation of the radiation

power P during the two bursts is also characteristic in
the present model. This temporal variation merely comes
from a bit complicated behavior of the radial coordinate of
the surface of the star, χs and rs, especially nonmonoto-
nicity of the dependence of χs on the conformal time ηs. By
differentiating Eqs. (60) and (75) with respect to ηs once or
twice and taking a limit of ϵ → 0, we have

dχs
dηs

→ −γ3½1þ 3ð1 − γÞ þ 6ð1 − γÞ2 − 70ð1 − αÞð1 − γÞ3�;

ð97Þ

drs
dηs

→ −2GMð1− γÞ3½70ð1− 2αÞγ3 þ 6γ2 þ 3γþ 1� cotχi;

ð98Þ

ϵ2β
d2χs
dη2s

→ 5γ2½α− 6ð2− 7αÞð1− γÞ2 þ 84ð1− αÞð1− γÞ3�;

ð99Þ

ϵ2β
d2rs
dη2s

→ 60GMγ2ð1 − γÞ2½7ð1 − 2αÞγ þ 7α − 3� cot χi:

ð100Þ

for the slowing-down phase ηS < ηs < ηG. Substituting
these results into Eqs. (84)–(88) and using Eqs. (27),
(38)–(42), we find that the amplitude of the radiation
power P of the burst is proportional to ϵ−4β for
1 − γ ≫ ϵ2β, in the case that the mode function propagates
along the null in Class II or Class IV.

V. THE RADIATIVE GRAVASTAR PHASE

As mentioned, in the radiative gravastar phase, the mode
function propagates along radial null geodesics categorized
into Class III. We investigate the quantity κ associated to
the null geodesics in Class III in this subsection.

A. Calculation of κ

The first radial null geodesic of Class III comes out
from the star at ηs ¼ ηG, and hence is described by
η − ηG ¼ χ − χsjηs¼ηG

. It intersects the origin χ ¼ 0 at
η ¼ ηG − χsjηs¼ηG

and is the ingoing null η − ηG þ
χsjηs¼ηG

¼ −χ before this moment. The conformal time
at which the first radial null geodesic enters the star is
denoted by ηb. Since the star is in the collapsing phase with
χs ¼ χi at this moment, we have

FIG. 2. The schematic spacetime diagram by using the coor-
dinates ðη; χÞ inside the star is depicted. The thick solid black
curve is the world line of the surface of the star. Hence, only the
left-hand-side domain of this curve is covered by this coordinates.
Blue lines represent the radial null geodesics, each of which is a
typical one of Class I, II, III, IV and V. The two red lines are the
first and last radial null geodesics in Class III. Note that the areal
radius rs of the surface of the star is equal to the constant RG in
the gravastar phase.
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ηb ¼ ηG − χsjηs¼ηG
− χi ≃ π − 4χi: ð101Þ

By contrast, the last radial null geodesic in Class III
enters the star at ηs ¼ ηS. The ingoing radial null arriving at
the surface of the star at η ¼ ηS is represented as η − ηS ¼
−χ þ χi since χsjηs¼ηS

¼ χi holds. It will arrive at the center
χ ¼ 0 at

η ¼ ηrf ≔ ηS þ χsjηs¼ηS
≃ π − χi − ϵ2β; ð102Þ

and then becomes the outgoing radial null represented as
η − ηrf ¼ χ. The radial null which has become outgoing
again crosses the surface of the star, and we denote the
conformal time at this moment by ηe. Since ηe − ηrf ¼
χsjηs¼ηe

holds, Eq. (52) leads to,

sinðηe − ηrfÞ ¼ HRG sinðηe − ηcÞ: ð103Þ

Rewriting the left-hand side of this equation as

sin ½ηe − ηc þ ðηc − ηrfÞ� ¼ sinðηe − ηcÞ cosðηc − ηrfÞ
þ sinðηc − ηrfÞ cosðηe − ηcÞ; ð104Þ

we obtain

½cosðηe − ηcÞ −HRG� sinðηe − ηcÞ
¼ − sinðηc − ηrfÞ cosðηe − ηcÞ: ð105Þ

By taking the square of both sides of this equation, we have

sin2ðηe − ηcÞ ¼
sin2ðηc − ηrfÞ

1 − 2HRG cosðηc − ηrfÞ þH2R2
G
: ð106Þ

Since sinðηe − ηcÞ > 0 holds and, as shown below,
sinðηc − ηrfÞ < 0 is satisfied, we have

sinðηe − ηcÞ ¼ −
sinðηc − ηrfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2HRG cosðηc − ηrfÞ þH2R2
G

p :

ð107Þ

By using Eqs. (59) and (102), we obtain

ηc − ηrf ≃ −ðπ − ϵ2βÞ; ð108Þ

and hence we have

sinðηc − ηrfÞ ≃ −ϵ2β and cosðηc − ηrfÞ ≃ −1þ 1

2
ϵ4β:

ð109Þ

By these equations and Eq. (107), we have

sinðηe − ηcÞ ≃
1

2
ϵ2β: ð110Þ

Since ηe − ηc ≃ π holds,

ηe − ηc ≃ π −
1

2
ϵ2β ð111Þ

is obtained.
It is easy to obtain the following results for the null

which enters the star in the collapsing phase. Since _χs ¼
0 ¼ χ̈s holds in this phase, we have

Din

Bin
¼ −

GM
rs sin χiðcos χi − _rsÞ

þ _rs
sin χi

¼ −
1

2

"
1 − fðrsÞ
fðrsÞ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

fðrsÞ
cos2χi

s !

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

fðrsÞ
cos2χi

s #
cot χi ð112Þ

where we have used the fact that

_r2s ¼ cos2 χi − fðrsÞ ð113Þ

holds in the collapsing phase. The first radial null geodesic
enters the star with rs ¼ rsjηs¼ηb

≃ 8GM cos2 χi, which is
assumed to be in the collapsing phase, i.e., 0 < ηb < ηS.
Because of 0 < ηb ≃ π − 4χi þ αϵ2β=2 [see Eqs. (101) and
(D4)], we impose a stringent restriction on χi more than
0 < χi < π=2 mentioned below Eq. (45) as

0 < χi ≤ π=4: ð114Þ

Hence we have

Din

Bin

����
1st

≃ −
4 cos2 2χi þ 2 cos 2χi þ 1

2 sin 2χið2 cos 2χi þ 1Þ : ð115Þ

By contrast, since the last radial null geodesic enters the star
with rs ¼ RS ≃ 2GM [see Eq. (D1)], we have

Din

Bin

����
last

≃ −
2 cos 2χi þ 3

2 sin 2χi
: ð116Þ

In the gravastar phase, _rs ¼ 0 ¼ ̈rs holds, whereas we
have

_χs ¼ −
RG

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

G

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 −

1

a2s

s
; ð117Þ

χ̈s ¼
RG

asð1 −HRGÞ
�
H2 −

2

a2s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2
G

a2s

s
: ð118Þ
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By using these results, we obtain

Aout ¼
1

as

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2
G

a2s

s
þHRG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

H2a2s

s !

¼ sin χs
RG

�
cos χs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 χs − fðRGÞ

q �
; ð119Þ

Cout ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

H2a2s

s  ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2
G

a2s

s
−HRG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

H2a2s

s !

þH2RG

�
1 −

2

H2a2s

�

¼ 1

RG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 χs − fðRGÞ

q �
cos χs −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 χs − fðRGÞ

q �

þ cos 2χs − fðRGÞ
RG

: ð120Þ

where we have used as ¼ RG= sin χs. Since 0 < fðRGÞ ¼
1 −H2R2

G ≪ 1 is assumed, we obtain

Aout ≃H sin 2χs; ð121Þ

Cout ≃H cos 2χs: ð122Þ

Since the first radial null geodesic comes out from the
star with χs ¼ χsjηs¼ηG

≃ χi, we have

Aoutj1st ≃H sin 2χi; ð123Þ

Coutj1st ≃H cos 2χi; ð124Þ

and

κj1st ≃H

�
8 cos2ð2χiÞ þ 4 cosð2χiÞ þ 1

4 cosð2χiÞ þ 2

�
: ð125Þ

For 0 < χi ≪ 1, we have κj1st ≃ 13H=6 and hence

Pj1st ≃
�
13

6

�
2

PGH; ð126Þ

where PGH is the radiation power of the Gibbons-Hawking
radiation in the de Sitter spacetime with the Hubble
constant H;

PGH ¼ H2

48π
: ð127Þ

By using Eqs. (52) and (111), we have

χsjηs¼ηe
≃
1

2
ϵ2β: ð128Þ

From this equation and Eqs. (116), (121), and (122), we
obtain

Aoutjlast ≃Hϵ2β; ð129Þ

Cout ≃H ð130Þ

and hence

κjlast ≃H ð131Þ

and

Pjlast ¼
1

48π
κ2 ≃ PGH: ð132Þ

In the late stage of the radiative gravastar phase, jχsj
becomes much less than unity. For jχsj ≪ 1, jAoutj ≪ H
and Cout ≃H hold and hence κ ≃H. Thus, in this stage, the
adiabatic condition jκ0j ≪ κ2 holds, which implies the
thermal spectrum with the Gibbons-Hawking temperature

kBTGH ¼ H
2π

: ð133Þ

B. Duration of radiative gravastar phase

We estimate the duration of the radiative gravastar phase
with respect to the time of the asymptotic observer. From
Eqs. (111) and (D3), we have

HRG sin2ðηe − ηcÞ − 1 − cosðηe − ηcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

G sin2ðηe − ηcÞ
q

¼ ð1 −HRGÞ2 sin2ðηe − ηcÞ
HRG sin2ðηe − ηcÞ − 1þ cosðηe − ηcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

G sin2ðηe − ηcÞ
p

≃ −
1

16
α2ϵ8β cot2 χi; ð134Þ

and

HRG sin2ðηe − ηcÞ þ 1 − cosðηe − ηcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

G sin2ðηe − ηcÞ
q

≃ 2: ð135Þ
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Thus, we have, from Eq. (93), the time coordinate t ¼ ts
outside the star at η ¼ ηe as

tsjηs¼ηe
≃

1

2H
ln

�
32 tan2 χi
α2ϵ8β

�
þ tc: ð136Þ

This is the time just before the second burst occurs. By
contrast, since

sinðηG − ηcÞ ¼ sin

�
π − χi þ

1

2
ϵ2
�

¼ sin χi þOðϵ2Þ;

ð137Þ

cosðηG − ηcÞ ¼ − cos χi þOðϵ2Þ ð138Þ

hold, we have

HRGsin2ðηG − ηcÞ − 1 − cosðηG − ηcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

Gsin
2ðηG − ηcÞ

q
¼ ð1 −HRGÞ2sin2ðηG − ηcÞ

HRGsin2ðηG − ηcÞ − 1þ cosðηG − ηcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

Gsin
2ðηG − ηcÞ

p ≃
α2ϵ4βcos2χi

4½HRGsin2χi − 1 − cos χi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

Gsin
2χi

p
� ;

ð139Þ

Thus, we get, from Eq. (93), the time coordinate t ¼ ts outside the star at η ¼ ηG as

tsjηs¼ηG
≃

1

2H
ln

���� 4½ð1þH2R2
GÞsin2χi − 2 − 2 cos χi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

Gsin
2χi

p
�

α2ϵ4βcos2χi

����þ tc: ð140Þ

At this moment, the 1st burst ceases. The duration Δt
between first and second bursts, i.e., of the radiative
gravastar phase is then given as

Δt ¼ tsjη¼ηe
− tsjη¼ηG

¼ 1

2H
ln ϵ−4β þ constant ≃

1

H
ln ϵ−2β:

ð141Þ

By definition, the value of ϵ determines when the
slowing-down phase begins and ceases. Smaller the
value of ϵ is, later the first burst occurs and the radiative
gravastar phase starts. Furthermore, as shown in the above,
the value of ϵ also determines the duration of the radiative
gravastar phase.
From Eq. (91), the duration δt with respect to the outside

time coordinate t from the beginning of the gravitational
collapse, ηs ¼ 0, to a moment before the slowing-down
phase, 0 < ηs ¼ ηbh − 2ε < ηS, is given as

δt ¼ GM cos χi
sin3χi



ð1þ 2sin2χiÞðπ − 2χi − 2εÞ

þ sinðπ − 2χi − 2εÞ

þ 2sin3χi
cos χi

ln

���� cot χi þ cotðχi þ εÞ
cot χi − cotðχi þ εÞ

����
�
: ð142Þ

Here we assume

max



ϵ2β; exp

�
−
π

2
χ−3i

��
≪ ε ≪ χi ≪ 1: ð143Þ

Then, we have

δt ≃ πGMχ−3i ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π

32Gρjηs¼0

s
; ð144Þ

where ρ is the energy density of the dust. This result implies
that the dust star shrinks to rs ¼ 2GMð1þ 2χ−1i εÞ ≃ 2GM
for the free-fall time.
After the star collapsed to rs ≃ 2GM, the areal radius of

the surface of the star is determined by

drs
dts

¼ −
fðrsÞ
cos χi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 χi − fðrsÞ

q
≃ −fðrsÞ ð145Þ

and thus, for ts > δt, we have

rs − 2GM ≃ 4GMχ−1i ε exp

�
−
ts − δt
2GM

�
: ð146Þ

Denoting the time ts at the beginning of the slowing-down
phase by tS, we have

RS ≃ 2GM



1þ 2χ−1ε exp

�
−
tS − δt
2GM

��
: ð147Þ

By comparing this equation with Eq. (D1), we have

ϵ2β ≃ 2ε exp

�
−
tS − δt
2GM

�
: ð148Þ

Substituting this result into Eq. (141), we obtain
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Δt ≃H−1
�
tS − δt
2GM

þ ln ε−1
�
: ð149Þ

Here note that Eqs. (143) and (144) imply δt ≫ GM ln ε−1.
Thus, since H−1 ≃ 2GM holds in the present model, if the
period from the start of the gravitational collapse to the
beginning time of the slowing-down phase is much longer
than the free-fall time of the system, the duration of the
radiative gravastar phase is nearly equal to tS.

VI. SUMMARY AND DISCUSSION

We studied the quantum particle creation in the gravastar
formation process through the gravitational collapse of a
spherically symmetric star. The star is assumed to be initially
composed of homogeneously distributed dust and collapses
in the freely falling manner. Just before the formation of the
event horizon, the gravitational collapse stops due to the
change of the equation of state of the star, and then the star
eventually becomes the gravastar, in the present model.
At the late stage of the gravitational collapse of the dust,

the thermal radiation is generated by the quantum effect as
pointed out by Hawking [9,10]. The sudden stop of the
gravitational collapse causes two bursts of the particle
creation. The occurrence of two bursts was revealed by
precedent researches in which a star with hollow inside and
that occupied homogeneous matter enclosed by an infini-
tesimally thin crust were studied [13,15]. Here we should
note that the number of bursts depends on the interaction
between the quantum field and the star and the details of the
dynamical behavior of the star. For example, if the reflective
boundary condition for the mode function at the surface of
the star is imposed, the only one burst occurs [14]. The
successive multiple collapses accompanied by their sudden
stops in the formation of a black hole mimicker may cause
multiple bursts of arbitrary number [20].
The characteristic behavior of the present gravastar for-

mation model is that nonvanishing radiation is released in
the period between first and second bursts. Since this
radiation is attributed to the gravastar, we have called this
period the radiative gravastar phase. Its spectrum approaches
the thermal one with the Gibbons-Hawking temperature of
the de Sitter spacetime inside the gravastar.1 Then, after the
second burst, no radiation is generated. The duration of the
radiative gravastar phase is almost equal to tS, i.e., the period
from the start of the gravitational collapse to the beginning of
the slowing-down phase, if tS is much longer than the free-
fall time of the system. We should note that there is no black
hole horizon and no cosmological horizon, but the transient
thermal radiation appears.
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APPENDIX A: DERIVATION OF RADIATION
POWER DUE TO QUANTUM EFFECTS

In this section, we review the formulation given by Ford
and Parker to derive the radiation power of quantum
particle creation in general spherically symmetric gravita-
tional collapse [22].
The field operator ϕ̂ is represented as

ϕ̂ ¼
X
l;m

Z
dω½aωlmGωlmðt; r�;ΩÞ þ a†ωlmG

�
ωlmðt; r�;ΩÞ�;

ðA1Þ

where the mode function Gωlm satisfies the equation of
motion for the scalar field

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νGωlmÞ ¼ 0; ðA2Þ

and the orthonormal conditions with respect to the Klein-
Gordon norm

ðGωlm;Gω0;l0;m0 Þ ≔ −i
Z

½Gωlmð∂μG�
ω0;l0;m0 Þ

þ G�
ω0;l0;m0 ð∂μGωlmÞ�

ffiffiffiffiffiffi
−g

p
nμdΣ

¼ δðω − ω0Þδll0δmm0 ; ðA3Þ

where the integral is taken over a Cauchy surface and nμ is
the unit normal to this Cauchy surface. From the canonical
commutation relation, we have

½aωlm; aω0;l0;m0 � ¼ 0; ½a†ωlm; a†ω0;l0;m0 � ¼ 0;

½aωlm; a†ω0;l0;m0 � ¼ δðω − ω0Þδll0δmm0 ðA4Þ

The vacuum state j0i is defined as the state which satisfies

aωlmj0i ¼ 0: ðA5Þ

We adopt the mode functions which agree with those of
the Minkowski spacetime in the past null infinity u → −∞.
Hence, the mode functions in the asymptotic region R → ∞
take the following form:

1The origin of the Gibbons-Hawking temperature is the
assumption Eq. (54) which has been assumed in the original
proposal of the gravastar [16]. This point will be discussed
elsewhere [21].
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Gωlm ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p
r
ðe−iωFlmðuÞ þ e−iωvÞYlmðΩÞ; ðA6Þ

where Ylm is the spherical harmonics. Here note that F00ðuÞ
is equal to FðuÞ in Eq. (2). Then, the state j0i defined as
Eq. (A5) is regarded as the Minkowski vacuum in the past
null infinity.
The stress-energy-momentum tensor operator of the

scalar field is given as

T̂μν ¼ ð∂μϕ̂Þ∂νϕ̂ −
1

2
gμνgαβð∂αϕ̂Þ∂βϕ̂: ðA7Þ

The average energy flux is the expectation value of the
following components of the stress-energy-momentum
tensor:

h0jðT̂uu − T̂vvÞj0i ¼ h0j½ð∂uϕ̂Þ2 − ð∂vϕ̂Þ2�j0i

¼
X
lm

Z
∞

0

dω½ð∂uGωlmÞ∂uG�
ωlm − ð∂vGωlmÞ∂vG�

ωlm�: ðA8Þ

In order to obtain the average energy flux detected in the
asymptotic region, we substitute Eq. (A6) into this equa-
tion, and replacing u and v by uþ ϵ and vþ ϵ in G�

ωlm, we
evaluate the integral with respect to ω as

h0jðT̂uu − T̂vvÞj0i

¼ lim
ϵ→0

1

4πr2
X
lm

jYlmj2

×
Z

∞

0

dωω½F0
lmðuÞF0

lmðuþ ϵÞeiω½FlmðuþϵÞ−FlmðuÞ� − eiωϵ�

≃
1

48πr2


�
F00

F0

�
2

− 2

�
F00

F0

�0�
jY00j2; ðA9Þ

where a prime represents a derivative with respect to u, and
we have ignored the contributions from nonvanishing l
modes since those will not suffer the dynamical effect in the
neighborhood of the center r ¼ 0 due to the centrifugal
potential so much, and hence jF00

lmj ≪ jF00
00j ¼ jF00j holds

for l > 0. Hereafter, we ignored the total derivative term
ðF00=F0Þ0 in the last equality, which does not contribute the
total emitted energy. The radiation power P detected in the
asymptotic region is obtained as

P ¼
I
r→∞

h0jðT̂uu − T̂vvÞj0ir2dΩ ¼ 1

48π

�
F00

F0

�
2

: ðA10Þ

APPENDIX B: STRESS-ENERGY-MOMENTUM
OF INFINITESIMALLY THIN SHELL

The Darmois-Israel junction condition specifies the
stress-energy-momentum tensor of the infinitesimally thin
shell on the surface of the star [19].

We adopt the orthonormal basis feðαÞg on the surface
of the star; eð0Þ is the unit tangent to the world line of
an observer at rest on the stellar surface. Their com-
ponents with respect to the coordinates just inside the star
are given as

eð0Þμ ¼ ð_ηs; _χs; 0; 0Þ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_χ2s þ
1

a2s

s
; _χs; 0; 0

!
ðB1Þ

eð1Þμ ¼
 
_χs;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_χ2s þ

1

a2s

s
; 0; 0

!
; ðB2Þ

eð2Þμ ¼
�
0; 0;

1

as sin χs
; 0

�
¼
�
0; 0;

1

rs
; 0

�
; ðB3Þ

eð3Þμ ¼
�
0; 0; 0;

1

as sin χs sin θ

�
¼
�
0; 0; 0;

1

rs sin θ

�
; ðB4Þ

whereas, with respect to the coordinates just outside the
star, as

eð0Þμ
0 ¼ ð_ts; _rs; 0; 0Þ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

p
fðrsÞ

; _rs; 0; 0

�
ðB5Þ

eð1Þμ
0 ¼
�

_rs
fðrsÞ

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

q
; 0; 0

�
; ðB6Þ

eð2Þμ
0 ¼
�
0; 0;

1

rs
; 0

�
; ðB7Þ

eð3Þμ
0 ¼
�
0; 0; 0;

1

rs sin θ

�
: ðB8Þ

We define

eðαÞμ ¼ ηðαÞðβÞeðβÞμ and ηðαÞðβÞeðβÞμ ¼ eðαÞμ ðB9Þ

where ηðαÞðβÞ ¼ diag½−1; 1; 1; 1� ¼ ηðαÞðβÞ.

The components of the second fundamental formKðinÞ
μν of

the surface of the star with respect to the coordinates inside
the star are given as

KðinÞ
μν ¼ðeð0Þμeð0Þαþeð2Þμeð2Þαþeð3Þμeð3ÞαÞ∇αeð1Þν: ðB10Þ

By using this expression, we have the tetrad components of
the second fundamental form in the form;

KðinÞ
ð0Þð0Þ ¼ −

1

as _ηs

�
χ̈s þ

2

as

das
dηs

_ηs _χs

�
; ðB11Þ

KðinÞ
ð2Þð2Þ ¼

1

as

das
dηs

_χs þ cot χs _ηs ¼ KðinÞ
ð3Þð3Þ ðB12Þ
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and all the other components vanish. By contrast, the

components of the second fundamental form KðoutÞ
μν of the

surface of the star with respect to the coordinates outside
the star is given as

KðoutÞ
μ0ν0 ¼ ðeð0Þμ0eð0Þα0 þ eð2Þμ0eð2Þα0 þ eð3Þμ0eð3Þα

0 Þ∇α0eð1Þν0 :

ðB13Þ

Then, we obtain the tetrad components of the second
fundamental form in the form

KðoutÞ
ð0Þð0Þ ¼ −

1

fðrsÞ_ts

�̈
rs þ

GM
r2s

�
; ðB14Þ

KðoutÞ
ð2Þð2Þ ¼

fðrsÞ
rs

_ts ¼
1

rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2s þ fðrsÞ

q
¼ KðoutÞ

ð3Þð3Þ ðB15Þ

and all the other components vanish. By using Eqs. (83)–
(87), we concretely obtain KðinÞ

ðαÞðβÞ and KðoutÞ
ðαÞðβÞ.

The Darmoise-Israel junction condition is

KðoutÞ
ðαÞðβÞ − KðinÞ

ðαÞðβÞ ¼ −8πG
�
SðαÞðβÞ −

1

2
hðαÞðβÞtrS

�
; ðB16Þ

where hðαÞðβÞ ¼ diag½−1; 0; 1; 1�. Then, the tetrad compo-
nents, SðαÞðβÞ, are given as

Sð0Þð0Þ ¼ −
1

4πG
ðKðoutÞ

ð2Þð2Þ − KðinÞ
ð2Þð2ÞÞ; ðB17Þ

Sð2Þð2Þ ¼ −
1

8πG
ðKðoutÞ

ð0Þð0Þ − KðoutÞ
ð2Þð2Þ − KðinÞ

ð0Þð0Þ þ KðinÞ
ð2Þð2ÞÞ

¼ Sð3Þð3Þ ðB18Þ

and the other components vanish. Sð0Þð0Þ is the energy per
unit area, whereas Sð2Þð2Þ ¼ Sð3Þð3Þ is the tangential
pressure.

APPENDIX C: ON THE CASE OF β= 1

We examine jdχs=dηsj in the case of β ¼ 1. Here, we
regard χs as a function of ηs and the parameter α. Then,
from Eqs. (69)–(73), we have

∂χs
∂ηs

⟶
ϵ→0

− γ3½70αð1 − γÞ3 − 70γ3 þ 216γ2 − 225γ þ 80�:

ðC1Þ

Because of 0 < γ < 1, we have

∂

∂α

∂χs
∂ηs

����
ϵ¼0

¼ −70γ3ð1 − γÞ3 < 0: ðC2Þ

Because of 0 < α < 1, the following inequality should
hold:

− γ3½70ð1 − γÞ3 − 70γ3 þ 216γ2 − 225γ þ 80�

<
∂χs
∂ηs

< −γ3½−70γ3 þ 216γ2 − 225γ þ 80�: ðC3Þ

The rightmost side (RMS) of this inequality is rewritten
in the form

RMS ¼ −γ3½ð1 − γÞð70γ2 − 146γ þ 79Þ þ 1�: ðC4Þ

It is easy to see that 70γ2 − 146γ þ 79 > 0 holds for real γ.
Hence we have RMS < 0 and

���� ∂χs
∂ηs

����
ϵ¼0

> jRMSj; ðC5Þ

for 0 < γ < 1. It is easy to get

d
dγ

jRMSj ¼ 420γ2ð1 − γÞ2
�
4

7
− γ

�
: ðC6Þ

This equation implies that jRMSj has a maximum at
γ ¼ 4=7 in 0 < γ < 1, and the maximum value of jRMSj is

max½jRMSj� ¼ jRMSjγ¼4=7 ¼
27904

16807
> 1: ðC7Þ

This result implies that j∂χs=∂ηsjϵ¼0 exceeds unity in the
neighborhood of γ ¼ 4=7. Thus, the world line of the
surface of the star cannot be kept timelike in the case of
β ¼ 1 for any 0 < α < 1.

APPENDIX D: OFTEN USED FORMULAS

Under the assumption of 0 < β < 1, we often use the
following approximations:

RS ¼ GM
sin2 χi

ð1þ cos ηSÞ ≃ 2GMð1þ ϵ2β cot χiÞ; ðD1Þ

RG ¼ GM
sin2 χi

½1þ cos ðηG − αϵ2βÞ� ≃ 2GMð1þ αϵ2β cot χiÞ;

ðD2Þ

HRG ≃ 1 −
1

2
αϵ2β cot χi; ðD3Þ

χsjηs¼ηG
≃ χi −

1

2
αϵ2β: ðD4Þ
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APPENDIX E: EQUATION OF STATE

The equation of state of the star is nontrivial in the
slowing-down phase. We write the equation of state
in the form p ¼ wρ, where p and ρ are the pressure
and the energy density, respectively. The Einstein equations
imply

1

a
d2a
dτ2

¼ −
4πG
3

ðρþ 3pÞ

⇒ w ¼ p
ρ
¼ −

1

4πGρ
1

a
d2a
dτ2

−
1

3
ðE1Þ

and�
1

a
da
dτ

�
2

¼ 8πG
3

ρ−
1

a2
⇒ 4πGρ¼ 3

2a2


�
da
dτ

�
2

þ 1

�
:

ðE2Þ

Combining these equations, we have

w ¼ −
2a
3


�
da
dτ

�
2

þ 1

�
−1 d2a

dτ2
−
1

3

¼ −
2

3a


�
1

a
da
dη

�
2

þ 1

�
−1


d2a
dη2

−
1

a

�
da
dη

�
2
�
−
1

3
: ðE3Þ

In order to see w in the slowing-down phase, we may
invoke Eq. (88) and

d2as
dη2s

¼ as



1

rs

d2rs
dη2s

− cot χs
d2χs
dη2s

−
2

rs
cot χs

drs
dηs

dχs
dηs

þ 1þ cos2χs
sin2χs

�
dχs
dηs

�
2
�
: ðE4Þ

By Eqs. (97)–(100), we find

das
dηs

¼ Oðϵ0Þ and
d2as
dη2s

¼ Oðϵ−2βÞ; ðE5Þ

and hence

w ¼ Oðϵ−2βÞ: ðE6Þ

In Fig. 3, we show the numerical result forw in the slowing-
down phase of the example given in Sec. IV. The dominant
energy condition will not be satisfied so that the gravita-
tional collapse slows down just before the event hori-
zon forms.
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