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We construct on-shell N ¼ 2 nonlinear sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ by
holomorphically embedding the models in the hyper-Kähler nonlinear sigma model on the cotangent
bundle of the Grassmann manifold T�G2N;N in the N ¼ 1 superspace formalism. We apply the moduli
matrix formalism to the mass-deformed nonlinear sigma models on the quadrics to study three-pronged
junctions by using a recently proposed diagram method.
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I. INTRODUCTION

The number of supersymmetries of a nonlinear sigma
model is related to the target space geometry. Rigid
supersymmetric nonlinear sigma models with four super-
charges and with eight supercharges are Kähler manifolds
and hyper-Kähler manifolds, respectively [1–4].
Kähler nonlinear sigma models on the Hermitian sym-

metric spaces are constructed as gauge theories [5,6].
Hyper-Kähler nonlinear sigma models are constructed in
the N ¼ 1 superspace formalism [7–10]. Hyper-Kähler
nonlinear sigma models on the cotangent bundles of the
complex projective space and the Grassmann manifold are
constructed in the harmonic superspace formalism [11,12].
Hyper-Kähler nonlinear sigma models on the cotangent
bundles of the Hermitian symmetric spaces are constructed
in the projective superspace formalism [13–15].
We are interested in nonlinear sigma models, where the

fields are homogeneous coordinates, since the hyper-Kähler
nonlinear sigma model on T�GNF;NC

1 is the strong coupling
limit of the UðNCÞ gauge theory. The symmetric spaces
SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ are quadrics in the
Grassmann manifold G2N;N [16]. The Kähler nonlinear
sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ are
holomorphically embedded in the Kähler nonlinear sigma
model on G2N;N , where the fields are homogeneous coor-
dinates, by the Lagrange multiplier method in the N ¼ 1

superspace formalism. This amounts to introducing super-
potentials into the nonlinear sigma model on the Grassmann
manifold [5]. Therefore, the nonlinear sigma models on
SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ are of interest since the
models have superpotentials, and the models are realized as
non-Abelian gauge theories. In this paper, we construct on-
shellN ¼ 2 nonlinear sigmamodels on SOð2NÞ=UðNÞ and
SpðNÞ=UðNÞ by holomorphically embedding the models
in the nonlinear sigma model on T�G2N;N in the N ¼ 1

superspace formalism by following the method of [5].
Potential terms and Bogomol’nyi-Prasad-Sommerfield

(BPS) objects are discussed in [17–20]. The moduli matrix
formalism was proposed to study walls of N ¼ 2 non-
Abelian gauge theories [21,22]. The moduli matrix for-
malism has been applied to various BPS objects [23–29].
Intersecting walls form junctions [19,25,26,29–34]. Three-
pronged junctions are discussed in the moduli matrix
formalism [25,26]. In [26], junctions of the mass-deformed
nonlinear sigma model on the Grassmann manifold are
studied in the moduli matrix formalism by embedding the
Grassmann manifold into the complex projective space via
the Plücker embedding.
A pictorial representation was proposed to elaborate the

moduli matrix formalism [35,36]. An alternative method is
proposed in [37] to construct three-pronged junctions of the
mass-deformed nonlinear sigma model on the Grassmann
manifold. The moduli matrix formalism is directly applied to
three-pronged junctions of the mass-deformed nonlinear
sigma model on the Grassmann manifold by making use
of diagrams [25,37] in the pictorial representation [35,36]
since the Plücker embedding can be avoided in this approach.
The quadrics SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ are

submanifolds of the Grassmann manifold. Therefore, it
is expected that we can construct three-pronged junctions
of the on-shell N ¼ 2 mass-deformed nonlinear sigma
models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ that will be
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proposed in this paper by using the moduli matrix formal-
ism [21,22] and the diagram method [25,37] as the Plücker
embedding is not required in the pictorial representation
that is proposed in [35,36].
The purpose of this paper is to construct on-shell

N ¼ 2 nonlinear sigma models on SOð2NÞ=UðNÞ and
SpðNÞ=UðNÞ in the N ¼ 1 superspace formalism and to
study three-pronged junctions of the mass-deformed non-
linear sigma models on the quadrics by using the moduli
matrix formalism and the diagram method.
This paper is organized as follows. In Sec. II, we construct

on-shellN ¼ 2mass-deformed nonlinear sigma models on
SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ in theN ¼ 1 superspace
formalism. In Sec. III, we discuss mass-deformed nonlinear
sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ with
complex masses, which are derived from the N ¼ 2 mass-
deformed nonlinear sigma models obtained in Sec. II, and
apply themoduli matrix formalism to theBPS equations and
the constraints. In Sec. IV, we briefly review vacua, walls,
and junctions in the moduli matrix formalism and study
three-pronged junctions of the mass-deformed nonlinear
sigmamodels onSOð8Þ=Uð4Þ andSpð3Þ=Uð3Þ by using the
diagram method. In Sec. V, we summarize our results. In
Appendix, we present the mass-deformed nonlinear sigma
model on the cotangent bundle of the Grassmann manifold
[12,38,39] to elaborate on the discussion of on-shellN ¼ 2
supersymmetry in Sec. II.

II. N = 2 NONLINEAR SIGMA MODELS ON
SOð2NÞ=UðNÞ AND SpðNÞ=UðNÞ IN THE N = 1

SUPERSPACE FORMALISM

In this section, we construct on-shell N ¼ 2 nonlinear
sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ by
holomorphically embedding the models in the hyper-
Kähler nonlinear sigma model on the cotangent bundle
of the Grassmann manifold T�G2N;N in the N ¼ 1 super-
space formalism. In Sec. II A, we review the hyper-Kähler
nonlinear sigma model on the cotangent bundle of the
Grassmann manifold T�GNþM;M in the N ¼ 1 super-
space formalism [10,38–40], which has on-shell N ¼ 2
supersymmetry. In Sec. II B, we construct on-shell
N ¼ 2 nonlinear sigma models on SOð2NÞ=UðNÞ and
SpðNÞ=UðNÞ in the N ¼ 1 superspace formalism.

A. Hyper-Kähler nonlinear sigma model on the
cotangent bundle of the Grassmann manifold

T�GN +M;M

The hyper-Kähler nonlinear sigma model on T�GNþM;M is
discussed in theN ¼ 1 superspace formalism in [10,38–40]:

S¼
Z

d4x

�Z
d4θTrðΦΦ̄eV þ Ψ̄Ψe−V −c0VÞ

þ
�Z

d2θTrðΞðΦΨ−bIMÞÞþðconjugate transposeÞ
��

;

ðc0 ∈R≠0; b∈CÞ: ð2:1Þ

The nonlinear sigma model (2.1) has on-shell N ¼ 2 super-
symmetry. The N ¼ 2 hypermultiplet consists of N ¼ 1

chiral field Φ and N ¼ 1 chiral field Ψ. The N ¼ 2 vector
multiplet consists ofN ¼ 1 vector field V andN ¼ 1 chiral
field Ξ. Chiral fieldΦ is anM × ðN þMÞmatrix, chiral field
Ψ is an ðN þMÞ ×M matrix, vector field V is an M ×M
matrix, and complex field Ξ is an M ×M matrix. We
diagonalize Ξ for later use. We follow the convention of
[12]. The constants b, b�, and c0 are the Fayet-Iliopoulos (FI)
parameters.
The Lagrangian has constraints

ΦΦ̄eV − e−VΨ̄Ψ − c0IM ¼ 0; ð2:2Þ

ΦΨ − bIM ¼ 0; ðc:t:Þ ¼ 0: ð2:3Þ

The constraint (2.3) can be solved by two cases, b ¼ 0 and
b ≠ 0 with proper gauge fixing. The two cases are related
by an SUð2ÞR transformation, which does not preserve the
holomorphy [10,38,39]. The parametrization, which is
considered in [39], is

(i) b ¼ 0, c0 ¼ c > 0

Φ ¼ ð IM f Þ; Ψ ¼
�−fg

g

�
: ð2:4Þ

(ii) b ≠ 0 [8–10]

Φ¼QðIM sÞ; Ψ¼
�
IM
t

�
Q; Q¼

ffiffiffi
b

p
ðIMþstÞ−1

2:

ð2:5Þ

Fields f and s are M × N matrices. Fields g and t are
N ×M matrices.2

The Kähler potential for the Lindström-Rocěk metric
[10,39] is obtained by solving the vector field V. We are
interested in the b ¼ 0 case in this paper. With the para-
metrization (2.4), the potential is

K ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2IM þ 4ðIM þ ff̄ÞḡðIN þ f̄fÞg

q
− cTr ln

�
cIM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2IM þ 4ðIM þ ff̄ÞḡðIN þ f̄fÞg

q �
þ cTr lnðIM þ ff̄Þ: ð2:7Þ

For g ¼ 0, the potential (2.7) becomes the potential of the
Grassmann manifold. Therefore, f parametrizes the base

2For the case of b ¼ 0, c0 < 0, instead of (2.4), the constraint
ΦΨ ¼ 0 can be solved by the following parametrization:

Φ ¼ ð−uv u Þ; Ψ ¼
�
IM

v

�
: ð2:6Þ

Field u is an M × N matrix, and field v is an N ×M matrix.
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Grassmann manifold, whereas g parametrizes the cotangent
space as the fiber [39].
There is a bundle structure in the nonlinear sigma model

(2.1) with b ¼ 0 as we can see in (2.7). In the nonlinear
sigma models with b ¼ 0, c0 > 0, and the parametrization
(2.4), field Φ parametrizes only the base Grassmann
manifold [39]. The same argument holds true for the
nonlinear sigma model with b ¼ 0, c0 < 0, and the para-
metrization in (2.6). In this case, field Ψ parametrizes only
the base Grassmann manifold. Therefore, we can simply
reduce the number of supersymmetry of the hyper-Kähler
nonlinear sigma model in (2.1) with b ¼ 0, c0 ≠ 0 by
setting Ψ ¼ 0 ¼ Ψ̄ (Φ ¼ 0 ¼ Φ̄) for c0 > 0 (c0 < 0).3 This
is discussed in [21,22].4

The mass-deformed nonlinear sigma model on
T�GNþM;M for c0 ¼ c > 0 [38,39] is

S ¼
Z

d4x

�Z
d4θTrðΦΦ̄eV þ Ψ̄Ψe−V − cVÞ

þ
�Z

d2θ TrðΞðΦΨ − bIMÞ þΦMΨÞ þ ðc:t:Þ
��

;

ðc ∈ R≥0; b ∈ CÞ: ð2:9Þ

The mass-deformed nonlinear sigma model on T�GNþM;M

(2.9) has on-shell N ¼ 2 supersymmetry. The relation
between the component field action of (2.9) and the
component field action of the mass-deformed nonlinear
sigma model on T�GNþM;M that is constructed in the
harmonic superspace formalism [12] is presented in
Appendix. It is discussed in detail in [41].
The relation between the bosonic component field action

of the mass-deformed nonlinear sigma model on T�CP1 in
the Oð2Þ gauge invariant form that is constructed in the
N ¼ 1 superspace formalism and the bosonic component
field action of the mass-deformed nonlinear sigma model
that is constructed in the harmonic superspace formalism
[11,12] is identified in [40]. The relation between the
bosonic component field action of the mass-deformed
nonlinear sigma model on T�GN;M that is constructed in
the N ¼ 1 superspace formalism [10] and the bosonic
component field action of the mass-deformed nonlinear
sigma model that is constructed in the harmonic superspace
formalism [12] is identified in [39].

B. On-shell N = 2 nonlinear sigma models on
SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ

The N ¼ 1 nonlinear sigma models on SOð2NÞ=UðNÞ
and SpðNÞ=UðNÞ are constructed by holomorphically
embedding the models in the Kähler nonlinear sigma
model on the Grassmann manifold G2N;N [5]. The F-term
constraint and its conjugate transpose are imposed by the
Lagrange multiplier method. The invariant tensor J is σ1 ⊗
IN for SOð2NÞ=UðNÞ and iσ2 ⊗ IN for SpðNÞ=UðNÞ.
Vanishing F-term constraints are imposed so that the
symmetries of the nonlinear sigma models are consistent
with the gauge symmetry and the supersymmetry of the
Kähler nonlinear sigma model on G2N;N . It is shown that
the nonlinear sigma models on the quadrics that are
isomorphic to the complex projective spaces produce
equivalent Kähler potentials [6]. It justifies the method
and the results of [5].
In this subsection, we construct on-shell N ¼ 2 non-

linear sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ
by holomorphically embedding the models in the hyper-
Kähler nonlinear sigma model on the cotangent bundle of
the Grassmann manifold T�G2N;N with the bundle structure
that is discussed in Sec. II A. The hyper-Kähler nonlinear
sigma model on the cotangent bundle of the Grassmann
manifold T�G2N;N (2.1) with b ¼ 0 is

S ¼
Z

d4x

�Z
d4θ TrðΦΦ̄eV þ Ψ̄Ψe−V − c0VÞ

þ
�Z

d2θ TrðΞΦΨÞ þ ðconjugate transposeÞ
��

;

ðc0 ∈ R≠0Þ: ð2:10Þ

The value of the FI parameter c0 can be either positive or
negative.
As we have seen in Sec. II A and Appendix, the non-

linear sigma model (2.10) has on-shell N ¼ 2 supersym-
metry. The N ¼ 2 hypermultiplet consists ofN ¼ 1 chiral
field Φ and N ¼ 1 chiral field Ψ. The N ¼ 2 vector
multiplet consists of N ¼ 1 vector field V and N ¼ 1
chiral field Ξ. The constraint ΦΨ ¼ 0 can be solved by
(2.4) or (2.6). In either case one of the chiral fields of
the hypermultiplet parametrizes only the base manifold.
Therefore, regardless of the N ¼ 2 vector multiplet, by
setting one of the chiral fields of the hypermultiplet equal to
zero, the N ¼ 2 nonlinear sigma model on T�G2N;N (2.10)
should get reduced to the Kähler nonlinear sigma model
on G2N;N since the nonlinear sigma model (2.10) is in the
N ¼ 1 superspace formalism.
We construct on-shellN ¼ 2 nonlinear sigma models on

SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ by holomorphically
embedding the models in the hyper-Kähler nonlinear sigma
model on the cotangent bundle of the Grassmann manifold
T�G2N;N (2.10), which is constrained by the relation

3The parametrization for ΦΨ ¼ 0 is

Φ ¼ ð kþ i
ffiffiffiffiffiffiffiffiffiffiffi
kþk−

p Þ; Ψ ¼
� k−

i
ffiffiffiffiffiffiffiffiffiffiffi
kþk−

p �
; ð2:8Þ

in [10]. In this case we cannot observe the structure.
4Interested readers may refer to Sec. III F of [22].
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ΦΨ ¼ 0. There should exist well-definedN ¼ 1 nonlinear
sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ in the
on-shellN ¼ 2 nonlinear sigma models on SOð2NÞ=UðNÞ
and SpðNÞ=UðNÞ since the models are constructed in the
N ¼ 1 superspace formalism, and the models have the
bundle structure that is discussed in Sec. II A.
The constraint ΦΨ ¼ 0 can be solved by (2.4) for c0 > 0

or by (2.6) for c0 < 0. With the parametrization (2.4) for
c0 > 0, Φ parametrizes only the base manifold. We impose
the constraintΦJΦT ¼ 0 and its conjugate transpose, which
are the constraints of the N ¼ 1 nonlinear sigma models
on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ [5], on the base
manifold as the models should have the N ¼ 1 nonlinear
sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ. The
constraint ΦJΦT ¼ 0 restricts the other chiral field of
the hypermultiplet to ΨTJΨ ¼ 0.5 Therefore, there exists
the Lagrangian subject to the constraints ΦJΦT ¼ 0,
ΨTJΨ ¼ 0, and their conjugate transpose. With the para-
metrization (2.6) for c0 < 0, Ψ parametrizes only the base
manifold. We impose the constraint ΨTJΨ ¼ 0 on the
base manifold. The constraint restricts the other chiral field
to ΦJΦT ¼ 0. There exists the Lagrangian subject to the
constraints ΨTJΨ ¼ 0, ΦJΦT ¼ 0, and their conjugate
transpose. Therefore, both of the constraints and their
conjugate transpose should be imposed to obtain consistent
on-shell N ¼ 2 nonlinear sigma models on SOð2NÞ=UðNÞ
and SpðNÞ=UðNÞ in the N ¼ 1 superspace formalism.6

The on-shell N ¼ 2 nonlinear sigma models on
SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ are

S¼
Z

d4x

�Z
d4θTrðΦΦ̄eV þ Ψ̄Ψe−V −c0VÞ

þ
�Z

d2θTrðΞΦΨþΦ0ΦJΦT þΨ0ΨTJΨÞþðc:t:Þ
��

;

ðc0 ∈R≠0Þ: ð2:12Þ

Φ is an N × 2N chiral matrix field, and Ψ is a 2N × N
chiral matrix field. Φ0 and Ψ0 are N × N chiral matrix
fields, which are introduced as Lagrange multipliers. The
Lagrangian of the action (2.12) is constrained by

ΦΨ ¼ 0; ðc:t:Þ ¼ 0; ð2:13Þ

ΦJΦT ¼ 0; ðc:t:Þ ¼ 0; ð2:14Þ

ΨTJΨ ¼ 0; ðc:t:Þ ¼ 0; ð2:15Þ

with the invariant tensor J of Oð2NÞ7 or USpð2NÞ:

J ¼
�

0 IN
ϵIN 0

�
; ϵ ¼

�
1; for SOð2NÞ=UðNÞ
−1; for SpðNÞ=UðNÞ:

ð2:16Þ

As ΦJΦT and ΨTJΨ are symmetric (antisymmetric) for
SOð2NÞ (USpð2NÞ), Φ0 and Ψ0 are symmetric (antisym-
metric) rank-2 tensors,

ΦT
0 ¼ ϵΦ0; ΨT

0 ¼ ϵΨ0; ϵ ¼
�
1; for SOð2NÞ=UðNÞ
−1; for SpðNÞ=UðNÞ:

ð2:17Þ
The Uð1Þ charge of Φ0 is −2, whereas the Uð1Þ charge of
Ψ0 is þ2 to cancel out the Φ charge and the Ψ charge,
respectively.
The chiral field that parametrizes the base manifold is

determined by the sign of the FI parameter c0. In either
ðc0 > 0;Ψ ¼ 0 ¼ Ψ̄Þ case or ðc0 < 0;Φ ¼ 0 ¼ Φ̄Þ case,
the N ¼ 2 nonlinear sigma models on SOð2NÞ=UðNÞ and
SpðNÞ=UðNÞ in the N ¼ 1 superspace formalism (2.12)
get reduced to the N ¼ 1 nonlinear sigma models on
SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ that are constructed in
[5]. We choose the case c0 ¼ c > 0 so that Φ parametrizes
only the base manifold.
It should be noted that field g in (2.4) and (2.11), which

parametrizes the cotangent space as the fiber, is not
constrained by the invariant tensor J in (2.16).8 As g is
not constrained by J, the bosonic component field of Ψ
should not contribute to the continuous vacuum. Therefore,
the bosonic component field of the homogeneous Ψ before
the gauge fixing also does not contribute to the vacuum.
The action of the mass-deformed N ¼ 2 nonlinear

sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ can
be obtained by introducing mass terms as it is done in (2.9):

S ¼
Z

d4x

�Z
d4θ TrðΦΦ̄eV þ Ψ̄Ψe−V − cVÞ

þ
�Z

d2θ TrðΞΦΨþΦMΨþΦ0ΦJΦT

þ Ψ0ΨTJΨÞ þ ðc:t:Þ
��

; ðc ∈ R>0Þ: ð2:18Þ

By introducing the mass terms, the most part of the
continuous vacuum is lifted, and the discrete vacua are

5

ΦJΦT ¼ fT þ ϵf ¼ 0; ΨTJΨ ¼ −gTðfT þ ϵfÞg ¼ 0:

ð2:11Þ
6This argument can also be justified by the fact that there

are other parametrizations that solve the constraint ΦΨ ¼ 0, such
as (2.8).

7We should remove the half of the result which is related to the
other half of the result by the parity since J for SOð2NÞ=UðNÞ
allows the parity transformation of Oð2NÞ [35,42].

8In [14], the arctic superfield ϒðζÞ ¼ φþ Σζ þOðζ2Þ is
constrained by ϒT þ ϵϒ ¼ 0. Therefore, the one-form field χ,
which is obtained by dualizing Σ, is also constrained by
χT þ ϵχ ¼ 0.
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left on the surface that is defined by the F-term constraints.
As discussed before, the bosonic component of Ψ should
vanish at any vacuum. Therefore, the component field does
not contribute to the BPS solutions which interpolate the
discrete vacua. This observation is consistent with the
results of [21–23,25,26,28].

III. BPS SOLUTIONS

In this section, we derive the mass-deformed nonlinear
sigma models with complex masses on SOð2NÞ=UðNÞ and
SpðNÞ=UðNÞ, which describe vacua, walls, and three-
pronged junctions and apply the moduli matrix formalism
[21–23,25,26,37] to study the BPS objects.
We are interested in the bosonic part of the action (2.18).

The superfields can be expanded by bosonic component
fields as follows9:

ΦA
IðyÞ ¼ AA

IðyÞ þ θθFA
IðyÞ; ðyμ ¼ xμ þ iθσμθ̄Þ;

ΨI
AðyÞ ¼ BI

AðyÞ þ θθGI
AðyÞ;

VA
BðxÞ ¼ 2θσμθ̄AμA

BðxÞ þ θθθ̄ θ̄DA
BðxÞ;

ΞA
BðyÞ ¼ −SA

BðyÞ þ θθKA
BðyÞ;

Φ0
ABðyÞ ¼ A0

ABðyÞ þ θθF0
ABðyÞ;

Ψ0ABðyÞ ¼ B0ABðyÞ þ θθG0ABðyÞ;
ðA ¼ 1;…; N; I ¼ 1;…; 2NÞ: ð3:1Þ

The bosonic part of the action (2.18) is

S ¼
Z

d4xTrðDμADμAþDμBDμB

− jAM − SAþ 2B0BTJj2 − jMB − BS þ 2JATA0j2Þ;
ðμ ¼ 0; 1; 2; 3Þ; ð3:2Þ

with constraints

AĀ − B̄B − cIM ¼ 0;

AB ¼ 0; ðc:t:Þ ¼ 0;

AJAT ¼ 0; ðc:t:Þ ¼ 0;

BTJB ¼ 0; ðc:t:Þ ¼ 0: ð3:3Þ

The covariant derivatives are defined by

DμA ¼ ∂μA − iAμA; DμB ¼ ∂μB þ iBAμ: ð3:4Þ

We set B ¼ 0 ¼ B̄ to obtain the Lagrangian that
describes vacua, walls, and three-pronged junctions since
the fields do not contribute to the BPS solutions as

discussed in Sec. II and in [21–23,25,26,28]. Then the
Lagrangian that describes vacua, walls, and junctions of the
mass-deformed nonlinear sigma models on SOð2NÞ=UðNÞ
and SpðNÞ=UðNÞ in four dimensions is

L ¼ TrðDμADμA − jAM − SAj2 − j2JATA0j2Þ; ð3:5Þ

with constraints

AĀ − cIM ¼ 0;

AJAT ¼ 0; ðc:t:Þ ¼ 0: ð3:6Þ

The complex mass matrix M and the complex matrix field
S are diagonal by construction.
The Lagrangian (3.5) can be obtained by replacing the

real-valued mass matrix and the scalar matrix field of the
Kähler nonlinear sigma models on SOð2NÞ=UðNÞ and
SpðNÞ=UðNÞ [35,36,42] with complex-valued ones. This
type of extension is applied to construct dyonic configu-
rations with nonproportional charge vectors [28].
The complex mass matrix is defined by a linear combi-

nation of the Cartan generators. The Cartan generators of
SOð2NÞ and USpð2NÞ are

HI ¼ eI;I − eNþI;NþI; ðI ¼ 1;…; NÞ; ð3:7Þ

where eI;IðeNþI;NþIÞ is a 2N × 2N matrix of which the
ðI; IÞððN þ I; N þ IÞÞ component is one. By introducing
vectors

l ≔ ðm1 þ in1; m2 þ in2;…; mN þ inNÞ;
H ≔ ðH1; H2;…; HNÞ; ð3:8Þ

with real-valued mi and ni, ði ¼ 1;…; NÞ, the mass matrix
is formulated as

M ¼ l ·H: ð3:9Þ

S can be parametrized as

S ¼ diagðσ1 þ iτ1; σ2 þ iτ2;…; σN þ iτNÞ; ð3:10Þ

with real-valued σi and τi, ði ¼ 1;…; NÞ.
The vacuum conditions of the Lagrangian (3.5) are

AM − SA ¼ 0; ðc:t:Þ ¼ 0;

ATA0 ¼ 0; ðc:t:Þ ¼ 0: ð3:11Þ

Therefore, the vacuum solutions are labeled by

ðσ1þ iτ1;σ2þ iτ2;…;σN þ iτNÞ
¼ ð�ðm1þ in1Þ;�ðm2þ in2Þ;…;�ðmN þ inNÞÞ: ð3:12Þ

9We introduce the minus sign in Ξ for S so that the vacuum
labels in Sec. IVA and in Sec. IV B are consistent with the labels
of [35,36].
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There are 2N−1 vacua in the mass-deformed nonlinear sigma
model on SOð2NÞ=UðNÞ as J with ϵ ¼ 1 in (2.16) is the
OðNÞ invariant tensor, and 2N vacua in the mass-deformed
nonlinear sigma model on SpðNÞ=UðNÞ [42].10
The Lagrangian (3.5) can be rewritten as

L ¼ Tr

�
DμADμA −

X
a¼1;2

jAMa − ΣaAj2 − j2JATA0j2
�
;

ð3:13Þ

by introducing real-valued matricesMa and Σa, (a ¼ 1, 2),

M ¼ M1 þ iM2;

S ¼ Σ1 þ iΣ2: ð3:14Þ

We study junctions of the mass-deformed nonlinear
sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ with
the Lagrangian (3.13). We are interested in static configu-
rations, which are independent of the x3 coordinate. We
also assume that there is the Poincaré invariance on the
worldvolume. So we fix ∂0 ¼ ∂3 ¼ 0 and A0 ¼ A3 ¼ 0.
The energy density is

E ¼ Tr

�X
α¼1;2

jDαA ∓ ðAMα − ΣαAÞj2 þ j2JATA0j2
�

� T ≥ �T ; ð3:15Þ

where the tension density is

T ¼ Tr

�X
α¼1;2

∂αðAMαĀÞ
�
: ð3:16Þ

The index α ¼ 1, 2 is used for both codimensions and
adjoint scalars as it is done in [25]. The energy density
(3.15) and the tension density (3.16) are constrained
by (3.6).
The (anti)BPS equation is

DαA ∓ ðAMα − ΣαAÞ ¼ 0; ðα ¼ 1; 2Þ: ð3:17Þ

We choose the upper sign for the BPS equation. We apply
the moduli matrix formalism [21–23,25,26] to solve the
BPS equation. The BPS solution is

A ¼ S−1H0eM1x1þM2x2 ; ð3:18Þ

with a relation

S−1∂αS ≔ Σα − iAα; ðα ¼ 1; 2Þ: ð3:19Þ

The coefficient matrix H0 is the moduli matrix. The
constraints in (3.6) are

SS̄ ¼ 1

c
H0e2M1x1þ2M2x2H̄0; ð3:20Þ

H0JHT
0 ¼ 0; ðc:t:Þ ¼ 0: ð3:21Þ

The BPS solution (3.18), Σα and Aα in (3.19), are invariant
under the transformation,

H0
0 ¼ VH0; S0 ¼ VS; V ∈ GLðN;CÞ: ð3:22Þ

The equivalence class of ðS;H0Þ is the worldvolume
symmetry of the moduli matrix formalism. The first equa-
tion of (3.22) and Eq. (3.21) show that the moduli matrices
H0’s parametrize SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ,
respectively [42].
Walls are built by elementary walls, which are con-

structed by the simple root generators of the global
symmetry. Therefore, the elementary walls are identified
with the simple roots [35,36,44]. We summarize the simple
root generators Ei, ði ¼ 1;…; NÞ and the simple root αi of
SOð2NÞ and USpð2NÞ [28,45]:

(i) SOð2NÞ

Ei ¼ ei;iþ1 − eiþNþ1;iþN; ði ¼ 1;…; N − 1Þ;
EN ¼ eN−1;2N − eN;2N−1;

αi ¼ êi − êiþ1;

αN ¼ êN−1 þ êN: ð3:23Þ

(ii) USpð2NÞ

Ei ¼ ei;iþ1 − eiþNþ1;iþN; ði ¼ 1;…; N − 1Þ;
EN ¼ eN;2N;

αi ¼ êi − êiþ1;

αN ¼ 2êN: ð3:24Þ

IV. THREE-PRONGED JUNCTIONS OF THE
MASS-DEFORMED NONLINEAR SIGMAMODELS

ON SOð8Þ=Uð4Þ AND Spð3Þ=Uð3Þ
The moduli matrix formalism is applied to three-pronged

junctions of the mass-deformed nonlinear sigma model
on the complex projective space, which is an Abelian
gauge theory [25], and to three-pronged junctions of the
mass-deformed nonlinear sigma model on the Grassmann
manifold GNF;NC

, which is a non-Abelian gauge theory for
NC ≥ 2 [26]. In the moduli matrix formalism for the complex
projective space and the Grassmann manifold, vacua are
labeled by assigning a nonvanishing flavor number for
each color component [21–23]. There are two types of

10The numbers of vacua of the mass-deformed nonlinear sigma
models on the Hermitian symmetric spaces are the Euler
characteristics of the spaces [28,43].
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three-pronged junctions. An Abelian three-pronged junction
divides three vacua that differ by one label number: h� � �Ai,
h� � �Bi, and h� � �Ci. A non-Abelian three-pronged junction
divides three vacua that differ by two label numbers:
h� � �ABi, h� � �BCi, and h� � �ACi. Abelian three-pronged
junctions exist both in Abelian gauge theories and in non-
Abelian gauge theories, whereas non-Abelian three-pronged
junctions exist only in non-Abelian gauge theories [25,26].
In [25], the moduli matrix formalism is directly applied

to three-pronged junctions of the mass-deformed nonlinear
sigma models on the complex projective spaces since vacua
have only one color component so that neighboring vacua
can be easily identified. Two-dimensional diagrams or
polyhedron diagrams are proposed to describe vacua and
BPS objects of the mass-deformed nonlinear sigma models
on the complex projective space. Vertices, edges, and
triangular faces of the polyhedron diagrams correspond
to vacua, walls, and three-pronged junctions.
The moduli matrix formalism for three-pronged junctions

accompanies technical difficulties in the mass-deformed
nonlinear sigma model on the Grassmann manifold.
Neighboring vacua that are interpolated by walls should
be identified, and S−1 of (3.18) should be obtained from the
matrix SS̄ in (3.20), which is not, in general, diagonal for
non-Abelian junctions. In [26], the Grassmann manifold
GNF;NC

is embedded in the complex projective space
CPNFCNC

−1 by the Plücker embedding, resolving the
difficulties. This method is efficient, however, its disadvant-
age is that it cannot be directly applied to the quadrics in the
Grassmann manifold since it is not yet known how to
impose the quadratic constraints to the Plücker embedding.
It is shown in [37] that we can apply the pictorial

representation, which is proposed in [35], to the mass-
deformed nonlinear sigma model on the Grassmann mani-
fold and reformulate the diagrams for vacua and elementary
walls in the pictorial representation to build polyhedron
diagrams, which are similar to the polyhedron diagrams
that are proposed in [25] to describe vacua, walls, and
three-pronged junctions of the mass-deformed nonlinear
sigma models on the complex projective space, which
are Abelian gauge theories. Positions of non-Abelian
three-pronged junctions, as well as Abelian three-pronged
junctions, are calculated from the diagrams.
We show in this paper for the first time that we can

apply the moduli matrix formalism to three-pronged
junctions of the mass-deformed nonlinear sigma models
on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ that are constructed
in the N ¼ 1 superspace formalism. The models are non-
Abelian gauge theories for N ≥ 4 and N ≥ 3, respectively.
We construct three-pronged junctions on SOð8Þ=Uð4Þ and
Spð3Þ=Uð3Þ by making use of the diagram method in the
pictorial representation that is proposed in [37]. As a sequel
to this paper, the approach that is proposed in this paper is
applied to the mass-deformed nonlinear sigma models on
SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ with generic N [41].

A. Three-pronged junctions of the mass-deformed
nonlinear sigma model on SOð8Þ=Uð4Þ

In this subsection, we review the pictorial representation
that is proposed in [35] and apply the diagram method
in the pictorial representation that is proposed in [37] to
construct three-pronged junctions of the mass-deformed
nonlinear sigma models on SOð2NÞ=UðNÞ. To study vacua
and walls, we can reduce the model, which is discussed in
Sec. III by settingM2 ¼ 0 and Σ2 ¼ 0. As we are interested
in generic mass parameters, we can set mi > miþ1 without
loss of generality. We label the vacua in descending order as
follows [35]:

ðσ1; σ2;…; σN−1; σNÞ ¼ ðm1; m2;…; mN−1; mNÞ;
ðσ1; σ2;…; σN−1; σNÞ ¼ ðm1; m2;…;−mN−1;−mNÞ;
..
.

ðσ1; σ2;…; σN−1; σNÞ ¼ ð�m1;−m2;…;−mN−1;−mNÞ;
ð4:1Þ

where the sign � is þ for odd N and − for even N.
Let h·i denote a vacuum and h· ← ·i or h· ↔ ·i denote a

wall. Elementary wall hA ← Bi that interpolates vacuum
hAi and vacuum hBi of the mass-deformed nonlinear sigma
model on SOð2NÞ=UðNÞ is defined by the following
relation:

2c½M;Ei� ¼ 2cðm · αiÞEi ¼ ThA←BiEi; ði ¼ 1;…; NÞ:
ð4:2Þ

Ei is the positive root generator of the simple root of
SOð2NÞ, which corresponds to the elementary wall oper-
ator of the moduli matrix formalism. Constant c is the FI
parameter of the Lagrangian (2.18). Elementary wall
H0hA←Bi ¼ H0hAieEiðrÞ with EiðrÞ≡ erEi, ðr ∈ CÞ is
labeled by simple root αi in the pictorial representation.
The elementary wall has tension ThA←Bi. Let ghA←Bi denote
the elementary wall, which satisfies the relation (4.2):

ghA←Bi ≡ 2cαi; ði ¼ 1;…; NÞ: ð4:3Þ

A compressed wall of level l is

gh���i ¼ 2cαi1 þ 2cαi2 þ � � � þ 2cαilþ1
;

ðim ¼ 1;…; N;m ≤ lþ 1Þ: ð4:4Þ

A pair of penetrable walls are orthogonal:

gh���i · gh���i ¼ 0: ð4:5Þ
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Elementary walls, compressed walls, and multiwalls of the
mass-deformed nonlinear sigma models on SOð2NÞ=UðNÞ
are discussed in [35,42].
We present the diagram for the vacua and the elementary

walls of the mass-deformed nonlinear sigma model on
SOð8Þ=Uð4Þ [35] in Fig. 1. Vertices and segments corre-
spond to vacua and elementary walls. The parallelogram
presents two pairs of penetrable walls. The facing sides
of the parallelogram are the same vectors, whereas the
adjacent sides of the parallelogram are orthogonal vectors.
Let us look at sector fh1i; h2i; h3ig. The vacua are

labeled by the rule (4.1):

h1i∶ ðσ1; σ2; σ3; σ4Þ ¼ ðm1; m2; m3; m4Þ;
h2i∶ ðσ1; σ2; σ3; σ4Þ ¼ ðm1; m2;−m3;−m4Þ;
h3i∶ ðσ1; σ2; σ3; σ4Þ ¼ ðm1;−m2; m3;−m4Þ: ð4:6Þ

We can learn from Fig. 1 that the elementary wall operators
of h1 ← 2i and h2 ← 3i are E4 and E2 of (3.23), respec-
tively. We can also learn from (3.23) that ½E4; E2� ≠ 0.
Therefore, there exists compressed wall h1 ← 3i. The
moduli matrices of the single walls that interpolate vacua
fh1i; h2i; h3ig are

H0h1←2i ¼ H0h1iee
rE4 ;

H0h2←3i ¼ H0h2iee
rE2 ;

H0h1←3i ¼ H0h1iee
r½E4;E2�: ð4:7Þ

We study three-pronged junctions. We turn on mass
matrix M2 and matrix field Σ2 and set m1 þ in1 ≠
m2 þ in2 ≠ � � � ≠ mN þ inN . From (3.23), we find that

α1 · ðα2 þ α4Þ ≠ 0; ð4:8Þ

α3 · ðα2 þ α4Þ ≠ 0: ð4:9Þ

Equation (4.8) shows that there exist compressed walls
h1 ← 5i and h4 ← 8i. Equation (4.9) shows that there exist
compressed walls h1 ← 4i and h5 ← 8i. We reformulate the
diagram in Fig. 1 by connecting vacua to produce the diagram
presented in Fig. 2. Vertices, edges, and triangular faces
correspond to vacua, walls, and three-pronged junctions.

We study the three-pronged junction that divides vacua
fh1i; h2i; h3ig. The vacua are labeled by the rule (4.1):

h1i∶ ðσ1 þ iτ1; σ2 þ iτ2; σ3 þ iτ3; σ4 þ iτ4Þ
¼ ðm1 þ in1; m2 þ in2; m3 þ in3; m4 þ in4Þ;

h2i∶ ðσ1 þ iτ1; σ2 þ iτ2; σ3 þ iτ3; σ4 þ iτ4Þ
¼ ðm1 þ in1; m2 þ in2;−m3 − in3;−m4 − in4Þ;

h3i∶ ðσ1 þ iτ1; σ2 þ iτ2; σ3 þ iτ3; σ4 þ iτ4Þ
¼ ðm1 þ in1;−m2 − in2; m3 þ in3;−m4 − in4Þ:

ð4:10Þ

We apply the worldvolume symmetry transformation (3.22)
to the moduli matrices of walls (4.7) to produce a general
description (hAI ¼ expðaAI þ ibAIÞ; aAI; bAI ∈ R):

H0h1↔2i ¼

0
BBB@

1 0

1 0

h33 0 h38
h33 −h38 0

1
CCCA;

H0h2↔3i ¼

0
BBB@

1 0

h22 h23 0

0 −h23 h22
0 1

1
CCCA;

H0h3↔1i ¼

0
BBB@

1 0

h22 0 h28
1 0

h22 −h28 0

1
CCCA:

ð4:11Þ

FIG. 1. Vacua and elementary walls of the mass-deformed
nonlinear sigma model on SOð8Þ=Uð4Þ [35]. The numbers in
brackets indicate the vacuum labels. The numbers without brackets
indicate the subscript i’s of simple roots αi, (i ¼ 1;…; 4).

FIG. 2. Vacua, walls, and three-pronged junctions of the mass-
deformed nonlinear sigma models on SOð8Þ=Uð4Þ. Vertices,
edges, and triangular faces correspond to vacua, walls, and three-
pronged junctions.
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As the moduli matrices have the worldvolume symmetry
(3.22), only one of hAI parameters or the ratio of the two
parameters in each moduli matrix is independent.
The wall solutions that interpolate fh1i; h2ig, fh2i; h3ig,

and fh3i; h1ig are obtained by (3.18) with (3.20) as
follows:

(i) fh1i; h2ig

Ah1↔2i ¼

0
BBBBB@

ffiffiffi
c

p
0ffiffiffi

c
p

0
p33ffiffiffi
s3

p 0 p38ffiffiffi
s3

p
p44ffiffiffi
s4

p p47ffiffiffi
s4

p 0

1
CCCCCA;

p33 ¼ expðm3x1 þ n3x2 þ a33 þ ib33Þ;
p38 ¼ expð−m4x1 − n4x2 þ a38 þ ib38Þ;
p44 ¼ expðm4x1 þ n4x2 þ a33 þ ib33Þ;
p47 ¼ expð−m3x1 − n3x2 þ a38 þ ib38 þ iπÞ;

s3 ¼
1

c
½expð2m3x1 þ 2n3x2 þ 2a33Þ

þ expð−2m4x1 − 2n4x2 þ 2a38Þ�;

s4 ¼
1

c
½expð2m4x1 þ 2n4x2 þ 2a33Þ

þ expð−2m3x1 − 2n3x2 þ 2a38Þ�: ð4:12Þ

(ii) fh2i; h3ig

Ah2↔3i ¼

0
BBBBB@

ffiffiffi
c

p
0

q22ffiffiffi
t2

p q23ffiffiffi
t2

p 0

0 q36ffiffiffi
t3

p q37ffiffiffi
t3

p

0
ffiffiffi
c

p

1
CCCCCA;

q22 ¼ expðm2x1 þ n2x2 þ a22 þ ib22Þ;
q23 ¼ expðm3x1 þ n3x2 þ a23 þ ib23Þ;
q36 ¼ expð−m2x1 − n2x2 þ a23 þ ib23 þ iπÞ;
q37 ¼ expð−m3x1 − n3x2 þ a22 þ ib22Þ;

t2 ¼
1

c
½expð2m2x1 þ 2n2x2 þ 2a22Þ

þ expð2m3x1 þ 2n3x2 þ 2a23Þ�;

t3 ¼
1

c
½expð−2m2x1 − 2n2x2 þ 2a23Þ

þ expð−2m3x1 − 2n3x2 þ 2a22Þ�: ð4:13Þ

(iii) fh3i; h1ig

Ah3↔1i ¼

0
BBBBB@

ffiffiffi
c

p
0

r22ffiffiffiffi
u2

p 0 r28ffiffiffiffi
u2

pffiffiffi
c

p
0

r44ffiffiffiffi
u4

p r46ffiffiffiffi
u4

p 0

1
CCCCCA;

r22 ¼ expðm2x1 þ n2x2 þ a22 þ ib22Þ;
r28 ¼ expð−m4x1 − n4x2 þ a28 þ ib28Þ;
r44 ¼ expðm4x1 þ n4x2 þ a22 þ ib22Þ;
r46 ¼ expð−m2x1 − n2x2 þ a28 þ ib28 þ iπÞ;

u2 ¼
1

c
½expð2m2x1 þ 2n2x2 þ 2a22Þ

þ expð−2m4x1 − 2n4x2 þ 2a28Þ�;

u4 ¼
1

c
½expð2m4x1 þ 2n4x2 þ 2a22Þ

þ expð−2m2x1 − 2n2x2 þ 2a28Þ�: ð4:14Þ

As mentioned previously, only one of aAI parameters is
independent in each wall solution.
The position of wall h1 ↔ 2i is Reðp33Þ ¼ Reðp38Þ and

Reðp44Þ ¼ Reðp47Þ:

ðm3 þm4Þx1 þ ðn3 þ n4Þx2 þ ða33 − a38Þ ¼ 0: ð4:15Þ

The position of wall h2 ↔ 3i is Reðq22Þ ¼ Reðq23Þ and
Reðq36Þ ¼ Reðq37Þ:

ðm2 −m3Þx1 þ ðn2 − n3Þx2 þ ða22 − a23Þ ¼ 0: ð4:16Þ

The position of wall h3 ↔ 1i is Reðr22Þ ¼ Reðr28Þ and
Reðr44Þ ¼ Reðr46Þ:

ðm2 þm4Þx1 þ ðn2 þ n4Þx2 þ ða22 − a28Þ ¼ 0: ð4:17Þ

There is a consistency condition:

a23 − a33 ¼ a28 − a38: ð4:18Þ

Therefore, there are two independent aAI parameters to
describe the junction position as expected. We can compute
the position of the junction from (4.15), (4.16), and (4.17).
The position of the junction that divides the vacua
fh1i; h2i; h3ig in (4.10) is

ðx; yÞ ¼
�
S1
S3

;
S2
S3

�
; ð4:19Þ
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S1 ¼ ð−a33 þ a38Þn2 þ ða22 − a28Þn3 þ ða22 − a23Þn4;
S2 ¼ ða33 − a38Þm2 þ ð−a22 þ a28Þm3 þ ð−a22 þ a23Þm4;

S3 ¼ −ðm2 −m3Þðn3 þ n4Þ þ ðm3 þm4Þðn2 − n3Þ:
ð4:20Þ

B. Three-pronged junctions of the mass-deformed
nonlinear sigma model on Spð3Þ=Uð3Þ

In this subsection, we review the pictorial representation
[36] and apply the diagram method [37] to the mass-
deformed nonlinear sigma models on SpðNÞ=UðNÞ. To
study vacua and walls, we reduce the model by setting
M2 ¼ 0 and Σ2 ¼ 0. We also setmi > miþ1 without loss of
generality. We label the vacua in descending order as
follows [36]:

ðσ1; σ2;…; σN−1; σNÞ ¼ ðm1; m2;…; mN−1; mNÞ;
ðσ1; σ2;…; σN−1; σNÞ ¼ ðm1; m2;…; mN−1;−mNÞ;
ðσ1; σ2;…; σN−1; σNÞ ¼ ðm1; m2;…;−mN−1; mNÞ;
ðσ1; σ2;…; σN−1; σNÞ ¼ ðm1; m2;…;−mN−1;−mNÞ;
..
.

ðσ1; σ2;…; σN−1; σNÞ ¼ ðm1;−m2;…;−mN−1;−mNÞ;
ðσ1; σ2;…; σN−1; σNÞ ¼ ð−m1; m2;…; mN−1; mNÞ;
..
.

ðσ1; σ2;…; σN−1; σNÞ ¼ ð−m1;−m2;…;−mN−1;−mNÞ:
ð4:21Þ

The elementary wall vectors should be defined by scaled
simple roots since the lengths of the USpð2NÞ simple
roots are not all the same. Elementary wall hA ← Bi that
interpolates vacuum hAi and vacuum hBi of the mass-
deformed nonlinear sigma models on SpðNÞ=UðNÞ is
defined by the following relations:

2c½M;Ei� ¼ 2cðm · αiÞEi ¼ ThA←BiEi; ði ¼ 1;…;N − 1Þ;
c½M;EN � ¼ cðm · αNÞEN ¼ ThA←BiEN: ð4:22Þ

The corresponding elementary wall is

ghA←Bi ≡ 2cαi; ði ¼ 1;…; N − 1Þ;
ghA←Bi ≡ cαN: ð4:23Þ

A compressed wall of level l is

gh���i ¼ 2cαi1 þ 2cαi2 þ � � � þ 2cαilþ1
;

ðim ≤ N − 1;m ≤ lþ 1Þ; ð4:24Þ

for the simple root vectors of the same length. There is a
compressed wall sector of unequal length simple roots:

gh���i ¼ 2cαN−1 þ cαN: ð4:25Þ

This is the distinguishing feature of the mass-deformed
nonlinear sigma models on SpðNÞ=UðNÞ. A pair of
penetrable walls are orthogonal. Elementary walls, com-
pressed walls, and multiwalls of the mass-deformed non-
linear sigma models on SpðNÞ=UðNÞ are discussed in [36].
We present the diagram for the vacua and the elementary

walls of the mass-deformed nonlinear sigma model on
Spð3Þ=Uð3Þ [36] in Fig. 3. As before, vertices and seg-
ments correspond to vacua and elementary walls. The
parallelogram presents two pairs of penetrable walls. The
facing sides of the parallelogram are the same vectors,
whereas the adjacent sides of the parallelogram are
orthogonal vectors.
Let us look at sector fh1i; h2i; h3ig. The vacua are

labeled by the rule (4.21):

h1i∶ ðσ1; σ2; σ3Þ ¼ ðm1; m2; m3Þ;
h2i∶ ðσ1; σ2; σ3Þ ¼ ðm1; m2;−m3Þ;
h3i∶ ðσ1; σ2; σ3Þ ¼ ðm1;−m2; m3Þ: ð4:26Þ

We can learn from Fig. 3 that the elementary wall operators
of h1 ← 2i and h2 ← 3i are E3 and E2 of (3.24). We can
also learn from (3.24) that ½½E3; E2�; E2� ≠ 0. Therefore,
there exists compressed wall h1 ← 3i. The moduli matrices
of the single walls that interpolate vacua fh1i; h2i; h3ig are

H0h1←2i ¼ H0h1iee
rE3 ;

H0h2←3i ¼ H0h2iee
rE2 ;

H0h1←3i ¼ H0h1iee
r½½E3;E2�;E2�: ð4:27Þ

We study three-pronged junctions. We turn on M2 and
Σ2 and set m1 þ in1 ≠ m2 þ in2 ≠ � � � ≠ mN þ inN . From
(3.24), we find that

ð2α2 þ α3Þ · α3 ¼ 0; ð4:28Þ

ð2α1 þ 2α2 þ α3Þ · α3 ¼ 0: ð4:29Þ

Equation (4.28) shows that there do not exist compressed
walls h1 ← 4i and h5 ← 8i. Equation (4.29) shows that
there do not exist compressed walls h1 ← 6i and h3 ← 8i.
We reformulate the diagram in Fig. 3 to produce the diagram
presented in Fig. 4. Vertices, edges, and triangular faces
correspond to vacua, walls, and three-pronged junctions.
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We study the three-pronged junction that divides vacua
fh1i; h2i; h3ig. The vacua are labeled by the rule (4.21):

h1i∶ ðσ1 þ iτ1; σ2 þ iτ2; σ3 þ iτ3Þ
¼ ðm1 þ in1; m2 þ in2; m3 þ in3Þ;

h2i∶ ðσ1 þ iτ1; σ2 þ iτ2; σ3 þ iτ3Þ
¼ ðm1 þ in1; m2 þ in2;−m3 − in3Þ;

h3i∶ ðσ1 þ iτ1; σ2 þ iτ2; σ3 þ iτ3Þ
¼ ðm1 þ in1;−m2 − in2; m3 þ in3Þ: ð4:30Þ

We apply the worldvolume symmetry transformation
(3.22) to the moduli matrices of walls (4.27) to produce
the following moduli matrices ðhAI ¼ expðaAI þ ibAIÞ;
aAI; bAI ∈ RÞ:

H0h1↔2i ¼

0
B@

1 0

1 0

h33 h36

1
CA;

H0h2↔3i ¼

0
B@

1 0

h22 h23 0

0 −h23 h22

1
CA;

H0h3↔1i ¼

0
B@

1 0

h22 h25
1 0

1
CA: ð4:31Þ

As the moduli matrices have the worldvolume symmetry
(3.22), only one of hAI parameters or the ratio of the two
parameters in each moduli matrix is independent.
The wall solutions that interpolate fh1i; h2ig, fh2i; h3ig,

and fh3i; h1ig are obtained by (3.18) with (3.20) as
follows:

(i) fh1i; h2ig

Ah1↔2i ¼

0
B@

ffiffiffi
c

p
0ffiffiffi

c
p

0
p33ffiffiffi
s3

p p36ffiffiffi
s3

p

1
CA;

p33 ¼ expðm3x1 þ n3x2 þ a33 þ ib33Þ;
p36 ¼ expð−m3x1 − n3x2 þ a36 þ ib36Þ;

s3 ¼
1

c
½expð2m3x1 þ 2n3x2 þ 2a33Þ

þ expð−2m3x1 − 2n3x2 þ 2a36Þ�: ð4:32Þ

(ii) fh2i; h3ig

Ah2↔3i ¼

0
B@

ffiffiffi
c

p
0

q22ffiffiffi
t2

p q23ffiffiffi
t2

p 0

0 q35ffiffiffi
t3

p q36ffiffiffi
t3

p

1
CA;

q22 ¼ expðm2x1 þ n2x2 þ a22 þ ib22Þ;
q23 ¼ expðm3x1 þ n3x2 þ a23 þ ib23Þ;
q35 ¼ expð−m2x1 − n2x2 þ a23 þ ib23 þ iπÞ;
q36 ¼ expð−m3x1 − n3x2 þ a22 þ ib22Þ;

t2 ¼
1

c
½expð2m2x1 þ 2n2x2 þ 2a22Þ

þ expð2m3x1 þ 2n3x2 þ 2a23Þ�;

t3 ¼
1

c
½expð−2m2x1 − 2n2x2 þ 2a23Þ

þ expð−2m3x1 − 2n3x2 þ 2a22Þ�: ð4:33Þ

FIG. 3. Vacua and elementary walls of the mass-deformed
nonlinear sigma model on Spð3Þ=Uð3Þ [36]. The numbers in
brackets indicate the vacuum labels. The numbers without brackets
indicate the subscript i’s of simple roots αi, (i ¼ 1;…; 3).

FIG. 4. Vacua, walls, and three-pronged junctions of the mass-
deformed nonlinear sigma models on Spð3Þ=Uð3Þ. Vertices,
edges, and triangular faces correspond to vacua, walls, and
three-pronged junctions.
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(iii) fh3i; h1ig

Ah3↔1i ¼

0
B@

ffiffiffi
c

p
0

r22ffiffiffiffi
u2

p r25ffiffiffiffi
u2

pffiffiffi
c

p
0

1
CA;

r22 ¼ expðm2x1 þ n2x2 þ a22 þ ib22Þ;
r25 ¼ expð−m2x1 − n2x2 þ a25 þ ib25Þ;

u2 ¼
1

c
½expð2m2x1 þ 2n2x2 þ 2a22Þ

þ expð−2m2x1 − 2n2x2 þ 2a25Þ�: ð4:34Þ
As before, only one of aAI parameters is independent in
each wall solution.
The position of wall h1 ↔ 2i is Reðp33Þ ¼ Reðp36Þ:

2m3x1 þ 2n3x2 þ ða33 − a36Þ ¼ 0: ð4:35Þ
The position of wall h2 ↔ 3i is Reðq22Þ ¼ Reðq23Þ and
Reðq35Þ ¼ Reðq36Þ:

ðm2 −m3Þx1 þ ðn2 − n3Þx2 þ ða22 − a23Þ ¼ 0: ð4:36Þ
The position of wall h3 ↔ 1i is Reðr22Þ ¼ Reðr25Þ:

2m2x1 þ 2n2x2 þ ða22 − a25Þ ¼ 0: ð4:37Þ
There is a consistency condition:

ða22 − a25Þ − ða33 − a36Þ − 2ða22 − a23Þ ¼ 0: ð4:38Þ
Therefore, there are two independent aAI parameters to
describe the junction position as expected. We can compute
the position of the junction from (4.35), (4.36), and (4.37).
The position of the junction that divides the vacua
fh1i; h2i; h3ig in (4.30) is

ðx; yÞ ¼
�
T1

T3

;
T2

T3

�
; ð4:39Þ

T1 ¼ 2ð−a33 þ a36Þn2 þ 2ða22 − a25Þn3;
T2 ¼ 2ða33 − a36Þm2 þ 2ð−a22 þ a25Þm3;

T3 ¼ −4m2n3 þ 4m3n2: ð4:40Þ

V. SUMMARY

We have proposed on-shellN ¼ 2 nonlinear sigmamodels
on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ by holomorphically
embedding the models in the hyper-Kähler nonlinear sigma
model on the cotangent bundle of the Grassmann manifold
T�G2N;N in theN ¼ 1 superspace formalism.
We have applied the moduli matrix formalism to three-

pronged junctions of the mass-deformed nonlinear sigma
models onSOð2NÞ=UðNÞ andSpðNÞ=UðNÞ bymaking use
of the pictorial representation [35,36] and the diagram
method [25,37].We have presented three-pronged junctions

and have calculated positions of junctions of the mass-
deformed nonlinear sigma models on SOð8Þ=Uð4Þ and
Spð3Þ=Uð3Þ, which are non-Abelian gauge theories.
It is shown in [35,36] that we can produce the whole

structures of vacua and walls of the mass-deformed non-
linear sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ
from the vacuum structures that are connected to the
maximum number of elementary walls for generic N. We
have observed in this paper that we can construct three-
pronged junctions, and we can find positions of any three-
pronged junctions of the mass-deformed nonlinear sigma
models on SOð8Þ=Uð4Þ and Spð3Þ=Uð3Þ. Therefore, this
approach can be applied to the mass-deformed nonlinear
sigma models on SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ with
generic N. As a sequel to this paper, we have applied the
approach to the mass-deformed nonlinear sigma models on
SOð2NÞ=UðNÞ and SpðNÞ=UðNÞ and have discussed
vacua, walls, and three-pronged junctions for genericN [41].
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APPENDIX: ON-SHELL N = 2 SUPERSYMMETRY
OF THE ACTION (2.9)

In this Appendix, we present the relation between the
component field action of (2.9) [38,39] and the component
field action of the mass-deformed nonlinear sigma model
on T�GNþM;M that is constructed in the harmonic super-
space formalism [12]. It is discussed in detail in [41].
We follow the convention of [12]. We repeat the action

(2.9) with component fields:

S ¼
Z

d4x

�Z
d4θ TrðΦΦ̄eV þ Ψ̄Ψe−V − cVÞ

þ
�Z

d2θ TrðΞðΦΨ − bIMÞ þΦMΨÞ þ ðc:t:Þ
��

;

ðc ∈ R≥0; b ∈ CÞ; ðA1Þ
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ΦA
IðyÞ ¼ AA

IðyÞ þ
ffiffiffi
2

p
θζA

IðyÞ þ θθFA
IðyÞ; ðyμ ¼ xμ þ iθσμθ̄Þ;

ΨI
AðyÞ ¼ BI

AðyÞ þ
ffiffiffi
2

p
θηI

AðyÞ þ θθGI
AðyÞ;

VA
BðxÞ ¼ 2θσμθ̄AμA

BðxÞ þ iθθθ̄λ̄ABðxÞ − iθ̄ θ̄ θλABðxÞ þ θθθ̄ θ̄DA
BðxÞ;

ΞA
BðyÞ ¼ −SA

BðyÞ þ θωA
BðyÞ þ θθKA

BðyÞ; ði ¼ 1;…; N þM;A ¼ 1;…;MÞ: ðA2Þ

By solving the auxiliary fields, we obtain the component field action:

S ¼
Z

d4xTr½DμADμAþDμBDμB −
i
2
ζσμDμζ þ

i
2
Dμζσ

μζ̄ −
i
2
η̄σ̄μDμηþ

i
2
Dμησ̄

μη

−
ffiffiffi
2

p
i

2
ðAζ̄ λ̄−λζĀÞ −

ffiffiffi
2

p

2
ðωAηþ η̄ Ā ω̄Þ −

ffiffiffi
2

p
i

2
ðB̄ηλ − λ̄ η̄BÞ −

ffiffiffi
2

p

2
ðB̄ ζ̄ ω̄þωζBÞ

þ Sζηþ η̄ ζ̄ S̄ −ζMη − η̄ M̄ ζ̄−jAM − SAj2 − jB̄ M̄−S̄ B̄ j2 þ ðAĀ − B̄B − cIMÞD
þ KðAB − bIMÞ þ ðB̄ Ā−b�IMÞK̄�; ðA3Þ

DμA ¼ ∂μA − iAμA; DμB ¼ ∂μB̄ − iAμB̄;

Dμζ ¼ ∂μζ − iAμζ; Dμη ¼ ∂μη̄ − iAμη̄: ðA4Þ

The mass-deformed nonlinear sigma model on T�GNþM;M that is constructed in the harmonic superspace formalism [12] is

S ¼−
Z

dζð−4ÞduTr½fϕþðDþþ þ iVþþÞϕþ þ ξþþVþþ�;

dζð−4Þ ¼ d4xd2θþd2θþ; ðA5Þ

ϕþðζ; uÞ ¼ Fþðx; uÞ þ
ffiffiffi
2

p
θþαψαðx; uÞ þ

ffiffiffi
2

p
θ̄þ_α φ̄

_αðx; uÞ þ ðθþÞ2M−ðx; uÞ þ ðθ̄þÞ2N−ðx; uÞ þ iθþσμθ̄þA−
μ ðx; uÞ

þ
ffiffiffi
2

p
ðθþÞ2θ̄þ_α χ̄ð−2Þ _αðx; uÞ þ

ffiffiffi
2

p
ðθ̄þÞ2θþατð−2Þα ðx; uÞ þ ðθþÞ2ðθ̄þÞ2Dð−3Þðx; uÞ;

Vþþðζ; uÞ ¼ −iðθþÞ2ΣðxÞ þ iðθ̄þÞ2Σ̄ðxÞ þ 2iθþσμθ̄þVμðxÞ þ
ffiffiffi
2

p
ðθ̄þÞ2θþαξiVαðxÞu−i

−
ffiffiffi
2

p
ðθþÞ2θ̄þ_α ξ̄ _αiV ðxÞu−i þ 3θþ2θ̄þ2Dij

V ðxÞu−i u−j ;

Dþþ ¼ ∂
þþ − 2iθþσμθ̄þ∂μ þ iðθþÞ2ð∂5 − i∂6Þ − iðθ̄þÞ2ð∂5 þ i∂6Þ þ θþα ∂

∂θ−α
þ θ̄þ _α ∂

∂θ̄− _α
: ðA6Þ

We solve the kinematic equations that eliminate the infinite sets of auxiliary fields in the harmonic expansions. For example,
the equation ∂þþFþ ¼ 0 is solved by Fþðx; uÞ ¼ fiðxÞuþi . The detailed calculation is presented in [41]. The component field
action is

S ¼
Z

d4xTr
h
DμfiDμfi − iψσ̄μDμψ − iφσμDμφþ i

2
f̄iξiVψ −

i
2
f̄iξ̄iVφ̄ −

i
2
ψ̄ ξ̄Vifi −

i
2
φξVifi

−
1

2
jfiM − Σfij2 − 1

2
jfiM̄ − Σ̄fij2 − ψ̄ðφ̄M − Σφ̄Þ − φðψM̄ − Σ̄ψÞ þ ifðif̄jÞDVðijÞ − ξðijÞDVðijÞ

i
; ðA7Þ

Dμfi ¼ ∂μfi − iVμfi;

Dμψ ¼ ∂μψ − iVμψ ; Dμφ ¼ ∂μφ̄ − iVμφ̄: ðA8Þ
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The action (A3) and the action (A7) are equivalent. The relations between the component fields are presented below:

f1 ¼ A; f2 ¼ B̄; ψ ¼ ζ; φ̄ ¼ −η̄;

Vμ ¼ Aμ; ξ1V ¼
ffiffiffi
2

p
λ; ξ2V ¼

ffiffiffi
2

p
iω;

Σ ≔
eiαffiffiffi
2

p ðΣΣ̄þ Σ̄ΣÞ12; Σ ¼ −S̄;

Σ̄ ≔
e−iαffiffiffi
2

p ðΣΣ̄þ Σ̄ΣÞ12; Σ̄ ¼ −S;

M ≔
eiβffiffiffi
2

p ðMM̄þ M̄MÞ12; M ¼ −M̄;

M̄ ≔
e−iβffiffiffi
2

p ðMM̄þ M̄MÞ12; M̄ ¼ −M;

DV11 ¼ iK; DV22 ¼ −iK̄; DVð12Þ ¼ −iD;

ξ11 ¼ −ib; ξ22 ¼ ib�; ξð12Þ ¼ ic
2
: ðA9Þ
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