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We study the decay of the false vacuum in the scaling Ising and tricritical Ising field theories using the
truncated conformal space approach and compare the numerical results to theoretical predictions in the thin
wall limit. In the Ising case, the results are consistent with previous studies on the quantum spin chain
and the φ4 quantum field theory; in particular, we confirm that while the theoretical predictions get the
dependence of the bubble nucleation rate on the latent heat right, they are off by a model-dependent overall
coefficient. The tricritical Ising model allows us on the other hand to examine more exotic vacuum
degeneracy structures, such as three vacua or two asymmetric vacua, which leads us to study several novel
scenarios of false vacuum decay by lifting the vacuum degeneracy using different perturbations.
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I. INTRODUCTION

The decay of the false vacuum is a fundamental and
paradigmatic prediction of quantum field theory since the
ground-breaking work by S. Coleman [1], which consid-
ered the process in a semiclassical approach, followed by
including leading quantum corrections in [2]; for a very
recent introduction on the topic, see Ref. [3]. Such decay
processes are hypothesized to have taken place in the early
Universe, and interest in this subject has been recently
rekindled by the possible metastability of the electroweak
vacuum [4].
Another reason for renewed interest on false vauum

decay is provided by the advances of experimental tech-
niques, which promise to make accessible such a phe-
nomenon in condensed matter laboratory experiments
[5–9]: These advances have motivated recent theoretical
studies both in the context of spin chains [10–13] and
1þ 1-dimensional φ4 quantum field theory [14], establish-
ing that in one-dimensional systems, the phenomenon can

indeed be studied with sufficiently efficient methods to
verify theoretical predictions for the bubble nucleation rate.
These previous studies, however, were limited to the
simplest scenario of an explicitly broken Z2 symmetry,
where one starts from a model that has two degenerate
vacua due to spontaneous symmetry breaking, with their
degeneracy lifted by adding an explicit symmetry breaking
external field.
In this paper, the simplest scenario of false vacuum

decay is realized in terms of the scaling Ising quantum
field theory. However, we will go beyond that scheme by
considering vacuum decay in relevant perturbations of the
tricritical Ising conformal field theory, a model which allows
us to realize much more complex vacuum structures [15] and
therefore to induce various scenarios of vacuum decay.
These include vacuum degeneracy unrelated to any sponta-
neous symmetry breaking and also phases with three
degenerate vacua. The scaling tricritical Ising field theory
has recently been revisited by the authors of the present
paper in relation, in particular, of two topics: the study of the
Kramers-Vannier duality using the form factor bootstrap and
the integrability of the model [16] and also the confinement
phenomenon of the kink excitations into mesons [17]. We
note that kink confinement is another facet of lifting vacuum
degeneracy, and so the study in this paper can also be viewed
as complementary and a natural extension of [17].
Following [12,14], we study the decay of the false

vacuum as a quantum quench corresponding to a sudden
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change in the Hamiltonian of the quantum field theory.
The resulting time evolution is simulated using the trun-
cated conformal space approach (TCSA) [18] from which
we can extract the dependence of the bubble nucleation rate
on the latent heat, a quantity that we compare then with the
theoretical predictions.
The outline of the paper is as follows. Section II

describes the necessary theoretical background and the
realization of the false vacuum decay as a quantum quench.
Section III addresses the simplest example of such a
scenario, i.e., the case of the Ising field theory. We then
turn to the description of various deformations of the
tricritical Ising model and their vacuum structures in
Sec. IV. The numerical results obtained for various scenar-
ios in the tricritical Ising model and their comparison to
the theoretical expectations are presented in Sec. V, while
Sec. VI contains our conclusions and outlook. Technical
details of the TCSA simulations and the continuum limit of
the bubble nucleation rate predicted for the spin chain are
relegated to the Appendix.

II. FALSE VACUUM DECAY:
THEORY AND QUENCH PROTOCOL

A. Theoretical predictions

A metastable (false) vacuum state in quantum field
theory decays via bubble nucleation initiated by quantum
fluctuations: This is the scenario advocated by Coleman
[1,2]. In the semiclassical approximation, barrier penetra-
tion is dominated by the instanton bounce, and the bubble
nucleation rate, which is defined as the tunneling rate per
unit volume V, is given by

γ ¼ Γ
V
¼ A exp

�
−
1

ℏ
SE

�
; ð1Þ

where SE is the Euclidean action of the instanton, while
the prefactor A can be computed as a determinant of
quantum fluctuations in the instanton background: This
latter quantity requires a careful treatment of zero modes,
which results in the tunneling rate being proportional to the
volume.
Due to the energy cost of forming the walls (also known

as surface tension), bubbles smaller than a critical size only
appear as short-lived quantum fluctuations. Bubbles larger
than the critical radius, however, undergo an accelerating
expansion driven by the liberation of the latent heatΔE, i.e.,
the difference between the energy densities of the false and
the true vacua.
In the thin wall limit of smallΔE, i.e., when the thickness

of the walls is much smaller than the radius of the
critical bubble, an explicit formula (which also includes
the quantum corrections) was derived by Voloshin for 1þ 1
dimensional quantum field theories [19]. In one spatial
dimension, thin wall bubbles are eventually a kink-antikink

pair with the true vacuum in their interior, and the critical
diameter is

a� ¼
2M
ΔE

; ð2Þ

where M is the kink mass computed in the limiting case
when the vacua are degenerate, i.e., ΔE ¼ 0. Then the
predicted nucleation rate is [19]

γ ¼ ΔE
2π

exp

�
−
πM2

ΔE

�
: ð3Þ

Similar results were obtained for tunneling in the quantum
Ising spin chain [10]. However, the continuum limit of the
latter result (cf. Appendix B)

γ ¼ πΔE
18

exp

�
−
πM2

ΔE

�
ð4Þ

differs from (3) by a dimensionless numerical coefficient,
signalling somehow that our theoretical understanding of
the nucleation rate is still incomplete.
Indeed, the recent numerical simulation studies performed

on the Ising spin chain [12] and the 1þ 1-dimensional φ4

scalar field theory [14] confirm that the bubble nucleation
rate is described by a formula whose general expression is

γ ¼ CΔE exp
�
−
πM2

ΔE

�
; ð5Þ

with a dimensionless coefficient C to be determined. Finally
we note that in the 1þ 1-dimensional φ4 scalar field theory,
C turns out to depend on the self-interaction strength [14].

B. Vacuum decay as a quantum quench

Let’s now turn to the description of the protocol used
to investigate the vacuum decay, which is a quantum
quench [20] corresponding to a sudden change in the
Hamiltonian at initial time t ¼ 0. The idea is to consider a
system with degenerate vacua described by some actionA0

and perturb it by means of an additional operator that lifts
the degeneracy

Aε ¼ A0 − ε

Z
d2xΦðxÞ: ð6Þ

For the corresponding Hamiltonian, we have

Hε ¼ H0 þ ε

Z
dxΦðxÞ: ð7Þ

When the vacuum degeneracy is a consequence of sponta-
neous symmetry breaking, ΦðxÞ can be chosen as a field
that explicitly breaks the symmetry, but in the following,
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wewill also consider situations that are more general. Since
we will work in the thin wall regime, ε has to be considered
small, and therefore, the latent heat can be computed in first
order perturbation theory as

ΔE ¼ εðhþjΦðxÞjþi − h−jΦðxÞj−iÞ; ð8Þ

where jþi and j−i denote, respectively, the false and true
vacuum states in the limit ε → 0. An important common
aspect of the unperturbed models analyzed in this paper
(listed in Sec. IV) is that all of them are integrable, and
therefore, the expectation values of relevant perturbing
fields are known exactly [21,22]. In addition, due to their
integrability, the various kink masses present in the differ-
ent phases of the model reached in the ϵ ¼ 0 limit are also
exactly known [23], which permits the explicit evaluation
of the predicted bubble nucleation rate (3).
The protocol is set up as follows. For a given value of ε,

the initial state jΨð0Þi is determined as the ground state
for −ε and is then evolved by the Hamiltonian for þε:

jΨðtÞi ¼ e−iHεtjΨð0Þi: ð9Þ

To track the vacuum decay, it is necessary to compute the
time evolution of some observable:

OðtÞ ¼ hΨðtÞjOjΨðtÞi: ð10Þ

For instance, in the simple case of vacua corresponding to a
broken Z2 symmetry, the observable can be chosen as the
corresponding order parameter σ, since by definition, its
sign distinguishes between the vacua:

hþjσjþi ¼ −h−jσj−i for ε ¼ 0: ð11Þ

For any suitable observable OðtÞ, the combination

fOðtÞ ¼ hOðtÞi þ hOð0Þi
2hOð0Þi ð12Þ

is a very convenient quantity, since initially it satisfies
fOð0Þ ¼ 1, and (neglecting corrections due to explicit
symmetry breaking ε ≠ 0) it vanishes in the true vacuum,
so the transition corresponds to fOðtÞ changing from 1 to 0.
For the sake of uniformity, we track the evolution of the
combination (12) in all cases, including those where the
vacuum structure is not determined by a broken Z2

symmetry.
The time evolution of the system consists of three

regimes [12,14], which lead to the following behaviors
of fOðtÞ

(i) Initial transient: for short times, the evolution of
fOðtÞ is quadratic

fOðtÞ − 1 ∝ t2 þ…; ð13Þ

corresponding to the quantum Zeno regime [24,25].
(ii) Nucleation: for intermediate times, the evolution of

fOðtÞ is dominated by the bubble nucleation rate,
and the time dependence has the form

fOðtÞ ∝ e−Γt; ð14Þ

with Γ ¼ γR in terms of the volume R of the system.
(iii) Thermalization: for longer times, the evolution

of fOðtÞ becomes very complicated due to several
processes including the expansion of nucleated
bubbles and their collisions, ultimately leading to
thermalization of the system.

The above considerations imply that the decay rate of the
false vacuum can be extracted identifying the intermediate
time regime where the exponential dependence (14) holds.
This can be found by analyzing the time dependence of
fOðtÞ, which we compute by simulating the time evolution
using the truncated conformal space approach invented
by Yurov and Zamolodchikov [18] and later applied to the
scaling Ising [26] and tricritical Ising [15]. The numerical
computations were carried out using a recently developed
package, which utilizes the chiral structure of conformal
field theory with periodic boundary conditions [27].
The TCSA simulates the quantum field theory in finite

volume and with an energy cutoff, which imposes limi-
tations on the range of latent heat ΔE for which vacuum
decay can be studied. In particular, the finite volume
introduces a lower limit on ΔE so that bubble nucleation
is not affected by finite size effects, while the energy cutoff
results in an upper limit on this quantity [14]. A detailed
discussion of these conditions is given in Appendix A 1.
In addition, obtaining sufficiently precise results requires
extrapolation in the cutoff. Presently, for nonequilibrium
time evolution, this can only be carried out partially, and
our procedure together with its limitations are described in
Appendix A 2.

III. WARMING UP:
VACUUM DECAY IN THE ISING QFT

The simplest example of false vacuum decay is obtained
considering the scaling Ising CFT of central charge
c ¼ 1=2 with a Hamiltonian H�, perturbed by the energy
density operator ϵ with conformal weights ð1=2; 1=2Þ
leading to the Hamiltonian

H0 ¼ H� −
M
2π

Z
dx ϵðxÞ: ð15Þ

The (−) sign in front of the perturbation corresponds to the
ferromagnetic phase where the model has two degenerate
ground states j�i, which are connected by kinks and
antikinks of mass M, as shown in Fig. 1(a). The order

VARIATIONS ON VACUUM DECAY: THE SCALING ISING AND … PHYS. REV. D 106, 105003 (2022)

105003-3



parameter is the spin field σ with conformal weights
ð1=16; 1=16Þ, and its exact expectation value is

h�jσj�i ¼ �hσi; hσi ¼ 21=12e−1=8A3=2M1=8; ð16Þ

where A¼1.2824271291�� � is Glaisher’s constant. Adding
a nonzero magnetic field

Hh ¼ H0 þ h
Z

dxσðxÞ; ð17Þ

lifts the degeneracy, leading to a system with a false and a
true vacuum with the energy density difference:

ΔE ¼ 2hhσi ¼ 2.7156766834 � � � hM1=8; ð18Þ

as shown in Fig. 1(b). This model can be viewed as the
continuum limit of the spin chain considered in [12], and it
is in the same universality of the φ4 theory for which the
false vacuum decay was studied in [14].
As described in Sec. II B, we start the time evolution

from the ground state of the Hamiltonian with magnetic
field −h (this ground state determined numerically by
TCSA) and then evolve the system by the Hamiltonian with
field þh. The observable used to follow the time evolution
is the order parameter σ, and the results are illustrated in
Fig. 2. We extrapolated the time-dependent expectation

value in the cutoff using the procedure introduced in [28];
for a description and limitations of this approach,
cf. Appendix A 2. Using these data, the quantity

fσðtÞ ¼ hσðtÞi þ hσð0Þi
2hσð0Þi ð19Þ

can be plotted on a logarithmic scale as shown in Fig. 3,
and the decay constant Γ ¼ γR can be extracted from the
flat region of the curves, as a function of h. Figure 4 shows
the resulting values for γ as a function of 1=ΔE on a
logarithmic scale. In dimensionless units, (5) predicts the
relation

log γ̄ ¼ log C þ log
ΔE
M2

−
πM2

ΔE
; ð20Þ

where

γ̄ ¼ γ

M2
ð21Þ

is the dimensionless bubble nucleation rate (in units of the
sqaure of the kink mass M), and the prefactor C is 1=2π
according to (3). It turns out that the agreement is very good
over more than one decade of γ except for the value of the
prefactor, which we used as a fitting parameter separately
for data from each volume. The values obtained from the fit

FIG. 1. (a) Vacua and kink structures, and (b) sketch of the
Landau–Ginzburg potential in the thermal perturbation of the
Ising, with Φ denoting the order parameter. (a) The two vacua in
the ferromagnetic phase of the Ising model labelled by 0 and 1,
with the kinks interpolating between them depicted as arrows. (b)
Landau–Ginzburg potential for h ¼ 0 (solid black curve) and
h ≠ 0 (dashed red curve). The false/true vacua are indicated with
the musical eight and whole notes respectively, and the difference
in their energy density ΔE is also shown.

FIG. 2. The time evolution of hσðtÞi in the Ising model for
various h → −h quenches, ranging from hM−15=8 ¼ 0.26 to 0.36
in dimensionless volumeMR ¼ 30. Continuous lines are the raw
TCSA data (blue, red, brown, and black for cutoffs 16, 18, 20,
and 22, respectively), while the dotted blue lines are extrapolated,
with shaded areas indicating the uncertainty of the extrapolation.
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are C ¼ 0.053ð5Þ, 0.057(8), and 0.057(7) for the dimen-
sionless volumes MR ¼ 28, 30, and 33, showing no
significant dependence on the volume. Note that the
necessity of adjusting the prefactor as a fit parameter was
already noticed in the case of the spin chain [12] as well as
for the φ4 theory [14] and that the volume independence is
consistent with the results of the latter study.
Deviations between the theoretical prediction (amended

by fitting the prefactor) and numerical results for the
nucleation rate are expected from finite size effects for
small values of ΔE such that the dimensionless size of the
resonant bubble

Ma� ¼
2M2

ΔE
ð22Þ

is of order MR. However, the numerically observed
deviations clearly visible in Fig. 4 appear when the bubble
size is still much smaller than the volume and originate
from the unreliability of extracting the slope from the time
evolution, which shows no discernible sign of exponential
decay for too small values of h; cf. Fig. 3.
In the present case of the Ising model, the quality of the

data even allows us to numerically determine the coefficient
of the leading term of the ΔE dependence in (20). Fitting
the data with the function

log γ̄ ¼ cþ log
ΔE
M2

− a
M2

ΔE
ð23Þ

in terms of the parameters c and a, the expected value π for
a is reproduced reasonably well, as shown in Table I.

IV. VACUUM STRUCTURES IN THE
TRICRITICAL ISING MODEL

Here, we outline the vacuum structure of three different
perturbations of the tricritical Ising model. For a general
understanding of how these arise in perturbed CFT, we
refer the reader to [29]. We note that all these perturbed
CFT are integrable, which allows us to extract the param-
eters needed as inputs for the theoretical prediction of the
bubble nucleation rate.

A. Thermal deformation

The thermal perturbation is defined by the formal action

Aϵ ¼ ATIM þ g
Z

d2x ϵðxÞ; ð24Þ

where ATIM corresponds to the unique unitary conformal
field theory with central charge c ¼ 7=10, and the per-
turbing field ϵ is the primary field of conformal weights

FIG. 3. A few samples of the time evolution of the quantity fσ

in the Ising model together with curves fitted to the exponentially
decaying part for MR ¼ 30 and for longitudinal fields
hM−15=8 ¼ 0.26, 0.28, 0.30, 0.32, 0.34, 0.36.

FIG. 4. The dimensionless bubble nucleation rate γ̄ in the Ising
model extracted from the time evolution of the expectation value
of σ, as a function of the latent heat in different volumes.

TABLE I. Fitted values for the parameter a in (23), for different
values of the volume parameter MR. The expected result is π.

MR 28 30 33

a 3.2(4) 2.9(5) 3.1(4)
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ð1=10; 1=10Þ. This model is integrable, and its spectrum
consists of seven excitations, whose scattering is described
by the E7 S matrix [30,31]. This direction describes the
phase transition related to the Z2 symmetry, with g positive
and negative corresponding to the paramagnetic and
ferromagnetic phase, respectively. In the ferromagnetic
phase, Z2 is spontaneously broken, and the vacua are
connected by topological excitations with the structure
shown in Fig. 5(a). The kink mass can be computed exactly
in terms of the coupling constant [23]:

M ¼ 3.745372836… · jgj5=9: ð25Þ

In the paramagnetic phase, there is a single vacuum and all
seven excitations are topologically trivial. We recently
examined this model in detail [16], and the interested
reader is referred to this work for more details and further
references.
In the ferromagnetic phase, the vacuum degeneracy can

be lifted by adding either the leading magnetization σ with
dimensions ð3=80; 3=80Þ, or the subleading σ0 with dimen-
sions ð7=16; 7=16Þ, both of which lead to confinement of the
topological excitations with similar phenomenology [17].

B. Subleading magnetization deformation

Interestingly enough, perturbing the model by the sub-
leading magnetization operator of conformal weight
ð7=16; 7=16Þ as

Aσ0 ¼ ATIM þ h0
Z

d2x σ0ðxÞ ð26Þ

results in a phase of the model where there are two
degenerate vacua despite the absence of any broken global
symmetry. These two vacua are physically different, which
is manifested also by the structure of kinks as shown in
Fig. 5(b), with their exact scattering amplitudes derived
in [32], and the exact relation of the kink mass to the
coupling is given by [23]

M ¼ 4.927791224… · jh0j8=9: ð27Þ

We note that in this case, the physical behavior of the model
is independent of the sign of the coupling h0.
The degeneracy between the vacua can be lifted by

adding the thermal perturbation ϵ, with very different
effects depending on the sign of the thermal coupling, as
described in relation to confinement in [17]. The effect of
the ϵ perturbation in the context of vacuum tunneling is
discussed in Sec. V B.

C. Vacancy density deformation

The perturbation by the vacancy density operator t of
conformal dimensions ð3=5; 3=5Þ

At ¼ ATIM þ μ

Z
d2x tðxÞ ð28Þ

has a very different behavior depending on the sign of the
coupling:

(i) For μ < 0, the system develops a mass gap, with the
fundamental excitation being kinks interpolating
between three degenerate vacua. The degeneracy
is partially related to a broken Z2 symmetry, which
makes two of the vacua equivalent, while the third
one is physically different. The kink structure is
shown in Fig. 5(c) and the corresponding exact S
matrix can be obtained from a restriction of the sine-
Gordon model [33,34]. The mass of the kinks
interpolating between neighboring vacua is related
to μ as [35]

M ¼ 10.829980 � � � jμj5=4: ð29Þ

(ii) For μ > 0, the model describes a famous massless
flow ending in the critical Ising CFT with central
charge 1=2 [36]. The low energy excitations are
massless kinks, and the vacuum structure is similar
to the one of the E7 model shown in Fig. 5(a).

FIG. 5. Vacua and kink structures for different perturbations
of the tricritical Ising model. (a) Kink structure for the thermal
perturbation, with the two vacua labelled by 0 and 1. (b) Kink
structure for the subleading magnetisation perturbation, with the
two vacua labelled by 0 and 1. (c) Kink structure for the vacancy
density perturbation, with the three vacua labelled by 0, 1 and 2.
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V. VACUUM DECAY IN PERTURBATIONS OF
THE TRICRITICAL ISING CFT

A. Vacuum decay in the thermal deformation induced
by magnetization or subleading magnetization

The vacuum degeneracy in the model (24) can be lifted
by adding either the leading magnetization σ with dimen-
sions ð3=80; 3=80Þ, or the subleading σ0 with dimensions
ð7=16; 7=16Þ:

H ¼ Hϵ þ h
Z

dx σðxÞ;

H0 ¼ Hϵ þ h0
Z

dx σ0ðxÞ: ð30Þ

For small couplings h, h0 (which can be assumed positive
without loss of generality) both perturbations lead to the
Landau–Ginzburg potential depicted for h < 0 in Fig. 6,
which is qualitatively identical to the Ising case discussed
in Sec. III. The latent heat is given by

ΔE ¼ 2hhσi;
ΔE0 ¼ 2h0hσ0i; ð31Þ

with

hσi ¼ 1.5927 � � � · ð−gÞ1=24
hσ0i ¼ 2.45205 � � � · ð−gÞ35=72; ð32Þ

while the relation of the kink massM to the coupling g can
be found in Eq. (25). The change in the (finite volume)
spectrum induced by adding the perturbation σ is shown in
Fig. 7. Note the presence of degenerate vacua for h ¼ 0,
all of which have a corresponding copy of the Z2 even
particle excitations of mass m2 ¼ 2M cos 5π=18 and
m4 ¼ 2M cos π=18 (there are no one-kink levels as these

are excluded by periodic boundary conditions). After
adding the perturbation, the false vacuum gains an energy,
which increases linearly with the volume signaling a
metastable state, with the slope being the latent heat ΔE.
Note that of the two copies of the one-particle excitations,
one remains stable over the true vacuum, while the other
gains a linear contribution identical to that of the false
vacuum and becomes a metastable excitation.
Examples of the time evolution for the case of perturba-

tion with the leading magnetization σ operator for various
values of h are presented in Fig. 8, where the quantity
followed in time is the expectation value of the leading
magnetization operator σ. The numerical data obtained for
different cutoffs can be reliably extrapolated using the
procedure described in Appendix A 2. For small values
of h, one observes large oscillations, with the dominant
frequency matching the value m2, i.e., the mass of the
lowest even particle. The origin of these oscillations is
that the quench excites the metastable particle states over
the false vacuum discussed above. The presence of such
oscillations in expectation values of local operators can be
regarded as a generic feature of quantum quenches when

FIG. 6. Sketch of the Landau–Ginzburg potential in the
thermally perturbed tricritical Ising model (solid black curve)
and its deformation induced by the magnetization (dashed red
curve). The location of the false and true vacuum are denoted
by musical eight and whole notes respectively. The energy
difference is also indicated between them.

FIG. 7. Finite volume energy levels in Hϵ and its perturbation
with σ, relative to the lowest level. Left: for h ¼ 0, there are two
vacua, which become degenerate for R → ∞, and accordingly, all
even particles appear in two copies, as can be seen for the particles
of massm2 andm4. The red and green lines show the exact values
of the masses predicted by the integrable E7 scattering theory.
Right: for h > 0, the vacuum degeneracy is lifted, and the false
vacuum acquires a slope given by (31) relative to the true vacuum,
together with the particle excitations associated to them. The mass
relative of the metastable particle excitation to the false vacuum
was extracted from the frequency of the post-quench oscillations
and is shown by the blue dotted lines. Note that this value fits very
well the energy level corresponding to the metastable particle
state, confirming the origin of the post-quench oscillations
discussed in the main text. In addition, the masses of the stable
particles also acquire corrections compared to their original
values, as shown by the displacement of the red and green lines
compared to the left panel. Particles on the true vacuum get mass
corrections (fit to TCSA data indicated).
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there is a one-particle contribution to the time evolution,
and it can be established by using first order perturbation
theory [37–39]; such oscillations were also observed in the
time evolution of entanglement [40]. We note that, contrary
to the results obtained in first order perturbation theory,
these oscillations are in general exponentially damped, as
shown by explicit simulations of the time evolution [28];
however, the exponential damping can only be obtained by
summing up the contribution of kinematic poles to all
orders [41,42] and is therefore inaccessible in leading order
perturbation theory. Unfortunately, these oscillations tend
to mask the characteristic exponential decay of the false
vacuum and prevent us from extracting easily the bubble
nucleation rate. For larger values of the magnetic field, the
particle excitation above the false vacuum disappears from
the spectrum; however, the vacuum structure drastically
changes, and the false vacuum disappears, which can be
seen from the absence of any time intervals in which the
exponential decay is valid. Note that in the case of the Ising
model considered in Sec. III, there is no particle excitation
on top of the two vacua, and so the vacuum decay can be
seen for a finite range of the magnetic field, enabling the
extraction of the bubble nucleation rate.
For the case of the subleading magnetic (σ0) perturbation,

the situation is similar as for the leading magnetic pertur-
bation, while the different false vacuum survives for much
larger values of the magnetic field h0, as discussed in [17],
and the same is true for the particle excitation on top of the
false vacuum. As a result, the large oscillations persist and

prevent the determination of the bubble nucleation rate. We
return to discussing the effect of particle excitations on top
of the false vacuum in Sec. V B.

B. Subleading magnetization deformation perturbed
by the energy density operator

In the deformation of the tricritical Ising model with the
subleading magnetization (26), the vacuum degeneracy can
be lifted by adding the thermal operator:

H ¼ Hσ0 þ g
Z

dxϵðxÞ; ð33Þ

where g < 0 corresponds to the ferromagnetic, while g > 0
corresponds to the paramagnetic phase. In both cases, the
latent heat is

ΔE ¼ jgðhϵi1 − hϵi0Þj; ð34Þ

where [22]

hϵi1 ¼ 2.0445…jh0j8=45;
hϵi0 ¼ −0.78093…jh0j8=45: ð35Þ

The corresponding Landau–Ginzburg potential is illus-
trated in Fig. 9. Once again, the time evolution is followed
by evaluating the expectation value of the leading mag-
netization operator σ. The relation of the kink massM to the
coupling h0 is given in Eq. (27).
As discussed in Sec. IVB, the vacuum structure of the

unperturbed theory has no global symmetry, which leads
to a physical situation very different from that of thermal
deformations of the Ising and tricritical models. Concerning
vacuum decay, there are now two different scenarios depend-
ing on the sign of the perturbing coupling g.
Somewhat surprisingly, despite the physical difference

between the vacua, the theoretical result (3) predicts that,

FIG. 8. Extrapolation of the time evolution of the expectation
value hσðtÞi calculated for quenches with flipping the sign of the
magnetic field at MR ¼ 35. The extrapolation is very accurate in
this case. However, it is impossible to reliably fit the exponential
decay due to large oscillations.

FIG. 9. Qualitative Landau–Ginzburg potential in Aσ0 (solid
black) and its ϵ deformations with g > 0 (dashed blue) and g < 0
(dashed red). The location of the false and true vacuum are
denoted by musical eight and whole notes, respectively. The
energy difference is also indicated between them.
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in the thin wall limit, the bubble nucleation rate is
independent of the direction of the tunneling provided
we compare the two directions for equal values of the latent
heat ΔE. However, we know that such a prediction must
be corrected to (5), which leaves, in principle, open the
possibility that an asymmetry may arise from the coef-
ficient C. Nevertheless, in Appendix C, we demonstrate that
the two bubble nucleation ratio is independent in the thin
wall limit when computed up to one-loop order using
Coleman’s instanton approach [1,2], and it is likely that this
result persists to all orders.
Despite the fact that it is possible to argue that the thin

wall limit of the bubble nucleation rate is expected to be
identical in the two directions, there is still a marked
difference in the dynamics. This asymmetry can be seen
from the dependence on the spectrum on the sign of the
perturbing coupling g, illustrated in Fig. 10.

(i) For g < 0, there is a particle on the top of the false
vacuum corresponding to K̃11 depicted in Fig. 5(b),
as shown by the corresponding spectrum in
Fig. 10(b). Similarly to the discussion in Sec. VA,
when quenching from g > 0 to −g, this produces
large oscillations, which make impossible to extract
the exponential decay of the false vacuum.

FIG. 10. Finite volume spectrum of the HamiltonianHσ0 (a) and
its perturbation by ϵ for g > 0 (b) and g < 0 (c). The slope of the
false vacuum shown by the corresponding black line is computed
from (34). For g > 0, the neutral excitation is over the false
vacuum and is therefore metastable, while for g < 0, it is over the
true vacuum and corresponds to a stable neutral particle ex-
citation. (a) Finite volume spectrum of Hσ0 . Note the presence of
two degenerate vacua, however there is just a single neutral
particle level since K̃11 is only present above one of them. The
kink massM coincides with the exact mass gap (27) predicted by
integrability (which is 1 in our units). (b) Finite volume spectrum
of Hσ0 perturbed with ε with g < 0, with the neutral excitation
K̃11 shown as a blue line running parallel to the false vacuum.
(c) Finite volume spectrum of Hσ0 perturbed with ε with g< 0,
with the neutral excitation K̃11 shown as a blue line running
parallel to the true vacuum.

FIG. 11. The time evolution of hσðtÞi in the Aσ0 model
perturbed by the energy density operator ϵ, for various g < 0 →
−g quenches from the ferromagnetic to the paramagnetic
phase, ranging from g ¼ 0.19 to 0.24 in dimensionless volume
MR ¼ 35 and with time measured in units given by the kink
mass M. Continuous lines are the raw TCSA data (blue, red,
brown and black for cutoffs 15, 16, 17 and 18 respectively), while
the dotted blue lines result from extrapolation in the cutoff, with
shaded areas indicating the uncertainty of the extrapolation.

VARIATIONS ON VACUUM DECAY: THE SCALING ISING AND … PHYS. REV. D 106, 105003 (2022)

105003-9



(ii) For g > 0, there is no particle excitation over the
false vacuum as shown on Fig. 10(c). Therefore,
the related oscillations are absent, and the decay of
the one-point function can be clearly identified
for the quench from g < 0 to −g.

Even in the second case, the TCSA extrapolation pro-
cedure has errors comparable to or even larger than the cutoff
dependence, which it is supposed to be removed, as visible
in Fig. 11. Nevertheless, the extrapolated data still allow us a
crude estimate of the bubble nucleation rate, illustrated in
Fig. 12, with the results for γ presented on Fig. 13 for two
different volumes. For the larger volumeMR ¼ 35, they are
qualitatively consistent with the theoretical expectation, apart
from a few outliers corresponding to values where the
exponential decay could not be fit reliably. For the smaller
volume MR ¼ 30, the agreement is much less precise, so
one cannot really draw any conclusions concerning the
volume (in)dependence of the fitting coefficient C.

C. Vacancy density deformation perturbed
by energy density

Here, we consider the energy perturbation of the vacancy
density deformation (28):

H ¼ Ht þ g
Z

dx ϵðxÞ: ð36Þ

The vacancy chemical potential μ in Ht is taken to be
negative. As discussed in Sec. IV, the unperturbed model
(g ¼ 0) has three degenerate ground state in the massive
direction with kinks of massM, which is given in terms of μ
in Eq. (29). Compared to the simpleZ2 vacuum structure of
the thermal perturbation, the vacancy perturbation has a
novel vacuum structure consisting of three degenerate
vacua. The perturbation ϵ partially lifts the degeneracy
due to the difference of the vacuum expectation value in the
ground states labelled by 0, 2 and 1 [22]:

hϵi0;2 ¼ 2.707495…jμj1=4;
hϵi1 ¼ −2.707495…jμj1=4: ð37Þ

As illustrated in Fig. 14, switching on g > 0 lifts up
vacua 0 and 2, while g < 0 lifts 1, allowing the study of
various decay scenarios. For the quench from g < 0 to −g,
the false vacua in finite volume correspond to even or
odd combinations of 0 and 2, with a gap that vanishes
exponentially with volume. Therefore, selecting the lower
or higher of these finite volume levels as initial states
corresponds to starting from the even or odd combination

FIG. 12. The time evolution of log fσ [defined as in (19)] in the
Aσ0 model perturbed by the energy density operator ϵ, for various
g < 0 → −g quenches from the ferromagnetic to the paramag-
netic phase, with g ranging from 0.19 to 0.24, in dimensionless
volume MR ¼ 35 and with time measured in units given by the
kink mass M. We extract the bubble nucleation rate by fitting the
slope of the linear part. In some cases (e.g., g ¼ 0.23), this is
obviously not reliable; cf. the discussion in the main text.

FIG. 13. Dependence of the dimensionless bubble nucleation
rate γ̄ extracted from the time evolution of the expectation value
of σ, on the latent heat ΔE in different volumes in the Aσ0 model
perturbed by the energy density operator ϵ, after quenching from
the ferromagnetic phase to the paramagnetic phase. The value of
the coefficient C was estimated as 44(7) forMR ¼ 30 and 87(18)
MR ¼ 35; the theoretical curve shown in the plot uses the latter
value. Due to the poor quality of the numerical determination of
the nucleation rate, the difference between the two values carries
no significance.
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of the vacua 0 and 2, both of which then decay to the true
vacuum corresponding to 1.
For the opposite direction of quenching from g > 0 to

−g, the initial false vacuum state corresponds to 1, which

then decays to the symmetric combination of the true
vacuum states 0 and 2. It turns out that g < 0 → −g
starting from the symmetric combination leads to the
exact same time evolution as g > 0 → −g starting from 1
due to the respective Hamiltonians being related by a Z2

symmetry; however, starting from the odd combination of
0 and 2 is a different scenario. As a result, it is sufficient
to consider quenches g < 0 → −g to cover all physically
different scenarios. We track the time evolution of the
system by following the time evolution of the expectation
value of the energy density operator ϵ and extract the
bubble nucleation rate by the same method as for the
Ising model discussed in Sec. III. Fortunately, for these
quenches, the cutoff extrapolation is reliable, and due
to the absence of neutral particle excitations in the
model At, there are no oscillations to mask the expo-
nential decay, allowing us for a precise determination of
the bubble nucleation rate as long as the volume range
satisfies the conditions discussed in Appendix A 1. As
shown in Figs. 15 and 16, the value numerically extracted
from the time evolution matches very well the theoretical
expectation (5), with the coefficient C displaying no
significant dependence on the volume.

FIG. 14. Qualitative Landau–Ginzburg potential in Aσ0 (solid
black) and its ϵ deformations with g > 0 (dashed blue) and g < 0
(dashed red). The location of the false/true vacuum are denoted
by musical eight and whole notes respectively. The energy
difference is also indicated between them.

FIG. 15. Dependence of the dimensionless bubble nucleation
rate γ̄ extracted from the time evolution of the expectation value
of ϵ, on the latent heat ΔE in different volumes in the A4 model
perturbed by ϵ after quenches from the phase with two stable
vacua to the phase with a single stable vacuum, where the initial
state is chosen to be the symmetric combination. The values
obtained for the coefficient C were 0.8(2); 0.6(1); 0.7(2) inMR ¼
25; 30; 35 respectively; the theoretical curve shown on the plot
corresponds to the one with C obtained for MR ¼ 35. Note that
quenches in the opposite direction, i.e., starting from the phase
with a single ground state, lead to exactly the same results.

FIG. 16. Dependence of the dimensionless bubble nucleation
rate γ̄ extracted from the time evolution of the expectation value
of ϵ, on the latent heat ΔE in different volumes in the A4 model
perturbed by ϵ after quenches from the phase with two stable
vacua to the phase with a single stable vacuum, where the initial
state is chosen to be the antisymmetric combination. The values
obtained for the coefficient C were 0.6(1); 0.7(2); 0.6(1) inMR ¼
25; 30; 35 respectively; the theoretical curve shown on the plot
corresponds to the one with C obtained for MR ¼ 35.
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We close this section by observing that it is also possible
to lift completely the degeneracy of the vacua perturbing
with either of the leading or subleading magnetic fields,
resulting in a novel interesting scenario of cascading
decays. However, in all of these cases, the cutoff depend-
ence was found to be very strong, preventing the extraction
of any reliable data regarding the false vacuum decay.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have considered the decay of the false
vacuum in 1þ 1-dimensional relativistic quantum field
theories obtained as relevant perturbations of the scaling
Ising and tricritical Ising conformal field theories.
Formulating the vacuum decay as a quantum quench, we
have followed the time evolution using the TCSA. This
makes it natural to study the regime called the thin wall
limit, since the magnitude of latent heat that can be handled
is limited by the cutoff inherent in the TCSA method. In
fact, this limitation is a bonus since vacuum decay allows us
an analytic treatment in the thin wall limit [1], and indeed
there are explicit predictions for the bubble nucleation
rate for general 1þ 1-dimensional QFT by Voloshin [19],
as well as for the case of the Ising spin chain by
Rutkevich [10].
The first model considered in this work is the scaling

Ising field theory. Here, it is important to note that previous
studies of vacuum decay [12,14] performed using models
in the same universality class have found that, while the
dependence of the bubble nucleation rate on the latent
heat was correctly predicted by the theoretical approaches,
there is still a mismatch by a model dependent coefficient C
defined in Eq. (5). In particular, for the φ4 QFT studied in
[14], the quantity C was found to depend on the strength of
the bosonic self-interaction. The Ising QFT studied here
is eventually the straightforward scaling limit of the Ising
chain considered by Lagnese et al. [12], and our findings
are fully consistent with those found on the spin chain,
including the existence of the mismatch of the bubble
nucleation rate by an overall constant coefficient. We also
showed that the continuum limit of the Ising spin chain
prediction [10] does not agree with the result claimed by
Voloshin in the continuum limit [19]. We also note that
none of these predictions can match the numerically
extracted coefficient of the bubble nucleation rate; there-
fore, it is an interesting question to find a theoretical
description that gives a fully correct prediction for the
nucleation rate.
Then we have turned our attention to models obtained as

deformations of the tricritical Ising field theory. These
deformations provide interesting situations since, apart
from the simple scenario of vacua related to breaking of
a Z2 symmetry as in the Ising class of models, there are
also situations where the degenerate vacua are not related
to any symmetry (this circumstance arises with the

subleading magnetic deformation) or three degenerate
vacua (associated to the vacancy density deformation):
Altogether, these theories give rise to more general scenarios
of vacuum decay.
In the case of the subleading magnetic deformation, the

interesting issue is the relation between the vacuum decay
for the two possible directions. Voloshin’s prediction [19] is
that in the thin wall limit, the nucleation rate is identical
for the two directions, apart from a potential difference in
the factor C, which is necessary for matching it with the
numerical results. As shown by an explicit calculation,
the general instanton calculation shows that the two
nucleation rates agree to one-loop order, leading to the
counter intuitive suggestion that they agree to all orders.
However, limitations of the simulations prevented us from
testing this idea with TCSA due to the existence of a neutral
excitation over one of the vacua, which leads to large
oscillations for one of the quench directions that obscures
the decay dynamics.
For the case of the vacancy density deformation, lifting

the deformation by the energy density operator leads to a
vacuum structure with two of the three remaining degen-
erate, and so there are either two degenerate false and one
true vacua or vice versa. It turns out that tunneling from
the symmetric combination of false vacua 0 and 2 to true
vacuum 1 is identical to the opposite quench by flipping
the sign of the energy coupling, while the tunneling from
the antisymmetric combination of 0 and 2 to true vacuum
1 is a different case. Nevertheless, the dependence on the
latent heat is identical for these cases, which is consistent
with Voloshin’s theoretical prediction [19]. The only
potential difference between the rates of the symmetric
or antisymmetric case is in the factor C; however, the
numerics found no significant deviation between the
extracted values C.
An interesting open direction for the future is to find

out the reason for the mismatch between the theoretical
predictions [10,19] present in the literature. Another
interesting issue concerns the improvement of the numeri-
cal simulations so that one can study the difference
between tunneling directions in the case when there are
asymmetric vacua, an effect that is certainly expected to
be present beyond the thin wall limit. In addition, such
improvements can help us realize scenarios with cascad-
ing false vacuum decays, which is the case for the vacancy
deformation of the tricritical Ising models when vacuum
degeneracy is lifted by the leading or subleading mag-
netization operators.
Finally, we briefly discuss the relation of our results to

the existing experimental proposals [5–9]. In these experi-
ments, the effective potential governing the decay proc-
esses can be tuned to a certain degree. Moreover,
simulations on quantum computers (such as [9]) even
promise the possibility of designing any potential. This
is expected to make possible the detailed experimental
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study of the bubble nucleation rate, especially its depend-
ence on the latent heat and the vacuum asymmetry, and
examine the mismatch between theoretical predictions
embodied by the coefficient C. We note that the class of
relevant systems is the same as the ones manifesting
the closely related phenomenon of kink confinement
[17,43–47], a scenario that has already been realized using
a quantum computer [48]. In principle, this experiment
could be modified to study the vacuum decay in the quench
protocol, i.e., the method we employed in this paper.
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APPENDIX A: VACUUM DECAY IN TCSA

1. General conditions for the TCSA simulation
of vacuum decay

To simulate the vacuum decay in TCSA, the following
conditions need to be fulfilled:
(1) The finite volume should be large enough to

accommodate the critical bubble:

R ≫
2M
ΔE

: ðA1Þ

(2) The energy cutoff Λ should be high enough to allow
for states with energies comparable to the latent heat:

Λ ≫ ΔER: ðA2Þ

For a given choice of the cutoff Λ and the volume R, the
above two conditions limit the range for the latent heat
available for the simulation:

2

MR
≪

ΔE
M2

≪
Λ

M2R
; ðA3Þ

which implies that ideally both the volume and the cutoff
must be chosen as large as possible. However, the dimen-
sion of the Hilbert space grows as [49]

∝ exp

�
4π

ffiffiffiffiffiffiffiffiffi
cΛR
24π

r �
; ðA4Þ

so a compromise must be struck that allows for a long
enough range for the latent heat within the limitation of
computer memory.
Another important consideration is that due to the finite

volume the simulation time is limited to t < R to avoid
revival effects, and in order to extract the nucleation
rate with high enough precision, it is necessary that the
probability of decay during this time frame is not too small.

2. Cutoff dependence and extrapolation

The TCSA simulations were performed with the package
developed in [27], with the time evolution carried out by
numerically solving the time-dependent Schrödinger equa-
tion using Matlab’s [50] ode45 solver. The dimensions of
the truncated Hilbert spaces used in our calculations are
listed in Table II.
The expectation values extracted from TCSA depend on

the cutoff. For the case of expectation values in the vacuum
or a low-energy eigenstate, the leading cutoff dependence is
of the form

hOiΛ ¼ hOi∞ þ CΛνO ; ðA5Þ

where the exponent νO is determined by the most singular
term in the operator product expansion between the
observable O and the interaction Hamiltonian density V

OðxÞVð0Þ ∼ Að0Þ
jxjαOV

þ…; ðA6Þ

as νO ¼ αOV − 2 [51]. The νO exponents for the different
quantities with respect to various interaction terms used in
the main text are summarized in Table III.
Note that the above result only accounts for the cutoff

dependence resulting in the static case for states much
below the cutoff and does not take into account cutoff
dependence resulting from the time evolution with the
truncated Hamiltonian. The latter can be partially improved
by using the running coupling determined from the TCSA

TABLE II. Hilbert space dimensions in the truncated spaces at
different descendant level cutoffs.

Truncation level dimHIM dimHTIM

13 1994 25040
14 3023 41310
15 4476 66628
16 6654 106914
17 9615 168041
18 14045 263697
19 20011
20 28624
21 40353
22 56867
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renormalization group [52–54]. For a Hamiltonian of
the form

H ¼ 2π

R

�
L0 þ L̄0 −

c
12

�
þ
X
a

λa

Z
R

0

dxΦaðxÞ; ðA7Þ

where the perturbing fields Φa have conformal weights
ha ¼ h̄a, the leading order RG equations in terms of the
dimensionless couplings

λ̃a ¼
λaR2−2ha

ð2πÞ1−2ha ðA8Þ

take the form [55]

λ̃cðnÞ − λ̃cðn − 1Þ

¼ 1

2n − d0ðrÞ
X
a;b

λ̃aðnÞeλbðnÞCc
ab

n2habc−2

ΓðhabcÞ2
ð1þOð1=nÞÞ

habc ¼ ha þ hb − hc; ðA9Þ

where the Cc
ab are the CFT operator product expansion

coefficients:

Φaðz; zÞΦbð0; 0Þ ¼
X
c

Cc
abΦcð0; 0Þ

zhaþhb−hc z̄h̄aþh̄b−h̄c
; ðA10Þ

and

d0ðrÞ ¼
R
2π

E0ðRÞ ðA11Þ

is the vacuum scaling function given in terms of the finite
volume vacuum energy E0ðRÞ, which can be estimated by
its TCSA value at the starting cutoff for the RG run. In
general, this prescription also gives a running coupling for
the identity, which leads to an additive renormalization

universal for all energy levels that can be omitted in
our simulations.
Nevertheless, it must be noted that during the course of

time evolution, further deviations accumulate from the
truncation of the Hilbert space, resulting from the omission
of states over the cutoff, which increases with time and are
not taken into account by the above improvements. As a
result, albeit that the extrapolation procedure based on (A5)
can be very efficient [28], it is at best a useful heuristics
whose validity must always to be verified. The rule of
thumb we used in our calculation was to accept the
extrapolated result when the fit error resulting from the
extrapolation was significantly smaller than the cutoff
dependence it was meant to eliminate.

APPENDIX B: CONTINUUM LIMIT OF THE
DECAY WIDTH FOR THE ISING QUANTUM

SPIN CHAIN

The quantum Ising spin chain

H ¼ −J
XN
n¼1

ðσxnσxnþ1 þ hzσzn þ hxσxnÞ

σaNþ1 ≡ σa1 ðB1Þ

in the ferromagnetic phase with the transverse field hz < 1
is a lattice system with two vacua for hx ¼ 0, which
become degenerate for the thermodynamic limit N → ∞.
Its excitations are domain walls (kinks) that are free
fermions with the dispersion relation

ωðkÞ ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2z − 2hz cos k

q
; ðB2Þ

with gap M ¼ 2Jj1 − hzj. Switching on the longitudinal
field hx the vacuum degeneracy is lifted, and the theoretical
decay amplitude of the false vacuum was computed by
Rutkevich [10] with the result

Γ ¼ π

9
JNjhxjμgðhxÞ exp

�
−
jfðθ0Þj
jhxjμ

�
; ðB3Þ

where

fðθÞ ¼ 2

J

Z
θ

0

dkωðkÞ;

gðhxÞ ¼ Im cot

�
fðπÞ − iπα
2jhxjμ

�
; ðB4Þ

with α describing phenomenologically the decay rate of
one-domain states and μ ¼ ð1 − h2zÞ1=8 is the spontaneous
magnetization on the chain, while θ0 ¼ ijlog hzj is the zero
of the function ϵðkÞ in the upper half plane.
The continuum limit of various quantities on the spin

chain can be computed exactly [28]. Introducing a lattice

TABLE III. Leading exponents νO used in the cutoff extrapo-
lation of the time evolving expectation value hOðtÞi, with the
operators V and A corresponding to the leading exponent shown
together with their (chiral) conformal weights. The models are
specified by giving the UV CFT Ising (IM) and tricritical Ising
(TIM), the deformation leading to the degenerate vacuum
structure, and the perturbation lifting the degeneracy.

Model O V A νO

IM, ϵ, σ σ (1=16) ϵ (1=2) σ (1=16) −1
TIM, ϵ, σ σ (3=80) ϵ (1=10) σ (3=80) −9=5
TIM, ϵ, σ0 σ (3=80) σ0 (7=16) ϵ (1=10) −5=4
TIM, t, σ, σ (3=80) t (3=5) σ (3=80) −4=5
TIM, t, σ, ϵ (1=10) t (3=5) ϵ (1=10) −4=5
TIM, t, ϵ ϵ (1=10) t (3=5) ϵ (1=10) −4=5
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spacing a ¼ 1=2J and the physical momentum p ¼ k=a,
and using hz ¼ 1 − aM, the dispersion relation becomes

ωðpÞ ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2z − 2hz cospa

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

q
þOða3Þ;

ðB5Þ

which is the correct result for relativistic kinks with
massM. The continuum order parameter field is defined by

σðnaÞ ¼ s̄J1=8σxn

s̄ ¼ 21=12e−1=8A3=2; ðB6Þ

where A ¼ 1.2824271291… is Glaisher’s constant. The
continuum magnetic field is related to the lattice longi-
tudinal field hx as

h ¼ 2

s̄
J15=8hx: ðB7Þ

These relations allow us to recover (16)

σ̄ ¼ s̄M1=8: ðB8Þ

Note that

hσðnaÞ ¼ 2J2hxσxn ¼
1

a
Jhxσxn; ðB9Þ

resulting in the correct identification

Z
dxhðxÞσðxÞ ¼ a

X
n

hσðnaÞ ¼ J
X
n

hxσxn: ðB10Þ

Turning to the continuum limit of the nucleation rate, using
hz ¼ 1 − aM results in θ0 ¼ iaM, and therefore,

fðθ0Þ ¼
2

J

Z
θ0

0

dkωðkÞ ¼ 4

Z
θ0

0

dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2z − 2hz cos k

q

≈ 4

Z
iaM

0

dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2M2 þ k2

p
¼ 4i

Z
aM

0

dκ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2M2 − κ2

p
¼ iπa2M2: ðB11Þ

We also have Jjhxjμ ¼ ajhjσ̄, where σ̄ is the expectation
value of the continuum order parameter. Furthermore, the
vacuum energy density difference is ΔE ¼ 2jhjσ̄, so

jhxjμ ¼ 1

J
a
ΔE
2

¼ ΔEa2: ðB12Þ

As a result, the exponential factor in the nucleation rate (B3)
has the continuum limit

exp

�
−
jfðθ0Þj
jhxjμ

�
¼ exp

�
−
πM2

ΔE

�
: ðB13Þ

Turning to the prefactor, the hz → 1 limit gives

fðπÞ ¼ 4

Z
π

0

dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2 cos k

p
¼ 8; ðB14Þ

resulting in

gðhxÞ ¼ Im cot
�
8 − iπα
2ΔEa2

�
→ 1 as a → 0: ðB15Þ

Using that the physical volume is R ¼ Na leads to
Njhxjμ ¼ VΔEa, which results in the following expression
for the bubble nucleation rate

γ ¼ Γ
R
¼ πΔE

18
exp

�
−
πM2

ΔE

�
; ðB16Þ

which is to be contrasted with Voloshin’s result (3):

γ ¼ ΔE
2π

exp

�
−
πM2

ΔE

�
: ðB17Þ

Clearly, the two results are identical except for a constant
overall factor that is independent of both the kink mass M
and the latent heat ΔE.

APPENDIX C: RATIO OF THE TUNNELING
RATES IN THE TWO DIRECTIONS OF THE

CASE OF ASYMMETRIC VACUA

Here, we briefly consider the case of asymmetric vacua
illustrated in Fig. 9 and show that the vacuum decay is
independent of the direction in the thin wall approximation
in the one-loop approximation. We assume that the model
is described by a Landau-Ginzburg action containing a
scalar field ϕðt; xÞ:

A ¼
Z

dtdx

�
1

2
ð∂tϕÞ2 −

1

2
ð∂xϕÞ2 − V0ðϕÞ − ηΔVðϕÞ

�
;

ðC1Þ

where in the case η ¼ 0, the potential has two degenerate
vacua V0ðϕþÞ ¼ V0ðϕ−Þ. This degeneracy is assumed to
persist at the quantum level, and it is only lifted by
switching on the perturbing potential ΔV. The � index
of the vacua is chosen so that ϕ� becomes the false vacuum
for η positive/negative, respectively [56]. Using the semi-
classical formalism, the bubble nucleation rate in the one-
loop approximation is given by [2]
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Γ�
V

¼ S0
2π

e−S0
				det0 ½−∂2τ − ∂

2
x þU00ðϕ1Þ�

det ½−∂2τ − ∂
2
x þ U00ðϕ�Þ�

				−1=2
e−S

ð1Þðϕ1ÞþSð1Þðϕ�Þ; ðC2Þ

where τ ¼ −it is Euclidean time,U ¼ V0 þ ηΔV is the full
potential, and ϕ1 is the classical instanton configuration,
which solves the Euclidean equation of motion

∂
2
τϕ1 þ ∂

2
xϕ1 ¼ V 0ðϕÞ; ðC3Þ

and has finite Euclidean action

S0 ¼
Z

dτdx

�
1

2
ð∂τϕ1Þ2

1

2
ð∂xϕ1Þ2 þ V0ðϕ1Þ þ ηΔVðϕ1Þ

�
:

ðC4Þ

In the thin wall limit of small η, ϕ1 is given by

ϕ1ðτ; xÞ ¼ ϕKðρ − RÞ; ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ x2

p
; ðC5Þ

where ϕKðxÞ is the static kink solution at η ¼ 0. Denoting
its mass by M, the radius of the bubble can then be
determined as R ¼ 2M=ΔE, whereΔE ∝ η is the difference
in the energy densities of the false and the true vacua, also
known as the latent heat. The thin wall limit means that the
radius R is much larger than the characteristic spatial
extension of the kink solution ϕK , which can always be
achieved for sufficiently small η. The classical Euclidean
instanton action in the thin wall limit can be easily
computed following [1] with the result

S0 ¼
πM2

ΔE
; ðC6Þ

and is independent of the sign of η, i.e., of the direction of
tunneling. Finally, the contribution Sð1Þ is the Euclidean
one-loop counter term action.
The ratio of the two tunneling amplitudes is then

given by

Γþ
Γ−

¼
				det ½−∂2τ − ∂

2
x þ V 00

0ðϕ−Þ�
det ½−∂2τ − ∂

2
x þ V 00

0ðϕþÞ�
				−1=2eSð1ÞðϕþÞ−Sð1Þðϕ−Þ: ðC7Þ

Note that when the two vacua are related by aZ2 symmetry,
this ratio is trivially 1. For the general case, we can reason
as follows. Since the ϕ� are constant configurations, the
relevant counter terms are the ones for the effective
potential

Sð1Þðϕ�Þ ¼ −ΩΔVð1Þðϕ�Þ; ðC8Þ

where Ω denotes a finite space-time box introduced to
regulate the computation. This leads to the expression

log
Γþ
Γ−

¼ −
1

2
Tr log ½−∂2τ − ∂

2
x þ V 00

0ðϕþÞ� − ΩΔVð1ÞðϕþÞ

þ 1

2
Tr log ½−∂2τ − ∂

2
x þ V 00

0ðϕ−Þ� þΩΔVð1Þðϕ−Þ:
ðC9Þ

The combinations

1

2Ω
Tr log ½−∂2τ − ∂

2
x þ V 00

0ðϕ�Þ� þ ΔVð1Þðϕ�Þ

¼ 1

2

Z
d2k
ð2πÞ2 log ½k

2 þ V 00
0ðϕ�Þ� þ ΔVð1Þðϕ�Þ ðC10Þ

are just the renormalized 1-loop contributions to the
effective potential evaluated at the field values ϕ�, which
cancel due to the assumed exact degeneracy of the two
(generally asymmetric) vacua. Therefore, at the one-loop
order, one has

Γþ ¼ Γ−: ðC11Þ

According to Voloshin’s result, Eq. (3), this equality is
expected to hold in the thin wall limit to all loop orders.
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