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Scattering amplitudes mediated by graviton exchange display IR singularities in the forward limit.
This obstructs standard application of positivity bounds based on twice-subtracted dispersion relations.
Such divergences can be canceled only if the UV limit of the scattering amplitude behaves in a specific way,
which implies a very nontrivial connection between the UV and IR behaviors of the amplitude. We show
that this relation can be expressed in terms of an integral transform, obtaining analytic results when
t log s → 0. Carefully applying this limit to dispersion relations, we find that infinite arc integrals, which
are usually taken to vanish, can give a nontrivial contribution in the presence of gravity, unlike in the case of
finite negative t. This implies that gravitational positivity bounds cannot be trusted unless the size of this
contribution is estimated in some way, which implies assumptions on the UV completion of gravitational
interactions. We discuss the relevance of these findings in the particular case of QED coupled to gravity.
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I. INTRODUCTION

The analytic properties of the S-matrix are a central
element of our understanding of quantum field theory
(QFT). Stemming from seminal works on partial-wave
unitarity in the 1970s [1–3], there has recently been a
modern resurgence of interest in this topic, in connection to
the study of effective field theories (EFTs) [4]. S-matrix
properties can be used to formulate positivity bounds for
2-to-2 scattering amplitudes within the physical region for
scattered momenta in the forward limit. These are written in
terms of dispersion relations which relate the scattering
amplitude at a given kinematical point with the integral of
its imaginary part along the whole physical region, which is
strictly positive from the optical theorem.
Standard applications then follow a top-down reasoning.

One first promotes a given EFT to be the low-energy
expansion of an unknown ultraviolet (UV) complete theory
satisfying the usual axioms of unitarity, locality, and
Lorentz invariance. Positivity bounds are then valid and

applicable to the UV-complete theory. However, they can
also be evaluated at small center-of-mass energy, in the
infrared (IR) region. There, scattering amplitudes are well
approximated by those computed in the EFT. As a
consequence, positivity implies constraints on the Wilson
coefficients accompanying those relevant operators that
contribute to the S-matrix elements. This UV-IR connection
has been thoroughly used in the literature to constrain, or
assess the validity, of many different EFTs; see for example
Refs. [5–24].
This approach however, relies on the existence of a mass

gap in the spectrum of the EFT, a property needed for the
forward limit to be regular. In gapless theories, exchange of
massless particles leads to forward limit divergences in the
scattering amplitudes, which obstruct a direct application of
positivity bounds. This divergence can be relaxed for both
scalar and vector degrees of freedom by a proper regulari-
zation, but the fundamental problem remains for graviton
exchange, which requires an alternative approach. An
elegant way out of this is to isolate the divergence on the
right-hand side of the dispersion relation—which is exact—
so that it can be canceled against the one on the left-hand
side [25]. By doing this, one is left with an approximate
positivity bound, which can be mildly violated by terms that
become important only at very high energies. Nevertheless,
these approximate bounds are still very powerful in con-
straining many IR proposals for gravitational physics
[26–28]. This result can also be obtained in a different
way, based on the impact parameter formulation [29].
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In order for this cancellation to be possible, an
assumption about the high-energy behavior of graviton
scattering has to be made, though. In Ref. [25] this was
assumed to be of the Regge form, inspired by the
Veneziano formula of string scattering [30], but we could
of course wonder if this result is unique, or if there are other
possible UV behaviors that work. This has been partially
answered in Ref. [31], where it was shown that subtraction
of the tree-level divergence requires a linear Regge trajec-
tory at leading order in the high-energy region, but nothing
has been established so far about subleading corrections.
This is an important question because, for example,
string scattering is not an exact linear Regge trajectory.
Subleading corrections are always present. Thus, it is
natural to ask ourselves: are these unique? What kind of
subleading terms allow for well-posed dispersion relations
and positivity bounds? Is the scattering of strings the only
possible UV behavior of graviton scattering that satisfies
this condition? And moreover, are positivity bounds insen-
sitive to this choice? In general, we ask ourselves: what is
the minimal piece of information about the UV behavior
of gravitation needed for dispersion relations to be well
posed?
In this work we try to answer this question by reversing

the usual direction of thought in the literature on positivity
bounds. By looking at the structure of graviton exchange
in the IR limit, and exploiting mathematical properties of
the dispersion relation, we constrain the UV behavior of
graviton-mediated scattering amplitudes. We arrive at an
integral formula that relates the IR structure of forward-
limit divergences to properties of the UV completion,
which is further constrained in the limit t log s → 0. We
also show how this knowledge modifies the standard
derivation of positivity bounds, leading even to indetermi-
nate bounds unless extra assumptions about the UV
completion are made.
A recent development in a similar direction—reverse

bootstrapping UV amplitudes from IR properties—was
presented in Ref. [32], where they considered the scattering
of photons and gravitons in QED coupled to the Einstein-
Hilbert action. Based on one-loop computations done in
Ref. [33], they showed that parametrically large negative
terms appear in the dispersion relation, naively contra-
dicting positivity bounds unless new physics is introduced
at relatively low energies. Instead, the authors of Ref. [32]
argued that the presence of these negative large pieces can,
and most likely should, have an origin in nontrivial
properties of the UV completion, which might in principle
be affected by the presence of light particles such as the
electron [34]. In this work we show explicitly how this way
of thinking, together with our results about the shape of the
UV scattering amplitude, can lead to a resolution of the
mentioned tension.
This paper is organized as follows. First, we introduce

dispersion relations for theories with graviton exchange in

Sec. II, and we show how cancellation of IR divergences
determines several properties of scattering amplitudes in
the UV in Sec. III. Later, in Sec. IV we show how our
findings imply a nonvanishing value for the arc integrals
contributing to the dispersion relation, and we discuss how
this can solve the conundrum that emerges when applying
positivity bounds to gravitationally coupled QED in Sec. V.
Section VI is devoted to showing how positivity bounds
might be rendered useless by our results in the presence
of gravitation, while in Sec. VII we explore an explicit
example of a UV completion in the form of string
amplitudes, finding agreement with our result. Finally,
we draw our conclusions in Sec. VIII.

II. DISPERSION RELATIONS
WITH GRAVITON EXCHANGE

Let us start by considering the ab → ab scattering
between some identical but otherwise unspecified initial
and final states with equal mass m, as described in an
EFT with an unknown UV completion, but which we
demand to be causal, local, unitary and Lorentz invariant.
We also assume that this process includes exchange of
a massless graviton. Due to Lorentz invariance, the scat-
tering amplitude Aðs; tÞ can be uniquely described in
terms of the Mandelstam variables s, t, and u, satisfying
sþ tþ u ¼ 4m2. The presence of massless gravitons in the
scattering channel implies that the amplitude will diverge
in the forward limit1 t → 0−. The typical expansion of
the amplitude in this limit, including tree-level graviton
exchange and one graviton loop, has the form

Aðs; tÞ ¼ A0

s2

M2
P

1

t
þ A1

s2

M4
P
log

�
−t
μ2R

�
þ ðregular termsÞ

þ ðhigher loopsÞ; ð1Þ

where μR is the renormalization scale. In the forward limit,
this expression has explicit 1=t and log t divergences. The
pole is inherited from the one in the graviton propagator,
while loop corrections are responsible for generating the
logarithmic branch cut, which represents production of soft
gravitons of arbitrarily low energy. The values of A0 and A1

characterize the particular theory from which this ampli-
tude is obtained. In perturbation theory, they are propor-
tional to the residue in the pole of the propagator of the
massless graviton, and to the β function of the a2b2

coupling. Higher loops—two and beyond—will produce
further logarithmic divergences, but we ignore them here-
inafter, since they are further suppressed. From crossing
symmetry, the amplitude contains in general equivalent
divergences s−1, u−1, logðsÞ, logðuÞ. Due to the latter, the

1It is important to remark here that the forward limit corre-
sponds to taking t → 0 from the negative side of the real axis,
since the physical region corresponds to t < 0.
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forward limit amplitude Aðs; t → 0−Þ will also exhibit a
branch cut along the whole real axis in the complex plane
for s, which obstructs the standard derivation of positivity
bounds [4]. This can be avoided, however, by following the
derivation in Ref. [31], which we adopt hereinafter. We thus
consider the following quantity:

Σðμ; 0−Þ ¼ 1

2πi

I
γ

Aðs; 0−Þs3ds
ðs2 þ μ4Þ3 ; ð2Þ

where the value 0− must be understood as t → 0− at all
times. Thus, we retain only divergent and finite terms, and
get rid of those that vanish polynomially in t. Here the
integral is taken over the contour γ, as shown in Fig. 1,
corresponding to the sum of two small circles surrounding
the values s ¼ �iμ2. The choice of μ ∈ R is a matter of
convenience, and later we will assume it to be much smaller
than the cutoff scale of the low-energy EFT.
Note that the analytic structure of the amplitude is

completely determined by the assumptions above. It is
fully analytic in the whole s plane, except for the
branch cut along the whole real axis. We can thus modify
the integration contour to Γ, consisting in two lines
ReðsÞ � iϵ, with ϵ ≪ 1, together with two arcs of infinite
radius. Thus

Σðμ; 0−Þ ¼ 1

2πi

I
Γ

Aðs; 0−Þs3ds
ðs2 þ μ4Þ3

¼
Z

∞

0

ds
π

�
s3ImAðsþ iϵ; 0−Þ

ðs2 þ μ4Þ3

þ ðs − 4m2Þ3ImA×ðsþ iϵ; 0−Þ
ððs − 4m2Þ2 þ μ4Þ3

�
þ Σ∞: ð3Þ

Here we have used the Schwarz reflection principle
A�ðsÞ ¼ Aðs�Þ to relate the integral in the lower part of the
complex plane to that in the upper part, and introduced

the crossing-symmetric process2 A×ðs; tÞ, obtained by
letting s → u, together with a change of variables, to
rewrite the whole expression as an integral over positive
values of s.
In the previous formula, Σ∞ stands for the sum of the

integrals along the two infinite arcs ΓC ¼ Γþ þ Γ− in the
upper and lower parts of the complex plane,

Σ∞ ¼ 1

2πi

I
ΓC

ds
Aðs; 0−Þ

s3
; ð4Þ

where μ has been neglected, since for this integral jsj → ∞.
The contribution of Σ∞ is normally ignored by invoking the
Froissart-Martin bound [35] in the case of exchange of
massive particles. For graviton exchange, it is typically
assumed that a certain version of this bound holds in the
form

lim
jsj→∞

����Aðs; 0−Þ
s2

���� ¼ 0; ð5Þ

which seems enough for the arc integrals to vanish. This
bound has been rigorously derived for theories in d > 4
space-time dimensions, but the realistic case of d ¼ 4
remains elusive, so Eq. (5) has to be regarded as an extra
assumption at this stage. In this work, we do not want to
make such an assumption on the UV behavior of the
scattering amplitude, and thus we keep the integral arbitrary
hereinafter. Our only starting requirement will be that Σ∞
does not contain any forward limit singularities stronger
than a pole. Namely ðt · Σ∞Þt→0− ∼ const.
Note that Eq. (3) can be thought of as a formula

connecting the IR and UV behaviors of a given theory.
While the rhs is an explicit integral along the full range
of s, and thus sensitive to the properties of the UV
theory, the value of Σðμ; 0−Þ can also be computed in the
IR region by using Eq. (2), provided that μ is sufficiently
small. In this case, it can even be computed in an EFT
approximation of the full theory, as long as μ ≪ Λ, with
Λ being the cutoff of the EFT. This leads to a simple
expression in terms of the residues of the integrand in
Eq. (2)

Σðμ; 0−Þ ¼ Assðiμ2; 0−Þ
16

−
3iAsðiμ2; 0−Þ

16μ2
; ð6Þ

where Asðx; 0−Þ ¼ ∂sAðs; 0−Þjs¼x, and equivalently with
Assðx; 0−Þ and the second derivative. For an amplitude
of the form (1), which can be obtained from an EFT
coupled to general relativity,3 one obtains

FIG. 1. Integration contours for the dispersion relation in
Eqs. (2) and (3).

2We have also used the fact that sþ tþ u ¼ 4m2. For a
detailed derivation of this expression, cf. Ref. [31].

3Or, in general, to any theory whose tree-level gravitational
dynamics matches that of the Einstein-Hilbert action.
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Σðμ; 0−Þ ¼ 1

2

�
A0

t
þ A1 log t

�
þ ðregular termsÞ

þ ðhigher loopsÞ: ð7Þ

Thus, Σðμ; 0−Þ defined as in Eq. (2) captures exactly
the coefficient in front of the s2 term in the amplitude.
Remarkably, this expression still contains singularities in
the forward scattering limit t → 0−, produced by the s2

dependence in those terms coming from graviton exchange.
In the next section we discuss what these singularities tell
us about the UV theory.
It is important to remark here that this problem is

particular to graviton scattering. If one scatters any other
massless species—scalars or vector bosons—which are
instead described by a renormalizable theory, the scattering
amplitude will still be divergent in the forward limit.
However, these divergences come without a quadratic s
dependence, which means that they disappear when com-
puting Σ∞, leading to a regular dispersion relation.

III. GRAVITON SCATTERING AND
CANCELLATION OF DIVERGENCES

Let us start by recalling that Eq. (3) is exact. On its
derivation there is no approximation or expansion what-
soever, besides taking an approximate forward limit. This
means that, if the lhs is divergent, the rhs must be so.
However, the latter depends only on the imaginary part of
the scattering amplitude, which is regular within the
physical region by application of the optical theorem

ImAðs; 0Þ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
σðsÞ; ð8Þ

and the requirement that the total cross section is finite. As
discussed in Ref. [32], this is enough to conclude that the
divergence on the rhs of Eq. (3) must come from the failure
of the integral to converge when t → 0− at some high-
energy regime s ≫ M2�, where M� is thus the scale above
which the EFT fails to describe graviton scattering and
must be replaced by its UV completion. Assuming the
mildest possible analytic behavior of the amplitude leads to
a linear Regge trajectory (cf. Ref. [32] and the Appendix in
Ref. [31]),

ImAðs; tÞjs≫M2� ¼ r�s2þα0t: ð9Þ

Here α0 ∼M−2� and r� are provided by the concrete UV
completion leading to this form. By assuming this exact
high-energy behavior, we can cancel the tree-level pole on
the lhs of Eq. (3). Such a linear Regge behavior for graviton
scattering is typical in string theories. Indeed, it can be
obtained from the famous Veneziano amplitude [30],
describing the scattering of four closed bosonic strings [36].

However, it is naive to assume that the Regge behavior
at high energies is an exact linear trajectory. Indeed,
this would lead to two problems. First, it only provides
cancellation of the tree-level pole. Moreover, plausible
candidates for UVamplitudes, like the scattering of strings,
are not Regge exact, as only their leading behavior is of this
form. It is then natural to wonder what is the possible
allowed form of these subleading corrections. One first
mandatory requirement is that they must be able to cancel
the logarithmic divergences as well as the pole. As shown
in Ref. [31], this requires subleading terms to contain a
piece

ImAðs; tÞjs≫M2� ¼ r�s2þα0t
�
1þ ζ

logðα0sÞ
�
; ð10Þ

where ζ is a dimensionless constant, but nothing else is
known beyond this. We show now however, that we can
indeed obtain a good amount of extra information on the
UV amplitude by simply requiring the cancellation of
divergences, obtaining some results that go beyond the
linear Regge trajectory.
In order to proceed, we assume that the high-energy form

of the imaginary part of the amplitude reads

ImAðs; tÞjs≫M2� ¼ s2þα0tϕðs; tÞ; ð11Þ

where ϕðs; tÞ is an arbitrary function. We now take Eq. (3)
and split the integration regime on the rhs as

Z
∞

0

¼
Z

M2�

0

þ
Z

∞

M2�
: ð12Þ

As we previously discussed, all the divergences on this
rhs come from the high-energy behavior of the integral,
which means that the first piece in the previous expression
is regular. Thus, we move it to the lhs and write

Σ − Σ∞ −
1

π

Z
M2�

0

dsFðsÞ ¼ 1

π

Z
∞

M2�
dsFðsÞ; ð13Þ

where we have introduced

FðsÞ ¼ s3ImAðsþ iϵ;0−Þ
ðs2 þ μ4Þ3 þ ðs− 4m2Þ3ImA×ðsþ iϵ;0−Þ

ððs− 4m2Þ2 þ μ4Þ3 :

ð14Þ

The lhs here thus contains divergences and regular
pieces, which we decide to separate as

lim
t→0−

�
Σ − Σ∞ −

1

π

Z
M2�

0

dsFðsÞ
�

¼ β0
t
þ β1 logð−tÞ þ f̄;

ð15Þ
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where f̄ is constant. On the other hand, we take the
limit fm; μg ≪ M� on the rhs, as well as the assump-
tion that the external states are bosonic—and thus
A×ðs; 0−Þ ¼ Aðs; 0−Þ—arriving at

β0
t
þ β1 logð−tÞ þ f̄ ¼ 1

π

Z
∞

M2�

ds
s
sα

0tϕðs; tÞ

¼ M2α0t�
α0π

Z
∞

0

dσϕðσ; tÞeσt; ð16Þ

where in the last step we have performed a change of
variables s ¼ M2�eσ=α

0
. Finally, taking x ¼ −t, recalling that

the physical region corresponds to t < 0, and thus x > 0,
and absorbing proportionality coefficients onto the defi-
nitions of β0, β1 and f̄, we arrive at the final expression

β0
x
þ β1 logðxÞ þ f̄ ¼

Z
∞

0

dσϕðσ; xÞe−σx; ð17Þ

where we can recognize the Laplace measure in the integral
on the rhs.
Knowing the UV behavior of ImAðs; tÞ, Eq. (17) can

easily be used to compute the coefficients β0, β1 and f̄, in a
standard way. However, the inverse problem, obtaining the
form of ϕðσ; xÞ from the coefficients of the IR amplitude, is
not so simple. Actually, this mathematical problem has, in
general, infinitely many possible solutions, but not all of
them will satisfy the analyticity properties that we must
require for a physical amplitude.4

In order to find a proper solution, let us make use here of
Watson’s lemma [37] for the integral in Eq. (17). We will
thus assume that the function ϕðσ; xÞ satisfies5

lim
σ→∞

ϕðσ; xÞ
eγσ

¼ 0; ð18Þ

for some γ > 0, and that it is a meromorphic function6

around σ ¼ 0. Thus, it can be expanded in a Laurent series
around this point

ϕðσ; xÞ ¼
X∞
n¼0

�
anðxÞσn þ

bnðxÞ
σn

�
; ð19Þ

with b0ðxÞ ¼ 0. Any individual term of this sum, when
plugged into Eq. (17), corresponds to a Laplace transform
of σa for a certain power a.
Let us focus first on the nonanalytic pieces of the series.

By performing the integral—using the analytic continu-
ation of the Γ function—we get

bnðxÞ
Z

∞

ϵ
dσ e−σx σ−n ¼ ð−1Þn

ðn − 1Þ! bnðxÞx
n−1 logðxÞ

þOðx; ϵ−1Þ; ð20Þ

where ϵ ≪ 1 is a regulator. For n ≥ 2 we get terms that are
not present on the lhs of Eq. (17), unless bnðxÞ ∼ x1−n.
However, this violates the assumption of analyticity of
ϕðσ; xÞ when x → 0. We conclude that all singular terms in
the Laurent series for n ≥ 2 must vanish. We thus have

ϕðσ; xÞ ¼ b1ðxÞ
σ

þ
X∞
n¼0

anðxÞσn; ð21Þ

where b1ðxÞ ¼ β1 þOðxÞ, in order to account for the
logðxÞ forward divergence on the lhs of Eq. (17). This
justifies the choice made in Ref. [31].
We shift our focus now to the Taylor series. Since ϕðσ; xÞ

is analytic around x ¼ 0, we have

lim
x→0

anðxÞ ¼ anxηn ; ð22Þ

where all the ηn are constant and we assume them to be
different. Later we will see that this is necessary to avoid
double and higher poles in Eq. (17). For now, let us take it
as an assumption. We now invoke the partial-wave expan-
sion of the amplitude for a unitary theory, which implies
(see Appendix B of Ref. [7] for a proof)

dk

dtk
ImAðs; tÞjt¼0 ≥ 0; ð23Þ

for all k and all values of s within the physical region.
Using this fact, we easily conclude by direct computation
that

an ≥ 0; for all n: ð24Þ

Knowing this, we now plug the Taylor series in Eq. (21)
back into the integral, and by integrating term by term
we get

4Indeed, a trivial solution is given by ϕðσ; xÞ ¼ eσxðβ0x þ
β1 logðxÞ þ f̄Þδðσ − xÞ, which does not satisfy analyticity at
x ¼ 0 for all values of σ.

5Exponential boundedness is a softer behavior than the one
required by the Froissart-Martin bound. The latter is actually
problematic when confronted with the full Veneziano amplitude
for string scattering, which does not satisfy it. Instead, Venezia-
no’s amplitude is exponentially bounded, exactly as we require
here.

6The assumption of meromorphicity is true at one loop, as we
show below. However, we might be forced to abandon it in order
to account for higher-loop divergences in the IR, such as
logðlogðxÞÞ. Nevertheless, all these terms will enter with an
extra scale suppression and we thus ignore them hereinafter.
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X∞
n¼0

Z
∞

0

ds e−sxanðxÞsn ¼
X∞
n¼0

anðxÞΓðnÞ
xnþ1

: ð25Þ

Since all an > 0, there cannot be cancellations between
different values of n, which implies that all the terms on the
rhs must, at most, diverge as a single pole. This implies

anðxÞ ¼ anxn þOðxnþ1Þ; ð26Þ

for some constant, perhaps vanishing, coefficient an. Note
however that, in order to cancel the single pole β0=t in
Eq. (17), at least one of the an coefficients must be
nonvanishing.
At this point one might be worried about the convergence

of the sum in Eq. (25), since we are expanding around
σ ¼ 0 and integrating over the whole real line. However,
this leads to no problems in the setting discussed here. Let
us show this explicitly by cutting the Taylor series at a finite
order N

ϕðσ; xÞ ¼ b1ðxÞ
σ

þ
XN
n¼0

anðxÞσn þRNþ1ðσ; xÞ: ð27Þ

Since this is a Laurent series, there exists a function KðxÞ
such that

jRNþ1ðσ; xÞj < KðxÞσNþ1; ð28Þ

at least in the limit x → 0 of interest. Using this condition
we can thus estimate the size of the remainder after cutting
the series and exchanging the order of summation and
integration. We have

����
Z

∞

0

dσ e−σxRNþ1ðσ; xÞ
���� <

Z
∞

0

dσ e−σxjRNþ1ðσ; xÞj

< KðxÞ
Z

∞

0

dσ e−σxσNþ1: ð29Þ

The last integral is immediate and gives

����
Z

∞

0

dσ e−σxRNþ1ðσ; xÞ
���� < O

�
1

xNþ2

�
: ð30Þ

Noting that the Nth term in the series contributes at
order anðxÞx−ðNþ1Þ, this shows that Eq. (25) is thus well
behaved as an asymptotic series, which is enough for our
purposes here.
Before going forward let us go back to the condition

(22). Now it is obvious that all ηn have to be different in the
limit x → 0. Unless they satisfy Eq. (26) there would be
extra divergences after integration of ϕðσ; xÞ. A possible
way out would be to have two terms giving rise to the same
divergence and canceling each other. However, since all
an > 0, this is not possible. We thus conclude that the form

of our asymptotic expansion is indeed unique and reads in
the forward limit, once all knowledge is collected

lim
x→0

ϕðσ; xÞ ¼ β1
σ
þ
X∞
n¼0

anðxσÞn;
X∞
n¼0

anΓðnÞ ¼ β0:

ð31Þ

Note that the expansion of the function ϕðσ; xÞ in the
forward limit, which naively corresponds to x → 0, has
become instead an expansion when xσ → 0, since it is only
under this assumption that Eq. (31) is well behaved as an
asymptotic expansion. This suggests that the proper for-
ward limit to account for the presence of graviton
exchange, at least at high energies, is actually

τ ¼ σx ∼ t logðsÞ → 0; ð32Þ

or t log jsj → 0 in the complex plane for s, which ensures
perturbative control of the UVamplitude. As we will see in
a moment, this has a strong impact on the derivation of
positivity bounds. Since the asymptotic limit jsj → ∞ and
t → 0 has to satisfy Eq. (32), the computation of the
integral along ΓC in Eq. (4) has to be taken carefully.

IV. ARC INTEGRALS IN THE FORWARD LIMIT

By means of analyticity and crossing symmetry, one can
actually go beyond our results in the previous section and
recover the asymptotics of the whole amplitude from its
imaginary part. Indeed, for jsj ≫ M2� we can write a totally
standard dispersion relation for the scattering amplitude by
using Cauchy’s integral theorem. We have [31,38]

Aðs; tÞ ¼ s2

2πi

I
γs

Aðz; tÞdz
z2ðz − sÞ ¼ Fðs; tÞ þ Fð−s − t; tÞ: ð33Þ

Here γs is a small circle around z ¼ s and we have
exploited crossing symmetry to obtain an explicit expres-
sion in terms of s and u ¼ −s − t. The function Fðs; tÞ
reads7

Fðs; tÞ ¼ s2

π

Z
∞

0

ImAðz; tÞdz
z2ðz − sÞ ¼ s2

π

Z
M2�

0

ImAðz; tÞdz
z2ðz − sÞ

þ s2

π

Z
∞

M2�

a0zα
0tdz

z − s
þOðt logðsÞÞ; ð34Þ

where we have taken into account only the leading term in
the expansion (31).

7See Ref. [38] for a detailed derivation. Here we are taking the
subtraction point μ2p ≪ jsj, and taking into account that all
pathologies of the scattering amplitude, such as the pole, are
contained in the IR.
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In the region of validity jsj ≫ M2�, and the first integral
becomes proportional to s=M2�, so that it can be neglected.
The asymptotics of the last one for large jsj leads instead to

Fðs; tÞ ¼ −
a0e−iπα

0t

sin ðπα0tÞ s
2þα0t: ð35Þ

Thus, we see that the total leading part of the amplitude,
and not only its imaginary part, is actually completely
determined. It reads

Aðs; tÞ ¼ −
a0e−iπα

0t

sin ðπα0tÞ ðs
2þα0t þ ð−s− tÞ2þα0tÞ þOðt logðsÞÞ:

ð36Þ

This result of course reproduces the imaginary part
a0s2þα0t, while being at the same time its analytic and
crossing-symmetric continuation.8

After obtaining this asymptotic form for the UV
scattering amplitude including exchange of gravitons,
we can now focus on understanding whether we can
really set the contribution of the infinite arcs Σ∞ to the
dispersion relation (3) to vanish or not. In the case of
gapped theories, the Froissart-Martin bound Aðs; tÞ <
s log2 s guarantees that Σ∞ ¼ 0. For Eq. (36), we instead
find a different result.
Let us then compute the integral in Eq. (4) explicitly.

Taking into account that the arc ΓR is described by s ¼ Reiθ

with R → ∞, and that

1

2πi

I
ΓR

ds
s2þα0t

s3
¼ Rα0t

2π

Z
2π

0

dθeiα
0tθ ¼ Rα0t

2π

e2πiα
0t − 1

iα0t
;

ð37Þ

we get

Σ∞ ¼ −
2a0e−iπα

0t

sin ðπα0tÞ
Rα0t

2π

e2πiα
0t − 1

iα0t
¼ −

2a0
πα0t

Rα0t ¼ −
2a0
πα0t

;

ð38Þ

where we have taken into account that the asymptotic
expansion is well controlled only when t logR → 0. Since
in this limit Rα0t → 1, we get a nonvanishing contribution,
unlike in a case where one first takes the limit R → ∞ with
small but finite t [39].
For the sake of completeness, let us notice that if one

takes the integral over the branch cut in Eq. (3) not fromM2�
to infinity, but from M2� to R, one obtains instead

ΣUV ¼ 2

π

Z
∞

M2�

dsImAðs; tÞ
s3

¼ 2

π

Z
R

M2�

ds
s
a0sα

0t

¼ 2a0
πα0t

ðRα0t − ðM2�Þα0tÞ: ð39Þ

In the limit t logR → 0 both terms go to unity and we get

ΣUV ¼ OðtÞ þOðM4�Þ ð40Þ

without the 1=t divergence, which appears instead to be
captured in the arc contribution ΣR. If instead we carefully
take R → ∞ first at finite negative t, the familiar result
with Σ∞ ¼ 0 is reproduced [39]. Thus, it seems that the
combination ΣUV þ Σ∞ does not depend on the way we
take the limits in R and t, although individual terms do.
Hereinafter we use the limit τ → 0 motivated by our
findings in Sec. III. This simplifies the computation by
allowing us to use only the leading term in the τ expansion
for the imaginary part of the amplitude.
With this choice, and for the simple amplitude (36), the

infinite arc brings a 1=t term. However, subleading terms
might also lead to finite contributions. In particular, by
noting that the new pole contribution comes from the real
part of the amplitude, which is not constrained by unitarity
or any of the other arguments here, it seems that any finite
value can be obtained from the UV, simply by modifying
ReAðs; tÞ. For example, we can take the equally valid
amplitude

Aðs; tÞ ¼ −
a0e−iπα

0t

sin ðπα0tÞ ðs
2þα0t þ ð−s − tÞ2þα0tÞ

þ βe−iπα
0tðs2þα0t þ ð−s − tÞ2þα0tÞ; ð41Þ

which leads to

Σ∞ ¼ −
2a0
πα0t

þ β þOðtÞ: ð42Þ

This indeed contains a finite piece that must be matched by
the infrared terms on the lhs of Eq. (3) in order for the
dispersion relation to be valid. Notice however, that β is not
constrained at all, and in particular it is not forced to be
positive. It can be large (jβj ≫ M−4� ) and negative. Thus, its
value will influence the applicability of positivity bounds
based on the relation (3). We will discuss this point later.
Here we did not include the log ð−tÞ divergences in the

dispersion relation. Given that they can be canceled by the
subleading contributions to ImAðs; tÞ at large s, their
impact on ΣR should also be subleading. An accurate
computation shows that the term s2þα0t=ðlog sÞ appearing
in the imaginary part would always lead to a vanishing
contribution. Thus, only those terms needed to cancel the
leading IR divergences induce a nontrivial value of the
infinite arc integrals. However, let us also note that

8Notice that for large s > 0 and small t < 0 the second term
does not contribute to the discontinuity.
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although subleading IR divergences are not sensitive to the
real part of the amplitude in the UV, they are still relevant to
recover its imaginary part, as previously discussed in
this work.

V. QED WITH GRAVITY

Following the derivation of positivity bounds from
twice-subtracted dispersion relations, several works exam-
ined their consequences for different physical theories of
interest for model building. In particular, bounds in the
presence of graviton exchange were closely studied in
recent works [32,33]. There, and by looking at photon
scattering, the authors showed that positivity bounds are
easily violated by gravitational contributions. In this
section we examine how our findings and, in particular,
the contribution of the infinite arcs, relax this issue.
Let us then consider QED coupled to gravitation, with

the action

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x
�
−
M2

P

2
R −

1

4
F2
μν þ ψ̄ðDμγ

μ −mÞψ
�
;

ð43Þ

where Fμν is the photon field strength, and ψ is a fermion
field with charge e. Following Ref. [33] we look at 2 → 2
photon scattering, including tree-level graviton exchange
and one-loop fermion corrections, thus retaining contribu-
tions up toOðe6Þ andOðM−4

P Þ. In the forward limit, and by
taking s ≫ m2, this reads

Aðs; tÞ ¼ −
s2

M2
Pt

þ 1

M2
P

�
−

11e2s2

360π2m2
þ e2s
12π2

�
þ 11e4s2

720π2m4
:

ð44Þ

The different topologies contributing to this scattering are
shown in Fig. 2.
The rhs of Eq. (3) contains four different pieces when

computed for this amplitude. The first one is the integral of
the imaginary part of the amplitude for those contributions

that survive in the limit MP → ∞. These can be computed
analytically, since the action (43) corresponds to a renor-
malizable theory in this limit, and were obtained in
Ref. [33]. We will borrow their result here. The second
piece is the contribution given by pure gravitational terms
in the IR. Again, these can be computed explicitly by using
the amplitude above, as the authors of Ref. [33] did. We
also have those coming from the UV part of the integral,
when s ≫ M2�, and which depend on the UV completion, as
previously discussed. We name them ΣUV. Finally, we have
the contribution of the infinite arcs, which we have learned
cannot be taken to vanish a priori. The total result for the
right-hand side—in the limit of small μ—is then

Σðμ2; 0−Þ ¼ 11e4

360π2m4
−

11e2

360π2m2M2
P
þ ΣUV þ Σ∞: ð45Þ

On the other hand, the lhs of Eq. (3) can be directly
computed and reads in this case

Σðμ2; 0−Þ ¼ AssðsÞ ¼ −
2

M2
Pt

−
11e2

180π2m2M2
P
þ 11e4

360π2m4
:

ð46Þ

As we can see, both results agree in the decoupling limit
of gravitational interactions. This is not a surprise because,
as we have already pointed out, the action (43) is renor-
malizable in this limit. This means that Eq. (3) becomes
trivial. The divergence 1=t however, has a pure gravita-
tional origin and, as we have discussed, will be canceled by
the interplay between ΣUV and Σ∞. However, the contri-
butions of order ðmMPÞ−2, showing up on both sides, do
not cancel each other. If we were being naive, assuming that
Σ∞ ¼ 0 and simply canceling the pole with ΣUV, then we
would find a clash between the two approaches to derive
Σðμ2; 0−Þ. The only way out is to assume the existence of
new physics turning on before gravitational interactions,
such that the amplitude gets modified and leads to a
cancellation of the undesired piece

−
11e2

360π2m2M2
P
þ Θ
Λ2

¼ 0; ð47Þ

where Θ is a constant. From simple dimensional analysis
we can see that this implies that the cutoff of the Standard
Model (SM)—in other words, the scale of introduction of
new physics—would be Λ ∼

ffiffiffiffiffiffiffiffiffiffiffi
mMP

p
, which in QED leads

to Λ ∼ 108 GeV, significantly lower than the Planck scale.
This option was studied in Ref. [32].
However, there is another natural solution to the prob-

lem: the possibility of having a nonzero infinite arc
contribution Σ∞ with negative sign. As we have shown
in previous sections, the value of Σ∞ contains contributions
from the real part of the gravitational amplitude at high

FIG. 2. Topologies providing the leading contributions to the
photon scattering amplitude at large s in the forward limit.
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energies—the term β in Eq. (41)—which are not con-
strained at all. Thus, they can potentially cancel the
remaining negative contribution of order ðmMPÞ−2.
Moreover, by considering this possibility, we can obtain
nontrivial information about the UV completion of gravi-
tational interactions. In particular, in the case of QED, we
can conclude that the UV amplitude in the Regge limit
should “know” about the presence of the light particle
(electron), since it needs to contain a large negative
contribution related to it. For instance, by borrowing
Eq. (41), a possible consistent UVamplitude in the forward
limit is

Aðs; tÞ ¼ e−iπα
0t
�
−

11e2

360π2m2M2
P
−

πα0

M2
P sin ðπα0tÞ

�

× ðs2þα0t þ ð−s − tÞ2þα0tÞ; ð48Þ

but this option is, of course, not unique and other possible
amplitudes could lead to similar physical results,
cf. Ref. [34]. This is simply an example of a situation
in which IR-UV decoupling is not present. There are
contributions—the electron loop here—that contribute to
the amplitude at all energies. Let us stress that the Regge
slope α0 cannot be fixed from IR considerations, and it is
instead connected to properties of the UV completion.
By considering this solution to the conundrum unveiled

in Refs. [32,33], QED can be “rescued” and trusted as a
good EFT when coupled to gravitation up to the Planck
scale. Of course, a realistic model of QED breaks down
before MP, since it needs to be embedded in the electro-
weak model, but a similar reasoning can be made even in
the general case of the SM, where the problem is even
worse due to neutrino loops, which bring the cutoff down to
values just slightly beyond the LHC’s reach.

VI. FATE OF GRAVITATIONAL
POSITIVITY BOUNDS

The prototypical application of Eq. (3) is to derive
positivity bounds, constraints on the values of Wilson
coefficients of EFTs, by explicitly computing the value
of Σðμ; 0−Þ in the IR. These are obtained by simply
considering the following expression:

Σ ¼
Z

∞

sth

ds
π

�
s3ImAðs; 0Þ
ðs2 þ μ4Þ3 þ ðs − 4m2Þ3ImA×ðs; 0Þ

ððs − 4m2Þ2 þ μ4Þ3
�
;

ð49Þ

where we have assumed that Σ∞ ¼ 0 for the moment. Here
sth stands for the threshold of particle production where the
branch cut starts on the real axis. For scattering processes
without massless particles in the exchange channel, this
corresponds to sth ¼ 4m2

l , where ml is the mass of the
lightest exchanged state, and the integral runs along the

physical regime for the Mandelstam variable s [4]. In the
case of a massless exchange, we have sth ¼ 0. Taking into
account that the optical theorem (8) implies that the
integrand on the rhs is always positive, from unitarity
requirements of the UV completion, we can conclude that

Σ > 0; ð50Þ

which in turn will imply conditions on the Wilson coef-
ficients contributing to the scattering amplitudes and
ultimately to Σ.
The bounds (50) can be improved by noting that part of

the rhs can actually be computed within an EFT. Splitting
the integral on the rhs as

R∞
sth

¼ R Λ2

sth
þ R∞

Λ2 , we can move the
first piece to the left and conclude in the same fashion that

Σ −
Z

Λ2

sth

ds
π

�
s3ImAðs; 0Þ
ðs2 þ μ4Þ3 þ ðs − 4m2Þ3ImA×ðs; 0Þ

ððs − 4m2Þ2 þ μ4Þ3
�

> 0:

ð51Þ

These improved positivity bounds have also been referred
to in the literature as beyond positivity bounds [40].
If sth ≠ 0 there is a simpler way to bound the coefficient

in front of s2 in the amplitude. One can equivalently derive
a bound for

Σ̄ ¼ 1

2πi

I
AðsÞds
ðs − μ2Þ3 ¼

1

2
AssðsÞ > 0; ð52Þ

which is applicable for μ2 < sth [4,8,40]. This approach,
however, cannot be directly applied for scattering of
massless particles. The presence of a branch cut with
sth ¼ 0 requires using the more complicated dispersion
relation (3).
These types of bounds can be systematically obtained

from many different dispersion relations, by simply taking
more subtractions; see Refs. [38,41]. Even amplitudes
containing graviton exchange can provide rigorous bounds
for the coefficients in front of higher powers of s (s4 and
beyond) as well as for their t derivatives [24], which are
regular in the forward limit. This happens because the 1=t
pole (as well as the loop IR singularities) is accompanied by
a s2 power at most.9 For this reason, only the application of
positivity bounds for the s2 term gets obstructed in the
presence of graviton exchange and graviton loops.
Of course, one can proceed naively by regularizing the

divergence in the same way as we have done here, by
keeping t < 0, and by simply bounding the coefficient
accompanying the divergence to be negative, since it
dominates the bound. However, this is just the residue in
the pole of the graviton propagator, whose sign is already

9This may not be true in theories with higher-spin states, which
we are not considering here.
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constrained to satisfy trivial requirements of perturbative
unitarity. Thus, no new information is obtained from
positivity bounds in this case, unless one resolves the
singularity. This can be done provided that the contribution
of the infinite arc Σ∞ vanishes. In this case the divergence
can be simply canceled by the proper Regge behaviour in
the UV. However, there are finite remainders whose sign
cannot be determined a priori, and thus one arrives at an
approximate positivity bound

Σ > −OðM−4� Þ; ð53Þ

which allows for small negativity [25,31].
As we have mentioned, this is only true under the extra

assumption that the infinite arc contribution is either zero in
the limit t → 0 or shown to be parametrically smaller than
OðM−4� Þ. However, as we have discussed in Sec. V with the
example of QED coupled to gravity, the contribution of the
infinite arc can actually be negative and parametrically
large, violating this assumption. This reflects the fact that
the loops of light particles can affect the amplitude in the
forward limit even in the UV region of large s. If this
happens, then no bounds can be set for the finite part of the
s2 term in the amplitude, since the former are modified to

Σ > Σ∞ −OðM−4� Þ;

which is meaningless without a systematic way to deter-
mine the size of Σ∞. Any amount of negativity can always
be explained by contributions to the UV amplitude which,
to the best of our knowledge, do not contradict any of the
basic principles of QFT.
Although the identification of the undetermined term as

part of the infinite arc integral is related to our choice of
kinematics in the UV, controlled by τ → 0, let us stress that
the previous conclusion is not tied to it. For other choices,
Σ∞ might vanish, but a similar contribution would arise
from the branch cut, leading to the same physical con-
clusion [39].
As a final note, let us note that a possible way out of this

conundrum is the case when the IR amplitudes are para-
metrically larger than the UV contribution to the arcs. This
requires the existence of a cutoff scale in the IR Λ such that
the amplitude in this region can be organized as an EFT

Aðs; tÞ ¼
X∞
n¼0

Anðs; tÞΛ−n; ð54Þ

while gravitational dynamics will contribute with terms
ordered in inverse powers of MP. In the case in which
Λ ≪ MP, the contribution of Σ∞ can thus be safely
neglected, so that we recover an approximate positivity
bound

Σ > OðM−2
P Þ: ð55Þ

This justifies the application of positivity bounds to
the case of gapped theories much below the gravitational
scale—and the neglect of gravity even though everything
universally couples to gravitation—but the problem sur-
vives if one wants to account for graviton exchange.
Information about the UV completion is needed.

VII. DO STRING THEORIES PROVIDE BONA
FIDE POSITIVITY BOUNDS?

We cannot say that we are currently in a position to
provide a number of known nonperturbative amplitudes
for the test of our findings above for the UV behavior of
gravitational scattering. However, string theory gives us
some hints on how some examples are constructed. In
this section we use string amplitudes as a test ground to
see if one indeed recognizes τ ¼ t logðsÞ as the expan-
sion parameter of the forward limit, and to assess what
happens to the large arc integral, i.e., whether they can
provide a constant contribution, similar to the one that
solves the QED conundrum in Sec. V, upon some
conditions or not.
Let us try the four-graviton scattering amplitude derived

in type II superstring theory. It can be written in the
following form [25,42]:

Astringðs; tÞ ¼ −Aðs2t2 þ s2u2 þ t2u2Þ

×
Γð−sÞΓð−tÞΓð−uÞ

Γð1þ sÞΓð1þ tÞΓð1þ uÞ
����
u¼−s−t

; ð56Þ

where A is positive and the string constant is set to α0 ¼ 4
for simplicity. This amplitude represents the tree-level four-
graviton scattering in the closed superstring NS-NS sector.
The polynomial factor accounts for the polarization states
of the spin-2 particle. This result has some limitations,
though. Neither NS-R nor open-closed string interactions
are included here. Moreover, it takes into account only
scattering of string states without addressing the question
of how branes enter the game. Note that D-branes, which
superficially accommodate the previously successful Chan-
Paton factors, are responsible for the inclusion of SM
particles in string phenomenology scenarios [43,44]. All
this means that the amplitude above is far from describing
our real world, but it is still of great interest for our pur-
poses here, because it is an example of an extremely
successful theoretically justified nonperturbative scattering
description.
The expansion of the amplitude (56) for s → ∞ and

t → 0 can be performed straightforwardly. Arranging the
terms in powers of t and keeping the leading s contribution
we get

HERRERO-VALEA, KOSHELEV, and TOKAREVA PHYS. REV. D 106, 105002 (2022)

105002-10



Astringðs; tÞ ¼ A
s2

t

�
1þ 2t logðsÞ þ 2t2 log2ðsÞ

þ 4

3
t3 log3ðsÞ þ 2

3
t4 log4ðsÞ þ…

�
; ð57Þ

wherewe readily reveal the canonical s2=t pole for the spin-2
massless particle, and recognize the presence of τ ¼ t logðsÞ
as the expansionparameter.Wenote that the appearanceof τ is
a very nontrivial property. It was not granted a priori to
observe it here. However, our considerations in previous
sections suggested its presence as a necessary condition
for a healthy amplitude. Its emergence here thus serves as
a very nontrivial sanity check of our results.
Computing Σðμ; 0−Þ out of Astringðs; tÞ one gets

Σðμ; 0−Þ ¼ −
A
2t

þ 4AtþOðt2Þ; ð58Þ

where we notice that the first subleading contribution is
linear in t, with no constant Oð1Þ term. This result can be
obtained by following the procedure outlined in Ref. [25].
It requires summing over residues of poles arising at the
integer negative points of the Γ function. Remarkably, note
that since the constant term is absent, the amplitude (56)
does not provide the large negative contribution that saves
the day in the case of QED, cf. Sec. V.
Therefore, we conclude that pure NS-NS superstring

amplitudes cannot heal the curious contribution observed in
Ref. [33]. However, there is hope for this to happen once
SM particles are included in the amplitude, through
coupling to D-branes. This is definitely an ambitious open
question to be understood in the string framework, as one
needs generalizations of SM amplitudes computed from
the string perspective. Alternatively, there may still be a
window in the string framework on its own if one includes
other contributions arising from NS-R interactions or from
open-closed string interactions. This analysis is however
clearly beyond the scope of the present work.

VIII. CONCLUSIONS

In this paper we have shown that the requirement
of cancellation of IR forward divergences appearing in
graviton-mediated scattering is enough to constrain the
form of the imaginary part of the scattering amplitude at very
high energies, above a scaleM�. In particular, we have proven
that whatever the form of the UV completion of gravitation
is, ImAðs; tÞ must admit an asymptotic expansion of the
form (31) in the limit τ ∝ t log s → 0. The appearance of the
parameter τ is a highly nontrivial feature that is however
reproduced in the known case of the Veneziano amplitude of
string theory [30], as we discussed in Sec. VII.
The determination of the form of ImAðs; tÞ has an

immediate impact on the construction of positivity bounds,
which are widely used to constrain EFTs of matter coupled

to gravitation. In their derivation, there appear integrals
along arcs with radius jsj → ∞, which are typically taken
to vanish, either by invoking the Froissart-Martin bound for
gapped theories, or with other arguments in the gapless
case. By using our expansion we showed however that this
cancellation is not guaranteed and instead depends on the
form of the real part of the scattering amplitude, which is
not constrained at all, to the best of our knowledge. In the
case that this real contribution exists, the predictability of
gravitational positivity bounds is doomed, since the pre-
vious simple expression Σ > 0, which is computable within
an EFT, gets modified as

Σ − Σ∞ > 0; ð59Þ

which is meaningless unless some input about the con-
tribution of the UV completion Σ∞ is given case by case.
Although this situation is overall negative for the

applicability of positivity bounds, it can also have a bright
side. The undetermined contribution from the UV com-
pletion could compensate the presence of anomalously
large negative terms appearing in Σ in the case of QED
coupled to Einstein-Hilbert gravity, which we have studied
in Sec. V, and in the general case of the SM. A naive
solution to both preserving the fate of positivity bounds,
and accepting these terms, is to assume the existence of new
physics above a relatively low-energy scale Λ ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
mlMP

p
,

where ml is the mass of the lightest fermion. In the case of
the SM this can be within the LHC scale and thus puts in
tension the validity of the SM itself. In contrast to this
solution, the existence of a nonvanishing contribution Σ∞,
coming from the real part of the scattering amplitude of
the UV completion, can solve the issue and preserve the
validity of the SM up to the Planck scale. However, this
would imply that positivity bounds cannot give us any new
information in these situations.
Alternatively, we can look at this as an opportunity to

realize a reverse bootstrapping.We can use the theories in the
IR to compute the value of Σ, and use it to determine
contributions to ReAðs; tÞ at high energies throughΣ∞. This
could give important insight on how light particles contribute
to graviton scattering even beyond the Planck scale.
Finally, we have tested our results by looking at the

nonperturbative amplitude for graviton scattering obtained
from the scattering of NS-NS closed superstrings. This
amplitude is indeed organized as an asymptotic expansion
in τ → 0 in the double limit s → ∞ and t → 0, confirming
our results. However, it does not provide the negative large
term Σ∞ required to save QED and the SM from a low
cutoff. Although this could be interpreted as a hint of
the true existence of this cutoff, we believe instead that
it points to the necessity of a better understanding of
scattering amplitudes in the string framework. In particular,
the problem at hand seems to require going beyond the
simple Veneziano amplitude and also accounting for
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interactions with SM particles through attaching the strings
to D-branes, or perhaps by also including NS-R sectors,
and open-closed string interactions. Additionally, it is also
interesting to question if there exist other UV completions
besides string scattering that satisfy the requirements
discussed in this work. Even more, we wonder if it is
possible to construct model-independent amplitudes that
not only cancel the IR forward divergences in graviton
scattering, but also render the SM safe until the Planck
scale, and what we can say about these amplitudes.
One possible direction of research along these lines

could be to consider triple-product amplitudes. Indeed,
by looking at Eq. (56) we see that, apart from the
polarization factor, the expression is a triple product of
BðzÞ ¼ Γð−zÞ=Γð1þ zÞ such thatAðs; tÞ ∼ BðsÞBðtÞBðuÞ.
Recently a new set of amplitudes with triple-product
structure was considered in Ref. [45], where it was claimed
that a wide class of functions BðzÞ leads to a unitary
construction. It would be interesting to see whether those

new amplitudes obey the constraints obtained in the present
paper using a general model-independent approach.
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