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We combine the ideas of a Weyl scaling invariant dark energy action, which eliminates black hole
horizons, with the “gravastar” idea of a jump in the hole interior from a normal matter equation of state to an
equation of state where pressure plus density approximately sum to zero. Using the Tolman-Oppenheimer-
Volkoff equation, which requires continuous pressure, we present Mathematica notebooks in which the
structure of the gravastar is entirely governed by the action and the equation of state, with the radii where
structural changes occur emerging from the dynamics, rather than being specified in advance. The
notebooks work even with zero cosmological constant, but when the cosmological constant is nonzero,
there is a very small black hole “wind” that we calculate by a relativistic extension of standard pressure
driven isothermal stellar wind theory.
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I. INTRODUCTION

A. Mathematical black holes versus horizonless
“black” holes such as “gravastars”

Extensive observations show that the universe contains a
multitude of extremely compact objects, that are assumed
to be mathematical black holes, as described in the
monograph of Chandrasekhar [1]. Mathematical black
holes are solutions of the Einstein field equations charac-
terized by just two parameters, the massM and the angular
momentum per unit mass. But the interpretation of astro-
physical observations in terms of idealized mathematical
black holes has been questioned from several points of
view. In earlier papers reviewed in [2], including initially
Adler and Ramazanoğlu [3], and more recently followed up
in Adler [4] (with astrophysical applications in [5,6])
we have proposed a novel Weyl scaling invariant form
of the dark energy action, in which the integrand of the
usual cosmological constant action contains an extra factor
g−200 . Hence this action is no longer interpretable as a
“vacuum energy.” Because of the factor g−200 , the Weyl
scaling invariant action leads to vacuum “black” hole
solutions1 with no event or apparent horizon, but with
exterior metrics outside the nominal horizon closely
approximating the usual Schwarzschild or Kerr forms.
From a different perspective, several authors, as reviewed
by Cardoso and Pani [7], have proposed interior solutions

for so-called “exotic compact objects” that appear black-
hole like from the outside, but have no horizons and no
interior singularity. In particular, the gravastars proposed by
Mazur and Mottola [8] are based on assuming a discon-
tinuous jump in the interior black hole equation of state,
from a normal matter equation of state to the equation of
state proposed by Gliner [9], in which the pressure p is
minus the density ρ. Related ideas have been discussed via
a condensed matter analogy in [10–13].
Our aim in the present paper is to combine the

modified black hole ideas following from a Weyl scaling
invariant dark energy action, with the proposal of a jump
to a pþ ρ ≃ 0 equation of state, to give a simple interior
model of a modified black hole, in the spherically
symmetric case. The final result for our model takes
the form of Mathematica notebooks [14] that are avail-
able online as supplemental information for this article.
Our model differs from that of Mazur and Mottola and
the subsequent paper of Visser and Wiltshire [15] in
several significant respects. First, we perform our entire
analysis from the Tolman-Oppenheimer-Volkoff (TOV)
equations for relativistic stellar structure, as augmented to
include a Weyl scaling invariant cosmological constant
action. Second, we note that the TOVequations require that
the pressure p must be continuous,2 whereas the energy
density ρ can have discontinuous jumps, so we implement
the Gliner equation of state by a jump to negative energy
density with positive pressure. This of course violates the
classical energy conditions, but from a semiclassical
quantum matter point of view, the regularized energy
density is known not to obey positivity conditions [17,18].

*adler@ias.edu
1We use in this section the term “black” hole, with the quotes

denoting an object which may have no event horizon, but which
otherwise appears to astronomers very similar to the idealized
mathematical black hole. For mathematical black holes we
continue to omit the quotes.

2For earlier work on gravastars with continuous pressure, but
also continuous equation of state, see [16].
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Third, we avoid assuming designated radii at which
transitions take place. In our model, transitions follow
dynamically from the equations of motion and the
assumed equations of state, hence the title of this paper
“Dynamical gravastars.” And fourth, we smooth the jump
in the equation of state by using a sigmoidal function in
place of a Heaviside step function, so there are no exact
discontinuities and accompanying surface densities to be
considered. Thus we have a differential equation system
that can be solved by the Mathematica integrator
NDSolve, which is powerful general tool for solving
one dimensional differential equation systems, such as
arise from our assumptions when restricted to spherical
symmetry.

B. Metric, gravitational action, matter perfect
fluid parameters, equation of state,
and range of rescaled Λ values

The basic inputs to our model are the spherically
symmetric metric, the action including the Einstein-
Hilbert action and the dark energy action, and the assumed
matter equation of state.

(i) Metric We write the static, spherically symmetric
metric in the form

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2ðdθ2 þ sin2ðθÞdϕ2Þ;
ð1Þ

following the notation used in the monograph of
Zeldovich and Novikov [19] (except that we use
geometrized units, with the velocity of light c and
Newton’s constant G set equal to unity).

(ii) Gravitational action and matter parameters As in
the papers reviewed in [2], we adopt the postulate
that the part of the gravitational action that depends
only on the undifferentiated metric gμν, but involves
no metric derivatives, is invariant under the Weyl
scaling gμν → λgμν. Adoption of this postulate im-
plies that the so-called “dark energy” action has the
three-space general coordinate invariant, but frame-
dependent, form

Seff ¼ −
Λ
8π

Z
d4xðð4ÞgÞ1=2ðg00Þ−2; ð2Þ

rather than the usually assumed vacuum energy form

Senergy ¼ −
Λ
8π

Z
d4xðð4ÞgÞ1=2; ð3Þ

where Λ is the observed cosmological constant, and
ð4Þg ¼ − detðgμνÞ. Since the unperturbed Friedmann-
Lemaître-Robertson-Walker (FLRW) cosmological
metric has g00 ¼ 1, in this context the action of

Eq. (2) mimics the standard cosmological constant
action of Eq. (3), but when g00 deviates from unity,
their consequences differ. There are a number of
motivations, which are reviewed in detail in [2],
for studying the possibility that dark energy arises
from the action of Eq. (2). Here, suffice it to say that
assuming that dark energy arises as a vacuum energy
from the action of Eq. (3) leads to the cosmological
constant fine tuning problem, which is not implied
by alternative forms of the dark energy action, such
as Eq. (2).

To this dark energy action we add the standard
Einstein-Hilbert gravitational action constructed
from derivatives of the metric,

Sg ¼
1

16π

Z
d4xðð4ÞgÞ1=2R; ð4Þ

with R the curvature scalar. Finally, we include a
matter action Sm to represent material that is
inside the black hole, which we assume takes the
form of a relativistic perfect fluid. The gravita-
tional field equations are obtained by varying the
sum Seff þ Sg þ Sm with respect to the spatial
components gij of the metric, and then imposing
covariant conservation (or equivalently, Bianchi
identities for the metric) to infer the remaining
components, a procedure discussed in detail in
[2,3]. The result is that the total pressure and
energy density p̂ and ρ̂, including contributions
from the dark energy action of Eq. (2), are related
to the matter pressure and energy density p and ρ,
by (with κ ≡ 8π)

p̂ ¼ p −
Λ
κ
e−2νðrÞ;

ρ̂ ¼ ρ −
3Λ
κ
e−2νðrÞ; ð5Þ

which obey

ρ̂ − 3p̂ ¼ ρ − 3p;

ρ̂þ p̂ ¼ ρþ p −
4Λ
κ
e−2νðrÞ: ð6Þ

(iii) Equation of state We assume the following
equation of state for the matter content of the
model. For pressure p less than a critical value
“pjump” the matter obeys a relativistic equation
of state ρ ¼ 3p, which by Eq. (6) implies ρ̂ ¼ 3p̂.
For pressure greater than pjump, we assume that
the matter jumps to an equation of state
pþ ρ ¼ β, which has the Gliner form as modi-
fied by addition of a “bag constant” β. This
addition plays a role similar to that played by the
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nonisotropic pressure introduced by Cattoen et al.
[20] and others.3

(iv) Range of rescaled Λ values The above ingredients
are the content of our model. In programming the
model, it is convenient to rescale to dimensionless
variables for which the matter pressure at the center
of the modified black hole is unity, pð0Þ ¼ 1. After
this rescaling, discussed in detail in Appendix B and
shown in Table II for a 106 M⊙ hole, the rescaled
parameter lambda is very small. For the numerical
examples corresponding to β ¼ .1; .01; .001 given
below, lambda has a small effect on the displayed
graphs, and could be set equal to zero. This shows
that when matter is present, an interior jump to the
Gliner equation of state suffices to eliminate the
horizon, without needing the presence of the Weyl
scaling invariant dark energy action which was used
[3] to eliminate the horizon in the vacuum Einstein
equation case. However, the calculation of the black
hole “wind” given later depends crucially on Λ
having a nonzero positive value.

C. The modified TOV equations, continuity
conditions, and initial conditions

The standard way of computing the structure of relativ-
istic stars is through the TOVequations, which combine the
Einstein equations for the metric coefficients νðrÞ and λðrÞ
with the covariant conservation equations for the matter
content of the star. A succinct derivation is given in [19] and
a pedagogical exposition is given in the monograph of
Camenzind [21]. In terms of the total pressure and energy
density p̂ and ρ̂, the modified TOV equations are4

dm̂ðrÞ
dr

¼ 4πr2ρ̂ðrÞ;

e−λðrÞ ¼ 1 −
2m̂ðrÞ

r
;

dνðrÞ
dr

¼ N̂ν

1 − 2m̂ðrÞ=r ;

N̂ν ¼ ð2=r2Þðm̂þ 4πr3p̂Þ;
dp̂
dr

¼ −
ρ̂þ p̂
2

dνðrÞ
dr

: ð7Þ

The final equation, for dp̂=dr, can be converted to an
equation for dp=dr by using Eqs. (5) and (6),

dp
dr

¼ dp̂
dr

− 2
dν
dr

Λ
κ
e−2νðrÞ ¼ −

ρ̂þ p̂
2

dνðrÞ
dr

− 2
dν
dr

Λ
κ
e−2νðrÞ

¼ −
ρþ p
2

dνðrÞ
dr

; ð8Þ

showing that dp=dr vanishes when ρþ p vanishes, as in
the postulated Gliner equation of state.
Assuming that all quantities appearing on the right-hand

side of the TOV equations are bounded, the one dimen-
sional version of the standard “pillbox” argument implies
that m̂ðrÞ, νðrÞ, p̂ðrÞ, and pðrÞ must all be continuous
functions of r, with no jump discontinuities. (See
Appendix A.) However, ρ̂ðrÞ and ρðrÞ can have finite
jump discontinuities, since ρ̂ðrÞ only appears on the right
hand side of the TOV equations.
The initial value conditions for the TOVequations can be

taken as pð0Þ ¼ 1, m̂ð0Þ ¼ 0, and νð0Þ ¼ “nuinit”, where
nuinit is fixed a posteriori by requiring a match to the
Schwarzschild metric value νð∞Þ ¼ 0 at asymptotically
large r.

D. Exterior space limit

From Eq. (7), we see that when p̂ ¼ 0 and ρ̂ ¼ 0, we
have5

d
dr

ð1 − 2m̂=rÞ ¼ ð2=r2Þm̂ − ð2=rÞ4πr2ρ̂
¼ ð2=r2Þðm̂þ 4πr3p̂Þ ¼ N̂ν: ð9Þ

Hence in the limit p̂ ¼ ρ̂ ¼ 0, the differential equation for
νðrÞ becomes

dνðrÞ
dr

¼
d
dr ð1 − 2m̂=rÞ
1 − 2m̂ðrÞ=r ¼ d

dr
logð1 − 2m̂=rÞ; ð10Þ

which, with the asymptotic boundary condition νð∞Þ ¼ 0,
integrates to

νðrÞ ¼ logð1 − 2m̂=rÞ;
eνðrÞ ¼ 1 − 2m̂=r: ð11Þ

Similarly, from Eq. (7) we see directly that

eλðrÞ ¼ 1=ð1 − 2m̂=rÞ: ð12Þ

3For the values β ¼ .1; .01 studied in our numerical examples,
the cosmological constant can be set to zero without visibly
changing the plotted results, so a jump triggered by the value of p̂
is equivalent to one triggered by the value of p. For β ¼ .001 the
cosmological constant has a small effect on the numerical output,
suggesting that for extremely small β values there could be a
substantive difference between a jump triggered by p̂ and one
triggered by p. This question remains to be studied in future
work.

4The pressure equation is often referred to in the singular as
“the TOV equation.”

5More generally, Eq. (9) holds when p̂ ¼ −ρ̂ ≠ 0. Using this,
one finds that when β ¼ Λ ¼ 0, the interior solution for r below
the jump is given exactly by pðrÞ ¼ 1, ρðrÞ ¼ −1, mðrÞ ¼
−4πr3=3, N̂ν ¼ 16πr=3, and νðrÞ ¼ νð0Þ þ logð1 − 2mðrÞ=rÞ,
with continuity of p requiring pjump ¼ 1.
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So as p̂ and ρ̂ approach zero, the solution to the TOV
equations approaches the free space Schwarzschild solu-
tion corresponding to mass m̂ðr ¼ ∞Þ. We shall see this
behavior in the Mathematica notebooks given below,
when the initial value νð0Þ ¼ nuinit is fixed to guarantee
that νð∞Þ ¼ 0.

E. Sigmoidal “theta” and “delta” functions
to smooth the equation of state jump

Although the TOV equations allow the energy density ρ
to have a finite jump discontinuity, it is convenient in
solving these equations numerically to smooth this jump,
by using a sigmoidal version of the standard Heaviside step
function θðxÞ. We do this by defining

θϵðxÞ ¼
1

1þ e−x=ϵ
;

θϵð−xÞ ¼
1

1þ ex=ϵ
¼ e−x=ϵθϵðxÞ; ð13Þ

with ϵ > 0 very small. The corresponding smoothed
extension of the standard Dirac delta function δðxÞ is

δϵðxÞ ¼
dθϵðxÞ
dx

¼ 1

ϵ
θϵðxÞθϵð−xÞ: ð14Þ

We shall use both of these smoothed functions in the
programming.

II. NOTEBOOK FOR THE MODEL

Sample Mathematica notebooks for our model, for β
parameter values β ¼ .1, β ¼ .01, and β ¼ .001, can be
downloaded at the URL given in [14]. These notebooks
were written using Mathematica version 12.2, but should
work in most earlier versions [14]. The programs begin
with a list of numerical parameters, as shown for the three β
values in Table I.
Following the initial parameter values list, there are five

function definitions. The sigmoidal function of Eq. (13)
is implemented by theta½x �∶ ¼ 1=ð1þ Exp½−x=eps�Þ,
while the equations of Eq. (5) which construct p̂ and ρ̂
are implemented by phat½x ;y �∶¼ x− ðlambda=kappaÞ �
Exp½−2 � y� and rhohat½x ; y �∶ ¼ rho½x� − ð3 � lambda=
kappaÞ � Exp½−2 � y�. Finally, the switch in the equation
of state is implemented by the functions alphas½x �∶¼
alpha0 � theta½x− pjump� þ alpha1 � theta½pjump− x� and
rho½x �∶¼ alphas½x� � x þ beta � theta½x− pjump�. In using
these functions in the differential equation solver, x will
always be p½r� and y will always be ν½r�.
After the function definitions, there follows setup of the

system of differential equations to be solved. The variables
nu[r], p[r], and emhat[r] correspond to νðrÞ, pðrÞ, and m̂ðrÞ
in the TOVequations of Eq. (7), and have respective initial
values nuinit, 1, and 0 respectively, given in the first three
lines within “system={....}”. The second three lines are the

TOV differential equations, constructed using the functions
defined in the preceding paragraph. The remainder of the
notebook consists of the command NDSolve for the system
of equations, extraction of the solution from the interpolat-
ing functions constructed by NDSolve, and computation of
certain auxiliary quantities together with graphical plotting.
The integration range is taken to start from r ¼ 10−7 rather
than r ¼ 0 to avoid zero divides; the maximum r value
needed for the integration range and plots depends on the
value of β.

III. SOME SAMPLE OUTPUT

The three notebooks TOV.1, TOV.01, and TOV.001
correspond respectively to choices β ¼ .1, β ¼ .01, and
β ¼ .001 in the inner region equation of state pþ ρ ¼ β. If
β were taken as zero, the interior pressure would not evolve
from its initial value pð0Þ ¼ 1, so for generality we have
taken a nonzero value of β.6 But the chosen values may not
be representative of realistic black hole solutions, which
may correspond to much smaller β values. These will be
hard to implement in our Mathematica notebooks because
some of the computed quantities, such as ν, will become
very large. To explore a full range of β values, it is
important to try to develop analytic approximations to
the TOV equation solutions.
The parameter values pjump in the notebooks, where the

equation of state jumps as a function of pressure p,
represent arbitrary choices, not reflecting any attempt at
a systematic survey. We expect some quantitative features
of the numerical output to depend strongly on where this

TABLE I. Numerical parameters for the Mathematica note-
books. For β ¼ .1 and .01 the program is not sensitive to the
values of lambda shown in Tables I and II, and gives the same
graphs for lambda of 0. For β ¼ .001, we could only get a good
asymptotic match for lambda of 10−44 and smaller. Thus the
desired value of .4 × 10−42 was not attainable, and we used 10−44.
In the TOV.001 notebook, to change lambda to 0 the value of
nuinit should be changed to −50.60.

Notebook name TOV.1 TOV.01 TOV.001

beta .1 .01 .001
nuinit −14.70 −21.255 −50.75
pjump .7 .95 .98
lambda .3 × 10−34 10−36 .4 × 10−42, used 10−44

rmax 10 60 80,000

rmin 10−7 10−7 10−7

alpha0 −1 −1 −1
alpha1 3 3 3
kappa 8π 8π 8π
kappa2 4π 4π 4π
eps .001 .001 .001

6A nonisotropic pressure term [20] would have a similar effect.
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jump is placed. So the results presented in Table II and in
the figures should be considered as a sampling of the
solution space.
A key feature of the numerical solution is that once nuinit

is adjusted to give a match to a Schwarzschild solution at
large r, the rest of the solution is determined by the
dynamical equations and the assumed equations of state.
In Table II we give, as computed in the three notebooks,
the approximate rescaled hole mass M, the rescaled
cosmological constant lambda for a 106 M⊙ hole (see
Appendix B), and an auxiliary quantity that sets the scale
for the black hole wind when multiplied by 3Λ=κ.

Since the qualitative features of the three notebooks are
very similar, we give in the first eight figures only plots
for the β ¼ .01 notebook. In Fig. 1, we plot the TOV
denominator denom ¼ D ¼ 1–2m̂=r, which becomes very

TABLE II. Numerical parameters derived from the output of the
Mathematica notebooks. In the TOV.001 notebook we used
lambda of 10−44 since the target of .4 × 10−42 was not attainable.

Notebook name TOV.1 TOV.01 TOV.001

Rescaled hole mass M 3.03 16.5 27600
lambda for 106 M⊙ hole .3 × 10−34 10−36 Used 10−44

Expð−2νð3MÞÞ − 1 7.86 7.91 7.82

FIG. 1. TOV denominator denom ¼ D in the TOV.01 notebook.

FIG. 2. m̂ðrÞ ¼ 1 −D � r=2 in the TOV.01 notebook. This
levels off at the effective hole mass M, at a radius of 2M.

M

FIG. 3. ð1 − expðνðrÞÞ � r=2 ¼ MðrÞ in the TOV.01 notebook.
This levels off at the effective hole massM, at a radius of 2M. The
initial value νð0Þ ¼ nuinit is adjusted to achieve this leveling off.

0.8

p

FIG. 4. p̂ðrÞ in the TOV.01 notebook. The plot of pðrÞ looks
the same.

rho

FIG. 5. ρ̂ðrÞ in the TOV.01 notebook. The plot of ρðrÞ looks
the same.
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small at the nominal hole radius 2M, but never vanishes.
The kink at r ¼ 28.5 corresponds to the equation of state
jump (see Fig. 8), where m̂ starts to increase from negative
values. The kink at r ¼ 33 ≃ 2M, which on a finer scale can
be seen to be smooth, and not a cusp, corresponds to the
merger into an exterior Schwarzschild solution where ρ̂ and
p̂ vanish. In Fig. 2, we show m̂ðrÞ ¼ 1 −DðrÞ � r=2, which
gives a determination of the effective hole massM from the
metric coefficient λðrÞ (not to be confused with lambda, the
Mathematica notebook label for the rescaled cosmological
constant Λ). In Fig. 3 we plot ð1− expðνðrÞÞ � r=2¼MðrÞ,
giving a determination of the effective hole mass M from
the metric coefficient νðrÞ. Achieving a leveling off of
the slope on the right of this plot was used to tune the
initial value nuinit, since this slope just measures
ð1 − expðνð∞ÞÞ=2, and so a vanishing slope corresponds
to the desired condition νð∞Þ ¼ 0. Increasing nuinit from
the optimal value results in the right hand flat portion of
the plot tilting downwards, and decreasing nuinit from the
optimal value results in the right hand flat portion of the
plot tilting upwards. In Fig. 4 we plot p̂ ≃ p, which shows
that it is a positive monotonically decreasing function of r,

which vanishes rapidly above 2M. In Fig. 5 we give the
corresponding plot of ρ̂ ≃ ρ, with the equation of state
jump clearly visible, as well as the rapid vanishing above
2M. In Fig. 6 we plot νðrÞ, and in Fig. 7 we plot the
quantity ð3=κÞ expð−2νðrÞÞ. Finally, in Fig. 8 we plot
ρ̂ðrÞ=p̂ðrÞ ≃ ρðrÞ=pðrÞ, again clearly showing the equation
of state jump at r ¼ 28.5. Some other graphs of interest are
given in the notebooks, and the reader who downloads the
notebooks can readily plot others.

IV. STABILITY ANALYSIS

Analyzing stability of relativistic star interior solutions
obtained from the TOVequations can be done by a method
developed by Chandrasekhar [22] and reviewed in [23,24].
Starting from the eigenequation for time-dependent normal
modes around the TOV static solution, one constructs a
Rayleigh-Ritz variational principle for the eigenvalues ω2

and eigenfunctions uðrÞ,

ω2 ¼
R
R
0 dr½Pðdu=drÞ2 −Qu2�R

R
0 drWu2

; ð15Þ

where R is the radius of the star and u is a trial
eigenfunction. The functions PðrÞ, QðrÞ, WðrÞ are con-
structed from the metric coefficients and the interior
equation of state according to

P ¼ expððλþ 3νÞ=2Þr−2γp;
Q ¼ −4 expððλþ 3νÞ=2Þr−3dp=dr

− 8π expð3ðλþ νÞ=2Þr−2pðpþ ρÞ
þ expððλþ 3νÞ=2Þr−2ðpþ ρÞ−1ðdp=drÞ2;

W ¼ expðð3λþ νÞ=2Þr−2ðpþ ρÞ; ð16Þ

with γ the “adiabatic index”

γ ¼ ðpþ ρÞp−1ð∂p=∂ρÞjconstant entropy: ð17Þ

nu

FIG. 6. Plot of νðrÞ in the TOV.01 notebook.

9

(3/kappa)e^ ( 2 nu)

FIG. 7. Plot of ð3=κÞ expð−2νðrÞÞ in the TOV.01 notebook. The
value of this at r ¼ 3M ≃ 49.5 (see table II), multiplied by Λ, sets
the magnitude of the black hole wind.

rhohat/phat

FIG. 8. Ratio ρ̂=p̂, essentially the same as ρ=p, showing where
the equation of state jump occurs.
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In applying this recipe, we rewrote Eq. (17) as

γp ¼ ðpþ ρÞ=ðdρ=dpÞ; ð18Þ

and since ðdρ=dpÞ has a zero near pjump, we rewrote
ðdρ=dpÞ−1 as a principal value

ðdρ=dpÞ−1 ¼ lim
ϵ1→0

ðdρ=dpÞ
ðdρ=dpÞ2 þ ϵ21

: ð19Þ

We took the trial function as uðrÞ ¼ r3ðr − RÞ2. The factor
r3 is needed to satisfy the boundary condition stated in
Eq. (7a) of [23]. The boundary condition of Eq. (7b) of [23]
requires the vanishing of − expðν=2Þr−2γpdu=dr at the
surface of the hole. According to Eq. (18), Eq. (6), and
Fig. 9,

γpj2M ¼ ½ðp̂þ ρ̂Þj2M þ ð4Λ=κÞ expð−2νð2MÞÞ�=3 ≠ 0;

ð20Þ

so du=dr must vanish at R ¼ 2M, requiring the factor of
ðr − RÞ2. (The nonvanishing of pþ ρ at the hole surface
will also play a key role in the wind calculation of the
next section.) Evaluating the integral in Eq. (15) with R ¼
2M ≃ 6.06 in the β ¼ .1 computation, and with choices of
ϵ1 ¼ .1; .01; .001 in the principal value construction of
Eq. (19), gives ω2 ¼ .002 > 0, compatible with stability.7

However, two caveats are in order. The first caveat is
that since the right-hand side of Eq. (20) is very small
(but nonzero), it is reasonable to ask what happens if
it is approximated by zero. Then one need not require
du=drj2M ¼ 0, allowing a trial function uðrÞ ¼ r3. For this
trial function one finds ω2 ¼ −.007 < 0, corresponding to

instability. So the issue of the outer boundary condition is
clearly subtle. The second caveat is that having a principal
value singularity in the integral for the stability test is not
anticipated in the standard applications of this test, or in the
Sturm-Liouville theory on which this test is based. Thus we
regard the issue of stability or instability of our model as
not definitive; further study of the case when the pressure is
continuous, but the energy density has a jump, is needed.

V. RELATIVISTIC CALCULATION
OF THE BLACK HOLE WIND

Rewriting Eq. (5) as

p ¼ p̂þ Λ
κ
e−2νðrÞ;

ρ ¼ ρ̂þ 3Λ
κ
e−2νðrÞ; ð21Þ

and using the fact that p̂ and ρ̂ vanish in the exterior region,
we see that the matter pressure p and energy density ρ are
nonvanishing in the exterior. This brings into play the
mechanism for an isothermal pressure driven wind pio-
neered by Parker [25]. In the Parker calculation, one
combines the equations for gas momentum conservation
and energy conservation in the presence of the gravitational
field of a star of mass M, with the gas equation of state
p ¼ a2ρ, to get an equation for the gas velocity V of the
form

1

V
dV
dr

¼
�
2a2

r
−
M
r2

�
=ðV2 − a2Þ: ð22Þ

The numerator of this equation vanishes at the critical
distance rc ¼ M=2a2, and the only solution of Eq. (22) for
which the velocity gradient is positive at all distances r is
one for which VðrcÞ ¼ a, defining the critical solution.
From the properties of the critical solution, and the radially
conserved flux per steradian

F ¼ r2ρðrÞVðrÞ; ð23Þ

one calculates the wind rate of mass loss from the star. For a
very clear pedagogical discussion of the Parker mechanism,
see [26].
The above formulas are all nonrelativistic as appropriate

to a low velocity gas acted on by Newtonian gravity. To
discuss the wind emanating from our gravastar model,
general relativistic extensions are needed. For the equation
of state, we continue to write p ¼ a2ρ, with a ¼ 1=

p
3 for

a gas of relativistic particles. The energy and momentum
conservation equations are obtained from the covariant
conservation equations for the energy-momentum tensor,
describing a relativistic gas with radial velocity VðrÞ in the
presence of the general spherical metric gμν of Eq. (1). This
energy momentum tensor takes the perfect gas form

exp[nu]

FIG. 9. Dotted line is g00 ¼ expðνðrÞÞ for β ¼ .1; dashed line is
1 − 6.06=r, showing they nearly coincide for r > 6.06.

7The sequence of R values 6.0610, 6.0608, 6.0606, 6.0605
gives the respective results .0019200, .0019202, .0019204,
.0019206, whereas the R value 6.0604 gives a warning of slow
convergence of the numerator integral.
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Tμν ¼ ½pðrÞ þ ρðrÞ�UμUν − pðrÞgμν
¼ ð1þ a2ÞρðrÞUμUν − a2ρðrÞgμν; ð24Þ

with the four-velocity UμðrÞ given by

Uμ ¼ U0ð1; VðrÞ; 0; 0Þ;
U0 ¼ 1=½expðνðrÞÞ − expðλðrÞÞVðrÞ2�1=2;
1 ¼ gμνUμUν: ð25Þ

From this point on the algebra gets complicated. We use
Mathematica to form the covariant divergence

Dν ¼ ∇μTμν; ð26Þ

giving the conservation equations D0 ¼ 0 and Dr ¼ 0.
We found it convenient to use the linear combinations
Dr − VðrÞD0 ¼ 0, D0 ¼ 0 in the next step, where we use
Mathematica to solve for ρ0ðrÞ=ρðrÞ and V 0ðrÞ=VðrÞ,
giving

ρ0ðrÞ
ρðrÞ ¼ Nρ

½VðrÞ2 expðλðrÞÞ − a2 expðνðrÞÞ� ;

V 0ðrÞ
VðrÞ ¼ NV

½VðrÞ2 expðλðrÞÞ − a2 expðνðrÞÞ� :

Nρ ¼ ð1þ a2Þ½−4 expðλðrÞÞVðrÞ2 þ expðνðrÞÞrν0ðrÞ
− expðλðrÞÞrVðrÞ2ν0ðrÞ�=ð2rÞ;

NV ¼ −½−4a2 expðνðrÞÞ þ 4a2 expðλðrÞÞVðrÞ2
− a2 expðνðrÞÞrλ0ðrÞ þ expðλðrÞÞrVðrÞ2λ0ðrÞ
þ expðνðrÞÞrν0ðrÞ − 2 expðλðrÞÞrVðrÞ2ν0ðrÞ
þ a2 expðλðrÞÞrVðrÞ2ν0ðrÞ�=ð2rÞ: ð27Þ

The denominators in the above equations are the
relativistic generalization of that in Eq. (22), and so the
critical solution is defined now by

VðrÞ2 ¼ a2 expðνðrÞ − λðrÞÞ: ð28Þ

Substituting this into NV and simplifying, we get

NV jcritical solution ¼ ð1 − a2Þ expðνðrÞÞ
× ½4a2 þ ða2 − 1Þrν0ðrÞ�=2r; ð29Þ

the vanishing of which determines the critical radius to be
the solution of

4a2 þ ða2 − 1Þrν0ðrÞ ¼ 0: ð30Þ

In the relativistic case when a2 and νðrÞ are not small, we
can proceed by observing that in the exterior region
expðνðrÞÞ is very closely approximated by 1 − 2M=r, as

shown in Fig. 9 in the β ¼ :1 computation. Thus we can
approximate

ν ≃ logð1 − 2M=rÞ;
rν0 ≃ 2M=ðr − 2MÞ; ð31Þ

which when substituted into Eq. (30) gives

rc ¼
2Mð1þ 3a2Þ

4a2
: ð32Þ

For a2 ¼ 1=3, and any hole mass M, this gives rc ¼ 3M,
which is just the photon sphere radius [27], the boundary
between black hole photon orbits that spiral out to infinity,
and ones that fall into the hole.
To recover the nonrelativistic calculation, we treat a2

and M=r as small relative to 1, and take expðνÞ ≃ 1,
rν0 ≃ 2M=r. Then Eqs. (27)–(29) reduce to

V 0ðrÞ
VðrÞ ≃

�
2a2

r
−
M
r2

�
=½VðrÞ2 − a2�; ð33Þ

which agrees with Eq. (22).
From Eq. (31), we also understand the second line in

Table II, which gives expð−2νð3MÞÞ − 1 ≃ 7.82 to 7.91
for the β ¼ .1; .01; .001 calculations. We have

expð−2νð3MÞÞ − 1 ≃ 1=ð1 − 2=3Þ2 − 1 ¼ 8: ð34Þ

The remaining step to compute the wind magnitude is to
identify the relativistic analog of the nonrelativistic con-
served flux per steradian r2ρðrÞVðrÞ. As shown in
Appendix C, when pðrÞ ¼ a2ρðrÞ, this is given by the
formula

F ¼ ð1þ a2Þ expððλðrÞ þ 3νðrÞÞ=2Þr2ρðrÞVðrÞ=
½expðνðrÞÞ − expðλðrÞÞVðrÞ2�;

dF=dr ¼ 0: ð35Þ

We evaluate this expression at r ¼ 3M, using Eq. (28) to
get V2ð3MÞ, using λð3MÞ ≃ −νð3MÞ, expðνð3MÞÞ ≃ 1=3,
and expð−2νð3MÞÞ ≃ 9. For the net density driving the
wind, we substitute in Eq. (35) the difference between the
density value at r ¼ 3M and the density value at r ¼ ∞,
that is ρð3MÞ → 3Λ

κ ½e−2νð3MÞ − 1�, giving for the mass loss
rate _M from the wind

_M ¼ 4πF ¼ 24
p
3ΛM2: ð36Þ

Since in geometrized units the mass M has dimensions
of length, the combination ΛM2 is invariant under the
scaling of Appendix B, so Eq. (36) applies directly to the
physical cosmological constant and hole mass. For a solar
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mass hole, this gives an evaporation rate _M⊙=M⊙ ∼
.76 × 10−31 year−1, much larger than the Hawking radia-
tion evaporation rate [28] of _M⊙=M⊙ ∼ .5 × 10−67 year−1.
However, the rate given in Eq. (36), which corresponds
to a nonaccreting hole, is much too small to play a role
in astrophysical processes such as galaxy formation. To
address astrophysical implications of horizonless holes,
accretion of infalling matter will have to be taken into
account.

VI. SUGGESTED EXTENSIONS
OF THE CALCULATIONS

We give several suggestions for extension of the calcu-
lations of the preceding sections.

(i) Adjustment of nuinit Adjustment of the initial value
νð0Þ ¼ nuinit to achieve νð∞Þ ¼ 0, as needed to
give a match to a Schwarzschild solution at spatial
infinity, is tedious. We have constructed the Math-
ematica notebooks with simplicity in mind, but they
could be enhanced by adding an overall iterative
loop to automatically adjust nuinit to achieve a flat
MðrÞ for large r.

(ii) Exploring the parameter space There are three
parameters, β, Λ, and pjump, and it would be of
interest to explore the behavior of the model over a
wide range of these. This will likely push the
capabilities of the Mathematica integrator. It may
require development of semi-analytic approximation
methods to do this, including a semianalytic model
for the dip in the denominator D near r ¼ 2M. A
related question is the failure of NDSolve to give
results when Λ ∝ lambda is too large, as we noted in
the β ¼ .001 notebook. This is present at larger
lambda values in the other notebooks as well, and we
have not determined the source of this breakdown.

(iii) Axially symmetric, rotating extension Just as Kerr
black holes are the natural extension of spherically
symmetric Schwarzschild black holes, there should
be an axially symmetric rotating extension of the
dynamical gravastars calculated in this paper. This
will require solving two dimensional, as opposed to
one dimensional differential equations, which can be
considerably more difficult. For a discussion of
technical difficulties encountered in an attempt to
extend the results of the free space analysis of [3] to
the axial case, see the final sections and Appendices
of [4].

(iv) Accreting holes A first step toward analysis of
accreting black holes will be to do a systematic
study of orbits of incoming particles, using the
metric calculated in the Mathematica notebooks.
For large impact parameters compared with the hole
radius, the orbits will be similar to conventional
black hole orbits, but for impact parameters of order
a few times the hole radius and smaller, there will be

systematic changes. In Fig. 10 we have plotted
dr=dt for a radially infalling particle from the
TOV.001 notebook. This plot only takes account
of gravitational forces, using the equation [29]

�
dr
dt

�
2

¼ expðνðrÞ − λðrÞÞ½1 − expðνðrÞÞ�: ð37Þ

This plot gives an upper bound on dr=dt when the
angular momentum per unit mass is nonzero. Evi-
dently there is a small region near the center of the
hole where the particle velocity is so small that a
particle may be effectively trapped, but there is a
larger outer region where a particle may escape back
to infinity on a physically relevant timescale. This
could give a plausible mechanism for black holes
to nucleate galaxy formation [6] by re-emitting or
“leaking” most accreting particles as a sizable black
hole wind, while retaining a small fraction of
accreting particles which contribute to simultaneous
black hole growth.

(v) Dependence of results on equation of state One
could reconfigure the Mathematica notebooks to
study other types of equation of state in place of the
ones used in the notebooks. For example, one could
look at the widely used polytropic equation of state
p ¼ KρΓ in the exterior region, and alternatives to
the Gliner equation of state in the interior region.

(vi) Stability We gave preliminary results concerning
stability of our solutions, but not an analysis that we
consider conclusive. Thiswill require extension of the
current methods for stability analysis to the casewhen
the energy density is not required to be positive.

(vii) Models with pressure jump Since we have smoothed
the discontinuities with a sigmoidal function, one
could use this method in the TOV equations context
to study models in which the energy density remains
positive and the pressure jumps, as in the original

dr/dt

FIG. 10. dr=dt for a radially infalling particle starting with zero
velocity at spatial infinity, for β ¼ .001. This is an upper bound
on dr=dt when the angular momentum per unit mass is nonzero.
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gravastar papers. Can dynamical models, with no
preset radii for transitions, be obtained this way? We
did not invest much time pursuing this, because the
models with an energy density jump work so well,
and are natural to the structure of the TOVequations,
but it is worth investigating.

VII. POSSIBLE OBSERVATIONAL EFFECTS

If what were thought to be mathematical black holes are
really some type of exotic compact object, there will be
consequences for observational astrophysics. The papers
reviewed in [7] focus on possible signatures in black hole
collisions generating gravitational waves. In this context,
the “ringdowns” following the merger of two holes will
have a different structure if there is a true horizon in the
larger hole resulting from the merger, or if instead the larger
exotic compact object resulting from the merger is bounded
by a surface that is not a horizon. We refer the reader to
the papers reviewed in [7] for further details, which are
complex.
Another way in which a horizonless hole could have

observational consequences is if it is “leaky,” that is if
interior particles can leak out through its surface [4]. The
calculations given above show that a Weyl scaling invariant
dark energy action leads not only to the absence of a
horizon in Schwarzschild-like holes [3] arising from
solving the vacuum Einstein equations, but leads also to a
small black hole wind in horizonless holes resulting when
matter is present with a pressure-dependent jump in the
interior equation of state. However, this wind is too small to
have astrophysical consequences,which is a good thing since
observed holes do not evaporate on observational timescales.
In order for a black hole wind to be large enough to

account for astrophysical processes such as new star
formation near a black hole [5] or galaxy formation [6],
it will have to arise from the case in which the black hole is
accreting infalling matter. Then, since the interior metric
g00 never precisely approaches zero, particles entering the
hole can get out with a time delay depending on the impact
parameter, as noted above. This could give rise to an exiting
wind large enough to have astrophysical consequences. It
could also, because of the possibility of large time delays,
offer an explanation of the recently observed two year time
delay [30] between a black hole tidal disruption event in
which a star is devoured and the subsequent ejection of
some of the absorbed matter. These possible astrophysical
consequences of absence of a horizon, at present specu-
lative, merit further detailed investigation.
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APPENDIX A: THE CONTINUITY ARGUMENT

Consider the first order differential equation

dFðrÞ
dr

¼ GðrÞ; ðA1Þ

on the domain rA ≤ r ≤ rB. Then if jGðrÞj is bounded by B
on this domain, the solution FðrÞ must be continuous. To
prove this, pick an arbitrary point r0 in the domain,
integrate Eq. (A1) from r0 − ξ to r0 þ ξ with ξ > 0, and
take the absolute value, giving

jFðr0 þ ξÞ − Fðr0 − ξÞj ¼
Z

r0þξ

r0−ξ
drjGðrÞj ≤ 2ξB: ðA2Þ

Letting ξ → 0, the right hand side of Eq. (A2) vanishes,
showing that FðrÞ is continuous at r0.

APPENDIX B: RESCALING TO
DIMENSIONLESS VARIABLES

In the numerical work it is convenient to rescale to
dimensionless variables, with the rescaled central matter
pressure set to unity. This is accomplished by defining
rescaled variables r̄ ¼ rpð0Þ1=2, M̄ ¼ Mpð0Þ1=2, ¯̂m ¼
m̂pð0Þ1=2, p̄ðrÞ ¼ pðrÞ=pð0Þ, ρ̄ðrÞ ¼ ρðrÞ=pð0Þ, Λ̄ ¼
Λ=pð0Þ, ν̄ ¼ ν, etc., which can be verified to be an
invariance of the TOV equations. In the text and program,
we exclusively use rescaled variables, with the overbar
notation omitted.
To determine the rescaled value Λ̄ corresponding to a

given black hole mass M, we use the scaling relation Λ̄ ¼
M2Λ=ðM̄Þ2. Using the observed valueΛ¼ 1.3× 10−52 m−2,
for black hole masses ofM⊙; 106 M⊙; 108 M⊙ one finds for
the productM2Λ the values 0.3 × 10−47; 0.3 × 10−35; 0.3 ×
10−31 respectively. Using this, and dividing by the squared
rescaled mass values in Table II, one gets the corresponding
rescaled cosmological constant values, denoted lambda in
the programs, as given in Table II for the example of a mass
106 M⊙ hole.

APPENDIX C: RELATIVISTIC CONSERVED
FLUX CALCULATION

The simplest way to find the conserved flux is to note
that when Tν

μ is a covariantly conserved stress energy
tensor, ∇νTν

μ ¼ 0, then the mixed Einstein-Dirac pseudo-
tensor tνμ [31], when added to Tν

μ, gives a conserved
quantity ∂νððð4ÞgÞ1=2ðTν

μ þ tνμÞÞ ¼ 0. In a static context,
when all quantities are time-independent, the formula given
in [31] shows that tr0 vanishes, implying that

ðd=drÞððð4ÞgÞ1=2Tr
0Þ ¼ 0: ðC1Þ

One way to verify this directly is to use the affine
connection formula for the static case
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∇νTν
0 ¼ ðð4ÞgÞ−1=2∂jððð4ÞgÞ1=2Tj

0Þ − Γκ
0νg

νλTλκ; ðC2Þ

and to observe that Aκλ ¼ Γκ
0νg

νλ is an antisymmetric tensor.
Hence ∇νTν

0 ¼ 0 implies ∂jððð4ÞgÞ1=2Tj
0Þ ¼ 0. A second

way to verify this directly, for the specific construction used

in the wind calculation, is to use Mathematica to show
algebraically that the covariant conservation equation
Dr ¼ 0 [see Eq. (26)] is identical to Eq. (C1). Applying
Eq. (C1) to Eq. (24), and fixing overall constant factors by
requiring the correct nonrelativistic limit, gives Eq. (35).
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