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Gravitational wave (GW) memory is studied in the context of a certain class of braneworld wormholes.
Unlike otherwormholegeometries, this novel class ofwormholes do not require any exoticmatter fields for its
traversability. First, we study geodesics in this wormhole spacetime, in the presence of a GW pulse. The
resulting evolution of the geodesic separation shows the presence of displacement and velocity memory
effects.Motivated by the same, we study thememory effects at null infinity using the Bondi-Sachs formalism,
adapted for a braneworld wormhole. Our analysis provides a nontrivial change of the Bondi mass after the
passage of a burst of gravitational radiation and hence manifests the memory effect at null infinity. In both of
these exercises, the presence of extra dimension and the wormhole nature of the spacetime geometry gets
imprinted in thememory effect. Since futureGWdetectorswill be able to probe thememory effect, the present
work provides another avenue to search for compact objects other than black holes.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) from
binary blackhole andbinaryneutron starmerger events [1,2],
as well as the observations of the shadow of supermassive
compact central objects, e.g., theM87* and the SgrA* [3–9],
are the two major observational breakthroughs in the field of
gravitational physics within the last decade. Both of these
observations depend crucially on the strong field behavior of
gravity and, in principle, can be used to test the robustness of
general relativity (GR) and also provide crucial pointers to
the nature of the compact objects [10–18]. Despite the fact
that—so far GR has passed these strong field tests without
any scar—from a purely theoretical perspective, the inability
of GR to correctly reconcile singularities occurring at the end
point of gravitational collapse, or, as the starting point of our
modern hot big bang cosmology, posits a serious challenge to
the theory itself. This important shortcoming of GR must
make room for investigating alternative possibilities, vis-á-
vis modified near-horizon geometries. Among the alterna-
tives, one can either look for higher curvature/higher dimen-
sional theories of gravity, possibly emerging from some
quantum gravity scenarios, or, modifications of the black

hole paradigm itself. Such nonblack-hole compact objects can
arise from quantum gravity-motivated theories, e.g., fuzzballs
[19] or compact objects made out of exotic matter fields,
known as ECOs [20–24]. Both of these classes of nonblack-
hole objects, behave as a black hole for Solar System tests of
gravity, but appears to have distinct phenomenology, in
contrast to that of the black hole, when they are probed using
the strong field tests of gravity, in particular, GWs [25–36].
However, the present generation of GW detectors are not

sensitive enough to detect the modifications in the GW
waveform originating from such nonblack-hole objects. In
absence of such definitive tests that can either confirm or
nullify the existence of these nonblack-hole objects, it is
necessary to study the strong-gravity signatures of these
exotic objects in order to gain a better understanding of
their physical characteristics. Here we attempt to study
some properties associated with GWs in the background of
one of the oldest as well as interesting class of ECOs, viz.
wormholes. These are spacetimes joining two distinct
universes by a throat [37–46]. If one can travel from one
universe to the other, it will be referred to as a traversable
wormhole and this, in general, requires exotic matter fields.
However, there exist one class of wormholes, which do not
require exotic matter for its existence, known as the
braneworld wormholes [47], corresponding to Randall-
Sundrum two braneworld scenario [48]. This has two
advantages—(i) the presence of higher dimension is
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imprinted on this wormhole solution and hence can
possibly be tested using GWs or black hole shadow
measurements, (ii) the wormhole does not require any
exotic matter on the four-dimensional brane, the contribu-
tions from higher dimensions take care of the exotic nature
to support traversability of the wormhole. Therefore, it is
worthwhile to study various properties of this wormhole
and hence look for its observational signatures. This is
because, it will not only validate the existence of worm-
holes, but also of compact extra dimensions, thus providing
a unified testing ground for nonblack-hole nature of
compact objects, vis-á-vis of theories beyond GR.
Several aspects of this braneworld wormhole, e.g., its
stability under perturbations due to various fields, in
particular the ringdown structure [49], as well as implica-
tions for black hole shadow measurements [50], have
already been explored. Intriguingly, all of these explora-
tions have provided quite promising results and in particu-
lar, demonstrates the existence of echoes in the GW signal.
In this work, we wish to explore another direction, which
has remained largely unexplored, but holds immense
potential for the future generations of GW detectors,
namely the gravitational memory effect.
With the improvement in the detection prospects for the

future ground based GW detectors and also the launch of
the space-based detector LISA in the near future, may
provide us an opportunity to observe GW memory effect
[51]. The memory effect brings in both the strong field, as
well as nonlinear aspects of general relativity, which is yet
to be observed. It refers to the lasting change in the relative
distance between test particles when a GW passes through
the ambient spacetime [52,53]. Being a subtle dc shift to the
overall GW amplitude, it has remained undetected in the
past observations taken by LIGO [54]. There have been
proposals of stacking the known GW signals observed by
LIGO-Virgo in order to detect this effect [55]. Initially
studied in the context of hyperbolic scattering [56] and
gravitational bremsstrahlung [57], the memory effect was
also shown [58]. Recent works on memory effects involve,
generalization to electrodynamics [59,60] and Yang-Mills
theories [61,62], investigating features of extra dimensions
[63–65], distinguishing modified theories of gravity from
GR, e.g., scalar-tensor theories [66–69] and Chern-Simons
gravity [70]. Moreover, there have also been works general-
izing memory effects to the symmetries associated with
near horizon geometries for black holes [71–73]. In this

work, we wish to study the gravitational memory effect for
braneworld wormholes, a class of ECOs, for the first time.
Our aim, in the present context, is to infer the imprints of
the nonblack-hole nature of this static wormhole spacetime
and the presence of extra dimensions on the memory effect.
We attempt this exercise of finding the memory effects in
two distinct ways—(i) we perform a geodesic analysis (as
worked out in [52,74]) and comment on the presence of
displacement and velocity memory effect in the back-
ground wormhole spacetime by introducing an additional
GW perturbation, (ii) we study memory effects at null
infinity using the Bondi-Sachs formalism [75].
The organization of the paper is as follows: in Sec. II we

briefly review the wormhole geometry in the context of
braneworld scenario. Section III deals with the study of
geodesics and subsequent analysis of displacement and
velocity memory effects and finally, in Sec. IV, we will
study the influence of a perturbing GW on the wormhole
metric in the Bondi-Sachs gauge and the associated null
memory effects.We concludewith a discussion on the results
obtained and provide an outline of the future directions to
pursue.

II. BRIEF REVIEW OF WORMHOLE GEOMETRY
IN THE BRANEWORLD SCENARIO

Let us now discuss briefly the braneworld model under
investigation. In the model, we have a five-dimensional
spacetime (referred to as the bulk), within which two four-
dimensional branes are embedded. The extra dimension is
spacelike in nature and is described by the coordinate y. One
of the brane is located at y ¼ 0, and dubbed as the Planck
brane, while the other one is located at y ¼ l, referred to as
thevisible brane. Theproper distance between the twobranes
is given by the integral of the gyy component over the extent
of the extra dimension, yielding dðxÞ ¼ eϕðxÞl, where the
field ϕðxÞ is referred to as the radion field. Since we are
interested in the measurements done by a four-dimensional
observer, it will suffice to consider the low energy effective
gravitational field equations. This can be achieved by
projecting the five-dimensional Einstein’s equations on the
four-dimensional brane, and then expanding the same in the
ratio of the (bulk/brane) curvature length scale. Thus we
finally obtain the following gravitational field equations on
the visible brane [47,76]:

Gμν ¼
κ25
lΦ

TV
μνþ

κ25ð1þΦÞ
lΦ

TP
μνþ

1

Φ
ð∇μ∇νΦ− gμν∇α∇αΦÞ− 3

2Φð1þΦÞ
�
∇μΦ∇νΦ−

1

2
gμν∇α∇αΦ

�
: ð1Þ

Here gμν is the visible brane metric, ∇μ is the covariant
derivative with respect to gμν and κ25 is the five-dimensional
gravitational coupling constant. Moreover, TP

μν and TV
μν are

the energy momentum tensors on the Planck brane and the

visible brane, respectively. The scalar field Φ, appearing in
Eq. (1), is defined as Φ≡ exp½2eϕðxÞ� − 1, where ϕðxÞ is
the radion field. The energy density of the on-brane matter
field must be small compared to the brane tension in order
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for the low-energy effective theory to hold. Wormholes,
being nonsingular solutions, have finite energy density and
pressure for the on-brane matter fields everywhere, thereby
ensuring the validity of this theory in the contexts of
wormhole geometry [47].
In addition, it must be noted that the wormholes require

exotic matter fields for their traversability, at least in the
context of GR. This is because the violation in the con-
vergence condition for timelike geodesics, leads to a viola-
tion of the energy conditions for the stress-energy tensor
sourcing the wormhole geometry [37]. However, in the case
of braneworld scenario, the total energy-momentum tensor
has contributions from thematter present on the two 3-branes
(visible and planck) and a geometric stress due to the radion
field generated from the bulk spacetime. Hence, one can
sustain this wormhole geometry with the on-brane matter
satisfying the energy conditions and the violations of the
energy conditions for the total energy-momentum tensor can
be attributed to the bulk spacetime (similar situations may
arise in the context of scalar coupled Gauss-Bonnet gravity,
see, e.g., [77]). Thus the resulting wormhole solution will be
constructed out of normal matter fields on the brane, with
exotic matter field on the bulk. Since we cannot access the
energy scale of the bulk spacetime, the existence of such
exoticmatter in the bulk is not ofmuch concern to our present
analysis. Moreover, such braneworld wormholes have also
been shown to be stable under scalar, electromagnetic, and
axial gravitational perturbations in [49].
In order to avoid nonlocality in the theory, i.e., we do not

want the dynamics of the visible brane to be governed by
the energy momentum tensor of the Planck brane, we will
work with TP

μν ¼ 0, i.e., there is no matter on the Planck
brane. With this choice, the field equation for Φ takes the
following form:

∇α∇αΦ ¼ p̃2

l
TV

2ωþ 3
−

1

2ωþ 3

dω
dΦ

ð∇αΦÞð∇αΦÞ; ð2Þ

where TV is the trace of the energy momentum tensor on the
visible brane and the coupling function ωðΦÞ is defined as

ωðΦÞ ¼ −
3Φ

2ð1þΦÞ : ð3Þ

Thus, the low energy effective braneworld scenario can be
written as a generalized Brans-Dicke [78] theory, with a
variable Brans-Dicke parameter ωðΦÞ. Given these, we
rewrite the gravitational field equations as

Gμν ¼
κ25
lΦ

TV
μν þ

1

Φ
TΦ
μν: ð4Þ

Here, TΦ
μν is to be identified with the sum of the third and the

fourth terms of the right-hand side of Eq. (1), without the
ð1=ΦÞ part.

The above set of equations for the metric functions, as
well as for the scalar field Φ, can be solved assuming a
static and spherically symmetric metric ansatz along with
an anisotropic fluid source on the visible brane with
vanishing trace. This simplifies the problem of solving
the field equations a lot and one arrives at a two-parameter
family of solutions with R ¼ 0, written in the
Schwarzschild-like coordinates as [47,79]

ds2 ¼ −
�
κ þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �2

dt2 þ
�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin θ2dϕ2Þ: ð5Þ

Here, in the limit, κ ¼ 0 and λ ¼ 1, we get back the
Schwarzschild geometry. Note that in Eq. (5), the tt
component of the metric is not given in the standard
asymptotic form, since it does not reduce to unity in the
limit of r → ∞, rather to ðκ þ λÞ2. Therefore, we rescale
the time coordinate by t → t=ðκ þ λÞ and define the ratio
κ
λ ¼ p, since this is the only parameter that characterizes the
wormhole geometry. Finally, using the coordinate trans-
formation u ¼ t − r�, where r� is the tortoise coordinate,
defined as ðdr�=drÞ ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gttgrr
p Þ, the metric in Eq. (5)

becomes

ds2 ¼ −fðrÞdu2 − 2gðrÞdudrþ r2dθ2 þ r2sin2θdϕ2: ð6Þ

Here we have denoted the uu and ur components of the
metric as fðrÞ and gðrÞ, with the following expressions for
them:

fðrÞ≡
�

p
pþ 1

þ 1

1þ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
2

; ð7Þ

gðrÞ≡
�

p
pþ 1

þ 1

1þ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r ��
1 −

2M
r

�
−1=2

: ð8Þ

The scalar field, on the other hand, is best written in the
isotropic coordinate r0, such that

Φðr0Þ ¼
�
C1

M
log

2r0qþM
2r0 þM

þ C4

�
2

− 1; ð9Þ

with the isotropic coordinate r0 being related to the
Schwarzschild coordinate r through the following relation:
r ¼ r0ð1þ M

2r0Þ2. Note that the two coordinates r and r0

become identical in the asymptotic limit. Moreover, C1 and
C4, appearing in Eq. (9), are positive nonzero constants and
q ¼ fðpþ 1Þ=ðp − 1Þg, where p is the wormhole param-
eter, defined earlier.
Unlike the Schwarzschild spacetime, here the radial

coordinate r can be extended only up to r ¼ 2M and it
is also evident from Eq. (5) that as long as κ is nonzero and
positive, gtt ≠ 0 for all r ≥ 2M. This suggests that there is
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no event horizon in this spacetime. Though, the surface
r ¼ 2M is not an event horizon, it is indeed null, as grr

vanishes there and hence in the above solution as well
r ¼ 2M is a special surface, and is referred to as the
throat of the wormhole. Physically, the above solution
depicts two separate universes connected together at the
throat, located at r ¼ 2M, which is traversable. The
expression for the anisotropic fluid matter at the throat,
necessary for traversability can be obtained from [47].
We do not provide it here, since this is not required for
the computation of gravitational memory, which is the
prime goal in the present context. The above provides a
broad introduction to the wormhole geometry we will be
working with and we shall apply these results in order to
compute the memory effect, to be discussed below.

III. MEMORY OF GEODESICS

In this section, wewill present the analysis of the memory
effect vis-á-vis the geodesic deviation between neighboring
geodesics due to a propagating GW, with the geodesic
separation quantifying the amount of displacement memory
effect. Moreover, if the geodesics do not have constant
separation, after the passage of the GW pulse, one can also
associate a velocity memory effect with these geodesics
as well.
Such effects have been studied in the recent past [74,80–

83] by investigating the evolution of geodesics in exact plane
GW spacetimes. By choosing a Gaussian pulse for the
polarization (radiative) term in the line element of the plane
GWspacetime, thegeodesic equations can be solved numeri-
cally, and then the change in the separation and velocity (the
displacement and the velocity memory, respectively) can be
computed due to the passage of the GW pulse. Lately, the
above formalism has also been generalized in the context of
alternative theories of gravity [84,85] to look for signatures of
such alternative theories in the displacement and velocity
memory effects. In the present work, we will study the
evolution of the geodesics in the wormhole background
presented above, in the presence of a GW pulse and study
how the displacement and velocity memory effects depend
on thewormhole nature of the background geometry. For this
purpose, wewrite down the spacetime metric as a sum of the
background wormhole geometry gμν and a GW perturbation
hμν, such that the line element becomes

ds2 ¼ ðgμν þ hμνÞdxμdxν: ð10Þ

As we have already mentioned, gμν is the wormhole metric
given in Eq. (6) and hμν is the GW perturbation. Using the
wormhole geometry presented in Eq. (6) explicitly, the
resulting geometry becomes

ds2 ¼ −fðrÞdu2 − 2gðrÞdudrþ ½r2 þ rHðuÞ�dθ2
þ ½r2 − rHðuÞ�sin2θdϕ2; ð11Þ

where, fðrÞ and gðrÞ are given by Eqs. (7) and (8),
respectively. The function HðuÞ corresponds to the GW
pulse and we have assumed that hμν can be expressed in the
transverse-traceless gauge. In order to generate this pertur-
bation in the wormhole metric, we need to include in the
matter sector an energymomentum tensor, which can source
the GW pulse HðuÞ in the transverse-traceless gauge. Such
an energy momentum tensor can arise from an expanding
anisotropic fluid shell. Prior to the perturbation, the fluidwas
nondynamical and the u-constant hypersurfaceswere spheri-
cally symmetric. Due to this expansion, the GW pulse is
generated and it propagates over the wormhole spacetime to
future null infinity. In what follows, we will derive the
displacement and the velocity memory effects as the propa-
gating GW crosses a congruence of timelike geodesics in the
wormhole background, leading to a change in the separation
between these comoving geodesics.
The GW pulse profile described by HðuÞ is taken to be,

HðuÞ ¼ Asech2ðu − u0Þ, where A denotes the amplitude of
the GW pulse and it is centered around u ¼ u0. Since the
above wormhole spacetime along with the GW pulse
respects the spherical symmetry, we can choose the
equatorial plane, located at θ ¼ ðπ=2Þ, to be the plane
on which all the geodesics are located. Therefore, on the
equatorial plane, the geodesic equations for the u coor-
dinate becomes

ü −
f0

2g
_u2 −

H − 2r
2g

_ϕ2 ¼ 0: ð12Þ

Along identical lines one can arrive at the geodesic
equations for the other coordinates on the equatorial plane,
in particular, the respective geodesic equations for the r and
the ϕ coordinates are given as

̈rþ f
2g2

f0 _u2 þ f0

g
_r _uþ g0

g
_r2 þ fH − 2fr − rgH0

2g2
_ϕ2 ¼ 0;

ð13Þ

ϕ̈ −
H0

r −H
_ϕ _uþ 2r −H

rðr −HÞ
_ϕ _r ¼ 0: ð14Þ

As mentioned before, all the above equations are written on
the θ ¼ π

2
plane and here “overdot” denotes derivative with

respect to the proper time τ associated with the geodesics,
while “prime” denotes derivative with respect to the argu-
ment of the respective function. For example, H0 ≡
ðdH=duÞ and f0 ¼ ðdf=drÞ.
We have solved the three geodesic equations, presented

in Eqs. (12)–(14) numerically in the symbolic manipulation
software Mathematica and have analyzed the solutions
extensively. In particular, we have started by considering
two neighboring geodesics in the wormhole background
and then have studied the evolution of their coordinate
separation in terms of the proper time τ, which is also an
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affine parameter, see Fig. 1. Further, we have depicted in
Fig. 2, how the evolution of these coordinate separations
have been affected because of the presence of the GW pulse
and also by the presence of extra dimension through
nonzero values of p. In particular, as Fig. 2 demonstrates,
even after the GW pulse has passed, there is a residual
effect which manifests as the GW memory, more specifi-
cally, as the displacement memory effect. It turns out that
these geodesics also inhibit velocity memory effects, which
can be seen from Fig. 3.
Let us discuss the above scenario in detail and consider

the various boundary conditions imposed on them. First of
all, in this work we have considered two neighboring
timelike geodesics, which in the background wormhole

geometry would satisfy the following condition on the
equatorial plane:

−fðrÞ _u2 − 2gðrÞ _u _rþr2 _ϕ2 − rHðuÞ _ϕ2 ¼ −1: ð15Þ

We choose the initial conditions as follows: both the
geodesics are chosen to have an initial separation in the
radial coordinate r, as well as in the null coordinate u,
however they both start at the same azimuthal coordinate ϕ.
These geodesics have fixed initial values of _r and _u, while
the value of _ϕ will depend on the background geometry
through Eq. (15). Then we define the following quantities
Δu and Δr as follows:

FIG. 1. Variation of the difference of both the coordinates between the timelike geodesics, namelyΔu andΔr has been plotted with the
proper time for different choices of the wormhole parameters. (a) Variation of the difference between null coordinate of the two timelike
geodesics, denoted by Δu with respect to the proper time τ, for different values of the higher dimensional parameter p has been
presented and (b) variation of the difference between the radial coordinates of the timelike geodesics, namely Δr has been presented
against the proper time τ for different values of the wormhole parameter p.

FIG. 2. The variation of Δu and Δr with the proper time of the geodesics have been presented in the presence and in the absence of
GW pulse. The plots explicitly demonstrates that both Δu and Δr encodes information about the passage of the GW pulse in the past,
thus depicts the displacement memory effect. (a) Variation of the difference between null coordinate of the two timelike geodesics,
denoted by Δu, has been presented against the proper time τ, in the presence of and in the absence of the GW pulse and (b) variation of
the difference between the radial coordinates of the timelike geodesics, namely Δr, has been depicted with the proper time τ in the
presence as well as in the absence of the GW pulse.
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Δu ¼ uðGeodesic IIÞ − uðGeodesic IÞ;
Δr ¼ rðGeodesic IIÞ − rðGeodesic IÞ;

where uðGeodesic IÞ and rðGeodesic IÞ corresponds to
the coordinates associated with the geodesic I and
uðGeodesic IIÞ and rðGeodesic IIÞ are the coordinates
associated with the geodesic II. All of these are obtained
by solving the geodesic equations, using appropriate initial
conditions, as discussed before. We choose our pulse
profile such as A ¼ 1 and u0 ¼ 5. The results arising
out of the time evolution of Δu and Δr for different values
of wormhole parameter p have been depicted in Fig. 1. We
consider three cases corresponding to the following values
of p: (i) p ¼ 2.0, (ii) p ¼ 1.5, and (iii) p ¼ 1.05. The value
of the mass is set to M ¼ 3 for obtaining the plots. It is
clearly seen from these plots that Δu is increasing with the
decreasing values of p [Fig. 1(a)], however, Δr is decreas-
ing with the decreasing values of p [Fig. 1(b)], i.e., Δu and
Δr have opposite behaviors with change of p. As evident
from these figures, the change Δu is more pronounced as
compared to Δr. For clarity, in Fig. 1, the GW pulse is
represented by the filled region. The pulse we have shown
in the plot is not the exact profile of the GW, rather we have
used a scaled-up version of the original profile. The affine
parameter interval for which the GW pulse remained
significant remains unaltered. We will now discuss the
emergence of displacement and velocity memory effect in
the wormhole geometry.
Existence of displacement memory effect is evident from

Fig. 2, where we have shown that the differences Δu and
Δr between two neighboring timelike geodesics depends
on whether a GW pulse has passed through them or not. In
other words, the values of Δu and Δr after the GW has
passed through does not return to that of the wormhole
background and hence provides the displacement memory

effect. This memory effect not only depends on the strength
of the GW pulse, but more so on the background spacetime
geometry. Different choices for the parameter p will lead to
different deviations and hence to different memories. In
particular, the memory effect can be a potential candidate to
test the existence of additional hairs in the background
spacetime outside a compact object. In the present scenario,
it corresponds to the fact that nonzero p does affect the
displacement memory in neighboring geodesics.
Finally, in addition to the displacement memory effect,

the GW pulse in the wormhole geometry also describes a
velocity memory effect, as clear from Fig. 3. Both Δ _u and
Δ_r are nonzero and differ from their background values in
the presence of the GW pulse. This memory effect also
depends on the choice of the wormhole hair p and possibly
a combined study of displacement and velocity memory
effect will lead to an existential proof of nonzero values of
p. Therefore, we can conclude that both displacement and
velocity memory effects exist in the case of braneworld
wormhole and depends crucially on the choice of p. This
provides another avenue to search for these nonblack-hole
compact objects, which can also hint at the existence of an
extra spatial dimension.

IV. BONDI-SACHS FORMALISM AND MEMORY
EFFECT FROM NULL INFINITY

Having discussed the displacement and the velocity
memory effects from the geodesic analysis in the previous
section, we now focus our attention in investigating the
memory effect at null infinity [58]. Since the effective
gravitational field equations on the brane, as presented in
Eq. (1), is equivalent to the generalized Brans-Dicke theory,
with the Brans-Dicke parameter ω being also a function of
the radion field, we try to reformulate the Bondi-Sachs
analysis of the memory effect as prescribed in [67,68]

FIG. 3. We have explicitly depicted that the expressions for Δ _u and Δ_r deviate significantly in the presence of a GW pulse. This
immediately suggests the existence of a velocity memory effect. (a) Variation of the difference between the velocity along null direction
u of the two timelike geodesics, have been presented against the proper time τ, in the presence as well as in the absence of the GW pulse
and (b) variation of the difference between the velocity along the radial direction r of the timelike geodesics has been presented with the
proper time τ with and without the GW pulse.
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appropriately. As in the previous section, here also we
assume that the spacetime of interest corresponds to a
background wormhole spacetime with a GW pulse passing
through it, ultimately reaching the future null infinity and as
a consequence modifying the Bondi mass aspect. In
particular, we will derive the functional form of the
Bondi mass aspect in terms of the wormhole parameters,
which in turn are related to the physics of the higher
spacetime dimensions through the background wormhole
solution. Note that without the GW pulse, there shall be no
dynamics associated with the Bondi mass of the back-
ground wormhole metric, since it depicts a static
background.
For this purpose, we have to express the background

wormhole geometry in the null coordinates, as presented in
Eq. (6), in the Bondi-Sachs form by an expansion of the
same in the inverse powers of the radial coordinate r. Such
an expansion yields

ds2 ¼ −du2 − 2dudrþ r2γABdxAdxB

þ 2M
rðpþ 1Þ du

2 −
2Mp

rðpþ 1Þ dudrþOðr−2Þ; ð16Þ

where γAB is the metric on the unit-two sphere. The terms
in the first line of Eq. (16) is the flat metric at future null
infinity and the terms in the second line are the desired
(1=r) corrections. As evident, the Bondi mass aspect is
simply given by fM=ðpþ 1Þg and is a constant for the
background spacetime. This provides the behavior of the
background static wormhole geometry at future null infin-
ity, while the similar result for matter fields will now follow.
The matter fields consist of two parts, the matter on the

four-dimensional brane and the radion field. The depend-
ence of the on-brane matter field on the radial coordinate r
can be found in [47] and it follows that at future null infinity
Iþ, the matter components fall off faster than 1=r2 and
hence need not be considered for the calculation. On the
other hand, the fall off behavior of the radion field1 at
future null infinity can be parametrized as Φb ¼ Φ0ðbÞ þ
Φ1ðbÞ=rþΦ2ðbÞ=r2 þ � � �, where “b” denotes that these are
contribution from the background wormhole geometry. The
term Φ0ðbÞ, which is the leading order term in the asymp-
totic expansion of the radial field, reads

Φ0ðbÞ ¼
�
C1

M
log

pþ 1

p − 1
þ C4

�
2

− 1: ð17Þ

In an identical manner, we obtain the coefficients of (1=r)
and ð1=r2Þ terms, in the asymptotic expansion of the radion
field Φ as

Φ1ðbÞ ¼ −
2C1

pþ 1

�
C1

M
log

pþ 1

p − 1
þ C4

�
; ð18Þ

Φ2ðbÞ ¼
C2
1

ðpþ 1Þ2 þ
2MpC1

ðpþ 1Þ2
�
C1

M
log

pþ 1

p − 1
þ C4

�
; ð19Þ

where C1 and C4 are nonzero constants used to quantify the
radion field [47]. Note that these expansion coefficients can
be expressed in terms of the parameters of the wormhole
spacetime and in particular it depends on p. This fact will
be used in the later parts of this work.
The above analysis is about the background spacetime,

which is definitely nonradiative. This is because the metric
given in Eq. (16) has a constant and nondynamical Bondi
mass. This is because there is no loss of news in absence of
any dynamics, as fit for a nonradiative geometry. Thus, the
memory effect requires a propagating GW pulse on top of
this background geometry, leading to a finite radiative term.
Hence, we introduce a GW component to the above
wormhole metric and the final result is the following
axisymmetric line element (see [86]),

ds2 ¼ −du2 − 2dudrþ
�

2M
rðpþ 1Þ þ

2MBðu; θÞ
r

�
du2

−
�

2Mp
rðpþ 1Þ þ

bðu; θÞ
r

�
dudr − 2r2Uðu; r; θÞdudθ

þ r2hABdxAdxB þ � � � : ð20Þ
Note that in the line element presented above, there is a
dynamical Bondi mass term MBðu; θÞ. This is due to the
presence of the gravitational radiation in the background of
the wormhole spacetime.
Here, hAB ¼ γAB þ cABr−1 þOðr−2Þ and the terms

bðu; θÞ;MBðu; θÞ; Uðu; r; θÞ, and cAB arise due to the
presence of the GW pulse and can be considered as
perturbations over and above the braneworld wormhole
metric. Moreover, for the above perturbed metric to be
consistent with the gravitational field equations, the radion
field should be perturbed as well and the resultant field
becomes Φ ¼ Φb þΦp, where Φb denotes the background
radion scalar field andΦp denotes the perturbed scalar field
due to the scalar part of the GW pulse. We assume that the
leading order term in Φp is Oð1=rÞ, such that the Bondi
determinant condition can be expressed as

detðhABÞ ¼ ðΦ0ðbÞ=ΦÞ2sin2θ; ð21Þ

which yields

cAB ¼ ĉAB − γABðΦ1=Φ0ðbÞÞ: ð22Þ

Here, ĉAB is the pure gravitational part and corresponds to
the transverse and traceless degrees of freedom. Also, in the
above expression, Φ1 ¼ Φ1ðbÞ þΦ1ðpÞ, is the coefficient of
the Oð1=rÞ term in the asymptotic expansion of the radion

1In Eq. (9) we had written the scalar field in terms of an
isotropic coordinate r̃. As in the asymptotic limit the isotropic
coordinate r̃ is equal r, one can safely expand the scalar field in
terms of Oð1=rÞ.
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field Φ. Since there is an additional GW pulse being
considered here, it will be described by a tensorial news
NAB as well as a scalar news N, which are given by

−∂uĉAB ¼ NAB;

¼ N 1sech2uð−2Y20Þ
�
1 0

0 −sin2θ

�
; ð23Þ

N ¼ N 2sech2uð−2Y20Þ≡ ∂uΦ1ðpÞ: ð24Þ

Note that the sech2u behavior is assumed in order to be
consistent with the discussion in the previous section and
NAB embodies the gravitational degrees of freedom, while
N encodes the scalar degree of freedom. The amplitudes
N 1 and N 2 are such that the GW pulse can be
considered as perturbations over the wormhole back-
ground. Now the Bondi determinant condition, along
with integration of the above relations over the null
coordinate u, yields the following change in the Bondi
shear cAB as

△cAB ¼ △ĉAB − γAB
△Φ1ðpÞ
Φ0ðbÞ

;

¼ −N 1ð−2Y20Þ
�
1 0

0 −sin2θ

�Z
∞

−∞
sech2u du −

N 2

Φ0ðbÞ
ð−2Y20Þ

�
1 0

0 sin2θ

�Z
∞

−∞
sech2u du;

¼ −2ð−2Y20Þ

2
64
N 1 þ N 2

Φ0ðbÞ
0

0 sin2θ
�
−N 1 þ N 2

Φ0ðbÞ

�
3
75: ð25Þ

Here, the term −2Y
20 is the spin-weighted2 harmonic,

having the expression −2Y
20 ¼ ð3=4Þ ffiffiffiffiffiffiffiffiffiffi

5=6π
p

sin2θ. The
above equation, namely Eq. (25), shows that the change
in the Bondi shear, represented by △cAB is not traceless,
with the trace being dependent on the presence of the scalar
memory via Φ0ðbÞ. Therefore, the existence of a nonzero
trace for the Bondi shear will signal the presence of an
additional scalar degree of freedom in the system, possibly
arising from extra dimensions. Thus, the total gravitational
memory in the spacetime has both a tensorial part and a

scalar part, the later arising from the radion scalar field of
the underlying theory. The effects described above, are
clearly depicted in Fig. 4, where the behavior of the Bondi
shear has been presented with variation in the wormhole
parameter p.
Finally, we solve the gravitational field equations order

by order to obtain the change in the Bondi mass aspect of
the system, namely ΔMB. For this purpose, we reexpress
Eq. (20) in a convenient form, fit for an axisymmetric
system [86], such that

ds2 ¼ − exp ½σðu; r; θÞ�du2 − 2 exp ½2βðu; r; θÞ�dudr − 2r2 exp ½2fγðu; r; θÞ − δðu; r; θÞg�U1ðu; r; θÞdudθ
þ r2 exp ½2fγðu; r; θÞ − δðu; r; θÞg�dθ2 þ r2 exp ½2f−γðu; r; θÞ − δðu; r; θÞg�dϕ2: ð26Þ

The metric functions σ, β, U1, γ, and δ, appearing in the
above expression, are all expanded in the inverse powers of
the radial coordinate r, yielding

σðu; r; θÞ ¼ σ1ðu; θÞ
r

þ σ2ðu; θÞ
r2

þOðr−3Þ; ð27Þ

βðu; r; θÞ ¼ β1ðu; θÞ
r

þ β2ðu; θÞ
r2

þOðr−3Þ; ð28Þ

U1ðu; r; θÞ ¼
U11ðu; θÞ

r
þ U12ðu; θÞ

r2
þOðr−3Þ; ð29Þ

γðu; r; θÞ ¼ γ1ðu; θÞ
r

þ γ2ðu; θÞ
r2

þOðr−3Þ; ð30Þ

δðu; r; θÞ ¼ δ1ðu; θÞ
r

þ δ2ðu; θÞ
r2

þOðr−3Þ: ð31Þ

These expansions must be compared with the Bondi-Sachs
form of the wormhole metric with a GW pulse, as presented
in Eq. (20), from which we find the following correspon-
dence:

2Since the system is axisymmetric, the spherical harmonic is
chosen in a way such that there is no dependence on ϕ.
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σ1ðu; θÞ ¼ −
2M
pþ 1

− 2MBðu; θÞ;

β1ðu; θÞ ¼
Mp
pþ 1

þ bðu; θÞ
2

;

δ1ðu; θÞ ¼
Φ1

2Φ0ðbÞ
;

γ1ðu; θÞ ¼
ĉθθ
2

≡ ĉðu; θÞ
2

;

δ2ðu; θÞ ¼ Uðu; r; θÞ;

¼ Φ2U1ðu; r; θÞ
2Φ0ðbÞ

exp ½2fγðu; r; θÞ − δðu; r; θÞg�:

ð32Þ
To proceed further, we use the fact that the field equations
in Bondi-Sachs formalism follows a nested pattern. One
starts with an initial data, prescribed in terms of the
functions ĉθθðu; θÞ and Φ1ðpÞðu; θÞ at some value of u.
Subsequently, the hypersurface equations Gu

r and Gu
θ,

respectively, yields3

Oðr−1Þ∶ U11 ¼ 0; ð33Þ

Oðr−2Þ∶ U12ðu; θÞ ¼ −
∂θĉðu; θÞ

2
− ĉðu; θÞ cot θ; ð34Þ

and finally, at order Oðr−3Þ, we obtain

β1 ¼ −
Φ1ðu; θÞ
2Φ0ðbÞ

; bðu; θÞ ¼ −
Φ1ðu; θÞ
Φ0ðbÞ

−
2Mp
pþ 1

: ð35Þ

Similarly, the hypersurface equation in the Gu
u com-

ponent of Einstein’s equations yields an identity at the

lowest order of Oðr−2Þ, while the supplementary equation
for the component Gr

u at Oðr−2Þ yields the change in the
Bondi mass aspect of the system:

σ1;u ¼
ð∂uΦ1Þ2
2Φ2

0

−
3ð∂uΦ1Þ2

2Φ0ð1þΦ0Þ
−
Φ1∂

2
uΦ1

Φ2
0

−
∂uΦ1;
Φ0

þ ð∂uĉÞ2
2

þ ∂uĉ −
3

2
∂u∂θĉ cot θ −

1

2
∂u∂

2
θĉ: ð36Þ

Integrating the above expression, we obtain the effective
Bondi mass of the system to yield

MB ¼ −
m

pþ 1
−
1

2

�
a2Y2

2
þ b2Y2

�
1

2Φ2
0

−
3

2Φ0ð1þΦ0Þ
	


×

�
2

3
tanhuþ 1

3
sech2u tanh u

�
−

1

3Φ2
0

b2Y2tanh3u

þ 1

2
tanhu

�
bY
Φ0

þ aY þ 3

2
aY;θ cot θ þ aY;θθ

�
: ð37Þ

FIG. 5. Variation of the change in the Bondi mass due to GW
pulse has been presented with the null coordinate u, for different
choices of p.

FIG. 4. Variation of Bondi shear due to the passage of a GW pulse, also known as the memory tensor, has been presented for various
choices of the wormhole parameters. (a) We have depicted the variation of the Bondi shear with the wormhole hair p on the θ ¼ ðπ=2Þ
plane and (b) response of the change in Bondi shear due to the GW pulse has been presented against θ for different values of p.

3The following field equations are solved using the RGTC
package in the symbolic manipulation software Mathematica.

GRAVITATIONAL WAVE MEMORY IN WORMHOLE SPACETIMES PHYS. REV. D 106, 104057 (2022)

104057-9



The evolution of the Bondi mass with variation in p has
been depicted in Fig. 5. In the plot we find that the drop in
the Bondi mass is higher as the value of p decreases.

V. CONCLUSIONS

In this article, we have explored certain aspects of the
GW memory in a wormhole background on the brane. The
reason for considering the presence of extra spacetime
dimension is twofold: (i) The on-brane gravity theory is a
quasi-scalar-tensor theory, with the scalar field capturing
the imprints of the spatial extra dimension and hence any
information about the scalar hair will translate into possible
inputs for the extra dimensions. (ii) In this class the
wormhole geometry is traversable and can be sustained
without invoking any exotic matter fields. In this manner
we arrive at a possible nonblack-hole compact object
without using exotic matter field and hence it provides
interesting viable alternative to the standard black hole
paradigm in GR. Wewould like to mention that, besides the
wormhole solution considered here, there are other worm-
hole solutions, e.g., in the context of scalar-coupled
Einstein-Gauss-Bonnet gravity [77], where also the matter
field is not exotic. It will be interesting to study the stability
and hence the memory effect in such wormhole back-
grounds as well.
We, at first, have briefly reviewed the geometry of the

wormhole spacetime and how the presence of extra
dimension helps in constructing a traversable wormhole
without any exotic matter. Then we have explored the
displacement and velocity memory effects by analyzing
neighboring geodesics in the wormhole background in the
presence of a localized GW pulse. We have shown
explicitly, how the geodesic separation evolves before
and after the passage of the pulse. This explicitly estab-
lishes the existence of both displacement and velocity
memory effect. In addition, these memory effects depend
crucially on the hairs of this wormhole solution and hence
differs from the corresponding memory effect in
Schwarzschild spacetime. Therefore, memory effects are
indeed future pointers towards exploring existence of
nonblack-hole compact objects in our Universe, which in
this context can also be related to the existence of extra
spatial dimensions.
Having observed that indeed memory effect exists and

depends on the details of the wormhole geometry, we
subsequently proceeded to study the memory effect using
symmetries at null infinity using the Bondi-Sachs formal-
ism. For this purpose, we have expressed the spacetime
metric of the wormhole geometry using the Bondi coor-
dinate system and have expanded the radion field in inverse
powers of the radial coordinate r. Considering a GW
perturbation in the system that satisfies the Bondi gauge
conditions, we have computed the Bondi shear as well as
the Bondi mass aspect and hence observed that these also
give rise to the memory effect. Again, the memory depends

on the wormhole parameter (p) through the leading order
contribution from the radial field.
Since the braneworld scenario, considered in the present

context, very much resembles a scalar-tensor theory of
gravity, we use the formalism given in [67], and show how
the variation in the Bondi mass aspect, related to the
memory effect, depend explicitly on the wormhole param-
eters. The same conclusion holds true for geodesic memory
effects as well. This variation of the Bondi mass aspect is
different from the black hole scenario and can possible be
probed using the future GW detectors. Moreover, gener-
alization of the present result for astrophysically relevant
cases of rotating wormholes will be of significant interest.
Besides, this work can also be used as a prospect to
investigate supertranslations and soft hair implants on the
throat of a wormhole geometry (analogous study for black
hole horizons can be found in [87] and Rindler horizons in
[88]). These issues we wish to study in the future.
The memory effect encoded in the Bondi mass aspect is

computed by solving the gravitational field equations of the
theory at orders of Oð1=rÞ. Decomposing the field equa-
tions into hypersurface and supplementary equations, we
have determined the change in the Bondi mass of the
system analytically. We find that the variation in the value
of p produces a change in the evolution of the Bondi mass.
This shows that it will be easier to decipher whether the
central compact object has a nonzero value of p, since the
presence of a nonzero p will modify the memory signifi-
cantly. Therefore, as and when the memory effect can be
detected in the future GW detectors, it will possibly tell us
about the existence of nonblack-hole compact objects, and
one can independently verify if the braneworld wormhole is
a viable scenario.
There are several possible future extensions of the present

work, first of all a complete analysis of the Bondi-Sachs
formalism without assuming axisymmetry will be an inter-
esting and important extension.Moreover, studyingmemory
effect for rotating wormholes and other rotating compact
objects, which are more relevant astrophysically, will be
another interesting avenue to explore. Finally, studying GW
memory effects for other black hole mimicker spacetimes,
e.g., fuzzballs will be of significant interest.
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