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Accretion of the relativistic Vlasov gas in the equatorial
plane of the Kerr black hole
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We investigate stationary accretion of the collisionless Vlasov gas onto the Kerr black hole, occurring in
the equatorial plane. The solution is specified by imposing asymptotic boundary conditions: at infinity the
gas obeys the Maxwell-Jiittner distribution, restricted to the equatorial plane (both in positions and
momenta). In the vicinity of the black hole, the motion of the gas is governed by the spacetime geometry.
We compute accretion rates of the rest-mass, the energy, and the angular momentum, as well as the particle
number surface density, focusing on the dependence of these quantities on the asymptotic temperature of
the gas and the black hole spin. The rest-mass and energy-accretion rates, normalized by the black hole
mass and appropriate asymptotic surface densities of the gas, increase with increasing asymptotic
temperature. The accretion slows down the rotation of the black hole.
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I. INTRODUCTION

General-relativistic kinetic theory provides a description
of gases in strong gravitational fields, alternative to the
more popular hydrodynamic approach. When collisions
between gas particles are rare and the mean free path is
large, fluid dynamics does not apply. In this case, a more
reasonable approximation is provided by the kinetic theory
of noncolliding gas particles. A standard kinetic description
uses a distribution function defined on a suitable one-
particle phase space. In general-relativistic literature this
approximation is sometimes referred to as the Vlasov gas.
Vlasov models are often used in stellar dynamics to
describe galaxies and clusters of galaxies (see a math-
ematical analysis in [1,2] or [3] for the Newtonian account).
Another physical realization of Vlasov systems would be in
the form of noninteracting dark matter massive particles
[4]. Last but not least, the gas surrounding supermassive
black holes, such as M87* and Sgr A*, observed recently
by the Event Horizon Telescope Collaboration, is also
believed to be nearly collisionless and magnetized [5—12].
Classic reviews of the general-relativistic kinetic theory can
be found e.g., in [13—18]; see also [19-21] for more recent
accounts.

Rigorous relativistic models of accretion flows onto
black holes derived within the framework of the kinetic
theory are relatively recent. Spherically-symmetric steady
accretion of the collisionless Vlasov gas onto a
Schwarzschild black hole (a kinetic counterpart of the
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Michel accretion model [22,23]) was investigated in 2017
by Rioseco and Sarbach [24,25]. An extension of this
model for Reissner-Nordstrom black holes is given in [26].
Accretion of the collisionless Vlasov gas onto a moving
Schwarzschild black hole (a general-relativistic counterpart
of the Bondi-Hoyle-Lyttleton accretion problem) was
investigated in 2021 [27-29]. In the same year Gamboa
et al. described accretion of the Vlasov gas onto a
Schwarzschild black hole occurring from a sphere of a
finite radius [30]. A kinetic description of the phase-space
mixing at the equatorial plane of the Kerr spacetime is
given in [31]. Some aspects of the dynamics of the massless
Vlasov gas in a slowly-rotating Kerr spacetime are ana-
lyzed in [32]. We would also like to mention recent studies
of self-gravitating static Vlasov configurations around
black holes [33,34]. At the same time, there is an ongoing
work on kinetic simulations of magnetized plasma in black
hole spacetimes [35,36]. These, highly sophisticated
numerical simulations complement existing works based
on the magnetohydrodynamical approximation, and seem
to be crucial in understanding the physics of black hole
magnetospheres, as well as interpreting future horizon-
resolving observations.

In this paper we derive stationary axially-symmetric
solutions of the collisionless Vlasov equation correspond-
ing to a gas accreting onto a Kerr black hole at the
equatorial plane. They constitute a model of an infinite,
geometrically thin accretion disk. At infinity, the gas
remains at rest, and it is assumed to be described by the
Maxwell-Jiittner distribution confined to the equatorial
plane. The flow of the gas in the vicinity of the black
hole is still restricted to the equatorial plane, but otherwise
it is governed by the geometry of the spacetime. In a sense,
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our model is an analogue of the spherically symmetric one
obtained for Schwarzschild black holes in [24]. The
restriction to the equatorial plane of the Kerr black hole
is justified by the algebraic simplicity of equations gov-
erning the geodesic motion at the equatorial plane. On the
other hand, this model seems to be of interest on its own, as
a model of a thin accretion disk around the Kerr black hole.
It allows us to provide explicit expressions for the particle
current surface density, as well as mass and angular
momentum accretion rates. We find that the accretion
process described by this model slows down the black
hole rotation, i.e., the sign of the angular momentum
accretion rate is opposite to the sign of the black hole
spin parameter.

In many respects our two-dimensional model of a thin disk
of the Vlasov gas differs from spherically-symmetric, three-
dimensional models known from [24-26]. We find, for
instance, that the rest-mass accretion rate, normalized by
the black hole mass and the asymptotic rest-mass surface
density, increases with the asymptotic temperature. This
stays in contrast to the spherically-symmetric case, known
for the Schwarzschild or Reissner-Nordstrom metric, in
which the rest-mass accretion rate, normalized by the square
of the black hole mass and the asymptotic rest-mass density,
decreases with the asymptotic temperature. We should state
that this behavior depends on the parametrization of sol-
utions and is related to the properties of the two dimensional
Maxwell-Jiittner distribution, assumed at infinity.

Thin accretion disks appear naturally in numerical
simulations of accreting plasma in the vicinity of Kerr
black holes, both kinetic and based on general-relativistic
magnetohydrodynamics [35-38]. Since our model does not
involve magnetic fields, we would rather think of its
potential applications in modeling of dark matter accretion,
as in [27].

In fact, a better understanding of astrophysical black
holes in the environment dominated by the omnipresent
dark matter is one of main motivations behind our work.
For example, changes in the Kerr spin parameter [39,40]
could explain the ON/OFF behavior of active galactic
nuclei powered by supermassive black holes [41,42].
The specific physical mechanism responsible for this
behavior remains elusive, and major black hole mergers
are required to significantly alter the black hole spin [43].
Accretion of noninteracting matter could, in principle,
provide a new mechanism of this kind.

Equations governing the Vlasov gas at the equatorial
plane of the Kerr spacetime can be derived in two frame-
works. We will work in a (2 4+ 1)-dimensional setup, based
on the 3 dimensional metric induced at the equatorial plane.
Alternatively, one can derive the same equations, working
in the full (3 + 1)-dimensional framework and imposing
conditions which effectively restrict the motion to the
equatorial plane. For clarity and completeness, this alter-
native formulation will be summarized in Appendix A.

The order of this paper is as follows. Section II contains
mathematical preliminaries and conventions concerning the
Kerr metric and the geodesic motion in the Kerr spacetime.
In Sec. III we introduce our model of the disk of the
collisionless Vlasov gas confined to the equatorial plane of
the Kerr metric. We specify the distribution function and
derive the expressions for the particle current surface
density. Section IV discusses the phase space of unbound
orbits. In Sec. V we compute the particle current surface
density and the rest-mass surface density of the disk.
Section VI is devoted to the rest-mass, energy, and angular
momentum accretion rates; in particular, we derive analytic
limits of these accretion rates for zero and infinite asymp-
totic temperatures of the gas. Section VII contains a short
discussion of the results.

II. PRELIMINARIES

A. Metric conventions

We use standard geometric units with ¢ = G = 1, where
¢ denotes the speed of light, and G is the gravitational
constant. The signature of the metric is (—, +, +, +).

We will work in Boyer-Lindquist coordinates (¢, r, 6, ¢).
They are divergent at the black hole horizon, but, in
comparison to more refined coordinate choices, they result
in relatively simple formulas. In Boyer-Lindquist coordi-
nates the Kerr metric can be written as

g = gudt® + 2g,,dtdp + g,,dr* + gped0 + g,,dp*, (1)

where
2Mr
9 = -1 + PR (2&)
P
2Mar sin? 0
gf(/) = - 2 bl (2b)
P
2
p
= 2
9r ="y (2¢)
oo = P* (2d)
2Ma?rsin® 0
Gop = (r2 P B clalid r2s1n ) sin?0,  (2e)
p
and we denote
A=r*=2Mr+ad?, (3a)
p* = r? + a*cos’ 0. (3b)

Note that many authors use the symbol X in place of p?
(cf. [44]). The contravariant metric component read
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u (P 4a?)?—Ad*sin?6
= v
1 < 2424 2Mra? sin® 9> (4a)
=——|r+a+——-",
A p?
2Mra
v = , 4b
g v (4b)
A
g ==, (4c)
p
9" = iz (4d)
p
1 A
R . 4
g Ap? < LY 9) (4e)

The Kerr spacetime is characterized by the mass M and the
angular momentum J = Ma. In general, we will restrict
ourselves to the region outside the black hole horizon,
with A > 0.

The metric induced at the equatorial plane § = z/2 has
the form

Y = vudt* 4 2y,,dtde + v,,dr* + v,,de*.  (5)

where
2M
Yu=-1+—, (6a)
2Ma
Yip = — ’ (6b)
r
2
;
=—, 6
= (6¢)
2M
yW:r2+a2<1+r>. (6d)
Contravariant components of y read
L/, ) 2Ma?
yYlr=—=——\(r"+a + , (7a)
A r
2Ma
" =— 7b
Y A (7b)
A
rr = —, 7
7= (7¢)
1 2M
PP = — 1 ——|. 7d
=X ( . ) (7d)
An easy calculation yields detg”’ = —1/(p*sin®> ) and
det y* = —1/r2. Note that y is not a solution of the vacuum

Einstein equations in 2 4 1 dimensions. Such an equivalent
of the Kerr solution does not exist, except for the so-called
Bafiados-Teitelboim-Zanelli (BTZ) solution [45], which
assumes a negative cosmological constant.

B. Timelike geodesics

Timelike geodesic equations can be expressed in the
Hamiltonian form

a _ o -
dr  dp,’
dp, oH

=——, 8b

dr ox¥ (86)

where p# = dx*/dr, H(x", pg) =3¢ (x*)p,p, = —3m?,
and m denotes the particle rest mass. By standard argu-
ments, H, p, = —E and p, = [, are constants of motion.
The fourth constant—the so-called Carter constant [—
follows from the separation of variables in the Hamilton-
Jacobi equation

oS

&+ H(x.0,5) = 0. 9)

The ansatz
S:—HT+W:%m2T+W (10)
with
W= /p,dt + /pwd(p + / p,dr+ /pgdﬁ
=—Et+ Lo+ W,(r) + Wq(0)
yields the “time-independent” Hamilton—Jacobi equation
¢“0,Wo,W = —m? (11)
or, in explicit terms,
(r* +d*)?* — Aa® sin? 0 AMra

- E? El
A +A :

1 A
+ (W))? + A <—a2 T 9) L =—-m?p°. (12)

+ A(W)?

Rearranging terms, we get

2
(W})? + m?a? cos 9+< —asinHE)
+

— i = AW+ [( + a)E—al . (13)

X
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Since the left-hand side depends only on 6, while the right-
hand side depends only on r, both sides have to be constant.
We denote this constant value by /> [note that the left-hand
side of Eq. (13) is explicitly non-negative]. Thus

(W) =0(0) = I> — m*a® cos* 0
- l—z—asineE ’ (14)
sin @ ’
and
KWL = R() = [(7 + )E - al ]
- A(m?*r* + PP). (15)

The equations of motion can be integrated following the
standard procedure, i.e., by computing the derivatives
0S/om, 0S/0E, dS/dl,, 0S/0l, and equating the results
to a new set of constants fy, S, B, B3 (say) [46,47].

C. Timelike geodesics at the equatorial plane

The description of time-like geodesics restricted to the
equatorial plane (6 = z/2) is much simpler. We have
po =0, Wy = 0. Equation (14) reduces to

P = (.- aE)* (16)
We will assume a convention with [ > 0. Thus,
€,l=1,—aE, (17)
where ¢, = £1. Consequently,
R(r) = (PPE —¢,al)? — A(m*r* + I?)

M 2
r r

2e,aEl + azmz]

72

(18)

Momentum components associated with the geodesic
motion confined to the equatorial plane can be written as

p, = —E, (19a)
VR
_e YR 19b
pr=ey (19b)
po =0, (19c¢)
Py =1, =€l +aE = ¢,(l + ¢,aE), (19d)

where ¢, = £1 corresponds to the radial direction of
motion.

Alternatively, one can obtain equations governing the
motion confined to the equatorial plane directly from the
Hamiltonian

H==(/"p}+2y"pp, + 7" pr+r""p2). (20)

N —

Here again, p, = —E, p, = [, and H = —{m? have to be
constant. Solving the equation H = —jm* for p, yields
Eq. (19b).

Following [24,31], we use dimensionless variables
defined as

a E / r
a=r e=—. lzm, sz. (21)
Thus,
R(r) = M*m?R(¢&), (22)
where

R(§) = (e~ e,a0)’ = (£ =26 +a°)(& + 2)

-ep- (3 ()] e

and
p; = —E = —me, (24a)
VR erm\/f? (24b)
=€, —=—-= s
Pr= N T e ey g
po =0, (24c¢)
Py, =1, = €,l + aE = Mm(e,A + ae)
= Mme,(A+ ezae).  (24d)

In this work we will generally parametrize geodesics
using the Carter constant / (or 4) instead of /. This is, of
course, a matter of preference. Our choice was partially
motivated by a similar substitution in Eq. (3) of [31]; it also
simplifies a few algebraic relations used in this paper. We
should emphasize that the sign €, is associated with the
quantity /, —aE and not with /.. In particular [, =0
implies [ = —e,aE. On the other hand in many important
cases the signs of [, and ¢, coincide. Thus, we will
generally refer to trajectories with e,a > 0 as prograde
ones, and to those satisfying e,a < 0 as retrograde ones.

There are three well-known types of circular orbits at the
equatorial plane, two of which will play an important role
in the subsequent analysis [44,48]. There is the circular
photon orbit with the radius
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2
En =2+ 2cos {g arccos (—eaa)] , (25)

a solution of (6 —3)/E+2e,a=0 or (¢ —3)*¢& — 4a* = 0.
The circular photon orbit corresponds to a null geodesic,
but it appears naturally as a limit of time-like orbits. There
is the so-called marginally bound orbit with the dimension-
less radius

Ep =2 —€e,a+2/1—¢,a, (26)

which is a solution to &(& —4) + dae,/E—a*> = 0 [see
also Eq. (60)]. For unbound orbits &, is related to the so-
called fly-by radius [49]. The dimensionless radius of the
innermost stable circular orbit (marginally stable orbit,
ISCO) is given by

: _3+ZZ_€a\/(3—zl)(3+zl+2zz) @)

’
0(2

where Z, =1+ V1 - (VT tea+ /T —e,q), Z, =
\/3a*> + Z% [44]. The radius &, is a solution of the
equation (& —6)& + 8ay/E—3a> =0. The location of
the innermost stable circular orbit does not seem to play
a crucial role in our analysis. However, the related poly-
nomial in /&, as well as those defining &on and &y, do
appear in the integrands of our formulas for accretion rates.

III. VLASOV EQUATION AT THE
EQUATORIAL PLANE

The Vlasov gas considered in this paper is a collection of
free particles moving along timelike future-directed geo-
desic lines. It is described in terms of the distribution
function f = f(x#, p,), defined on the one-particle phase
space. For collisionless particles, the Vlasov equation can
be expressed as a requirement that the probability function
f is constant along a geodesic,

df _of d* o dp, _of oH _of ot
dr  ox* dr  dp, dr  Ox* op, 0p,ox*
={H.f} =0. (28)

Here {-,-} denotes the Poisson bracket.

A formal solution of the above equation has been
obtained in the context of the Kerr metric in [20]. We will
repeat this reasoning here, assuming that the motion is
restricted to the equatorial plane. In this case,
(x*,p,) = (t.r.@, p;. Pr. P,), and the Hamiltonian H is
given by Eq. (20). The idea is based on a suitable canonical
(symplectic) transformation of the phase-space variables
(t.r.@.pu prp,) = (O, P,). It is given in terms of a
generating function (the so-called abbreviated action)

W=W(tr,emE,MIl) /p,dt—l—/p,dr—l—/pq)d(p
=—-Et+ Lo+ W,. (29)

We choose new momenta in the form

Pozm, P1:E, P2:lz. (30)

The corresponding conjugate variables Q* are defined as
Q" =oW/oP,, i.e

ow ow ow
C=om P Ceg - OV
Z

The Vlasov equation (28), written in terms of the Poisson
bracket, is covariant with respect to canonical transforma-
tions. Since H = —1P}, it reads, in the new variables

(Q".P,),

of
aQ°

Consequently, any distribution function of the form

N — (32)

f:f<Q17Q27PO7P17P2) (33)

satisfies the Vlasov equation. Further restrictions on the
form of the distribution function can be obtained by
imposing symmetry conditions.

The distribution function f is not an observable quantity
on its own. We define the components of the particle
current surface density as

Ju(x) = / f(x, p)p,/—dety*dp,dp.dp,, (34)

where u = t,r, ¢, and f = f(t.r, . p,. p. p,)- Similarly,
the surface energy-momentum tensor components are

= / f(x. p)pup,\/—dety*dp,dp,.dp,. (35)

A covariant particle number surface density n, can be
defined as

ng = /=yud"J". (36)

We consider a model of a stationary accretion disk
consisting of same-mass particles, confined to the equato-
rial plane and extending to infinity. At infinity the gas is
assumed to be essentially “at rest” and to be characterized
by a constant particle number surface density n; . More
precisely, we require that at infinity the distribution
function should be given by the two dimensional
Maxwell-Jiittner distribution [50,51]. On the other hand,
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the motion of the gas near the black hole should be
governed by its gravitational field. A distribution function
fulfilling these assumptions can be chosen as

f=A8(\/=pup" —mo) exp <mﬁopt>
= AS(Py — myq) exp (— £P1>, (37)
my

where myg (the particle mass) and A are constants. Here
B =mgy/(kgT), T is the asymptotic temperature of the gas,
and kg denotes the Boltzmann constant. The factor
8(\/=pup" —my) ensures that the momenta satisfy the
mass shell condition. Here, and in what follows, we only
take into account future-pointing momenta. Clearly, the
distribution function given by Eq. (37) is of the form (33);
it satisfies the collisionless Vlasov equation (32) and
coincides with the standard Maxwell-Jiittner distribution
at the infinity.

In what follows, we will also use the rest-mass surface
density, defined as

Ps = Molg. (38)

The components of the particle current surface density
Js, Jy and J, can be computed according to Egs. (34).
To evaluate the integrals over momenta appearing in
Egs. (34), one needs to control the domain in the phase
space occupied by relevant particle trajectories—this is
probably the most difficult part of the calculation. The
coordinate transformations introduced in the remainder of
this section and the analysis of Sec. IV are devoted to this
problem.

We will only take into account unbound trajectories, i.e.,
trajectories that reach infinity. Bound trajectories could also
play a role, but since collisions between gas particles are
neglected and we are working on a fixed spacetime,
contributions corresponding to bound and unbound trajec-
tories can be treated separately. Thus, for simplicity, we
assume that no bound trajectories are present. The reader
interested in the phase-space mixing occurring for bound
trajectories in the equatorial plane of the Kerr spacetime is
referred to [31].

Unbound trajectories are naturally divided into two
classes. There are orbits characterized by relatively small
values of angular momentum, which end in the black hole.
We refer to such orbits as absorbed ones. The second class
consists of orbits with sufficiently high angular momentum,
which are scattered off the centrifugal barrier. They
originate and end at infinity. We will refer to those orbits
as scattered trajectories. Even though we are mainly
interested in the accretion process, both types of unbound
trajectories have to be taken into account, as they all
contribute to the total “budget” of trajectories at infinity,
where the Maxwell-Jiittner distribution is assumed.

The analysis of unbound trajectories is simpler in terms
of conserved variables such as m, E, [, (or /), instead of
momenta p,, p,, p,. Thus, we change momentum variables

P> Prs Dy to

m* = —(y"p} + 27" p,p, + 7" P +v""p2).  (39a)
E=-p, (39b)
l = 60'(p{p + apt)‘ (39C)
The Jacobian of the above transformation reads
o(m?,E,l 2¢,p,A
(. B _ _2eapA (40)
o(pss Pr Py) r
Consequently,
2
;
dp,dp,dp, = ———dm?>dEdl = ddedl (41
APy =3l 4 Il )

where |p.|A = \/R(r).
In terms of dimensionless quantities (21) the momentum
integration element can be written as
Em*dmded)

\/—dety*dp,dp,dp, = 7R

This yields formal expressions for the components J,, in the
form

(42)

ded).
VR

J, = AMZ’"?’& 3 / ¢, exp(—pe)dedi.  (43b)

e,==*1

(43a)

J, = —Amj¢ Z /exp(—ﬂs)e

e,=*1

ded]
J, :AMmgcfZ /exp —pe)(e,A + ag) \j]_e .

e,==%1

(43c¢)

In the following we will also need explicit expressions for
Am0
Jr= Z e, exp(—pe)ded (44)

and

A
Tr, = —ﬂ / ¢, exp(—pe)eded),  (45)

e,=*1

T, AméM Z /e,exp(—ﬂe)(€6/1+ae)d8d/1. (46)

e,==%1

There is a simple test of correctness that can be
performed at this point—one can compute the component
J, in the flat Minkowski space limit M — 0, @ — 0. This
has to be done with some caution. In particular the mass M
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in Egs. (21) defining the dimensionless quantities should be
replaced with any positive constant with the mass dimen-
sion. The expression for R yields, in the Minkowski limit,

- 22
R — §4<€2 -1 —?>,
and hence

A
J, = m0 / exp(—fe)e _ dedd
€,=*1

1/8 —1—5

The key point is to control the range in the phase space over
which the above integral is performed. The trajectories are
straight lines with € > 1 and A < &Ve®> — 1. In addition, a
set of values €, m, and 4, correspond to two pos51ble values
of the radial momentum p, = +|p,|. This gives J, of
the form

4Am3 [ &Vel-1 dA
Ji=- 0 deexp(—ﬂg)e/o

& ,/82—1—2—2

The last integral, over 4, is simply z&/2. Thus,

J, = =2xAm} /oo de exp(—pe)e
1

3 e_/}( +ﬂ) .

= —27Am; 7 (48)

This result agrees with the standard computation of J,
based on Cartesian coordinates. For completeness, we
report this computation in Appendix B. Notably for-
mula (48) agrees with Eq. (B8) and formula (117) of
[21], which uses the Bessel function

(1+5)

Konlp) =[O (49)

The above result allows us also to write the expression
for the asymptotic rest-mass surface density of matter at the
equatorial plane

+5
ﬁZ

exp(—p).  (50)

1
— _ _ 4
Ps.co =Ml oo = _m01t|oo - 2ﬂAmO

Hence, the factor A in the integral expressions (43) for J,
can be replaced by

_ Pse P
-~ 2amg 1 +ﬂ

exp(f). (51)

IV. CLASSIFICATION OF ORBITS

We are interested in both absorbed and scattered
unbound trajectories. By inspecting the expression (23)
for R at & — oo, we see that the unbound trajectories must
satisfy € > 1.

As in the Schwarzschild case (see, e.g., [24]), a particle
traveling on an absorbed trajectory cannot encounter the
centrifugal barrier, when traveling from infinity towards the
black hole. The centrifugal barrier is effectively controlled
by the value of 1. An absorbed trajectory is characterized by
the condition 4 < A.(¢,¢,), where A.(e,¢€,) is a solution
(with respect to 4) of the set of equations

R(&) =0, (52a)
dR(¢) _
=0 (52b)

and R(&) is given by (23). The function A.(e,€,) can be
given in a parametric (therefore the subscript p) form as

55/4 _ a€6§3/4

V2ae, + (E=3)VE

a€0+ (5_2)\/5 .
&4\ 2ae, + (€ -3)V/E

It can be readily verified that the above expressions solve
Egs. (52). Zeros of the expression under the square root in
the denominator of (53) correspond to circular photon
orbits (25). We have &,(émp. €,) = 1, where &y, is the
dimensionless radius of the marginally bound orbit, given
by Eq. (26). On the other hand €, (. €,) — oo for & — &,
where &y, is the dimensionless radius of the circular
photon orbit at the equatorial plane, given by Eq. (25).
Consequently, the range 1 < ¢,(¢,€,) < oo corresponds to
Emb = & > & Note that

Ae = /112 (5, €o’)

I
—~
9,1
(%)
fetl
N

(53b)

&€= 817 (57 66)

diofe) " 54
de  9e,(8e) T & (54)
(29

The function A. (¢, €,) cannot be expressed in a closed
form, however it satisfies a relatively simple equation,
polynomial in both 4 and &, which can be found as follows.
The expressions on the left hand-side of Eqgs. (52) are
polynomials in &. It is well known that the substitution
u = 1/¢ yields polynomials of a lower order. We define
U = R/&*, and change the variables to u = 1/£. This gives
the conditions

Uu) = =14 2u — u’a® + €* — 2e u’ael

—u?2? +2uP)? =0, (55a)
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aU(w) =2 = 2ua’® — de uaed — 2ul’
du
+6u*)? = 0. (55b)
The term u® in Eq. (55a) can be easily removed by

multiplying Eq. (55b) by u, solving for u3, and substituting
the result in Eq. (55a). This yields the set of equations

3(2 — 1) + du — u*(a® + 2e,aed + %) =0,  (56a)
1 —u(a® + 2e,aed + 2*) + 3u?2*> = 0. (56b)
instead of Eqgs. (55). Substituting temporarily
X = & + 2¢,aed + 12, (57)
we get
3(2 = 1)+ 4u—u?X =0, (58a)
1 —uX +3u?2? = 0. (58b)

One could continue this way in order to finally eliminate u,
but the most straightforward method to achieve this aim is
to compute the so-called Grobner basis for the above
system. The result reads

Y = (e2 = 1)[27(e2 = 1)2* = X3 + 182%X]
+164* — X% = 0. (59)

Grobner’s basis is an invariant of the polynomial elimina-
tion, and it can be computed directly from Egs. (55) or (52).
On the other hand, to get a relatively simple form of
Eq. (59) one has to guess substitution (57), suggested
by Egs. (58).

In practice, we compute A.(g,€,) numerically, as a
solution of Eq. (59), or we use the parametric form (53).
In the former case, one has to be careful to select the
physical branch of solutions. Sample solution branches of
Eq. (59) are shown in Fig. 1. The physical branch, para-
metrized by Egs. (53) is depicted with a red line, but other
branches are also present. We show, for instance, the
existence of a branch (blue) with vertical asymptote & =
1 (thin line). The function Y is a 6th degree polynomial in 1
and a 5th degree polynomial in e. The term in Y with the
highest degree in 4 is —(&* — 1)45. Thus, for sufficiently
|

10

FIG. 1. Sample solutions of Eq. (59) for a =2/3, ¢, = +1
(continuous line), ¢, = —1 (dashed line). Physically relevant
branches, given by the parametric formula (53), are depicted with
red lines. Note the existence of mirrored branches in the
remaining three quadrants of the full £ — 4 plane (not shown).

large A, Y becomes positive for €2 < 1. On the other hand,
Eq. (59) has a simple solution for € = 1. In this case
X = (e,a+ )%, and Eq. (59) can be reduced to

= —(e.o + = 0.
Y =162 - (c,a+A)* =0 (60)

Non-negative solutions of this equation read 4=
2 —e,a £ 24/1 — €,a, and the larger of the two solutions is

A =2—-€,a+2/1 —¢€,a (61)

(note an algebraic coincidence 4, = &;,). The remaining
two nonpositive solutions are 1 = =2 — ¢,a £+ 2+/1 + €.
It follows that for e =1 and 1> A,, we have Y <O.
Consequently, Eq. (59) has an asymptotic solution with
A— +oo fore — 1.

Equation (59) has a simple solution for @ = £1 and
e;ax = +1, i.e., for prograde orbits in the extremal Kerr
metric. In this case A.(e, €,) = e. This solution is shown
in Fig. 2.

For scattered orbits, 1.(¢,¢,;) < A < Anax (&, €,€,). The
formula for the upper limit 4., (&, €, €,) follows from the
requirement that R > 0. It reads

Amax (57 &, ga) = 5_62

222 - e — —€,a€
\/a (8 ~|—§ 1)—1—(5 2)[&( 1)+2]—e, . (62)
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10

FIG. 2. Sample solutions of Eq. (59) for a =1, ¢, = +1
(continuous line), ¢, = —1 (dashed line). Physically relevant
branches are depicted with red lines. For a =1 and ¢, =
+1, A.(e,6, = +1) = €.

Note that for |a| > v/2/2 we have $on < 2 and Ay, must be
evaluated at the removable discontinuity & = 2 for prograde
trajectories. The relevant limit for e,a > 0 is

4er — o*

(63)

i) = 525

Scattered unbound orbits exist only for sufficiently high
energies €. The main bound, ¢ > 1, applies to all trajecto-
ries reaching infinity. On the other hand, a condition
defining a scattered orbit is the existence of a centrifugal
barrier—a particle on a scattered orbit travels from infinity,
reaches a turning point, at which R(£) = 0, and moves
again to infinity. In other words, a scattered orbit
|

parametrized by ¢, 4, and €, can only pass through a point
of radius &, if there is a turning point at &, <& (i.e.,
R(&)) = 0) and the region with radii & > £ is available for
motion [i.e., R(&') > 0]. In order to obtain the value of the
minimal energy &, (&, €,) allowing for a scattered orbit at
some radius &, we solve Egs. (58) with respect to €. More
precisely, we start by solving Eq. (58b) with respect to A.
There are two possible solutions, which we can substitute
in Eq. (58a). Solving the resulting equations with respect
to € yields four solutions, two of which can be positive.
These are

12 /[a3+a(§—2)§]2 + 0{2(5 —38) + (£-3)(&- 2)2;
£[(§—3)%¢ - 4a7] ’
(64)

E =

they do not depend explicitly on €, but in fact one of them
corresponds to prograde, and the other to retrograde orbits.
One can distinguish between the two cases by inspecting
the asymptotics of the two expressions. The two solutions
tend to infinity for

E—2+2cos E arccos(ia)} , (65)

i.e., solutions to (& — 3)2¢ —4a? = 0. These solutions can
be easily identified as the locations of circular photon orbits
at the equatorial plane. The latter are given by & = &,
where &, is defined by Eq. (25).

Matching the asymptotics of Eq. (64) with the locations
of circular photon orbits, we can select the signs in (64),
leading to the formula

L \/—zena[az (-2 +@(5-38) +(E-3)(E -2
(€3~ 4]

. (66)

For both solutions (with €, = +1) the limiting energy given by the above formula decreases from +oo for & > &,;. The
value € = 1 isreached at £ = &, where &, is given by Eq. (26). Thus, the minimal allowed energy for scattered orbits can

be written as

[S.] for é: < éph’
—2¢,afa*+(E— =1/24 2 (5— —3)(&=2)?
gmin(§9 66) = \/ 26p00a” +(¢ 2)2][f§_3;g§_<45(12§]§>+<§ 3)(E=2)¢ for fph < 5 < gmbv (67)
1 for &> & .

Note that no scattered trajectory can extend to £ < &,,. Sample graphs of &, (¢, €,) are shown in Fig. 3.
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2.0

Emin (é: €0)

o T m

25 3.0 35 4.0 4.5 5.0
¢

FIG. 3. Sample graphs of &,,,(&,€,) fora = 1/10and e, = +1
(blue continuous line) and ¢, = —1 (orange dashed line). Vertical
lines denote locations of circular photon orbits &, for €, = £1.
Note that &, (&, 4-1) is regular at &, corresponding to €, = —1.

V. PARTICLE CURRENT SURFACE DENSITY

We divide the expressions for the particle current surface
density J,, into two parts; a part corresponding to absorbed
trajectories and a part corresponding to scattered ones. The
quantities referring to those two parts will be denoted with
the superscripts (abs) and (scat), respectively. Consequently,

J,=Jy (abs) Ju (eat) - As discussed in the previous section,
the phase-space region corresponding to absorbed trajecto-
ries is characterized by € > 1 and 1 < A.(e, ¢,). Scattered
orbits passing through a point at radius £ are characterized by
Emin(E,€6,) <& <oo and A.(e,6,) <A< An(E € €,).

Explicit expressions for J, ,(,abs) and Jf,scal) read

(abs * olecs) dj
= —Am}é / de exp(—pe)e —
2, ), deewlpee [ 5

(68a)

Jgabs)(g) _ AMzmgg Z / dgexp —ﬂg) (8 € )

€,==*1
(68b)
abg = AMm}é Z / de exp(—pe)
e,==*1
Ac(e€,)
x / e (68¢)
0 VR

and

JEN(E) = —24miE S / T deexp(—pe)
Emin fseo')

e,=%1

max 5 £.,65 dj,
«e / - (692)

/1(;(6,66) \/E
1Y) =0, (69b)

Jéfcaﬂ(f) = 2AMm}é Z /oo . )de exp(—pe)
e,—+1  Emin(£:
j'l‘l'lﬂ)((f‘g9€0'>
x / Py (69¢)
he(ee,) VR

The factor 2 in Egs. (69a) and (69c¢) is due to two possible
radial directions of motion along a scattered trajectory,
€, ==x1. Note that in dimensionless variables A =
M (& - 28+ ).

Using the parametric solution for A.(e,¢,) given by
Eq. (53), we get

(abs _ —Amo?j Z / d§

e,==%1

x exp[—pe, (. €,)]

ep(8.€5)

y /z,,(g,e(,) i _d/l 7 (70a)
" Rl Ee). 2k
2.3
s _ _AM my¢ T E.e,
€3] A eﬁzil /émb gep(Se,)
x exp[—pe,(&.€,)]A,(E.€,), (70b)
I (&) = AMme Y / dge,(E.e,
e,=+1
x exp[—fe, (&, €,)]
) e tar (ZE )
. (70
x /0 (70c)

¢R p(Eeo) A Eoel]

where ¢€,(§,€,) = de,(&,€,)/05, and where we have
exphcltly listed the arguments in R, i.e., we set

R 2 /12 2 - l_’_ 2
peer=ep-(-(+9) 2

(71)

to avoid confusion. In principle, a similar parametrization
can be used to express the integrals corresponding to
scattered trajectories, however it is difficult to find the
integration limit corresponding to &y, (&, €,), i.e., & such
that ey, (€, €,) = €,(&, €5).
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3.0 T T T >

Ny (abs) |
Mp, ., JW

mo (scat)
Mp; J‘P

L
Mp,,, “¢

FIG. 4. Components of the particle current surface density J,,
J4) “and J5 corresponding to €, = +1. The spin parameter
a=7/8; p=0.1. The vertical line marks the location of the
circular photon orbit &,

Sample graphs of various components of the particle
current surface density are shown in Figs. 4-10. The main
feature visible in these plots is the cutoff for the scattered

components J ESCm, J (,mt), and J((;cat) at the location of
the circular photon orbit &,,, which in turn depends on ¢,:
€, = +1 (prograde motion, Fig. 4); ¢, = —1 (retrograde
motion, Fig. 5). The difference is best visible in Fig. 9. Note

that the graphs of the components J 5abs>, J Escat), J((,,a bs), and

J 5; ) are not smooth, due to the cutoff behavior at & = &,

Figure 11 shows the directions of the flow at the
equatorial plane for @ = 1/2 and = 1. We use standard
Cartesian coordinates defined by ¢ =17 x=rcoseg,
y = rsing. This yields the following contravariant com-
ponents of the particle current surface density,

0.0f-----mmmmmens
-0.5 N
my (abs) |
1o Mpy, Iy
a5 N/ e Mo y(scat) ]
15 7 Jg
~ LN
~ -
-20 ~ oL m g
RS . Mp; ¢
N .
~
-25 S
~
~
~
-3.0 S .
~
~
~
-35 : =
2 4 6 8 10
4
FIG. 5. Same as in Fig. 4, but for ¢, = —1.

mo (abs)
Mp, Te

moy (scat) ]
Mp, To

. m g
Mp,, “¢
-2}

FIG. 6. Components of the particle current surface density J,,
J5) “and 75 obtained by summing the parts corresponding to

€, = +1. The spin parameter « = 7/8; f = 0.1.

L8+ (€ +2)a?] + 200, /M

J = , 72a
(& -2t +aP)E (722)
2_2 2
Jx :Jr%(:os(p
J,/Mx (E=2)—=2a]
_ o/ N (¢ )2 * Lsin g, (72b)
=264+«
2_2 2
JY :J,ﬂsm(p
¢
J(/,/M X (E=2)=2al, (72¢)
E -2+
0.0F--1
-0.1
%Jl(abs)
o2t o/ my_gisca) |
Ps o
-03 T ,%;Jt
-0.4
S
-05 2 4 6 8 10

FIG. 7. Components of the particle current surface density J,,

Jﬁ“bs), and J £Scat> corresponding to €, = +1. The spin parameter

a=7/8; f=0.1. The vertical line marks the location of the
circular photon orbit &,
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my (abs)
0.0 — Ji
my (scat)
Proo !
-0.1
.. ooy
Poo 1
-0.2
-0.3
_0_4\
2 4 6 8 10
3
FIG. 8. Same as in Fig. 7, but for ¢, = —1.

The arrows in Fig. 11 correspond to the components
(J*,J?). The accretion flow is nearly radial outside the
outer (retrograde) circular photon orbit; it twists towards
the prograde circular photon orbit, where the dragging
effect becomes much more pronounced. Finally, the matter
sinks below the black hole horizon.

We should emphasize that the vector components J,
depend on the assumed metric gauge, in particular on the
chosen time foliation. This is best visible for the component
J . (cf. Fig. 10), which in the Boyer-Lindquist coordinates is
divergent at the black hole horizon. On the other hand, the
particle surface density n, defined by Eq. (36) and plotted
in Fig. 12 is a gauge invariant quantity. The particle surface
density n, is continuous across the outer horizon, but it
diverges at the inner Kerr horizon (Fig. 12, right panel).
This latter behavior resembles the so-called mass inflation

0.0r
-0.2
pﬂ Jt(abS)
-0.4f o
/ ﬂjt(scat)
Ps oo
-06} o omy
Pso 4
-0.81
\~ -
1. .
0 2 4 6 8 10
3

FIG. 9. Components of the particle current surface density J,,

7% and 75 obtained by summing the parts corresponding to

€, = +1. The spin parameter « = 7/8; f = 0.1.

my  y(abs)
[Tm Jr+

Mo y(abs)
Pl

-4
o

o Jr
Pso

¢

FIG. 10. Components of the particle current surface density
J(,"fs) (for €, = 1), J™) (for e, = —1) and J, obtained by
summing the parts corresponding to €, = +1. The spin parameter
a=7/8;, p=0.1.

discovered by Poisson and Israel [52]. A peculiar feature
illustrated in Fig. 12 is a local minimum of the particle
surface density n, near the retrograde marginally stable
orbit, occurring for high values of the parameter f. This
behavior seems to be related with the dimensionality of the
model—it has not been observed for spherically symmetric
models investigated in [24-26].

/
Z
-

/ /4?/ s

A

\
N

FIG. 11. Streamlines of the vector field (J*,J”). Circular
photon orbits are shown in red and blue colors. The region
inside the black hole horizon is marked in black. The black hole
rotates counterclockwise. The parameters used to create this plot
are « = 0.5 and f# = 1. The units on the axes are mass units M.
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5 . . . 20—
5 g !
g g B=10"" ; — a=0.1
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\
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FIG. 12. The invariant particle surface density n, vs the dimensionless radius &. The left panel shows the dependence of 7, on the value
of the parameter 8 for @ = 7/8. In the right panel we set # = 1 and plot the graphs of 7, for three different values of a. Vertical lines in
the right plot correspond to inner Kerr horizons.

VI. ACCRETION RATES 2M 4Ma

Qg =7= (-1 - —) dr* — dtdg

The two Killing vectors admitted by the metric y induced r r
at the equatorial plane (5), i.e., & = (&, &7, &%) = (1,0,0 2M
and y* 1 (;/,;/,iw) =(0,0,1), give(rise to t\?vo ir(ldepen)— + [rz +a (1 + T)] dg?.
dent conserved currents J?’I) =T+, & and J’(‘[p) =Tt ",
satisfying vyffl,) =0 and v/l‘]l(‘(’;) = 0. Together with the  We have det 7, = —A. The vector normal to the surface
conserved particle current surface density J#, they yield ~ r = const has the components 71, = +r/V/A, 7, = i, = 0.
three accretion rates, which can be defined based on Stokes ~ The flux through the boundary at r = r; can be written as
theorem.

Let M be a region in a d dimensional spacetime
equipped with metric (Yg. Let dM denote the d— 1 / B d*y\/| detplii, V¥ = - /
dimensional boundary of M, and let ("!g be the metric o '
induced on dM. A general-relativistic version of Stokes
theorem can be written as

/ d?x\/| det Dg|V, V¥ V=- / rVide. (77)
M r=r;

— d—1.,, / (d-1)
- /a Md /| det gln, V¥ (73) The minus sign in the above definition is a matter of

convention, but it has a meaning. Here, and in what follows,
Here the covariant derivative V, is defined with respect to  we choose the signs so that the accretion rates correspond

the metric (Y)g, V¥ is a vector field on M, and n* is the  to the fluxes into the black hole.

(75)

dtderV’, (76)

=r

giving rise to the accretion rate

vector field normal to the boundary oM. If V, V¥ =0, Assuming V¥ = myJ¥, —Jl(,)» or Ji(t(,,)’ we get three
we get accretion rates, respectively; the rest-mass accretion rate
given by M= —2zMmyEJ’", the energy accretion rate
/ dd‘1y1/|det(d‘1)g|nﬂV” =0. (74) £ =2zMET’,, 'and the angular momentum accretion

oM

rate given by £ = —2zMET",. Sign conventions in the

Working in the (2 + 1)-dimensional case restricted to the ~ definitions of £ and £ can be checked by noticing that for
equatorial plane only, we take d = 3 and (Yg = ®lg=y.  perfect fluids 7", o u"u, and 7", « u’u,,, where u* denote
Assume M to be a region enclosed by two surfaces of  the components of the four-velocity of the fluid.
constant time X;, X, and restricted by r; < r < r,. The The expression for J” given by Eq. (44) yields the rest-
metric induced on the surface r = const, § = /2 reads mass accretion rate
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M = =2aMmyEJ"

= —2ﬂAMmﬁ/€, exp(—pe)dedA. (78)

Since J 55““) = 0, we only get a contribution from absorbed

trajectories with 1 < e and A < 1.(¢,¢,), i.e.,

M = 2zAMm} Z /m de exp(—pe)i.(e,e,).  (79)
1

e,==%1

For the energy and the angular momentum accretion
rates we get

E=2aMET", = 2nAmiM / deexp(—pe)ed.(e,€,),

e,==+1
(80)
L = -2aMET", = 2mAmiM® > / de exp(—pe)
e,==%1
o) + o), (81)

respectively. Note that L =0fora nonrotating black hole,
i.e., for a = 0, since in this case A.(e, +1) = 1.(g,—1).

Finally, expressing the normalization constant A in terms
of the asymptotic surface rest-mass density p; ., (51) or the
asymptotic surface energy density &, = —lims T,
we get

. 2 ]
it = Mps,mﬁl%p;ﬂ)egl [ deersi-pontec,)

(82a)

: P exp(B) °°
&= Mes’mmegll deexp(—pe)el. (g, €,),

(82b)
. P exp(p) )
L= Me,,, PRy ﬂ2 / de exp(—pe)
X {62—”/1% (e,€,) + aed.(e, 6(,):| . (82c¢)

The results of the remainder of this section suggest that the
parametrization in terms of the asymptotic surface energy

density &, ., seems to be more relevant to accretion rates £

and £ than an alternative one which uses Ps.o- The two
quantities are related by

p( + )

= - 83
5,00 2+2ﬂ+ﬂ2 &0 ( )

We derive this relation in Appendlx B.
The expressions for M, €, L, understood as functions of
p, are given by Laplace transforms of certain functions. For

instance, M turns out to be a Laplace transform of A.. This
Laplace form implies certain standard relations, such as

3, deexp(—ﬁe)lc(e,ea):[ deexp(—pe)el.(¢,¢,).

(84)
Thus M and & are related.

Using the parametric representation of A.(g) given by
Eqgs. (53), one can express the accretion rates as

it = —mp, LW 3 / ™ B (B c,)

L+4 e,=%1 %
x expl—pe, . c, )4y E.c,), (85)
0 B exp Simb
- M€”°2+2ﬁ+ﬂ2€il/ Eerle
X exp[_ﬂgp(é ea)]gp(gv eo‘)ﬂp (5’ 66)’ (85b)
[ = e, PRV

5mh -
dée,
$,00~ | Ao | 22 /
2+2ﬁ+ﬂ o=t

< expipen o[ S4B +ae oy B
(85¢)

where ¢),(¢,€,) = 0e,(&,€,)/0¢.

The above parametric representation fails for o = +1,
i.e., for the extreme Kerr metric. For e,a = +1 (prograde
motion), we have &, = &, = 1, and the lower and upper
integration limits in the integrals corresponding to €, = «
coincide. On the other hand, correct expressions given by
Eqgs. (82) yield nonzero results for those integrals. This
behavior is not a fault of Boyer-Lindquist coordinates, as it
is discussed in a beautiful article by Jacobson [53], but it is
a failure of parametrization (53) for the extreme Kerr
metric. Since for a=+1 and e¢,a =41 we have
Ac(g,€,) = € (cf. Fig. 2), integrals appearing in Egs. (82)
can be easily evaluated. We get in this case (assuming for
simplicity positive signs a = +1, ¢, = +1)

M|a:+l.e¢,:+] = Mp; . (863)
Elami1e,—11 = Me, . (86b)
£‘a:+1,€0:+1 = iMzgs,OO' (86C)
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Although, M and & appear on a similar footing, the
quantity responsible for the growth of the black hole mass
M is the energy accretion rate & rather than M. This is
shown in spherical symmetry and in the context of perfect
fluids in [54] (see also [55]).

While the integrals in Eqgs. (85) can be computed
numerically, relatively simple analytic expressions can
be obtained in the limits of S — co (zero asymptotic
temperature) and  — O (ultrarelativistic particles).

The asymptotic behavior of M for p — oo (zero asymp-
totic temperature) follows from Watson’s lemma on asymp-
totic expansions of Laplace-type integrals [56]. It gives

o P 0" (e, €,)
e Pl (e e, de ~ 57 2 Tl 87
A DY - I

Note that the lower integration limit is 1 instead of zero,
which leads to an additional factor e~#, as compared to the
standard textbook version of Watson’s lemma. Since

A(l,e,) = A (€,) =2 — e,a + 24/1 — €,a, and

dA, (g, €O‘> 3
— = l(e,)2, 88
5| =) (88)
we get, up to the first order,
© e_ﬂ 1 3
el (e, e,)de ~— | A (€,) +=A.(e,)2].  (89)
1 p p
Since
D dle) =4+2vVT—a+2Vi+a,  (90)

e,=*1

we obtain the asymptotic expansion of M in the form

MNMpS,m%{4+N1—a+N1+a

+%[(2—a+2mﬁ

+Q2+a+2V1 +a)%]}. (91)

The limit for f — oo reads
ﬁlim M=2Mp, 2+ VI—a+V1+a). (92)

The above expression can also be written in the following
trigonometric form

Jim M = 8Mp, ., cos’ <arczm “). (93)

In the case of 5 we get, for f — oo, a similar expansion

/oo exp(—pe)ed. (e, e, )de

1

- %ﬂﬁ;ﬁi% (64 DA+ L] - (99
This yields the limit
Jim E=2Mp, 2+ V1-a+VI+a)
=2Me, 2+ VI—a+V1+a). (95

Clearly, the expressions for M and & coincide for p — o0,
as expected. ]

A similar calculation for £ leads to an asymptotic
expansion for large values of f of the form

— B-0
\
P00 ‘A{
-~ circle ‘.
. |
0.0 0.5 1.0

a

FIG. 13. Accretion rate M vs black hole spin parameter a. The abscissa in the left panel shows limy_ M/(Mp,o) = D en—s1 A(€5)

(solid blue line), A, (e, = +1) (dotted orange line), and 1, (e, = —1) (dashed green line). The right panel depicts accretion rates M,
rescaled according to Eq. (130). Blue and orange graphs correspond to the limits # — 0 and f# — oo, respectively. A graph of the half

circle V'1 — @? (dashed green line) is shown for comparison.
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Z [oo de exp(—pe) {%"lg(s, €,) + ael (e, €,)

e,==%1
4¢P
p

~

(VI—a—a—-+V1+a). (96)

Thus,

Jim L=4Mp, (V1—a-a-V1+a) (97)
or, using trigonometric functions,

Jim L =—16Mp, ,,cos> <arczm “) sin (arcsm a) . (98)

2

To find the limits for f — 0, we first observe that the
integrand of, e.g., (85a) has a sharp maximum near the
beginning of the integration interval, i.e., near &,,. Our
method is based on identifying the leading terms in the
integrand function and estimating the remainder. The latter
can be done using the general Lebesgue dominated con-
vergence theorem [57] (page 89, Theorem 19). It is a
version of the standard Lebesgue dominated convergence
theorem in which the dominating function is replaced by a
suitable series of functions. We will illustrate this method
on two particular examples, before proceeding with the
general result.

Let us start with the @ = 0 case. The goal is to estimate
the integral

PR2 [
h==iig e elpey 614
__eﬁﬁz 4 £-6 [—M]d
TR 2(5_3)2\/Eexp E=3)¢ E. (99)

It cannot be evaluated analytically. However, since the
maximum of the integrand is, in the limit, very close to
& = 3, one can try to substitute £ = 3 everywhere except for
terms & — 3, i.e., divergent ones. To be more precise, we
split the integral /; into two parts I; = I, + I3, where

_eﬂ/}2 4 3 (_ p )
2—ﬂ+1l2(5_3)zexp Aviss)® 10
and

- eﬂﬁZ 4

13——1+ﬂ£ Gy (& p)de, (101)
with

V3 p
Gl(f,ﬁ)—z(é_S)zeXp <_\/§ r_3>

6-¢ [ p(&-2)

TAE-IRET ‘\/@_3)5] o

The integral 7, can be evaluated. We have

_ V3(V3B+3) B
Moreover,
lim/y = 3V/3. (104)

We now show that lims_,, /3 = 0. Noticing elementary
inequalities

V3> 6—\;; (105)
and
%2 > % (106)

valid for 3 < £ <4, we see that the integrand G, (&, ) is
non-negative. It is also easy to check that it tends to zero, as
& — 3 from above. Clearly,

Gi(.p) <Lexp(

2037 Hon

_L>
V3vE-3

in the range 3 < £ < 4. The right-hand side of inequality
(107) is integrable, as follows from Egs. (100) and (103).
We may now apply the general Lebesgue dominated
convergence theorem [57] to the integral /5. Since

52
}g%ffﬁc;l(aﬁ) —o0,

(108)

we also have limg_o I3 = 0. Thus limy_o [, = limg_o I, =
3+/3, and finally

/ljin%(M‘aZO) = 6\/§M/)s,oo' (109)

The additional overall factor 2 in the result is due to the fact
that for @ =0 the integrals corresponding to ¢, = +1
coincide.

As the second example we take @ = 1,¢, = —1, i.e., the
extreme Kerr metric and retrograde orbits. The integral to
estimate is now
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uaﬁd&@ 1) expl—pe, (& —1)]A, (& ~1)
G

3422 \/E— 3 B
= déE—12 — ¢ &V 110
ll S2EvE—2p¢ ’ (110)

where we deliberately skip the term —efB%/(1 + f), to
shorten the notation. This integral can be expressed as a
sum I, = I5 + I, where

o 34+2v2 dé
= [ ey (zfv__J (i)
and
k=Amﬁ%@m% (112)
with
__
(6P = (x/f 8(VE—22" < 2\@\/@—2)
3-E _BE-VE-)
T2e(VE-22T [ o VE—2} (113)
We have
0<G,(&p) < < > (114)
(\/— 2) 2V2 \/

The first inequality follows again from two elementary
inequalities

1 3
Z 5\/_ (115)
and
1 E—VE-1
225 E el

valid in the range 4 < & < 3 + 21/2. The second inequality
in Eq. (114) is obvious, as 3 — \/E > 0 for 4 <£<3+2v/2.
The integral /5 can be evaluated with the result

2(1+ﬁ)ﬁ+sexp <_/2; 1 1 )

(117)

Thus, G, (¢, ) is bounded by an integrable function. We
have

/1}136{1 5 5} = -8 (118)
and
mﬂyﬁ@@m] (119)
L+p
By the generalized Lebesgue theorem
ﬂﬁo{fj_e;h,} =0, (120)
and consequently
}g%[lﬁie/; 4] S (121)
Thus,
E_I%(ML)::I.G,,:—I) = 8Mpy o (122)

The corresponding result for ¢ = 1 and €, = +1 is given
by Eq. (86a), which is independent of f.

Repeating the above procedure for any —1 <a <1
gives, with the help of a computer algebra system (we
use Wolfram Mathematica [58]), the following formula

. ; 3/2
}}imOM:Mpmo[<2+ V—a+ivi —a2<—i\/1 —@ 4+ A\ —at+iV1 —az—a>)

3/2
+ (2+ \3/a+i\/1—a2<—i 1—a®+ \3/a+i\/1—a2+a)) ]

(123)

An alternative, explicitly real form of this expression can be written as

. 1
}irr(l) M= 6\/§Mpm, cos <§ arcsin a> .

(124)
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In a similar way, one can compute the limit of & for
f — 0. The result reads

. 1
}}in(l) £ = 6V3Me, , cos <§ arcsin a) . (125)

This is quite surprising. In addition to the equality

M
lim = lim , (126)
pooo Mps.,oo pooo Mg.v.oo
established so far, we now also have
lim = lim . (127)
p=0 Mpx,oo =0 Mgs,oo
Finally, for L we get
. 2 i
lim £ = —6v/3M?¢, ., sin (M>
f—0 ’ 3
’ .
<o)

In a good approximation, the dependence of £/ (M?e )
on « is just linear (cf. Fig. 17). The coefficient

d L
°=da (Mfzes,w)

varies from 6 = —8 in the limit f — oo to § = -12V3
for f — 0.

Figures 14-17 show numerical values of the accretion
rates M, &, and L together with the corresponding limits,
obtained for f — oo and S — 0. Figure 14 depicts the
dependence of the rest-mass accretion rate on the black
hole spin parameter a. Different colors represent solutions
corresponding to different values of the parameter f. The
first observation is that M /(Mp; .,) decreases with |a|. The
dependence of M/ (Mp ) on a is, in fact, similar for
different values of § and can be illustrated by the limiting
cases f — 0 and f — oo, given by Egs. (124) and (92).
Afterasuitablerescaling, the graphs of M / (Mp; ,) vs ahave
an almost circular shape, as shown in Fig. 13. The quantity
plotted in this figure (the rescaled M (f, a)/(Mp; o)) is

(129)

a=0

M(p.a) = M(p.1)
M(p.0) — M(B,1)

for fixed values of M and p; .. Upon such a rescaling, the
difference between the values corresponding to f — 0 and
p — ocoislessthan 1%, anditis barely visible on the plot. The
nearly circular shape can be explained by the zero temper-
ature limit, f — oo, in which M/(Mp;, ) is just the sum

Aleg =+1) + A (e, ==1)=4+2V1—a+2y/1+a.

(130)

101

-1.0 -0.5 0.0 0.5 1.0

FIG. 14. M/(Mp;,) versus a. The dots represent numerically
computed values. Solid lines depict the limits  — O (blue line)
and f — o (orange line), given by Eqgs. (124) and (92),
respectively. Numerical data are computed for g = 1/4000,
1/10, 1, 10, 100, and 10000.

The obtained dependence of M/(Mp, ) on a confirms
our previous results reported in [26], where two of us
investigated a spherical model of the steady accretion of the
collisionless Vlasov gas on the Reissner-Nordstrom black
hole. In this work the charged black hole was treated as a
toy model of a rotating one, allowing for a simple analysis
in spherical symmetry. We have found that the rest-mass
accretion rate decreases with the charge parameter (see
Fig. 7 in [26]).

Another fact is related to the dependence of M/(Mp, )
on . We see both from Figs. 14 and 15 that the ratio
M/(Mp, ) is actually decreasing with 4, i.e., it increases

1

101

M ps
[ ]

0.01 0.10 1 10 100 1000
B

FIG. 15. M/(Mp;,) versus f. Blue dots correspond to a = 0.
Orange dots correspond to @ = £1. For a = 0 the data interpolate
between 61/3 and 8. For @ = +1, between 9 and 22+ \/5) The
inflection point is located around f ~2.8.
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FIG. 16. &/(Me, ) versus a. The dots represent numerically
computed values. Solid lines depict the limits g — O (blue line)
and f — oo (orange line), given by Egs. (125) and (95),
respectively. Numerical data are computed for g = 1/1000,
1/10, 1, 10, 100, and 10000.

with the asymptotic temperature of the gas. This is
surprising, as the situation known for the spherically
symmetric accretion of the Vlasov gas onto the
Schwarzschild black hole [24,25] or the Reissner-
Nordstrom black hole [26] is exactly opposite. In the latter
case, the mass accretion rate M , normalized by M? and the
asymptotic rest-mass density, decreases with the asymp-
totic temperature of the gas. Moreover, it is divergent for
p — oo. It turns out that the factor responsible for the
reversed behavior in our case is the parametrization of M by
the asymptotic surface rest-mass density, and its depend-
ence on the parameter . We will return to the discussion of
this behavior in the subsequent section.

The energy accretion rate £ exhibits a very simlar
dependence on « and f, provided that it is normalized
by the asymptotic surface energy density & ,, and not by
Ps.- This behavior is illustrated in Fig. 16.

‘The most interesting outcome of our study concerns, in
our view, the angular momentum accretion rate. The
dependence of L/(M?e, ) is shown in Fig. 17. The sign
of L is always opposite to the sign of the black hole spin
parameter a, meaning that the accretion process slows down
the black hole rotation. This seems to be reasonable—in our
model the black hole is placed in a large (infinite) reservoir
of the gas with essentially no net angular momentum. A
steady accretion of the gas can, therefore, decrease the
black hole angular momentum. Moreover, the dependence
of L/(M?¢, ) on a is to a good approximation linear,
except for very high values of |a|. The dependence of
L/(M?ée,,) on the parameter f is qualitatively similar to
the dependence of the rest-mass and energy accretion rates
on f. The values interpolate between two limits obtained for
f — 0 and  — oo, given by Egs. (128) and (97).

20r°

N 'l"
-

FIG. 17. L/ (M?¢, ) versus a. The dots represent numerically
computed values. Solid lines depict the limits # — O (blue line)
and f — o (orange line), given by Egs. (128) and (97),
respectively. Numerical data are computed for g = 1/100,
1/10, 1, 10, 100, and 1000. Note a nearly linear behavior for
moderate values of «; the deviation from a first order series
expansion around a = 0 is of the order of 3.5% at a = £0.5.

VII. DISCUSSION

We have investigated a model of a geometrically thin,
stationary accretion disk composed of the collisionless
Vlasov gas moving in the equatorial plane of the Kerr
spacetime. This model serves as a two dimensional kinetic
analogue of the Bondi (or Michel) type accretion—at
infinity the gas is assumed to be homogeneous and at rest,
while the motion in the vicinity of the black hole is induced
by the gravitational attraction.

One of subtle points in our analysis is related to the
parametrization of solutions. The normalization constant A
appearing in the distribution function (37) is not an
observable quantity. To obtain a consistent formalism, we
express this constant by the asymptotic rest-mass surface
density p; o, or the asymptotic energy surface density &; .
The relation of these quantities with the asymptotic temper-
ature 7 or the parameter S, characteristic for the two
dimensional Maxwell-Jiittner distribution, leads to an
unexpected dependence of the rest-mass and energy accre-
tion rates on f—both M/ (Mp; ) and £/ (Me, ,) decrease
with increasing B. The situation known for spherically
symmetric models of steady accretion of the collisionless
Vlasov gas on Schwarzschild or Reissner-Nordstrom black
holes is the opposite—the mass accretion rate M, normal-
ized by M? and the asymptotic rest-mass density p.., grows
with  [24-26]. We have checked that replacing the constant
A in our formula for M with a relation characteristic for a
three dimensional Maxwell-Jiittner distribution, i.e.,

PPoo
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[cf. Eq. (B20)], would restore (qualitatively) the same
standard behavior. This implies a natural question about
the physically relevant parametrization. Note that even a
tiny momentum component p,, normal to the equatorial
plane, would cause a deviation from the equatorial plane
sufficiently far from the black hole and imply a three-
dimensional asymptotic distribution.

Another aspect in which the dimensionality of our model
is clearly visible is related to the changes of the black hole
spin implied by the angular momentum accretion rate. Let
us estimate these changes assuming a quasistationary
approximation. Assume that £ is a time derivative of the
black hole angular momentum J = M 2 and that the energy
accretion rate £ gives the time derivative of the black hole
mass M. Thus,

da dJ J (L _€& L &
ar_ad _J (E_2C )\ 42025 132
dt — dtM?> M? (J M) a<J M) (132)

In the limit of # — oo (cold matter) we get, for small values
of a,

Yo 24p a. (133)

dr

Therefore, in this limit the rotation of the black hole slows
down on the time scale 7 = ¢/(24Gpy ,) (in SI units). Note
that in our two-dimensional model the above result does not
depend on the black hole mass M. As an illustration, we
could estimate the time scale 7 for the dark matter compo-
nent present in the Milky Way. Projecting the local cold dark
matter density ppy =~ 5 x 10722 kg/m? [59] on the Galactic
plane, we get p; ., = 2roppm, Where ry = 50 kpc is the dark
matter halo scale [60]. This gives the time scale 7 of the
order of 4 x 10° years. We emphasize that the above result
clearly depends on the dimensionality of the model.
Improving of the above estimate would require a fully
three-dimensional accretion model.

Another aspect not discussed in this paper is related to
the stability of the presented model. We would expect
various kinetic instabilities known from the theory of
accretion disks to be relevant in the present context,
especially if magnetic fields are taken into account (see
e.g., [61] and references therein).
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APPENDIX A: FOUR-DIMENSIONAL
CALCULATION

In this appendix we recover main formulas of this paper,
performing a fully four-dimensional calculation in the
phase-space and imposing a restriction to the equatorial
plane afterwards.

In the four-dimensional setting, the distribution function
has the form 7 = F (¢, 7,0, 9. p,. p.. py. ). The particle
current density and the energy momentum tensor are
defined as

7,00 = [ Fleppdwol(p). (A
and
Tl = [ Fopppdvol (). (42
where
dvol,(p) = \/—det(¢")dp,dp,dpydp,. ~ (A3)

For the motion restricted to the equatorial plane we take

F(x,p) = 8(z)F(x, p), (A4)
where z is a coordinate such that the vector d, is normal to
the equatorial plane at z=0. In terms of spherical
coordinates used in this paper we can assume the standard
formula z = rcos 6. This gives 5(z) = 8(0 — z/2)/r. Thus,

() = 8(2), (). (ASa)
Tou(x) = ()T, (). (ASb)
where
55 = [ Fppavoli(p). (AS)
and
Tulx) = [ Flpppavoli(p). (a7

The distribution function F satisfies the Vlasov equation

dF  OF dx* N 0F dp, OF oH OF oH
dt  ox* dr  dp, dt  ox*dp, Op,ox’
={H,F}=0. (A8)

To compute momentum integrals in Egs. (A6) and (A7),
we continue in a way similar to our three-dimensional
calculation and consider a transformation of momentum
variables (p;. p,. pg. p,) = (m* E.I>,1,), given by
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m> = —=[g"(p)* +29’pp, + 9" (p,)?

+ 9" (po)* + 9" (p,)?. (A9a)

E=-p,. (A9b)

2
P = p3+ m*a®cos* 0 + (Sﬁﬂe + asin 91%) . (A9c)

I, = p, (A9d)
where m? in Eq. (A9c) has to be replaced by the right-hand
side of Eq. (A9c¢). By a straightforward computation, we get
the Jacobian determinant

o(m* E, 1,1 4A 4v/RvVO
(P EPL) _ Adpps_  WRVE
a(pt’prvpﬁ’ p(p) P p
Consequently,
dm*dEdIPdl, = 4(mdm)dE(ldl)dl,
4v/RVO
= pozdprdpedpfp- (Al1)

For the motion confined to the equatorial plane
ps =0 =0, and hence I* — (I, — aE)* = 0. This moti-
vates the following definition,

l,—aFE
l b
and thus dI, = \/I> — (I, — aE)*do. The momentum inte-

gration element reads

sine =

(Al12)

p*\/I* = (I, — aE)?

VRVO

dp.dp,dpydp, = (mdm)dE(ldl)do.
(A13)

At the equatorial plane we get simply

PP =aBP _ 7 At
VRV© VR

Finally,

dvol,(p) = ﬁ (mdm)dE(ldl)do,

where ¢ =+x/2 and we have used the fact that

—det(¢™) = 1/r* and VO = \/I* — (I, — aE)? at the
equatorial plane. In order to control the sign of ¢ at the
equatorial plane we assume a convention with / > 0 and
l=¢€,(l,—aE) or, equivalently, [, =¢,l+ aE. Thus
o = e,r/2. This yields, at the equatorial plane,

(A15)

R(r) = (rPE — e,al)* — A(m?*r? + I?)

= M*m*R(¢), (A16)
where R(¢) is given by Eq. (23).

Using dimensionless variables (21) we get, at the
equatorial plane,

3
dvol,(p) = m~—dmd8d/1d0'.

VR(E)

In order to compute integrals (A6) and (A7), one needs to
invert relations (A9). For the motion confined to the
equatorial plane outside of the black hole horizon, one gets

(A17)

p; = —E = —me, (A18)
VR e,mVR
pr:€r—:ﬁ7 (Alg)
A E-2%+a
Po =0, (A20)
Py =1, =€l +aE = Mm(e,A+ae), (A2l)

where we have expressed the results in terms of m, €, and 4.
It is also convenient to have an explicit expression for p”,
which reads

e,mVR
We now take
F = A8(m — my) % [6(c —7/2) + 6(c + n/2)]
m
x exp(—pe) (A23)
and
F =8 = o)l = 2/2) + 3(o + x/2)
= oM m—mg)|6(c —x c+n
) (6’ - g) exp(—pe). (A24)
Note that at the equatorial plane
£ (0~ 5/2) + 60 + 7/2)] = 8(p.).  (A29)
This relation follows from equations p, = —rp, and

I* = p}+ (p, + ap,)?, which are satisfied at the equato-
rial plane. Thus

lcoso
P;: = —€y s
’

(A26)
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where ¢y is the sign of py. One can check that F given by
Eq. (A24) satisfies Eq. (AS8).
This gives

Z Amof/exp —pe)

decm (A27)

()

A 3
]r(é:) = Z 52 mOf 2

€, exp(—pe)dedA, A28
Ao [eesn(pe) (A28)

Jo(§) =0, (A29)
- mie [ exp(—pe) % dedn. (A30
> Am 05/ p(=pe) 7RG e (A30)

e,==+1

in agreement with Eqgs. (43).

In the same four-dimensional setup we can also recover
the formulas for the accretion rates. A unit vector normal to
the boundary r = r; and tangent to the hypersurface of
constant time has the components 71, = (0, £¢/ VA0, 0).
The determinant of the metric induced at r = r; reads
dety = Ag? sin? 0.

The flux of the vector field V# through the boundary at
r = r; can be written as

/ d*y+/|dety|n, V¥ =+ / dtdfdpe*singV’, (A31)

where, as in our previous calculation, we choose the minus
sign. This gives rise to the accretion rate

V=- / d0dgo? sin OV (A32)

For the current V* confined to the equatorial plane with
Vi'=V"§(z)=V"8(0—x/2)/r, where V" does not depend
on 0, we get

V=-r / dpV'. (A33)

The remaining part of the derivation follows the footsteps
of our three-dimensional calculation. The only difference is
that in the four-dimensional case, the conserved vector
currents are given by J¥, T+, &, and T#, y", where the
Killing vectors associated with the four dimensional metric
g have the components & = (&, &, &%,&7) = (1,0,0,0)
and y* = (', ", 4% x*) = (0,0,0,1). This again leads to
accretion rates defined as in Egs. (79)—(81).

APPENDIX B: MAXWELL-JUTTNER
DISTRIBUTION FOR THE GAS CONFINED
TO A SINGLE PLANE IN THE
MINKOWSKI SPACETIME

Thermodynamic relations characterizing the Maxwell-
Jiittner distribution in arbitrary dimensions are given, e.g.,
in [21], Sec. 3.3. In this appendix we derive some of these
relations for 2 4+ 1 dimensions, and we do so mainly to
keep the same conventions as in the remainder of this paper.
In particular, we compute the rest-mass surface density of a
gas in thermal equilibrium, confined to a single plane in the
Minkowski spacetime, as well as the corresponding energy
surface density.

We work in Cartesian coordinates (7,x,y,z). The
Minkowski metric has the form

g = —di* +dx* + dy* + dz*. (B1)
We assume the same notation as in Appendix A. The
particle current density is denoted by [J#, and the energy-
momentum tensor by 7#*. They are defined by Eqgs. (A1)
and (A2) with dvol,(p) = dp,dp.dp,dp,. Surface quan-
tities J# and T are defined as in Egs. (A5). Distribution
functions F and F are related by Eq. (A4).

The Maxwell-Jiittner distribution of the gas confined to a
single plane z = 0 is defined by the distribution function

F = A8(\/=pup" — mg)3(p.) exp (mﬂo pt)
= Aé(\/ pi—p* - mo)é(pz) exp <mﬁopz>- (B2)

The rest-mass density is equal to —my 7. The rest-mass

surface density, used in this paper, reads p, = —mgJ,.
Similarily, the energy density equals —7,, and the energy
surface density is given by &, = —T",.

The component J, can be computed as
Ji=A / 5(\/19? -p’ - mo)é(pz)
p
X exp (m_o p: | pdpdpdpydp,,  (B3)

where p? = pZ + p2 + p2, and where we only take into
account future-pointing momenta. In the first step we use
the identity

m
5(\/p2—p2—m0):70 5(p +\/m(2)—|—p2). (B4)
! Vmi+p? !

Integrating over p,, we obtain
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4
J; = —Amg / 5(p.) exp <—m—0\/m% +p° |dpdpydp..

(B5)

Next, a straightforward integration over p, gives

b
Jt:—AmO/exp<—m—O mg+p2+p? |dp,dp,. (B6)

The next step is standard—we change momentum coor-
dinates (p,, p,) to polar ones (£, 9), defined by p,={cos,
py={¢sind. This gives dp,dp, = {ddd{, where
p?+ p? = {*. Hence,

J,:—27zAm0/ooexp <—’f\/m(2)—|—g:2> ¢dg. (B7)
0

0

We can now substitute y = %\/m% + &%, Thus, {d¢ =
(mo/B)*xdy, and

2mAm} [
Ji==" 0/ exp (=x)xdy
B

1+p

= —275Am8ﬂ—26xp(—ﬂ). (B8)
The particle number surface density reads
1+p

ng= 27[Am876Xp(—ﬁ), (Bg)

and the rest-mass surface density can be expressed as
Ps = Mol.

In a similar fashion, one can compute the expression for
the energy surface density

g=-T"=—- / F(p,)p'pdp,dp.dp,dp,.  (B10)

where F(p,) is given by Eq. (B2). The result reads

2428+

e = 2mAmy 7 exp(—p). (B11)

It is also worth noticing that the equivalent of the
pressure, i.e., Py =T*, =T", reads

Py = /F(pv)pxpxdpzdpxdpydpz (B12)
1
— 2nAm ;f exp(—p). (B13)
Thus,
Pv my
LT, (B14)

We see that the two-dimensional Maxwell-Jiittner distri-
bution gives rise to the standard ideal gas equation.
The specific enthalpy associated with the two dimen-
sional Maxwell-Jiittner distribution is
e+ Py, 34304 p
PRy

These results should be contrasted with the standard
formula obtained for the gas not restricted to one plane, but
filling the whole space uniformly. In the latter case, we
assume

F= A’5(\/p? -p° - mo) exp (mﬂopt) (B16)

This gives, as before

T =-A'my / exp <_m£ \V m(z) + p2> dp.dpydp..
0

(B17)

(B15)

Changing to spherical-momentum coordinates we get

j,:—47zA'mOA°oeXp (—mﬁ\/m(z)—FCz)Cde. (B18)

0

The substitution y = % \/m3 + {* now gives

AzA'm? [ A%
T =- O/ﬂ exp(—x)x <—> - ldy

B p
= —4zA'mg Kzﬂ(ﬂ) .

Thus, the particle number density for the three-dimensional
Maxwell-Jiittner distribution can be written as

K> (p)

n=4rA'mi——=.

p

(B19)

(B20)
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