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Binary neutron star mergers, which can lead to less massive black holes relative to other known
astrophysical channels, have the potential to probe modifications to general relativity that arise at smaller
curvature scales compared to more massive compact object binaries. As a representative example of this,
here we study binary neutron star mergers in shift-symmetric Einstein-scalar-Gauss-Bonnet gravity using
evolutions of the full, nonperturbative evolution equations. We find that the impact on the inspiral is small,
even at large values of the modified gravity coupling (as expected, as neutron stars do not have scalar
charge in this theory). However, postmerger there can be strong scalar effects, including radiation. When a
black hole forms, it develops scalar charge, impacting the ringdown gravitational wave signal. In cases
where a longer-lived remnant star persists postmerger, we find that the oscillations of the star source levels
of scalar radiation similar to the black hole formation cases. In remnant stars, we further find that at
coupling values comparable to the maximum value for which black hole solutions of the same mass exist,
there is significant nonlinear enhancement in the scalar field, which if sufficiently large lead to a breakdown
in the evolution, seemingly due to loss of hyperbolicity of the underlying equations.
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I. INTRODUCTION

Recent breakthroughs in gravitational wave astronomy
have allowed for unprecedented tests of general relativity
(GR) in the strong field regime [1,2]. However, a crucial
step in being able to perform the most sensitive searches for
modifications to GR, or in the absence of deviations, place
the most stringent constraints, is obtaining predictions in
alternative theories, in particular in the strong field regime.
A common feature of many proposed modifications to

GR is that they show the strongest effects in the presence of
the shortest curvature lengths. This is a natural consequence
of adding additional curvature terms to the Einstein-Hilbert
action multiplied by constants whose dimension are some
positive powers of length, as in dynamical Chern-Simons
gravity [3], the most generic of the Horndeski class of
theories [4], or theories that add terms constructed out of
higher powers of the Riemann tensor without introducing
additional light degrees of freedom [5,6]. An ideal way to
look for evidence of, or to constrain, such theories is by
observing the smallest mass compact objects.
The vast majority of observed galactic black holes have

masses > 5 M⊙ [7], with the candidate lowest mass black
hole having amass 3.3þ2.8

−0.7 M⊙ [8], leading to a hypothesized
so-called lower-mass gap between the highest mass neutron
star and the lowest mass black hole. The gravitational wave

event GW190814 from a binary with a 2.6 M⊙ compact
object [9], which could potentially be a neutron star or black
hole, has renewed debate about the lower-mass gap, though
population models currently have difficulty explaining such
a low-mass black hole [10]. Although there are a number of
speculative or exotic formation channels that could lead to
lowmass black holes, one likely way to form a black hole of
mass ∼3 M⊙ is from the merger of a binary neutron star. In
this work, we study how binary neutron star mergers can be
used to probe a representative modified gravity theory,
Einstein-Scalar-Gauss-Bonnet (ESGB) theory, which intro-
duces modifications to GR at small curvature length scales
(corresponding to sufficiently high curvature).
There have been numerous studies of neutron star

mergers in theories that do not modify the principal part
of the Einstein equations, in particular scalar-tensor theo-
ries. Here, it is the introduction of a new scalar degree of
freedom that mediates a prescribed conformal rescaling of
the metric, rather than a modification of the Einstein
equations themselves, that can lead to novel physics. For
example, neutron stars typically develop scalar charge,
which can lead to dipole radiation in a binary system
containing a charged neutron star. The lack of any observed
signatures of this in binary pulsar systems give tight
constraints on such scalar-tensor theories [11,12].
However, there are some notable examples where such
pulsar systems may not be strongly affected by scalar
modifications at their current separations, yet where there
could be significant modifications to the late inspiral or
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merger phase. For example, scalar-tensor theories with
screening mechanisms [13–15], or in the class of scalar-
tensor theories developed by Damour and Esposito-Farèse
[16,17], where in some cases only neutrons above a
certain mass can develop scalar charge (so-called
“spontaneous scalarization”), or even only develop this
charge in the late stages of inspiral (“dynamical scalari-
zation”) [18,19]. Though the observation of a ∼ 2 M⊙
neutron star in orbit with a white dwarf severely constrains
even this class of scalar-tensor theory [20], there is still
some theoretical maneuvering that can evade these con-
straints, for example by giving the scalar field a small
mass [21].
In contrast, full compact object mergers in modified

theories that do change the principal part of the Einstein
equations have been less well studied, in part because of
difficulties with finding well-posed formulations of the
evolution equations of such theories. In this work, we take
advantage of recent advances in solving the full equations
of shift-symmetric ESGB gravity to study binary neutron
star mergers, as well as the collapse of isolated, hyper-
massive neutron stars to black holes. In particular, we use
the modified harmonic formulation [22,23] and the meth-
ods developed in Ref. [24] for evolving binary black holes
in Horndeski theories. For a recent, detailed review,
see Ref. [25].
To our knowledge, the only prior numerical study of the

dynamics of neutron stars within ESGB gravity is the work
of Ref. [26], where the collapse of a neutron star to a black
hole in the decoupling limit of ESGB gravity was consid-
ered (see related earlier work in Ref. [27] where
Oppenheimer-Snyder collapse of a pressureless fluid was
examined). In the decoupling limit, the backreaction of
the ESGB scalar is ignored and the ESGB scalar is evolved
on the pure-GR background of a collapsing neutron star
spacetime. Though this approach, as detailed in Ref. [26],
gives important information regarding the growth of scalar
hair about the nascent black hole, it is unable to address at
least two important questions: what the potential gravita-
tional wave signatures of ESGB gravity are (the scalar
radiation is by itself not measurable with present detectors),
and what the realm of validity of the small coupling
approximation is (including what happens when this
approximation is no longer valid).
Regarding potential observational signatures, an inter-

esting aspect of ESGB gravity is that neutron stars carry no
scalar charge, yet black holes do. (Though note, as
discussed below, stationary black hole solutions only exist
above a minimum mass set by the coupling scale of the
theory.) Similar to the class of Damour-Esposito-Farèse
scalar-tensor theories mentioned above, this then implies
ESGB gravity can easily evade binary pulsar system
constraints, and instead one would need to look to compact
object merger dynamics to uncover signs of it (or hope for
the discovery of a galactic black hole-pulsar binary).

There has been much work constraining ESGB gravity
with binaries containing one or two black holes (see, e.g.,
Ref. [28–30] and references therein), with the upshot, as
discussed further in Sec. III B, that they constrain the
relevant coupling length scale (

ffiffiffiffiffiffiffiffi
αGB

p
, defined below) to be

on the order of a kilometer or less. The effect of ESGB
modifications on the neutron star maximum mass and tidal
deformability has also been considered [31], though this is
more difficult to separate from the unknown neutron star
equation of state. Since the smallest compact objects offer
the best probes of ESGB gravity, barring the confirmed
existence of subsolar mass black holes of primordial or
other exotic origin, it seems likely that observing gravita-
tional waves from compact object mergers will continue to
be able to place the tightest constraints on ESGB gravity.
As the majority of theoretical work has focused on black

hole binaries in ESGB gravity [24,32–38], there still is an
open question regarding whether binary neutron star
mergers could give comparable or better constraints than
the typical merger involving a black hole. This could either
be due to the formation of a small, scalar-charged black
hole post merger, or in the late stages of inspiral, merger,
and evolution of a hypermassive neutron star remnant,
where nonlinear or strong coupling effects could be
significant (and note that, unlike with spontaneous scala-
rization, a neutron star in ESGB gravity will have a scalar
cloud around it sourced by the Gauss Bonnet (GB)
curvature—it is just that this cloud falls off much more
rapidly than the 1=r decay that would be required for the
neutron star to register a scalar charge).
The main goal of this paper is to begin to address the

questions just posed. Qualitatively, the answers suggested
by our results are mixed in this regard. On the optimistic
side, the apparent breakdown of hyperbolicity in the
evolution for large values of the ESGB coupling suggest
that a typical binary neutron star merger, even without
assuming black hole formation, pushes shift-symmetric
ESGB past the breaking point of theory unless

ffiffiffiffiffiffiffiffi
αGB

p
of

≲1 km, comparable to the best existing constraints from
mergers containing a black hole. Less optimistic are if one
hopes to do better than this by measuring details of the
gravitational wave emission. We find that the effects of
ESGB on the gravitational wave emission show up pri-
marily in the postmerger signal: for a hypermassive
remnant, the oscillating high density core can excite the
scalar field, and for prompt collapse to a black hole the
ringdown signal is affected by the development of scalar
charge. However, even for strong couplings close to the
maximum allowed, these appear sufficiently minor that it
may be difficult to disentangle the effects of departures
from GR from parameter uncertainties or limited knowl-
edge of the neutron star equation of state (though a more
quantitative analysis, beyond the scope of this paper, would
be needed for more conclusive answers). Adding to the
challenge, these parts of the gravitational wave signal are at
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high frequencies that ground-based detectors are less
sensitive to.
In earlier, full nonlinear studies of collapse and black holes

in ESGB gravity [24,36,39–42], it was found that when the
coupling ismade too large, the hyperbolicity of the evolution
equations breaks down prior to any singular behavior
developing in the metric or scalar field. Here we find
evidence this can happen in neutron star mergers not only
when a black hole forms, but also during the postmerger
oscillations of a remnant star, with apparent breakdown in the
latter occurring at comparable but somewhat larger values of
the coupling constant compared towhen it does during black
hole formation. (Though unlike the spherically symmetric
studies in [39,40], here we do not explicitly compute the
characteristics of the full system, and only surmise that this is
the cause of the breakdown of our numerical evolutions.) In
other words, even though exceeding the weak coupling limit
in ESGB gravity has dire consequences for well-posedness
of the theory, approaching this limit in a dynamical setting
does not appear to be preceded by novel or dramatically
different spacetime/scalar field dynamics compared to far-
from maximum coupling.
An outline of the remainder of this paper is as follows.

We review shift-symmetric ESGB, the gravity theory we
consider here, in Sec. II; we describe our methods for
numerically evolving this theory coupled to hydrodynamics
and analyzing the results in Sec. III; we present results from
our study of neutron star mergers and collapse of unstable
hypermassive neutron stars in Sec. IV; and we discuss these
results and conclude in Sec. V. Unless otherwise noted, we
use geometric units with G ¼ c ¼ 1.

II. SHIFT-SYMMETRIC EINSTEIN SCALAR
GAUSS BONNET

The action for shift-symmetric ESGB gravity is given by

S ¼ 1

8π

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
ð∇ϕÞ2 þ λϕG

�
þ Smatter; ð1Þ

where g is the determinant of the spacetime metric, G is the
GB scalar, given in terms of the Riemann tensor and its
contractions as

G ≔ R2 − 4RabRab þ RabcdRabcd; ð2Þ

λ is a coupling constant with dimensions of length squared,
ϕ is the scalar field, and Smatter is the action for any other
matter (in our case, the neutron star fluid). The equations of
motion are given by

□ϕþ λG ¼ 0; ð3Þ

Rab −
1

2
gabRþ 2λδefcdijgðagbÞdR

ij
ef∇g∇cϕ ¼ 8πTab; ð4Þ

where δabcdefgh is the generalized Kronecker delta and Tab ¼
Tmatter
ab þ TSF

ab with

TSF
ab ≔

1

8π

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�
: ð5Þ

The other matter equations of motion are not affected by the
GB term, and are the same as in GR.
In this theory, stationary black holes have nonzero scalar

charge QSF. That is, at large radius, the scalar field falls of
like ϕ ¼ QSF=rþOð1=r2Þ. Furthermore, studies have
found that for a given black hole mass and spin there is
a maximum value of λ, above which stationary solutions no
longer exist. For a nonspinning black hole, λ ⪅ 0.23M2

[43], where M is the total mass, as measured at infinity,
while for dimensionless black hole spins a ¼ 0.7 and 0.8,
λ=M2 ⪅ 0.19 and 0.16, respectively [44].
Neutron stars, in contrast to black holes, do not have

scalar charge in ESGB gravity. Recalling the argument
given in Ref. [32], if one assumes a stationary, asymptoti-
cally flat star solution and integrates Eq. (3) over the four-
dimensional spacetime manifold, this gives

Z
□ϕ

ffiffiffiffiffiffi
−g

p
d4x ¼ −λ

Z
G

ffiffiffiffiffiffi
−g

p
d4x ¼ 0; ð6Þ

with the last equality following from the fact that the
integral of the Gauss Bonnet (GB) curvature is a topologi-
cal invariant. Using stationarity to drop the time integration,
and applying Stoke’s theorem to the remaining spatial
volume integral, we obtain a surface integral at spatial
infinity contracted with the unit normal to the surface,

Z
n̂ið∂iϕÞ

ffiffiffiffiffiffi
−g

p
dS ∝ QSF ¼ 0: ð7Þ

Note that this argument does not apply to the black hole
case due to the breakdown of the regularity of the solution
in the black hole interior.

III. METHODOLOGY

A. Evolution

We evolve the full, nonperturbative, shift-symmetric
ESGB equations in the modified generalized harmonic
formulation [22,23] using the implementation and methods
of Ref. [24]. In this formulation, there are two additional
auxiliary metrics ĝab and g̃ab, which, respectively,
determine the light cone for the gauge and constraint
propagating modes. As in Ref. [24], we choose g̃ab ¼
gab − ð1=5Þnanb and ĝab ¼ gab − ð2=5Þnanb, where gab is
the physical metric, and na is the future-directed unit
normal to slices of constant time. The gauge we use is
the modified (by the auxiliary metric) version of the
damped harmonic gauge [45,46].
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We model the neutron stars using ideal hydrodynamics.
The Euler equations are unmodified from the GR case (only
the metric going into the equations will be different than in
GR), and we use the hydrodynamics code of Ref. [47] to
evolve the fluid, and in particular, we use the same methods
and parameters for evolving binary neutron stars as in
Ref. [48]. In the Appendix, we provide details on the
numerical resolution and convergence.

B. Initial data and cases considered

We use quasicircular binary neutron star initial data
constructed with the Compact Object CALculator (COCAL)
[49,50]. For the scalar field, we choose ϕ ¼ ∂tϕ ¼ 0 on the
initial time slice, in which case the constraint equations of
ESGB are the same as in GR. This means that at the
beginning of the evolution there will be a short transient
associated with the scalar field evolving to a nonzero value
in the presence of the neutron stars. For the binary neutron
stars, we use a piecewise polytropic form of the DD2
EOS [51].
We focus on equal mass binary neutron stars with an

initial separation of 45 km, approximately four orbital
periods before merger. We consider two values for the total
mass of the system: M ¼ 3.0 M⊙, which gives rise to a
longer-lived hypermassive remnant; and M ¼ 3.45 M⊙,
which promptly collapses to a black hole postmerger. We
consider ESGB coupling parameters approaching, and in
some cases exceeding, the maximum values where our
evolutions break down, which depends on whether black
hole formation occurs. For the longer-lived remnant cases,
we consider ESGB coupling parameters λ=M2 ¼ 0, 0.04,
0.08, 0.2, 0.25, and 0.3, while for the prompt black hole cases
we consider smaller values of λ=M2 ¼ 0, 0.02, and 0.03.
We also consider the axisymmetric collapse of uniformly

rotating hypermassive neutron stars. For initial data, we use
a stationary (in GR) but unstable star solution constructed
using the RNS code [52] with the piecewise polytropic
representation of the ENG EOS [53] from [54] with a mass
M ¼ 2.64 M⊙ and a dimensionless spin of 0.7. The
collapse of this model in GR was previously considered
in Ref. [55]. For this scenario, we consider ESGB coupling
parameters λ=M2 ¼ 0, 0.05, 0.065, and 0.08.
For ease of comparison with other works, we convert our

coupling λ into the αGB ≔ λ=
ffiffiffiffiffiffi
8π

p
used in, e.g.,

Refs. [29,30],1 and restore physical units. We have that

ffiffiffiffiffiffiffiffi
αGB

p
≈ 1.98 km

�
λ1=2

M

��
M

3 M⊙

�
: ð8Þ

For reference, in Ref. [30], a constraint of
ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.2 km
(90% confidence level) is found by comparing several

black hole-neutron star and binary black hole gravitational
wave signals to post-Newtonian results for ESGB.

C. Diagnostic quantities

To determine the gravitational wave signal, we compute
the Newman-Penrose scalar Ψ4 on coordinate spheres at
large radii (r ¼ 100M), and decompose this quantity into
spin −2 weighted spherical harmonics.
In addition to the gravitational waves, we also analyze

several quantities related to the scalar field. Considering just
the canonical scalar stress-energy tensor,we calculate several
associated quantities, including the associated energy,

ESF ≔ −
Z

ðTt
tÞSF

ffiffiffiffiffiffi
−g

p
d3x; ð9Þ

and energy flux through a surface in the wavezone,

_ESF ≡ −
Z

αðTi
tÞSFdAi; ð10Þ

where α is the lapse. We note that TSF
ab is not conserved, and,

for example, even for an isolated black hole with scalar
charge in ESGB, ESF will only account for a fraction of the
difference between the global mass and black hole horizon
mass. We also consider the value of ϕ on a sphere at large
radius r ¼ 100M, using its average value to calculate the
scalar charge, aswell as calculating the value of other (spin 0)
spherical harmonics.

IV. RESULTS

We follow the evolution of three different scenarios: a
binary neutron star that promptly collapses to a black hole
after merger, a binary neutron star that forms a massive
remnant star at merger, and the collapse of an unstable
uniformly rotating hypermassive neutron star. The last
mentioned case approximates the scenario where a post-
merger remnant star collapses to a black hole on long
timescales (on the order of 100 ms [59]), after sufficient
cooling and the dissipation of differential rotation. For all
these scenarios, we vary the ESGB coupling αGB all the
way up to near the maximum value where we are able to
carry out the evolution and analyze the impact on the
gravitational wave and scalar radiation.
The more massive binary neutron star merger

(M ¼ 3.45 M⊙) is shown in Fig. 1. After ∼ 3–4 orbits,
the binary merges and promptly forms a black hole which
rings down. The l ¼ m ¼ 2 component of the scalar field
(bottom panel of Fig. 1) shows similar behavior to the
gravitational waves in both the inspiral and ringdown.
However, the scalar radiation is not significant enough to
lead to any noticeable dephasing in the inspiral for these
parameters, and the gravitational wave signals for different
values of αGB are indistinguishable on the scale of the plot,
except during the ringdown. This is consistent with the fact

1Some other Refs. [33,56–58] use a convention that gives a
value of αGB that is 16

ffiffiffi
π

p
times higher.
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that the neutron stars do not have a scalar charge, and that
scalar charge only develops after the black hole forms. This is
illustrated inFig. 2wherewe showQSF, asmeasured from the
average scalar field value at large distances. There it can be
seen that the scalar charge only settles to its final value∼1 ms
after the peak of the gravitational waves, while the period of
gravitational waves during ringdown is ≈ 0.2 ms.
Perturbation theory [56–58] predicts that the real fre-

quency of the fundamental l ¼ 2, m ¼ 2 quasinormal
mode of a black hole in ESGB gravity will have a smaller
real frequency as the coupling increases, and that the effect
should be < 1% for the values we consider here.2 Though

the effect on the frequency and decay rate (imaginary
frequency) of the ringdown is small, and difficult to reliably
quantify here, the most noticeable effect is a suppression in
the overall amplitude of the ringdown gravitational wave
signal with increasing GB coupling, as shown in the bottom
panel of Fig. 2, which occurs as the black hole develops a
scalar charge. The highest value of the ESGB coupling we
consider for the prompt collapse case is

ffiffiffiffiffiffiffiffi
αGB

p ≈ 0.39 km.
This should be compared to the maximum value for which
there exists stationary black hole solutions with the same
mass and spin (aBH ≈ 0.8 here), which is

ffiffiffiffiffiffiffiffi
αGB

p ≈ 0.91 km.
We also consider a less massive binary neutron star

merger with M ¼ 3 M⊙ that forms an oscillating hyper-
massive remnant star. We show the gravitational and scalar
radiation in Fig. 3. Without evolving to presumed late-time

FIG. 1. Gravitational wave radiation (top) and scalar radiation
(bottom) for a binary neutron starmerger that promptly collapses to
black hole. In particular, we show the real part of the l ¼ m ¼ 2
spherical harmonic of the Newman-Penrose scalar Ψ4 and ϕ.
The inset in the top panel shows the small differences during the
ringdown. Time is measured in milliseconds with respect to the
time when the gravitational wave luminosity is maximum tpeak.

FIG. 2. Top: The scalar charge QSF, as measured from the
average scalar field value at large distances, as a function of time,
for the binary neutron star mergers that promptly collapse to a
black hole. Bottom: The amplitude of the l ¼ m ¼ 2 spherical
harmonic Ψ4 for the same time interval. During the black hole
ringdown, the

ffiffiffiffiffiffiffiffi
αGB

p ≈ 0.3 km and 0.4 km cases have amplitudes
that are, respectively, ∼ 10% and ∼ 30% smaller, compared to
αGB ¼ 0 (GR). In both panels, time is measured with respect to
the same tpeak as in Fig. 1.

2We note that the results of Refs. [56–58] are obtained for
Einstein-dilaton-Gauss-Bonnet gravity, which is equivalent to
ESGB only for small values of ϕ, and make use of a small black
hole spin expansion, and thus are only approximately applicable
to the cases studied here.
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black hole formation, we are able to evolve cases with
significantly larger values of αGB in comparison to the
prompt collapse case. In the top panel of Fig. 3, starting

slightly before merger, and continuing to the postmerger
oscillations, there is some noticeable dephasing in the
gravitational waves for the highest coupling case withffiffiffiffiffiffiffiffi
αGB

p ≈ 0.89 km.3 This difference will show up at high
gravitational wave frequencies (in the kilohertz regime).
We note that a value of

ffiffiffiffiffiffiffiffi
αGB

p ≈ 0.95 km would exclude
even a nonspinning (static) black hole solution with mass
3 M⊙. The scalar radiation also tracks the neutron star
oscillations evident in the gravitational waves.
In this

ffiffiffiffiffiffiffiffi
αGB

p ≈ 0.89 km case, the initial data transient
from the scalar field going from zero to nonzero in the
vicinity of the star also induces measurable (yet small)
oscillations in the fundamental fluid mode of the star,
known as the f-mode, which in turn cause scalar radiation
during the inspiral. This is evident in the bottom panel of
Fig. 3. (N.B. the higher vertical axis scale in Fig. 3
compared to Fig. 1.) In this case, these f-mode oscillations
are an artifact of the initial conditions, though similar
oscillations can arise through tidal excitations, for example
in eccentric neutron star mergers [62–65].
We further compare the collapsing and longer-lived

remnant star cases in Fig. 4. In both cases, the luminosity
of the scalar radiation is always subdominant to the
gravitational radiation, and the former peaks after the latter
(top panel).
In the longer-lived remnant case, for higher values of the

GB coupling than discussed above, in particular forffiffiffiffiffiffiffiffi
αGB

p ≳ 1 km, we find a nonlinear enhancement in the
scalar field, which reaches values > 0.1 (in units of the
Planck mass) postmerger, and causes our evolution to
breakdown before there is any sign of collapse to a black
hole. This is illustrated in Fig. 5, where we show the scalar
field energy and maximum field magnitude for several
values of the coupling. Postmerger, these quantities
oscillate with the remnant star. After rescaling for the
test-field dependence on coupling, we can see that there is a
mild nonlinear enhancement in these quantities forffiffiffiffiffiffiffiffi
αGB

p ≈ 0.89 km, which becomes strongly nonlinear forffiffiffiffiffiffiffiffi
αGB

p ≈ 1.0 km. For the highest coupling considered
(

ffiffiffiffiffiffiffiffi
αGB

p ≈ 1.1 km), the blow up in the scalar quantities
happens during the first oscillation, while for a slightly
smaller value (

ffiffiffiffiffiffiffiffi
αGB

p ≈ 1.0 km) it happens during the
second oscillation. For both of the cases, we are unable
to continue the evolution further. This could be related to a
breakdown in the hyperbolicity of the ESGB equations,
either in the theory itself, or in our particular formulation
and choice of gauge, though further work would be
needed to demonstrate this. Assuming this is due to

FIG. 3. As inFig.1,weshowthegravitationalwave radiation (top)
and scalar radiation (middle), but for a binary neutron star merger
that forms a longer-lived remnant star (though notice the different
axis scales compared to Fig. 1). For interest, we also show the
characteristic gravitational wave strain versus frequency for these
three cases (bottom), if observed face on at a distance of 40 Mpc,
together with the advanced LIGO sensitivity design curve [61].

3Achieving small phase errors in the postmerger phase of
binary neutron simulations is still an open problem, see, e.g.,
Ref. [60], and this comparison should be treated as an upper
bound on the gravitational wave dephasing assuming that the
dominant truncation error is similar comparing ESGB to GR
simulations performed at the same resolution.

WILLIAM E. EAST and FRANS PRETORIUS PHYS. REV. D 106, 104055 (2022)

104055-6



breakdown of hyperbolicity, similar to arguments con-
straining

ffiffiffiffiffiffiffiffi
αGB

p
based on the smallest observed black hole,

the observation of a binary neutron star postmerger without
apparent anomalies can set a constraint on

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1 km.
However, an alternative perspective might be that ESGB is
only an approximation to a more complete gravity theory,
and these cases may merely lie in the regime where
additional corrections need to be taken into account.
We show snapshots of the density, GB curvature, and

scalar field around the time jϕj reaches a local maximum
during the oscillations in the post-merger remnant in Fig. 6.
At the center of the star, coincident with high density, the
GB curvature reaches a magnitude that is only a factor of 2

smaller than the value at the horizon of a nonspinning black
hole (G ≈ 2 × 10−3 km−4 for a Schwarzschild black hole
with M ¼ 3 M⊙), though with the opposite sign. In turn,
the scalar field is also negative with largest magnitude at the
center of the star. The maximum positive value of the GB
curvature is ∼ 4× smaller in magnitude than the maximum
negative value and occurs near the surface of the star.

A. Collapse of isolated hypermassive neutron stars

One possible outcome for a binary neutron star merger is
that the remnant star undergoes a delayed collapse to a black
hole, which happens only after gravitational radiation, cool-
ing, viscosity, and other dissipative effects have sufficiently
reduced the differential rotation and thermal support of the
star. To cover this scenario, we consider the collapse of a

FIG. 5. The canonical scalar field energy ESF (top panel) and
the minimum scalar field value ϕmin at a given time (bottom
panel) around merger for the longer-lived remnant case and
different values of the GB coupling. We have scaled both
quantities so that they would agree with the highest coupling
case (λ=M2 ¼ 0.3 or equivalently

ffiffiffiffiffiffiffiffi
αGB

p ≈ 1.1 km) assuming the
test-field dependence on the coupling. For the cases with the two
highest couplings, we were unable to continue the evolution past
the point shown.

FIG. 4. Comparison of neutron star mergers with two different
values of total mass: M ¼ 3.4 M⊙ (leading to prompt collapse to
a black hole) and M ¼ 3 M⊙ (leading to a longer-lived remnant
star), and different values of the GB coupling. Top: The scalar
(solid curves) and gravitational (dashed curves) radiation from
neutron star mergers that promptly collapse (black curves), and
ones that form a longer-lived remnant (red curves). Bottom: A
comparison of the canonical scalar field energy ESF as a function
of time for several mergers exhibiting prompt collapse or a
longer-lived remnant, and with various values of the GB
coupling. In all cases, the curves have been aligned in time at
the gravitational wave luminosity peak.
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uniformly rotating hypermassive neutron star with mass
2.64 M⊙ and dimensionless spin 0.7. The star is an unstable
equilibrium solution in GR and rapidly collapses to a black
hole, with the collapse induced either by truncation error
(whenαGB ¼ 0) or by the perturbation induced on the star by
the modified gravity (when αGB ≠ 0).
As above, in ESGB gravity the compact object develops

a scalar charge as it collapses to a black hole and rings
down to a stationary black hole (with scalar hair) solution.
Also as found in the neutron star mergers, the scalar field is
negative, but with growing magnitude at the center of the
collapsing star, coinciding with the negative GB curvature.
However, as the black hole forms, this region is hidden, and
the magnitude of ϕ is peaked at a positive value in the
vicinity of the black hole horizon, which grows towards its
asymptotic value as the black hole settles down. This is
illustrated in Fig. 7. Similar to the prompt collapse
following a neutron star merger (Fig. 2), the development
and settling of the scalar charge to its final value takes place
over ≈ 0.5–1 ms.
This transition is accompanied by a burst of scalar

radiation, as shown in Fig. 8. In this case, where the
gravitational wave radiation is almost entirely from black
hole ringdown, the peak scalar radiation slightly precedes
the peak gravitational luminosity (as opposed to the
gravitational wave signal being peaked at merger, and
the peak scalar radiation following, as in Fig. 4).
The gravitational wave ringdown, and its dependence on

the GB coupling, is illustrated in Fig. 9. There it can be seen
that as the coupling is increased, the gravitational wave
amplitude also increases, which may in part be an artifact of
using as initial conditions a solution that is an unstable
stationary solution when αGB ¼ 0, so the development of a
scalar field hastens the collapse to a black hole. We are not
able to discern the expected shift in the frequency of the
quasinormal mode here—in fact the trend in Fig. 9 is
towards a small decrease in period between successive
peaks for larger coupling. This is most likely because the

FIG. 6. Snapshots of rest-mass density ρ (left), the GB curvature scalar G (center), and the scalar field ϕ (right) for the case with
M ¼ 3 M⊙ and

ffiffiffiffiffiffiffiffi
αGB

p ≈ 0.89 km at a time following the merger (peak of the gravitational wave luminosity) t − tpeak ≈ 4 ms. What is
shown is a zoom-in of the postmerger remnant star, where the coordinate distance of the linear dimension of each plot is ≈ 44 km.

FIG. 7. The minimum and maximum value of the scalar field
over the domain (excluding the black hole interior, top panel) and
scalar charge QSF (bottom panel) from the collapse of uniformly
rotating hypermassive neutron stars with different values of the
GB coupling. The time axis has been shifted to the peak of
the gravitational wave luminosity, and the gray band indicates the
approximate time the black hole forms (measured via apparent
horizon formation).
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biggest effect of changing the GB coupling here, as in the
binary merger case above, is just the amplitude at which
different quasinormal modes (including overtones) are
excited, which could swamp a small effect on the frequency
of the fundamental mode of the final black hole.

V. DISCUSSION AND CONCLUSION

We have used numerical evolutions of the full equations
of ESGB gravity to study binary neutron star mergers,
motivated by the fact that the smaller masses of such
binaries, relative to black hole binaries, may probe mod-
ifications to GR at smaller curvature scales. We find that
during the inspiral, there is scalar radiation, but its amplitude

is suppressed due to the fact that neutron stars do not have
scalar charge in this theory, and the impact on the gravi-
tational wave signal is negligible. This is true even for
values of the GB coupling up to values where there no
longer exist black hole solutions with the same total mass.
We note in passing that the scalar radiation may be
enhanced if the stars become tidally perturbed: we found
that it was significantly larger for stars that exhibited f-mode
oscillations. Though here the excitation of the oscillations
was an unphysical artifact of the initial conditions, in nature
this can occur (for example) during close encounters in
neutron star binaries with orbital eccentricity [62–65].
When the neutron stars merge, the effects due to the

ESGB modifications of GR become more important. The
GB curvature in the remnant star has a maximum magni-
tude that is only a factor of a few less than a black hole of
the same mass, but since there is no horizon, it is peaked at
the center of the star with negative value. This gives rise to a
scalar field profile that is also peaked at the center of the
star, and with opposite sign from a black hole. In the case of
a longer-lived remnant star, the density oscillations of the
star also cause oscillations in the scalar field and produce
scalar radiation. At larger values of the GB coupling, there
is a small decrease in the frequency of the postmerger
oscillations, which in turn affects the phase of the post-
merger gravitational waves.
In shift-symmetric ESGB, there is a minimum mass, in

units of the coupling parameter, for stationary black hole
solutions, and there have been attempts to use the putative
observation of the smallest mass black holes to constrain
the theory. It has been previously shown that from the
perspective of evolution, starting with a vacuum black hole,
or collapsing to a black hole with mass below this threshold
leads to a breakdown in the hyperbolicity of the evolution
equations [40,66]. Here, we find evidence that something
similar may happen in a hypermassive remnant star. In
particular, we find that for a value of the GB coupling only
∼ 30% larger than the value that would exclude a black hole
of the same mass, and that is still marginally consistent with
observations, there is a strong nonlinear enhancement in the
scalar field magnitude, and a breakdown in our numerical
evolution. This is suggestive that we are near the strong-
coupling regime where the ESGB evolution equations may
become elliptic, though a more detailed analysis would be
needed to establish this.
We also considered several cases where a black hole

forms, both promptly following the merger of a binary
neutron star, and by considering the collapse of a uniformly
rotating hypermassive star, the latter of which approximates
the delayed collapse of a remnant after the dissipation of
differential rotation. In both cases, following the appear-
ance of an apparent horizon, the scalar field on the horizon
and the scalar charge at large distances grows and settles
towards its final value on timescales of ∼ 0.5–1 ms. These
cases also allow us to self-consistently study the effect of

FIG. 9. Ringdown gravitational waves, in particular the l ¼ 2
(m ¼ 0) component of Ψ4, from the collapse of a uniformly
rotating hypermassive neutron star with various values of the GB
coupling. The time axis has been shifted to the gravitational wave
peak, as in Fig. 7.

FIG. 8. The scalar luminosity from the collapse of uniformly
rotating hypermassive neutron stars with different values of the
GB coupling. The time axis has been shifted to the gravitational
wave peak, as in Fig. 7.
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modifications to GR on the ringdown gravitational wave
signal of newly formed black holes. Much attention has
been focused on the change in the ringdown frequency of
the final black hole in modified theories of gravity, since
this is a simple quantity that can be calculated in perturba-
tion theory without a detailed understanding of the merger
dynamics in the modified theory. However, for the cases
considered here, the frequency shift is small, and we find
that the dominant effect is actually a change in the
amplitude of the black hole perturbation that lead to the
ringdown signal. This is an additional observational sig-
nature of modified gravity that can be potentially leveraged,
but it also illustrates the complications in ringdown tests of
GR that come from including all the ways in which the
modifications will affect the ringdown signal. The gravity
modification can shift the amplitude of the ringdown,
including the relative amplitude at which different overtone
modes are excited, impacting when the dominant quasi-
normal mode frequency can be cleanly extracted using a
finite time interval following the peak of the gravitational
wave signal, as well as potentially changing the mass and
spin of the remnant black hole compared to GR.
Unfortunately, for binary neutron star mergers, the

postmerger oscillations and, to an even greater degree,
the ringdown of the final black hole are at kilohertz
frequencies that are too high for current ground-based
detectors to be very sensitive to. So directly observing this
regime will likely require third generation detectors [67,68]
or detectors that specifically target high frequencies [69].
We defer a more detailed study of the detectability of the
modified gravity effects we find here to future work. An
important aspect of assessing this would be to determine
how degenerate these effects are with different binary
parameters, and how robust they are to different choices
for the unknown neutron star equation of state.
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APPENDIX: NUMERICAL RESOLUTION
AND CONVERGENCE

For all of the binary neutron star merger cases considered
in the main text, we perform simulations with six levels of
adaptive mesh refinement where the finest level has a linear
grid spacing of dx ≈ 0.05M, and each successive level has a
grid spacing that is twice as coarse. For the case with M ¼
3 M⊙ and

ffiffiffiffiffiffiffiffi
αGB

p ≈ 0.89 km, we also perform a conver-
gence study with grid spacing that is 4=3 and ×2=3 as large.
Unless otherwise stated, all results are from the highest
resolution. In the top panel of Fig. 10, we show how the
canonical scalar field energy postmerger (as in the top panel
of Fig. 5) varies with resolution. There it can be seen that
the difference in the amplitude of the first peak in all
resolutions, and the timing and amplitude of subsequent

FIG. 10. Convergence results from simulations performed at
three different resolutions. Top: The scalar field energy ESF from
a binary neutron star merger with M ¼ 3 M⊙ andffiffiffiffiffiffiffiffi
αGB

p ≈ 0.89 km. Bottom: The L1 norm of the modified gener-
alized harmonic constraint Ca integrated over the domain from
the collapse of an isolated hypermassive neutron star withffiffiffiffiffiffiffiffi
αGB

p ¼ 0.44 km. The values have been scaled assuming second
order convergence, though at early times the convergence is
closer to first order.
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peaks for the two highest resolutions, is small (e.g.
compared to the nonlinear effects in Fig. 5), though there
is some noticeable difference in the lowest resolution after
the oscillation.
For the simulations of the collapse of isolated hyper-

massive stars, we assume axisymmetry, which makes the
computational domain two-dimensional, and use seven
levels of mesh refinement with dx ≈ 0.01M on the finest
level. We perform a resolution study for

ffiffiffiffiffiffiffiffi
αGB

p ≈ 0.44 km,
running simulations with grid spacing 2 and ×4=3 coarser.
In the bottom panel of Fig. 10, we show the norm of the
modified generalized harmonic constraint [24],

Ca ≔ Ha − g̃bc∇b∇cxa; ðA1Þ

integrated over the domain as a function of time for the
three resolutions. Though at early times the order of
convergence is closer to first order, presumably from scalar
induced perturbations engaging the shock-capturing
scheme, as the star collapses to a black hole and rings
down, the convergence is consistent with approximately
second order convergence (which is assumed in the scaling
of the lower panel of Fig. 10), as expected from our
numerical scheme in the absence of shocks.
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