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The detection of gravitational waves from compact binary coalescence (CBC) has allowed us to probe
the strong-field dynamics of general relativity (GR). Among various tests performed by the LIGO-Virgo-
KAGRA Collaboration are parametrized tests, where parametrized modifications to GR waveforms are
introduced and constrained. This analysis typically requires the generation of more than millions of
computationally expensive waveforms. The computational cost is higher for a longer signal, and current
analyses take weeks to years to complete for a binary neutron star (BNS) signal. We present a technique to
accelerate the parametrized tests using a multiband decomposition of likelihood, which was originally
proposed by one of the authors to accelerate parameter estimation analyses of CBC signals assuming GR.
We show that our technique speeds up the parametrized tests of a 1.4 M⊙–1.4M⊙ BNS signal by a factor of
Oð10Þ for a low-frequency cutoff of 20 Hz. We also verify the accuracy of our method using simulated
signals and real data.
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I. INTRODUCTION

The gravitational-wave era started with the discovery
of the gravitational-wave signal from the binary black hole
merger, GW150914 [1], by the advanced LIGO detectors
[2–4]. The binary neutron star (BNS) signal, GW170817
[5], was observed two years later by the advanced LIGO
and advanced Virgo [6,7] detectors. It became the first
example of multimessenger observations involving gravi-
tational waves [8,9]. Recently, the first-ever observations of
mergers of two distinct compact objects, i.e., a neutron star
and a black hole, were also achieved [10], completing the
search for a gravitational-wave signal originating from all
three distinct classes of compact mergers. The detected
CBC signals enabled us to test general relativity (GR) in the
strong-field regime. Various tests have been proposed and
applied to the detected signals by the LIGO-Virgo-KAGRA
Collaboration (LVK) [11–15] and others [16–18].
Among various tests performed by LVK are the para-

metrized tests [19–22]. In these tests, parametrized non-GR
modifications are introduced to GR waveforms, and the
parameters governing the modifications are constrained.
The non-GR parameters consist of inspiral parameters
and postinspiral parameters. The inspiral parameters para-
metrize relative or absolute shifts of the inspiral post-
Newtonian coefficients, while the postinspiral parameters
parametrize relative shifts of the postinspiral phenomeno-
logical parameters. For informative constraints to be

obtained efficiently, typically only one of those non-GR
parameters is allowed to deviate and be constrained in a
single analysis [11,23]. Such a single-parameter test is
known to be robust to ignorance of higher-order corrections
[24]. Recent works [18,25] also showed that multiple
parameters can be investigated simultaneously using prin-
cipal component analysis. Those parametrized modifica-
tions can incorporate modifications predicted by various
alternative theories of gravity, and we can map those
constraints to filter such non-GR theories as a postprocess-
ing step [26].
The parametrized tests typically employ stochastic sam-

pling and require more than millions of likelihood evalu-
ations. Each likelihood evaluation requires the evaluation
of waveform values at all the frequency points considered,
which is the dominant cost. Since the frequency points are
sampled with an interval of 1=T, where T is the duration of
data, more waveform evaluations are required for a longer
signal. For a 1.4 M⊙–1.4M⊙ BNS signal, current analyses
take weeks to years without any approximate methods. This
will be a serious problem when the sensitivities of detectors
are improved and BNS signals are detected more fre-
quently. The same problem arises for parameter estimation
analyses of CBCs assuming GR, and various techniques
have been proposed to reduce the computational cost of
waveform generation [27–33].
Among the various rapid parameter estimation tech-

niques, a recent work considered a multiband decomposi-
tion of the gravitational-wave likelihood [31], which
exploits the chirping nature of the CBC signals and speeds
up the parameter estimation of a BNS signal by more than
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an order of magnitude. Since the signal frequency increases
with time, the time to merger, τðfÞ, decreases with
frequency f. This implies that the likelihood can be
approximated into a form that can be computed with
waveform values at frequency points sampled with a
variable interval proportional to 1=τðfÞ. This approxima-
tion drastically reduces the number of waveform evalua-
tions at high frequency. A similar idea has been utilized for
speeding up the matched-filter analysis for detection of
CBC signals [34–36].
In this paper, we apply the multiband decomposition

technique to parametrized tests of GR. In Sec. II, we briefly
explain parametrized tests of GR and the multiband
decomposition method for a GR signal. To extend the
multiband decomposition method to parametrized tests, we
need to consider modifications of τðfÞ caused by non-GR
modifications in waveforms. In Sec. III, we derive the
modified τðfÞ and investigate the speed-up gains of our
technique for a BNS signal. In Sec. IV, we study the
accuracy of our technique using simulated BNS signals and
real data. Finally, we conclude our work in Sec. V.

II. BASICS

In this section, we explain the parametrized tests of
GR and the multiband decomposition technique for rapid
parameter estimation.

A. Parametrized tests of GR

The dominant quadrupole moment of gravitational
waves is of the following form in the frequency domain,

h̃ðfÞ ¼ AðfÞeiΦðfÞ; ð1Þ

where AðfÞ and ΦðfÞ denote signal amplitude and phase,
respectively. The phase evolution of the early inspiral part
is calculated via the post-Newtonian (PN) expansion
[37,38], which is an expansion with respect to a small
orbital velocity v=c. A term with the order of Oððv=cÞnÞ
relative to the leading order is referred to as ðn=2ÞPN. In
GR, the phase up to the 3.5PN order is given by [39–41]

ΦGRðfÞ ¼ 2πftc −ϕc −
π

4
þ
X7
j¼0

½φGR
j þφGRðlÞ

j lnf�fðj−5Þ=3;

ð2Þ

where tc and ϕc denote the coalescence time and phase,

respectively, and φGR
j and φGRðlÞ

j are ðj=2ÞPN coefficients

depending on component masses m1, m2 and spins S⃗1, S⃗2.

Note that φGR
j is vanishing for j ¼ 1, and φGRðlÞ

j is
vanishing except for j ¼ 5, 6.
In the parametrized tests, parametrized deformations of

nonzero PN coefficients are introduced by [19–22]

φGR
j → ½1þ δφ̂j�φGR

j ; φGRðlÞ
j → ½1þ δφ̂ðlÞ

j �φGRðlÞ
j ;

where δφ̂j and δφ̂ðlÞ
j are non-GR parameters quantifying

relative shifts of GR inspiral phasing. In addition to the
relative shifts, absolute shifts are introduced to the −1PN,

φ−2f−7=3 ¼
3δφ̂−2

128
η2=5

�
πGMf

c3

�
−7=3

; ð3Þ

and 0.5PN,

φ1f−4=3 ¼
3δφ̂1

128η1=5

�
πGMf

c3

�
−4=3

; ð4Þ

where M and η are chirp mass and symmetric mass ratios,
respectively,

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; η ¼ m1m2

ðm1 þm2Þ2
: ð5Þ

The −1PN term is used to model gravitational dipole
radiation predicted by alternative theories of gravity [42].
The full list of inspiral non-GR parameters isn

δφ̂−2; δφ̂0; δφ̂1; δφ̂2; δφ̂3; δφ̂4; δφ̂
ðlÞ
5 ; δφ̂6; δφ̂

ðlÞ
6 ; δφ̂7

o
:

The 2.5PN parameter δφ̂5 is not included since it is
completely degenerate with ϕc.
In addition to the deformations of the inspiral phase,

parametrized deformations of the postinspiral phase are
also considered. The IMRPhenom waveform model
[43–45] employs phase ansatz parametrized by βi (i ¼ 0,
1, 2, 3) for the intermediate stage and by αi (i ¼ 0, 1, 2, 3,
4) for the merger-ringdown stage. Relative shifts to those
parameters are introduced in a similar way, which are
parametrized by δβ̂i and δα̂i. The full list of postinspiral
non-GR parameters as considered in [11,13–15] is

fδα̂2; δα̂3; δα̂4; δβ̂2; δβ̂3g:

For meaningful constraints to be obtained efficiently,
typically only one of those 15 non-GR parameters is
allowed to deviate and be constrained in a single analysis.
Parametrized deformations of amplitude can also be con-
sidered, but they are difficult to be measured with the
current generation of detectors [46–48].
The non-GR parameters are estimated or constrained via

Bayesian inference. In the Bayesian inference, the posterior
distribution pðθjfdigÞ is calculated via the Bayes theorem:

pðθjfdigÞ ∝ LðfdigjθÞπðθÞ; ð6Þ

where di denotes the data taken from the ith detector, θ the
set of model parameters consisting of one of the non-GR
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parameters and GR parameters, πðθÞ the prior distribution
function determined from our belief or prior knowledge
on θ, and LðdjθÞ the likelihood function. For the
likelihood, the Gaussian-noise likelihood function is typ-
ically used [49,50],

LðfdigjθÞ ∝ exp
�
−
1

2

X
i

kdi − hiðθÞk2i
�
; ð7Þ

where hi is a model signal observed at the ith detector. Note
that k · k2 ¼ ð·; ·Þ is the norm induced by the inner product,

ða; bÞi ¼
4

T
ℜ

" XfhighT
k¼flowT

ã�ðfkÞb̃ðfkÞ
SiðfkÞ

#
; ð8Þ

where flow and fhigh are the low- and high-frequency
cutoffs of the analysis, respectively, T is the duration of
data, SiðfÞ is the noise power spectral density of the ith
detector, and fk ≡ k=T is the kth frequency bin. The
logarithm of likelihood can be written as

lnLðdjθÞ ¼
X
i

�
ðdi; hiðθÞÞi −

1

2
ðhiðθÞ; hiðθÞÞi

�
þ const;

ð9Þ

where the constant part does not depend on θ and is
irrelevant for stochastic sampling.
The inference is typically done via stochastic sampling

methods, such as Markov-chain Monte Carlo (MCMC)
[51,52] and nested sampling [53]. The nonconstant term is
computed millions of times during stochastic sampling. As
evident from Eqs. (9) and (8), each likelihood evaluation
requires evaluations of waveform values at all the fre-
quency points from flow to fhigh. Those waveform evalu-
ations are typically the dominant cost of analysis. The cost
is proportional to the number of frequency points,

Korig ¼ ðfhigh − flowÞT þ 1; ð10Þ

and higher for a longer signal.

B. Multiband decomposition

In the multiband decomposition method, the total fre-
quency range is divided into B overlapping frequency

bands fðbÞs ≤ f ≤ fðbÞe ðb ¼ 0; 1;…; B − 1Þ. The start and
end frequencies are determined based on a user-specified
sequence of durations, T ¼ Tð0Þ > Tð1Þ > … > TðB−1Þ.
First, the following equation is solved with respect to
fðbÞ for each b ∈ f1; 2;…; B − 1g,

τðfðbÞÞ þ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ0ðfðbÞÞ

q
¼ TðbÞ þ tc;min − T; ð11Þ

where τðfÞ is a reference time to merger from a gravita-
tional-wave frequency f, and L is a user-specified constant
controlling the accuracy of the approximation. A larger
value of L gives more accurate likelihood values. Here,
tc;min is the minimum coalescence time in the prior range,
and L ¼ 5 and T − tc;min ¼ 2.12 s are used throughout this
paper, following [31]. The start and end frequencies are
determined as

fðbÞs ¼
(
flow ðb ¼ 0Þ
fðbÞ − 1ffiffiffiffiffiffiffiffiffiffiffi

τ0ðfðbÞÞ
p ðb > 0Þ ð12Þ

fðbÞe ¼
(
fðbþ1Þ ðb < B − 1Þ
fhigh þ Δfhigh ðb ¼ B − 1Þ: ð13Þ

This way of constructing frequency bands guarantees that

the inverse Fourier transform of h̃ðfÞ starting from fðbÞs has
a duration shorter than TðbÞ. Here, Δfhigh > 0 is required to
avoid the loss of accuracy caused by the abrupt termination
of a waveform.
With the frequency bands constructed, ðdi;hiÞi is

approximated into the following form,

ðdi; hiðθÞÞi

≃
XB−1
b¼0

4

TðbÞ ℜ

2
64 XbfðbÞe TðbÞc

k¼⌈fðbÞs TðbÞ⌉

wðbÞðfðbÞk ÞD̃ðbÞ�
i;k h̃iðfðbÞk ; θÞ

3
75;
ð14Þ

where wðbÞðfÞ is a smooth window function extracting

waveform values in the bth frequency band, D̃ðbÞ
i;k is a

quantity calculated from data and power spectral density,
and

fðbÞk ≡ k

TðbÞ : ð15Þ

The sum over a high-frequency band requires waveform
values only at downsampled frequencies whose interval is
1=TðbÞ, and hence fewer waveform evaluations. The num-
ber of waveform evaluations required for a single evalu-
ation of ðdi; hiðθÞÞi is reduced to

KMB ¼
XB−1
b¼0

ðbfðbÞe TðbÞc − ⌈fðbÞs TðbÞ⌉þ 1Þ: ð16Þ

There were two approximate methods proposed to
compute ðhiðθÞ; hiðθÞÞi with fewer waveform evaluations.
One method is referred to as linear interpolation, which
approximates jh̃iðf; θÞj2 as a linear interpolation of the
squares of downsampled waveform values. This works well
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if the waveform model contains only dominant quadrupole
moments, where jh̃iðf; θÞj2 is a smooth function. The other
method is referred to as IFFT-FFT, which works even if the
waveform model contains multiple moments. In either case,
ðhiðθÞ; hiðθÞÞi is computed with waveform values at the
KMB frequency points, and no additional waveform eval-
uations are required. Thus, the cost of a single likelihood
evaluation is reduced by Korig=KMB.

III. EXTENSION TO PARAMETRIZED TESTS

In the previous work [31], which applies the multiband
decomposition method to the analysis of a GR signal, the
0PN formula of τðfÞ in GR is used for solving (11). For
extending the previous work to parametrized tests of GR,
we need to take into account corrections of τðfÞ from the
parametrized modifications of inspiral phasing. In this
section, we derive the modified formula of τðfÞ taking
them into account. We also apply it for setting up frequency

bands and study the speed-up gains of our method for a
typical BNS signal.

A. Modified time to merger

In order to get the modified time-to-merger formula, we
use the following condition in accordance with the sta-
tionary phase approximation [40,54–56]:

ΦðfÞ ¼ −ΨðtðfÞÞ þ 2πftðfÞ þ π

4
; ð17Þ

where ΨðtÞ is the phase of a time-domain waveform and
tðfÞ is the time at which Ψ0ðtÞ ¼ 2πf. Hence, we can now
relate tðfÞ to the derivative of ΦðfÞ,

tðfÞ ¼ Φ0ðfÞ
2π

: ð18Þ

With the phase formula at the inspiral part, we obtain the
following modified time-to-merger formula,

τðfÞ ¼ tc − tðfÞ

¼ 1

2π

�
7φ−2

3f10=3
þ 5ð1þ δφ̂0ÞφGR

0

3f8=3
þ 4φ1

3f7=3
þ ð1þ δφ̂2ÞφGR

2

f2
þ 2ð1þ δφ̂3ÞφGR

3

3f5=3
þ ð1þ δφ̂4ÞφGR

4

3f4=3

−
ð1þ δφ̂ðlÞ

5 ÞφðlÞGR
5

f
−
ð1þ δφ̂6ÞφGR

6 þ ð1þ δφ̂ðlÞ
6 ÞφðlÞGR

6 ðln f þ 3Þ
3f2=3

−
2ð1þ δφ̂7ÞφGR

7

3f1=3

�
: ð19Þ

Since the time to merger is predominantly determined by
the terms up to 0PN, we ignore terms higher than that order
and employ the following formula,

τðfÞ ¼ 7φ−2

6πf10=3
þ 5ð1þ δφ̂0ÞφGR

0

6πf8=3
ð20Þ

¼ 7δφ̂−2

256π
η2=5

�
πGM
c3

�
−7=3

f−10=3

þ 5ð1þ δφ̂0Þ
256π

�
πGM
c3

�
−5=3

f−8=3: ð21Þ

If higher-order multiple moments are present, the same
formula with the frequency rescaling, f → 2f=m, is
used, where m is the maximum magnetic number of the
moments.
For validating our approximate time-to-merger formula,

we numerically calculate time-domain waveforms incor-
porating higher-order PN terms and compare their dura-
tions with predictions from our formula. Figure 1 shows
time-domain waveforms for nonspinning 1.4 M⊙–1.4M⊙
BNS with various values of δφ̂0 or δφ̂−2. They are
calculated as the inverse Fourier transforms of frequency-
domain waveforms from 20 Hz to 1024 Hz that include

terms up to the 3.5PN order in phase and the leading-
order term in amplitude. The GR phase coefficients have
been calculated with SimInspiralTaylorF2AlignedPhasing
implemented in the LIGOAlgorithmic Library (LAL) [57].
The vertical lines represent predictions from our approxi-
mate time-to-merger formula with f ¼ 20 Hz. As seen in
the figure, vertical lines accurately locate the time when
waveforms start, demonstrating that our approximate time-
to-merger formula is accurate enough.
Evaluating Eq. (21) demands a choice on the values of

M, η, δφ̂0, and δφ̂−2. To guarantee that the duration of each
frequency band is long enough for any template waveform
generated during stochastic sampling, their values are
chosen to maximize τðfÞ. Hence, the minimum value of
M and the maximum values of η, δφ̂0, and δφ̂−2 within the
explored parameter space are chosen. The maximum value
of η is typically 1=4, which corresponds to m1 ¼ m2.
From Eq. (21), it is clear that τðfÞ becomes negative for

δφ̂0 < −1 or δφ−2 < 0 unless the other terms are signifi-
cant enough to compensate it. In this case, the template
waveform is an inverse-chirp waveform, which starts from
t ¼ tc and whose frequency simply decreases. The multi-
band approximation clearly breaks down for this type of
waveform since it assumes that the signal frequency simply
increases. Even without the multiband approximation, the
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inverse-chirp signal is not properly analyzed in the analysis
with the standard data conditioning [58], where only data
up to ∼2 seconds after tc are analyzed.
Since the higher-order terms are ignored in Eq. (21), the

huge deviations from GR in one or more of the higher-order
terms can make the approximate time-to-merger formula
inaccurate. In a typical analysis, the explored range of M is
much wider than the width of its marginal posterior distri-
bution, and the time to merger computed with the minimum
M in the explored range is large enough to construct
conservative frequency bands. The same argument can be
made for hidden modifications with non-PN frequency
dependence considered in [20]. Also, it is straightforward
to take into account higher-order terms from Eq. (19) when
huge deviations of higher-order terms are considered.

B. Speed-up gains

Table I shows speed-up gains of our multiband technique
for a 1.4 M⊙–1.4M⊙ BNS signal with several choices of T

and δφ̂i used for calculating τðfÞ. For each case in the table,
frequency bands were set up with the algorithm described
in Sec. II B and Eq. (21) calculated with m1 ¼ m2 ¼
1.4 M⊙ and δφ̂i of the row. The total frequency range is
20–2048 Hz, and the durations of bands are powers of two,
fTðbÞgB−1b¼0 ¼ fT; T=2; T=4;…; 4 sg. The speed-up gain is
estimated by the reduction of frequency points, Korig=KMB.
For setting up frequency bands, we utilized the existing
implementation of the multiband decomposition method,
MBGravitationalWaveTransient, available in the bilby
[59,60] software.
For this study, we consider the three choices of δφ̂i: GR

(δφ̂0 ¼ δφ̂−2 ¼ 0) for reference, 0PN (δφ̂0¼20;δφ̂−2¼0),
and−1PN (δφ̂0 ¼ 0; δφ̂−2 ¼ 1). Here, δφ̂0¼20 or δφ̂−2¼1
is the maximum of its range explored by LVK analyses,
which we have found in configuration files available at
[61]. In a standard LVK parametrized test, the duration of
analyzed data is the same as that used for GR parameter
estimation regardless of the explored range of a non-GR
parameter. For a 1.4 M⊙–1.4M⊙ BNS signal, T ¼ 256 s.
In either case with T ¼ 256 s in the table, the speed-up gain
is Oð10Þ. The speed-up gain for 0PN or −1PN is smaller
than that for GR because τðfÞ gets larger due to the non-GR
modification.
To properly analyze any waveform within the explored

range of a non-GR parameter, the data duration should
be longer than the longest duration of the waveform with
the allowed non-GR modifications. If data durations are
determined in this conservative way, T ¼ 4096 s and
T ¼ 32768 s for 0PN and −1PN respectively. With the
conservative choice of T, the speed-up gain gets larger and
is Oð102Þ for either case.

IV. VALIDATION

In this section, we study the accuracy of our technique
using simulated BNS signals and real data.

TABLE I. Numbers of original frequency points Korig, the
numbers of multibanded frequency points KMB, and speed-up
gains Korig=KMB for a 1.4 M⊙–1.4M⊙ BNS signal with
several choices of data duration T and a non-GR parameter
value δφ̂i used for calculating time to merger. The total frequency
range is 20–2048 Hz, divided into frequency bands with
fTðbÞgB−1b¼0 ¼ fT; T=2; T=4;…; 4 sg.

δφ̂i TðsÞ Korig KMB Speed-up

GR 0 256 5.2 × 105 1.2 × 104 4.5 × 101

0PN (i ¼ 0) 20 256 5.2 × 105 2.8 × 104 1.8 × 101

20 4096 8.3 × 106 6.8 × 104 1.2 × 102

−1PN (i ¼ −2) 1 256 5.2 × 105 3.6 × 104 1.4 × 101

1 32768 6.6 × 107 3.2 × 105 2.1 × 102

FIG. 1. Time-domain gravitational waveforms of nonspinning 1.4 M⊙–1.4M⊙ BNS starting from 20 Hz with various values of δφ̂0

(left) or δφ̂−2 (right). Vertical lines represent durations calculated by the up-to-0PN time-to-merger formula (21).
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A. Simulation study

To verify that the multiband approximation does not
bias the inference, we simulate BNS signals with
nonzero δφ̂i and perform parametrized tests on them

with and without the multiband decomposition method.
The injection values, prior, and explored range of GR
parameters are common among simulations, and they
are outlined in Table II. The effects of spin angular
momenta and tidal deformation of colliding objects
are not taken into account for quick runs. We con-
sider the network of the two advanced LIGO detec-
tors and the Virgo detector, and inject signals into
Gaussian noise colored by their design sensitivities. The
analyzed frequency range is 20–2048 Hz. The network
signal-to-noise ratios (SNRs) of the simulated signals
are ∼50. The simulated signals are computed with
the TaylorF2 [39,62] waveform model implemented
in LAL, and the same waveform model is used for
parameter recovery.
In this study, we consider two simulated signals: the 0PN

simulation with δφ̂0 ¼ 1, δφ̂i ¼ 0ði ≠ 0Þ, and the −1PN
simulation with δφ̂−2 ¼ 0.003, δφ̂i ¼ 0ði ≠ −2Þ. The dura-
tion of a signal from 20 Hz with vanishing non-GR
parameters is ∼160 s. It is doubled for the 0PN simulation
or increased by ∼50% for the −1PN simulation due to the
nonzero GR parameter. The explored parameter range is
−1 ≤ δφ̂0 ≤ 2 for the 0PN simulation and −0.01 ≤ δφ̂−2 ≤
0.01 for the −1PN simulation. For each simulation, the

TABLE II. Injection values, prior, and explored range of GR
parameters: Chirp massM, mass ratio q ≤ 1, luminosity distance
DL, right ascension (RA) and declination (DEC), orbital incli-
nation angle θJN , polarization angle ψ , constant phase ϕc, and
coalescence time tc. Here, tc;inj denotes the injection value of tc,
and it is set to the GPS time of 1187008882 (17 Aug 2017,
12∶41∶04 UTC).

Parameter Unit
Injection
value Prior Minimum Maximum

M M⊙ 1.2 Uniform 1.15 1.25
q � � � 0.8 Uniform 0.125 1
θJN Radian 0.4 Sine 0 π
DL Mpc 72 Comoving 10 100
RA Radian 3.45 Uniform 0 2π
DEC Radian −0.40 Cosine −π=2 π=2
ψ Radian 0.65 Uniform 0 π
ϕc Radian 1.3 Uniform 0 2π
tc − tc;inj s 0 Uniform −0.1 þ0.1

FIG. 2. One- and two-dimensional marginal posterior distribu-
tions of chirp mass M, mass ratio q, and 0PN relative deviation
δφ̂0 from runs without (blue) and with (orange) the multiband
decomposition technique. Diagonal panels show one-dimensional
marginal posterior distributions, and vertical dashed lines indicate
the 90% credible intervals. Off-diagonal panels show two-
dimensional marginal posterior distributions, and solid lines
indicate the 50% and 90% credible regions. Red lines indicate
the injection values.

FIG. 3. One- and two-dimensional marginal posterior distribu-
tions of chirp mass M, mass ratio q, and −1PN absolute
deviation δφ̂−2 from runs without (blue) and with (orange) the
multiband decomposition technique. Diagonal panels show one-
dimensional marginal posterior distributions, and vertical dashed
lines indicate the 90% credible intervals. Off-diagonal panels
show two-dimensional marginal posterior distributions, and solid
lines indicate the 50% and 90% credible regions. Red lines
indicate the injection values.
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prior of the non-GR parameter is uniform over its
explored range.
The durations of analyzed data are 512 s and 256 s

for the 0PN and −1PN simulations, respectively. The total
frequency range is divided into eight frequency bands with
fTðbÞg7b¼0 ¼ f512 s; 256 s;…; 4 sg for the multiband run
of the 0PN simulation, and seven frequency bands with

fTðbÞg6b¼0 ¼ f256 s; 128 s;…; 4 sg for the −1PN simula-
tion. The speed-up gains Korig=KMB are 58 and 37 for the
0PN and −1PN simulations, respectively.
The stochastic sampling is performed with the bilby

software and the dynesty [63] sampler. The conver-
gence of sampling is controlled by the number of live
points nlive and the length of the MCMC chain in units

FIG. 4. One- and two-dimensional marginal posterior distributions of all the inferred parameters for the −1PN simulation from runs
without (blue) and with (orange) the multiband decomposition technique. Diagonal panels show one-dimensional marginal posterior
distributions, and vertical dashed lines indicate the 90% credible intervals. Off-diagonal panels show two-dimensional marginal
posterior distributions, and solid lines indicate the 50% and 90% credible regions. Red lines indicate the injection values.
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of its autocorrelation length nACT [60]. We use nlive ¼
500; nACT ¼ 10 and nlive ¼ 1000; nACT ¼ 10 for the 0PN
and −1PN simulations, respectively. We have confirmed
that increasing their values does not change the results
significantly, which means the results are converged. We
marginalized the posterior over constant phase ϕc analyti-
cally and the luminosity distance DL using the look-up
table method [49,64].

Figures 2 and 3 show marginal posterior distributions
of chirp mass (M), mass ratio (q), and a non-GR para-
meter (δφ̂0 or δφ̂−2) for the 0PN and −1PN simulations,
respectively. The runs without and with the multiband
approximation are labeled “Standard” and “Multiband,”
respectively. As shown in the figures, the standard and
multiband runs produce almost equivalent results in either
simulation. More quantitatively, the differences in the lower

FIG. 5. One- and two-dimensional marginal posterior distributions of all the inferred parameters for the 0PN simulation from runs
without (blue) and with (orange) the multiband decomposition technique. Diagonal panels show one-dimensional marginal posterior
distributions, and vertical dashed lines indicate the 90% credible intervals. Off-diagonal panels show two-dimensional marginal
posterior distributions, and solid lines indicate the 50% and 90% credible regions. Red lines indicate the injection values.
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or upper bounds of the 90% credible intervals are less than
4% of their widths. Those observations indicate that the
multiband approximation is accurate enough for a relatively
high SNR of ∼50. Since log-likelihood errors introduced
by the multiband approximation are roughly proportional to
the square of SNR, they are smaller for lower SNR values.
Therefore, our results show that our multiband approxi-
mation can also be safely used for SNR values below 50.
The full posterior distributions of all the inferred param-
eters are presented in Figs. 4 and 5.
The standard runs take ∼9 days and ∼14 days to com-

plete for the 0PN and −1PN simulations, respectively. They
are reduced to∼2 hours and ∼7 hours, respectively, with the
multiband approximation. The reduction of run times is
more or less consistent with the speed-up gains estimated
fromKorig=KMB. The runs are performed with an Intel Xeon
Gold 6136 CPUwith a clock rate of 3.0 GHz. The stochastic
sampling is parallelized with 48 processes for the 0PN
simulation, and 24 processes for the −1PN simulation.

B. Likelihood errors for GW190814

For validating our approximation with more compli-
cated signal morphology, we investigate the likelihood
errors of our approximation for GW190814 [65]. We
compute lnL with and without our approximation on
posterior samples from LIGO-Virgo parameter estimation
analysis, and we compute their differences Δ lnL as
errors. This signal is an appropriate test case for validating
our approximation with gravitational-wave higher-order
multiple moments since their effects are statistically
significant for this signal [65]. We also consider the
calibration uncertainties of detectors for validating our
approximation with signal modulation caused by them.
The data are obtained from the Gravitational Wave
Open Science Center [66], and posterior samples are

from [61]. The IMRPhenomPv3HM [67,68] waveform model
is employed for likelihood evaluations, which is the same
model used for the LVK analysis.
Figure 6 shows jΔ lnLj, with the horizontal axis repre-

senting the nonconstant part of lnL,

lnΛ≡X
i

�
ðdi; hiÞi −

1

2
ðhi; hiÞi

�
: ð22Þ

The left plot shows the errors for tests of inspiral parameters,
and the right shows those for tests of postmerger parameters.
The total frequency range of 20–1024 Hz is divided into
three frequency bands with fTðbÞg2b¼0¼f16 s; 8 s; 4 sg. The
frequency bands are determined based on the time to merger
of the m ¼ 4 mode, and with the following reference values
of M, η, δφ̂0, and δφ̂−2,

M ¼ 5.5 M⊙; η ¼ 0.25;

δφ̂0 ¼
�
20 ðtest of δφ̂0Þ
0 ðotherwiseÞ;

δφ̂−2 ¼
�
1 ðtest of δφ̂−2Þ
0 ðotherwiseÞ: ð23Þ

Those reference values are determined based on the param-
eter range explored by the LVK analysis. The speed-up gain
is 2.42 for the test of δφ̂0, 2.44 for the test of δφ̂−2, and 3.28
for the other cases. The IFFT-FFT algorithm is employed for
computing ðh; hÞi due to significant higher-order multiple
moments.
Each plot label shows the median value of jΔ lnLj. The

errors are ≲10−4 for the test of δφ̂0 or δφ̂−2, and ≲10−3 for
the other tests. The smaller errors for the former case are
because frequency bands are constructed from a longer
time to merger due to δφ̂0 > 0 or δφ̂−2 > 0. In either case,

FIG. 6. Log-likelihood errors jΔ lnLj of the multiband approximation calculated on posterior samples from GW190814. The left plot
shows the errors for tests of inspiral non-GR parameters, and the right shows those for tests of postinspiral non-GR parameters. Each
label shows the median value of these errors.
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the errors are much smaller than unity, which shows our
approximation is accurate enough for the analysis of
GW190814.

V. CONCLUSION

In this paper, we have presented a rapid inference
technique for parametrized tests of GR, one of the main
tests of GR using gravitational waves from CBC. Our
technique is based on a multiband decomposition of the
gravitational-wave likelihood, which was originally devel-
oped for speeding up parameter estimation of CBC signals
under the assumption of GR. It exploits the chirping nature
of a signal and, in principle, is applicable to any chirp signal
whose time to merger τðfÞ is known. To extend this
technique to parametrized tests of GR, we have derived
τðfÞ by taking into account non-GR deformations of the
waveform. Applying the multiband decomposition tech-
nique with our new formula of τðfÞ to a 1.4 M⊙–1.4M⊙
BNS signal, we have found that our technique speeds up
parametrized tests of a typical BNS signal by a factor of
Oð10Þ for the low-frequency cutoff of 20 Hz.
For validating our approximate technique, we have

simulated BNS signals with SNRs of ∼50. Performing
parametrized tests of them with and without our technique,
we have verified that our technique produces results
equivalent to those from runs without any approximate
methods. We have also computed log-likelihood errors of
our technique for GW190814 and confirmed that they are
well below unity. Therefore, our work provides an efficient
and accurate way of performing parametrized tests of GR,
which is useful for dealing with more frequent detections in
future observations.
We focus on single-parameter tests throughout this work.

In principle, our technique can be applied to multiple-
parameter tests using principal component analysis [18,25],
with a modified time-to-merger formula parametrized by
parameters corresponding to principal directions. We leave
that extension as a future work.
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