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Time delay in the quadrupole field of a body at rest
in the 2PN approximation
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The time delay of a light signal in the quadrupole field of a body at rest is determined in the second post-
Newtonian (2PN) approximation in harmonic coordinates. For grazing light rays at the Sun, Jupiter, and
Saturn the 2PN quadrupole effect in time delay amounts up to 0.004, 0.14, and 0.04 picosecond,
respectively. These values are compared with the time delay in the first post-Newtonian (1PN and 1.5PN)
approximation, where it turns out that only the first eight mass multipoles and the spin dipole of these
massive bodies are required for a given goal accuracy of 0.001 picosecond in time delay measurements in
the solar system. In addition, the spin-hexapole of Jupiter is required on that scale of accuracy.

DOI: 10.1103/PhysRevD.106.104052

I. INTRODUCTION

The time delay of a light signal in the gravitational field
of a massive body was predicted by Shapiro in 1964 [1] and
belongs to the four classical tests of general relativity:
perihelion precession of Mercury, light deflection at the
Sun, gravitational redshift of light, and light-travel time
delay [2]. In its original formulation of the Shapiro effect
one considers a light signal which propagates in the
monopole field of one massive body with mass M which
is at rest with respect to the coordinate system.

Assume the space-time to be covered by harmonic
coordinates, (z,x) [2-5] [cf. Eq. (5.177) in [3]] and let the
origin of spatial axes be located at the center-of-mass of the
massive body. The light signal is emitted by a light source at
(tp,xo) and then received by an observer at (¢1,x;). The
Shapiro time delay is the difference between the light travel
time, (¢; — 1), and the Euclidean distance between source
and observer, R = |x; — x|, divided by the speed of light,

AT:m—zo)—g (1)

The Newtonian theory predicts no time delay. In general
relativity (GR), however, the light travel time differs from
R/c, because the light signal propagates through the
gravitational fields of the massive body, which decelerate
the speed of the light signal. In first post-Newtonian (1PN)
approximation for a massive body at rest the time delay is
given by [2-4]

2GM k-
k lnx1+ xlﬁ (2)
c Xo+k-xq

M _
Atipy =

where k = (x; —x()/R is the unit vector pointing from the
source towards the observer; superscript label M stands for
monopole.
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In the first time delay measurements, performed in 1968
[6] and 1971 [7], radar signals were emitted from Earth,
which have passed nearby the limb of the Sun, then they
were reflected by an inner planet, either Mercury or Venus,
and finally the radar signals were received back on Earth.
This round trip of the light signal is called two-way Shapiro
effect and yields the double of Eq. (2) [cf. Eq. (10.102)
in [3]] which gives up to 248 microseconds for the
constellation Earth-Sun-Mercury, and amounts up to 251
microseconds for the constellation Earth-Sun-Venus. In
these experiments the time delay predicted by GR has been
confirmed up to an error of a few percent, which corre-
sponds to a precision in time measurements of a few
microseconds. Ever since, time delay measurements have
been performed with increasing accuracy. In 1977 the
Viking I and Viking2 spacecrafts (Mars landers and orbiters)
were used as radar reflectors, where an accuracy of about
0.5% in time delay measurements was achieved [8], which
was later improved towards an accuracy of about 0.1% [9],
which corresponds to a precision in time measurements of
about 300 nanoseconds. The most accurate time delay
measurements in the Solar System were achieved in 2003
by using the Cassini spacecraft (orbiting Saturn) as
reflector of the radar signals with an error of about
0.001% [10]. The two-way Shapiro time delay for a grazing
ray at the Sun for the configuration Earth-Sun-Saturn
amounts up to 288 microseconds, thus that error corre-
sponds to an accuracy of a few nanoseconds in time delay
measurements.

Future time delay experiments will be performed by
optical laser rather than radar signals, as suggested by
several mission proposals of the European Space Agency
(ESA) [11-16]. These missions are designed to signifi-
cantly improve the test of relativistic gravity of the Solar
System. One aim of these experiments are time delay
measurements at the picosecond and sub-picosecond level
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of accuracy. In these mission proposals it has been
suggested that a laser signal is emitted by the observer
and then reflected by the spacecraft and afterwards received
back by the observer. The decisive advantage of this two-
way Shapiro effect is that there is no need for clock
synchronization between observer and spacecraft [17].
Thus, besides laser availability and reliability, significant
improvements in measurements of the Shapiro effect are
mainly dependent on advancements in the determination of
the proper time at the observer’s position, either at ground
stations or in space, which have made impressive progress
during recent decades.

Today, accuracies on the sub-nanosecond scale and even
picosecond scale in time measurements are becoming
standard in high-precision experiments in space. For in-
stance, both Lunar Laser Ranging (LLR) as well as Satellite
Laser Ranging (SLR) have reached the sub-nanosecond and
even the picosecond level of accuracy [18-23] which
implies a standard deviation of the atomic clocks of about
At/t ~ 10713 In these experiments a laser signal is sent from
a ground station to the Moon or satellite, where it is reflected
from retroreflectors, and then the laser signal is received
back by the ground station; a review of LLR and future
developments of SLR are given in [21,24]. Meanwhile, there
exists a global network of 45 active ground stations which
represent the International Laser Ranging Service. The
measurement of the round-trip travel time allows one to
determine the distance to the Moon or spacecraft, and such
laser transfer measurements have reached the centimeter and
even the millimeter level of accuracy, which corresponds to
an accuracy of about 3 picoseconds in time measurements.

Furthermore, the two hydrogen maser atomic clocks
onboard each satellite of the European Galileo navigation
system are mentioned, which have a standard deviation of
At/t ~ 107'* which can be considered as minimal criterion
for present-day technology of time measurements in space.
The present-day most precise atomic clock onboard a
satellite is the Deep Space Atomic Clock (DSAC) [25]
launched in 2019 by National Aeronautics and Space
Administration (NASA), which has a standard deviation
of At/t ~ 10713, For a light signal in the Solar System with
a travel time of about 10* s such a standard deviation of
DSAC implies an accuracy of about Af ~ 10 picosecond,
which one may consider as minimal criterion for present-
day technology of time measurements for the time of flight
of such a light signal. In fact, by comparing DSAC to the
U.S. Naval Observatory’s hydrogen maser master clock on
the ground, the researchers found that the space clock
deviates by about 26 picoseconds during one day [26]. A
follow-up project, DSAC-2, has recently been selected by
NASA for demonstration on the upcoming space mission
VERITAS (Venus Emissivity Radio Science Insar
Topography and Spectroscopy) to Venus [27].

The atmosphere of the Earth has a significant impact on
the speed and trajectory of light signals. In view of this fact,

the advantage of space-based missions is that the
atmosphere of Earth cannot disturb the time-of-flight
measurements of light signals between spacecrafts. If
ground-stations on Earth are involved in time-of-flight
measurements, then the local meteorological data (i.e.
altitude profile of temperature, pressure, humidity) need
carefully to be determined with high accuracy during the
period of time measurements. The modeling and descrip-
tion of atmospheric corrections of the ground-to-satellite
time transfer of light signals has made important advance-
ments during recent years and has reached the picosecond
level of accuracy [28]. Thus, time delay measurements with
ground stations remain an option also for future highly
precise experiments on the picosecond and maybe on the
sub-picosecond level.

Examples of Earth-bound clocks are the Caesium atomic
clocks NIST-F1 and NIST-F2 at the National Institute of
Standard and Technology (NIST) are mentioned, where a
standard deviation of At/t ~ 107° has been achieved [29].
The highest accuracies for Earth-bound atomic clocks have
been achieved with optical atomic clocks with a standard
deviation of At/t~ 107! [30]. If one considers a light
signal emitted from Earth towards a spacecraft located in
the Solar System, for instance, nearby Uranus, and back,
then the light travel time would be about 7 ~ 10* s. Hence,
the standard deviation of such an atomic clock corresponds
to a precision of about At ~ 0.001 picosecond, which one
may consider as maximal criterion for present-day accuracy
of time measurements for the time of flight of such a light
signal, being aware that in the near future the precision of
optical atomic clocks will further be improved.

Accordingly, in consideration of these facts and being
aware of further rapid progress in the precisions of time
measurements in the foreseen future [31], it seems neces-
sary to develop the theoretical model of Shapiro time delay
up to an accuracy of about Az = 0.001 picosecond. Also
regarding the fact that a theoretical model should be at least
one order of magnitude more precise than actual real
measurements, this magnitude should be assumed as the
most upper accuracy threshold in theoretical considerations
for prospective astrometry missions.

In view of these considerations it becomes apparent that
the classical monopole formula (2) of time delay is by far
not sufficient to meet near-future accuracies in time
measurements and it is clear that the shape and inner
structure of the bodies as well as their rotational motions
become relevant on such scale of accuracy [32,33]. The
expansion of the metric tensor in terms of mass multipoles,
M 1, and spin multipoles, S’L, of the massive Solar System
bodies allows one to account for these effects. The multi-
pole expansion of the metric tensor implicates a corre-
sponding multipole expansion of the Shapiro time delay in
terms of mass multipoles and spin multipoles. In particular,
it is necessary to include some post-Newtonian terms (1PN
and 1.5PN) in the theory of light propagation,
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> M = s _
At = lz; Atipy + 121: Atiipy 4+ O(c™), (3)

where the first term (I = 0) is just the 1PN mass-monopole
term as given by (2). It is clear that some of these higher
mass multipoles M, (describe shape and inner structure of

the massive body) and perhaps some spin multipoles S,
(describe rotational motions and inner currents of the
massive body) are relevant on the sub-picosecond level
of accuracy. The mathematical expressions for the 1PN
mass-multipole and 1.5PN spin-multipole terms in the

Shapiro time delay, Ar%ﬁq and ATf.LSPN’ were derived a
long time ago [34]. It is one aim of this investigation to
quantify these terms and to clarify which of these 1PN and
1.5PN terms need to be taken into account for the assumed
goal accuracy of about 0.001 picosecond.

Besides these 1PN and 1.5PN terms in (3) it might well
be that also some 2PN terms are relevant on the sub-
picosecond level of accuracy in time delay measurements.
For a long time, the knowledge about 2PN effects in the
Shapiro time delay was restricted to the case of spherically
symmetric bodies; that means in 2PN approximation only
the mass-monopole term M has been taken into account.
The next subsequent term in the multipole decomposition is
the mass-quadrupole term M ,;,. Clearly, these terms are the
most dominant 2PN terms beyond the 2PN mass monopole.
Recently, the light trajectory in 2PN approximation in
the field of one body at rest with mass-monopole and
mass-quadrupole structure was determined [35]. The inves-
tigation in [35] allows us to determine these 2PN mass-
quadrupole terms in the Shapiro time delay; that means

_ M M,
At = Arjpy + AT B,

+ ATRY + A"+ A+ O(e0). (4)

In this investigation we will examine the impact of the

2PN monopole-monopole term, A3 the monopole-

quadrupole term, AT%T\,M“’”, and the quadrupole-quadrupole
term, Arg/f,”li}XM“" , and will compare them with the 1PN and
1.5PN terms in (3). Of course, the 1PN terms in (3) beyond
the mass quadrupole as well as the 1.5PN terms in (3) can
finally be added to (4) in an appropriate manner.

The manuscript is organized as follows: In Sec. II the
exact geodesic equation and the exact metric tensor for a
body at rest is discussed. The 1PN and 1.5PN effect on the
Shapiro time delay is determined in Sec. III. The initial
value problem of the 2PN light propagation in the quadru-
pole field of one body at rest is considered in the Sec. IV.
The Shapiro time delay in 2PN approximation is examined
in Sec. V. Finally a summary and outlook are given in
Sec. VI. The notations as well as details of the calculations
are relegated to a set of several appendices.

II. GEODESIC EQUATION
AND METRIC TENSOR

A unique interpretation of astrometric observations, like
the time delay of light signals, requires the determination of
light trajectory, x(¢), as a function of coordinate time. In
Minkowskian space-time, a light signal would travel along
a straight trajectory, the so-called unperturbed light ray. If
the flat space-time is covered by Cartesian coordinates,
the components of the Minkowskian metric read 7,5 =
(=1,41,+1,+1) and then the trajectory of a light signal is
given by

xN =x+c(t—19)o, (5)

where the subindex N stands for Newtonian. That means a
light signal, emitted at the spatial position of the light
source, x,, would propagate along a straight line in the
direction of some unit vector ¢. For graphical illustration of
the unperturbed light trajectory see Fig. 1.

The trajectory of a light signal propagating in curved
space-time is determined by the geodesic equation (6) and
isotropic condition (7), which in terms of coordinate time
read as follows [2,4,5] [e.g. Egs. (1.2.48) and (1.2.49) in [4]
or Egs. (7.20)—(7.23) in [5]]:

xic(zt) i, )'c”c(t) )'c”c(t) -1, x#(1) )'c”ét) )'ciit) 0. (6)

(1) ¥ (1)

Yap c c =0, (7)

where g, are the covariant components of the metric tensor
of space-time; for the signature, (—,+,+,+) has been

unperturbed light ray

exact light trajectory
observer __----% "~

Te=i:..__ ¢ light at
~I%< t=-00
~
(o

massive solar system body

FIG. 1. A geometrical representation of the propagation of a
light signal through the gravitational field of a massive solar
system body at rest. The light signal is emitted by the light source
atx, and propagates along the exact light trajectory x(¢). The unit
tangent vector along the light trajectory at past null infinity is o.
The unperturbed light ray xy(¢) is given by Eq. (5) and
propagates in the direction of ¢ along a straight line through
the position of the light source at x,,. The impact vector d, of the
unperturbed light ray is given by Eq. (57). The impact vector dAl, is
defined by Eq. (I4) and is parallel to the impact vector d,, but a
tiny bit smaller and not shown in the diagram.
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chosen. The isotropic condition (7) states that light trajec-
tories are null rays, a condition which must be satisfied at
any point along the light trajectory. Furthermore, a dot
denotes total derivative with respect to coordinate time, and
[, are the Christoffel symbols, given by [2.4,5] [e.g.
Eq. (21.27) in [2]]

1 69/; 6gﬂy dg
re, —=_gof 2L 2 _ ) 8
w =29 <dx” o o ®

The Christoffel symbols are functions of the metric
tensor. For weak gravitational fields it is meaningful to
separate the metric tensor into the flat metric and a metric
perturbation,

gaﬁ(t’x) :naﬂ+haﬂ<t7x)' (9)

The geodesic equation is a differential equation of
second order of one variable, ¢, thus a unique solution
of (6) necessitates two initial-boundary conditions: the
spatial position of light source x, and the unit direction ¢ of
the light signal at past infinity [4,32-34,36,37]:

with 6-6=1, (10)

X0 :x(t)|t:t0‘ (11)

Then, by inserting the decomposition (9) into (6) and
using the initial boundary conditions (10) and (11), the
solution of the second integration of geodesic equation
(trajectory of light signal) (6) is given by

x(1) =xg+ c(t — ty)o + Ax(1,1y), (12)

where Ax is the correction to the trajectory of the
unperturbed light ray (5). The formal solution of the initial
value problem (12) implies the following limit:

limAx(z,1y) =0, (13)

=1

in order to be consistent with the condition (11).

For solving the geodesic equation (6) one needs the
metric tensor (9) of the specific problem under consid-
eration. Usually, the metric tensor (9) is not known in its
exact form and one has to apply for some approximation
scheme. If the gravitational fields are weak and the speed of
matter is slow compared to the speed of light, then one can
utilize the post-Newtonian expansion (weak-field slow-
motion expansion) of the metric tensor, which is an
expansion of the metric tensor in inverse powers of the
speed of light [38,39],

Gap(1.%) = Mg+ > _ Wy (1.3, nc). (14)
n=2

In general, the post-Newtonian expansion (14) is a
nonanalytic series, because at higher order n > 8 nonana-
lytic terms involving powers of logarithms occur [38,39],
while by definition the nth post-Newtonian perturbation,
h(“)

Qj

, 1s the factor of nth inverse power of c.

In reality, a solar system body can be of arbitrary shape,
inner structure, rotational, and oscillating motions and can
have inner currents of matter. From the multipolar post-
Minkowskian (MPM) formalism [38—40] it follows that the
post-Newtonian solution for the metric tensor for such a
body can be given in terms of two kinds of symmetric and
trace-free (STF) multipoles: mass multipoles M ;. (describ-
ing shape, inner structure, and oscillations of the body) and
spin multipoles S; (describing rotational motions and inner
currents of the body)

Gup(1.%) = g + > W (0, (5). 8, (s).In¢), (15
n=2

where the origin of spatial axes of the coordinate system is
located somewhere nearby the center of mass of the source
of matter (body), and s =t —x/c is the retarded time
which describes the fact that the metric at field point (z, x)
is determined by the multipoles at the earlier time s because
gravitational action propagates with the finite speed of
light. In case of a stationary source of matter the multipoles
and the metric perturbations are time independent and then
the post-Newtonian expansion of the metric tensor reads

ap(®) = tlap + 3 W) (M. 8. nc). (16)
n=2

These multipoles ML and SL in (15) and (16) are
integrals over the stress-energy tensor of the source of
matter. They are considered in Appendix B.

II1. SHAPIRO EFFECT IN 1.5PN APPROXIMATION

In 1.5PN approximation the expansion (16) reads
Gop = Nap + g (ML) + W/ (S0) (1)

up to terms of the order O(c™*), and where the non-
vanishing metric perturbations hgj and hs,,) are given by
[34,38,39,41,42]

y 2 (=D a1
hog =+ 3D~ Moy (18)
=0 :

3 N ) L A
hé)i) = +?; U+ 1)!€iabSbL—laaL—1 e (19)
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2 (- A
h<.2.>:+?5,,z( )ML()L—, (20)

where r = |x| and

5L - STF,-].__,»]a,-]...ai (21)

r
The mass multipoles and spin multipoles in (18)—(20) in
case of stationary source of matter are given by

M, = / dxx, %, (22)

SL = /d3xejk<i,)ACL—1>szkv (23)

where the notation T = (T% + T%)/c? and =k = T%/c
has been adopted, with 7% being the stress-energy tensor
of the body, and where the integrals run over the three-
dimensional volume of the body. The geodesic equation in
1.5PN approximation can be deduced from the exact
geodesic equation (6) and is given by Eq. (2.2.49) in [4]
(up to a global sign convention). Inserting the metric
perturbations (18)—(20) into the geodesic equation in
1.5PN approximation yields

¥ ¥ipN *7'5pn
?:Zcz +> 2 (24)

up to terms of the order O(c™*), and where &)1k and #}%py
are given by Eq. (13) in [34]. The solution of (24) reads
formally as follows:

x(t) =xo + c(t — 1) G+ZM1PN+ZM15PN (25)
1—0

up to terms of the order O(c™), and where Axpy =
O(c™"). In [34] advanced integration methods have been
introduced which allow one to integrate (24) exactly and
which lead to the exact expression of (25), given by
Egs. (33), (36), and (38) in [34]. In that approach two
new parameters were introduced,

T =06-XN, (26)
£ = Pix, (27)
where P/ = 8§ — 6'6/ is a projection operator onto the
plane perpendicular to vector o; note that PV = P;; = P!,

Obviously, the unperturbed light ray (5) expressed in terms
of these new variables takes the form

xy =&+ cro. (28)

TABLE I. Numerical parameter for mass M, radius P, actual
zonal harmonic coefficients J;, distance between observer and
body x;, of the Sun, Jupiter, and Saturn. The values for GM/c>
and P are taken from [48]. The value for J; for the Sun are taken
from [49] and references therein. The values J; with n =2, 4, 6
for Jupiter and Saturn are taken from [50], while J; with n = 8,
10 for Jupiter and Saturn are taken from [51] and [52],
respectively. The angular velocity Q = 2z/T (with rotational
period T) are taken from NASA planetary fact sheets. The
dimensionless moment of inertia > is defined by Eq. (B61)
and their values are taken from [48]. For the distance between
light source and body we assume x, = 10'' m so that the light
source is within the near zone of the Solar System, while x; is
computed under the assumption that the observer (spacecraft) is
located at Lagrange point L,, i.e. 1.5 x 10° m from Earth.

Parameter Sun Jupiter Saturn
GM/c*(m) 1476.8 1.41 0.42
P(m) 696 x 10° 71.5 x 10° 60.3 x 10°
J, 1.7 x 1077 14.696 x 1073 16.291 x 1073
Jy 98 x 10”7 —0.587x 1073 —0.936 x 1073
Js 4 %1078 0.034 x 1073 0.086 x 1073
Jg —4 %107 —2.5x10°° —10.0 x 107
Jio -2 x 10710 0.21 x 107° 2.0 x 1070
Q (sec™!) 2.865x 107%  1.758 x 1074 1.638 x 1074
2 0.059 0.254 0.210

x; (m) 0.150 x 102 0.59 x 10'2 1.20 x 102

The three-vector € is laying in the two-dimensional plane
perpendicular to o, hence only two components are
independent, which implies 0&'/d&/ = P’ But in practical
calculations it is convenient to treat the spatlal components
of this vector as formally independent, which implies
0¢'/0g) = &;. Therefore, a subsequent projection onto this
two-dimensional plane by means of P"/ is necessary [cf. text
above Eq. (31) in [36] as well as Egs. (11.2.12) and
(11.2.13) in [23]]. Then, for a spatial derivative expressed
in terms of these new variables, one obtains

d ] d
ox' L& toi oct (29)

In case of time-independent functions, relation (33) in
[36] coincides with relation (29). Then, using (29) and the
binomial theorem, one finds the differential operator in (21)
expressed in terms of these new variables,

. 9 0 d \?
P 2 0 (2N 3
ol LoEIre T 9 \ dct

Here we prefer to use the operator as given by Eq. (30)
where 0¢'/0¢/ = &}, while if one applies the operator as
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given by Eq. (24) in [34] then 0¢'/0¢/ = P*. The results of
either these operations are identical. Then, using the basic
integral (25) in [34] one finds for the second integration
the formulas given by Eq. (27) in [34], which lead to
the solution for the second integration of geodesic
equation (24).

The approach introduced in [34] for bodies at rest and
time-independent multipoles has further been developed for
the case of light propagation in the gravitational field of a
time-dependent source of matter at rest [36,43,44], as well
as in the gravitational field of N slowly moving bodies with
time-dependent multipoles in our investigations in [32,33].

According to the solution for the light trajectory as given
by Eq. (31) with (33), (36), (38) in [34], the time of flight in
the gravitational field of a body with full mass-multipole
and spin-multipole structure is given by the following
formula [cf. Eq. (40) in [34]]:

c(t;—to) =R+ Z ACT1PN + Z ACTl N (31)

=0 =1

up to terms of the order O(c™*). The mass-multipole
(gravitoelectric) term reads [cf. Egs. (41) and (42) in [34]]

ZG( 1)
Act 1PN =+ 2 I ML

x (0pIn(ry +c7)],, _3L1n(rN+CT)|T:tO)’ (32)
and the spin-multipole (gravitomagnetic) term reads
[cf. Eq. (43) in [34]; note an overall sign error in
Eq. (43) in [34]; see also footnote 3 in [45] as well as
Ref. [73] in [33]]

4G (-1)1
S ia
Actispn=+—3 ERTENDY o€ b§ bL—1

X (aaL—l ln(rN+CT) |T:tl -

5aL—1 1n<rN +CT)|T:t0)’

(33)

where ry = |xn| with xy in (28), that means ry=

V& + c?1*. These equations were also given by
Egs. (11.2.34) and (11.2.35) in [23]. In (32) and (33)
the differentiations have to be performed. Afterwards one
has to substitute the unperturbed light ray by the standard
expression as given by Eq. (5) where the coordinate time is
either #; or 1, as indicated by the sublabels. In particular, at
the very end of the calculations one has to replace cz by
o -xy and € by d,. For details about how to perform the
differentiations, the reader is referred to [23,34]. Because
the mass quadrupole is of specific relevance in our
investigation, we consider the application of (32) for the
mass quadrupole explicitly in Appendix C.

The largest effect of Shapiro effect is expected from the
Sun and the giant planets of the Solar System. In order to

determine the Shapiro time delay one needs the explicit
form for mass multipoles (22) and for spin multipoles (23).
For an estimation of the individual terms in (32) and (33),
one may approximate the Sun and the giant planets by a
rigid axisymmetric body with radial dependent mass
distribution and in uniform rotational motion around the
symmetry axis of the body, which is aligned with the x*
axis of the coordinate system. Then, the higher mass
multipoles for such a body are given by Eq. (B35) in
Appendix B, while the spin dipole and higher spin multi-
poles for such a body are given by Eqgs. (B63) and (B57) in
Appendix B:

My =M, (34)
ML = _M(P)l‘,léizl 613,>
with [=2.,4,6,..., (35)
S, = KXMQP?5,,, (36)
. 1+ 1
S, = -MQ(P)+1J,_, l+453<,1 8.
with [=3,5,7,..., (37)

where M is the Newtonian mass of the body, P its
equatorial radius, J; are the actual zonal harmonic coef-
ficients of index [, k% is the dimensionless moment of
inertia, € is the angular velocity of the rotating body,
and &%, ...5]. = STF; ;53 ...63, denotes products of
Kronecker symbols which are symmetric and traceless
with respect to indices i;...7;. These multipoles (35) and
(37) are in agreement with the multipoles for an rigid
axisymmetric body in uniform rotational motion as given
in the resolutions of the International Astronomical Union
(IAU) [46]; that agreement is shown explicitly in
Appendix B for the mass quadrupole as well as for the
spin hexapole in case of a rigid axisymmetric body with
uniform mass density.

The calculations can considerably be simplified by
inserting the mass multipoles and spin multipoles (35)
and (37) into (32) and (33), respectively, and afterwards
one starts with the evaluation of the Shapiro time delay.
Then, one obtains the following upper limits of the
individual terms of Shapiro time delay [cf. text below
Eq. (43) in [34]]:

GM 4XO)C1
|ATIPN‘ < 2 In ¥ )2 ) (38)
P\!
|ATlPN| <Al J1|< )
ds
with [ =2,4,6,..., (39)
GM
|AT?‘45PN| < 47K2PQ, (40)
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GM P\!
|Aztpy] < 317PQ|11—1| (d_>

with [ =3,5,7,..., (41)
where in (40) we have used relation (B63). The non-
vanishing coefficients for the first few mass multipoles and
spin multipoles read

11 7 3
2 57 4 6’ 6 5’
3 3
Ay = — A = — 42
8 10’ 10 20’ ( )
7
By—-. 43
b= #3)

The calculation of coefficient A, is given in some detail
in Appendix C, while the determination of the other
coefficients in (42) and (43) proceeds in a very similar
manner. Thus far, to the best of our knowledge, these upper
limits have only been determined for mass monopole, mass
quadrupole, and spin dipole, which were given in [47].
Numerical values of the upper limits in (38)-(41) are
presented in Table II for the first mass multipoles and spin
multipoles in case of grazing rays at the Sun and the giant
planets of the Solar System.

In Table II for the Sun, Jupiter, and Saturn a time delay of
mass quadrupole of 1.8, 152.1, and 50.6 ps are given. These
values differ from the values in Table I in [47], where for
the Sun, Jupiter, and Saturn a time delay of mass quadru-
pole of 16, 240, and 73 ps were given. These differences
originate from different upper limits. Here, according to

Eq. (39), we have used Arjgi <2.29%|J,| [which coin-
cides with Eq. (53) in [47]], while in Table I in [47] an
upper limit of Ar)R < 3.18¢1|J,| has been used
[cf. Eq. (47) in [47]]. In addition, for the Sun different

TABLE II.  The effect of 1PN mass multipole AT}K)IN and 1.5PN
spin multipole terms ATls,ZspN of (one-way) Shapiro time delay in
the gravitational field of the Sun and giant planets of the Solar
System according to the upper limits presented by Eqgs. (38)—(41).
The time delay is given in units of picoseconds: 1 ps =
10712 sec. The values are given for grazing rays (impact
parameter d; equals body’s equatorial radius P). Values for
Az with [ > 10 and Az}’ with [ > 5 are not shown because
they are less than a femtosecond for any Solar System body. The
numerical values should be compared with the assumed goal
accuracy of 0.001 picoseconds in time delay measurements. A
blank entry means a delay of less than a femtosecond.

Object Arfly  Arjiy A7y Arf Azl AfffspN A7%51)1\1
Sun 1.6 x 108 1.8 56 0.1 0006 7.7 -
Jupiter 2.2 x 10° 152.1 3.2 0.1 0.004 0.2 0.001

Saturn 6.8 x 10* 50.6 1.5 0.07 0.004 0.04 -

values for the second zonal harmonic coefficient J, have
been used. On the other side, the values for the time delay
of the spin dipole presented in Table II coincide with the
values given in Table II in [47].

Finally, an important comment should be in order. The
solutions for the light trajectory as well as Shapiro time
delay in the 1PN and 1.5PN approximation are given in
terms of the unit vector ¢, which can immediately be
replaced by the unit vector k, because they differ by terms
beyond the 1PN and 1.5PN approximation: 6 =k +O(c?)
and 6 -k = 1 + O(c™*). However, in 2PN approximation
one has carefully to distinguish among these vectors. In
addition, in 2PN approximation one must not replace
xn(t) by the spatial position of the observer x;, because
such a replacement causes an error of the order O(c™)
which is of second post-Newtonian order. Both of these
aspects make the treatment of the determination of Shapiro
time delay in 2PN approximation more involved and will
be considered in the next sections.

IV. LIGHT PROPAGATION IN 2PN
APPROXIMATION: INITIAL
VALUE PROBLEM

A unique solution of geodesic equation (6) is given by
the initial value problem as defined by Eqgs. (10) and (11).
In order to get the geodesic equation one needs the metric
tensor in Eq. (16). In 2PN approximation the expansion in
Eq. (16) reads as follows:

Gap = Nap + h((j;) (b1,) + hS/;)(SL) + hﬁfg (M) (44)

up to terms of the order O(c™>), and where the mass
multipoles M, and spin multipoles S, are given by
Egs. (B21) and (B38), respectively, and they are assumed
to be time independent. The 1PN and 1.5PN metric

perturbations, hg) and hfﬁ), were given by Egs. (18)—

(20), while the 2PN metric perturbations hg}} have been
derived from the MPM formalism [38,39] and were given
by Egs. (115)—~(117) and Egs. (134)—-(136) in our article
[42] for the case of time-independent multipoles.

For our considerations about the 2PN effect of time delay
in the gravitational field of one body at rest, where only the
mass monopole and mass quadrupole will be taken into
account, that means

M, =0 forl>2, (45)

S, =0 fori>1. (46)

But we will keep in mind the exact solution of the
geodesic equation in 1.5PN approximation in (25) and

the Shapiro time delay in 1.5PN approximation in (31),
and we may finally add these terms at the very end of
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our calculations of the Shapiro time delay in 2PN
approximation.

Thus far, our knowledge about 2PN effects in the theory
of light propagation was restricted to the case of light
propagation in the field of monopoles [4,37,53]. In our
recent article [35] the initial value problem of 2PN light
propagation in the field of one body at rest with quadrupole
structure has been solved. The metric (44) for one massive
Solar System body at rest with monopole and quadrupole
structure takes the form [cf. Eq. (16) in [35]]

Gap = Nap + hfxii')(M’ Mab) + hg;)(M’Mab> (47)

up to terms of the order O(c~°) [there are no terms of the
order O(c™>) because the spin multipoles are neglected],
and where higher mass multipoles as well as spin multi-
poles have been neglected; the origin of spatial axes of
the coordinate system is located at the center of mass of
the body and, therefore, the mass dipole vanishes
[cf. Eq. (8.14c) in [38]). The explicit expressions for the
metric perturbations in (47) have been derived by
Eqgs. (145) and (147) as well as Egs. (148)—(150) in our
article [42]. By inserting the 2PN metric tensor (47) in the
geodesic equation (6) one obtains the geodesic equation in
2PN approximation [cf. Eq. (74) in [35]]

- =M My MxM MXM ), =My XM g

¥ Xpy , ¥ipn | ¥opn | Xopn 2PN 48
—=— St 5 (48)
c c c c c

up to terms of the order O(c~%). The geodesic equation (48)
can be written in terms of time-independent tensorial
coefficients and time-dependent scalar functions. For the
explicit form of geodesic equation (48) we refer to
Egs. (47)-(49) in [35] for the IPN terms as well as
Egs. (75) and (78)—(79) in [35] for the 2PN terms. The
solution of the second integration of the geodesic equa-
tion (48) reads [cf. Eq. (86) in [35]]

x(1) =x9+c(t—t9)o + Axpn (1, 1o) + Axapn(2,19)  (49)
up to terms of the order O(c™%), and where Axpy =

O(c™2) and Ax,py = O(c™). In favor of a simpler
|

. GCM? [
At (i) = T4 S,
n=3

+Z}"'

notation, the monopole and quadrupole terms in (49) have
been summarized as follows:

Axipy = Axipy + AleN’ (50)
Axapy = A+ AxDLT + Axgg e (1)

in obvious meaning: index M means terms proportional to
the monopole, index M ,;, means terms proportional to the
quadrupole, index M x M means terms proportional to the
monopole times monopole, index M x M, means terms
proportional to the monopole times quadrupole, and index
M, X M., means terms proportional to the quadrupole
times quadrupole. In this section we reconsider the solution
of the second integration (49) as it has been obtained in our
article [35]. However, it is necessary to rewrite this solution
into a new form which is appropriate for subsequent
considerations of the Shapiro time delay.

A. Old representation

The iterative solution of the second integration of
geodesic equation in 2PN approximation (48) reads [35]:

xy =Xy + c(t—1y)o, (52)
— Axpn (X)), (53)

Xipn = XN + Axipy(Xy)

— Axypn(Xp)
— Axpn (X)), (54)

Xopn = XN + Axipy(Xy)

+ Axopn (*)
where the spatial components of 1PN terms are given by

GM

Axipy(xy) = —[Ai W) (1) + Bi X(s)(f)]

+GMab

> [CEIW ) (1) + DY X ) ()]

n=5,7
(55)

and the spatial components of 2PN terms are given by

(0]

+9"

2 M2

n=3,5

GPMIt [ » oo 0,
+T{;K;z)ww)+§_;£22>X<n)(r)+§_;Mzz>y<n>(r>+§_;N;z)z<n><t)]

c

G*M M,y [N LA
b cd {Z Plabcd (1) +  Qiabed x, (z)} : (56)
n=>5 n=4

104052-8



TIME DELAY IN THE QUADRUPOLE FIELD OF A BODY AT ...

PHYS. REV. D 106, 104052 (2022)

In order to get Axpn(Xy) and Ax,py(¥o) we notice that
xo = xn(7), that means one has to take the time-argument
to in the scalar functions in (55) and (56).

The tensorial coefficients AL, , Bi, ) C’“b DE“Z; are given
by Eqgs. (52)—(57) in [35]. In what foilows these coefficients
are essential and have, therefore, been given by Egs. (D1)—
(D6) in Appendix D. The tensorial coefficients 52*1)’ F ’@,
gl@, M,y and Kb, Liah, Mias, Nab, as well as Pibed,
QE%’C‘{ are given by Egs. (E28)—(E39) and Egs. (E41)-
(E65) as well as Egs. (E67)—(E87) in [35] (note some
correctionsl).

The scalar functions W), X(,), V(n)» Z(,) are defined
by Egs. (D20)-(D23) in [35] and can be solved in closed
form as given by Eqgs. (D25)—(D28) in [35]. Some explicit
solutions for these functions are provided by Egs. (D29)-
(D42) in [35]. In what follows, the scalar functions W,
and X, for n = 3, 5, 7 are essential and have been given
again by Eqgs. (D8)—(D13) in Appendix D

Both the scalar functions as well as the tensorial
coefficients in (55)—(56) are functions of the unperturbed
light ray xy = xn(#) and x5 = xn(%). In particular, the
tensorial coefficients as well as the scalar functions contain
the impact vector

d, =0 x (xyx0) (57)

and its absolute value d, = |[d,| which is called impact
parameter d,. The impact vector is perpendicular to the
spatial direction of the unperturbed light ray, that means
6 -d, =0, and points from the origin of the coordinate
system towards the unperturbed light ray at the moment of
closest approach; see also Fig. 1. It is noticed that the
impact vector (57) can also be written in terms of the
unperturbed light ray [cf. Eq. (33) in [35]]

d, =06 X (xy X0) (58)

which is a time-independent quantity as one may see by
inserting (5) into (58).

B. New representation

For the solution of the Shapiro time delay it is necessary
to rewrite the 2PN solution, given by Eqgs. (52)—(56), in the
following form:

XN = Xp + C(t — lo)O', (59)

'(i) In Eq. (E67) in [35]: — 7 )40 A destt — — 2 50qbec s,

(i) In Eq. (E69) in [35]: —+ ;)2( L O-adhdeddz
+ o5 Gy o dodidd,. (iii) In Eq. (E69) in [35]: —

<x)
didbdidlic’ — —<;—° adbddde’. (iv) In Eq. (E71) in [35]:

20,25 a g ge gl — 480,25 5 ds e,

—3 X

Xipn = XN + Axipn(XN) — Axipn(Xo). (60)

Xopn = XN + Axipn(X1pn) — AXipn(X0)

+ Axpn (¥n) — Axopn(Xo), (61)
where the spatial components of 1PN terms are given by

. GM S
Axipy(X) =—5 D (U(, Fu)(x)

n=1

GM,, &
+ cz”z (Vieb G, (62)

n=1

and the spatial components of 2PN terms are given by

‘ GM> S~
AlePN(x) = TZ (Ul(n)X

n=1

G*MM S~
Fe Y (ViEy ) (x)
n=I

c

G My M oy N
+ %Z (WiehedZ ) (x).  (63)
n=1

The tensorial coefficients U En)’ V’('Zl)’ , and WE%’Cd are given
by Egs. (E2) and (E3), Egs. (E4)-(E11), and Egs. (E12)—
(E39) in Appendix E. The scalar functions £, and G, are
given by Egs. (F8) and (F9) and Egs. (F10)-(F17) in
Appendix F. The scalar functions X(,, Y,), and Z,) are
given by Egs. (F18) and (F19), Egs. (F20)—(F27), and
Egs. (F28)—(F55) in Appendix F

The difference between the old representation in (54)
and the new representation in (61) is the argument of
Axpy. In the old representation in (54) the argument of
this term is the light trajectory in Newtonian approxima-
tion, xy, while in the new representation in (61) the
argument of this term is the light trajectory in 1PN
approximation, xpy. But it is emphasized that the new
representation (59)—(63) agrees with the old representation
(52)—(56) up to terms beyond the 2PN approximation. The
basic ideas of how to demonstrate the agreement of the old
representation and the new representation are given in
Appendix G

The terms proportional to M in (62) agree with Eq. (50)
in [53], and the terms proportional to M x M in (63) agree
with Eq. (51) in [53]. The terms proportional to M X AA/Iah
and M ,;, x M, in (63) are the new quadrupole terms of the
second post-Newtonian approximation. In the following we
will investigate the influence of these 2PN quadrupole
terms within the boundary value problem and in particular
their impact on the Shapiro time delay.
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V. THE SHAPIRO TIME DELAY IN 2PN
APPROXIMATION

A. The boundary value problem

The initial value problem has been defined by Egs. (10)
and (11). The solution of the initial value problem for the
propagation of a light signal in the monopole and quadru-
pole field of one body at rest in 2PN approximation has
been presented in the previous section. In order to deter-
mine the Shapiro time delay one needs the solution of the
boundary-value problem, where a unique solution of
geodesic equation is defined by the space-time point
(t9,xg) of the light source and by the space-time point
(t;,x;) of the observer [5,17]:

Xo = x<t>|t:t0’ (64)
X :x([)|t:t|‘ (65)

The spatial position of the observer (¢;,x;) is assumed to
be known, while the spatial position of the light source
(9, xp) has to be determined by a unique interpretation of
astronomical observations which is the primary aim of
astrometric data reduction [4,5,17,37,54].

The solution of the boundary value problem (64) and
(65), that means a solution of the geodesic equation in
terms of the spatial position of source and observer, x and
x|, can be obtained from the new representation of the
initial-boundary solution as given by Eq. (61) in the
following way. The spatial coordinates of the unperturbed
light ray at the time of observation coincides with the
spatial coordinates of the observer up to terms of the order

O(c™?),
x; =xyn(1y) + O(c™?). (66)

Therefore, a replacement of xy(#,) by x; in the expres-
sion Ax,py(xy) in (61) causes an error of the order O(c™°)
which would be in line with the 2PN approximation.
Furthermore, the spatial coordinates of the light ray in
1PN approximation at the time of observation coincides
with the spatial coordinates of the observer up to terms of
the order O(c™),

x; =xppn(t1) + O(c™). (67)

Therefore, a replacement of xpy(#;) by x; in the expres-
sion Ax pyn(x;pn) in (61) causes also an error of the order
O(c™®) which would be in line with the 2PN approxima-
tion. Finally, the spatial coordinates of the light ray in 2PN
approximation at the time of observation coincides with
the spatial coordinates of the observer up to terms of the
order O(c%),

xy = xpn(t1) + O(c™0). (68)

Therefore, a replacement of x,py(#;) by x; in the left-hand
side of equation (61) causes an error of the order O(c™°)
which would be in line with the 2PN approximation.
The sequence of replacements (66)—(68) in (61) leads to
the following expression which is valid in 2PN approxi-
mation, that means valid up to terms of the order O(c~°):

c(ty — 19)6 = Rk — Axypx(x1,X0) — Axopn(x1,X0),  (69)
with R = |x; — x| and where

Axpn (X1, X0) = Axipn(x1) — Axipn (X)), (70)

Axopn (X1, X0) = Axopn(X1) — Axopn(Xp). (71)

with Axpy(x) and Ax,py(x) given by (62) and (63). It is
emphasized that such a replacement would not be possible
in the old representation (54) because there the corrections
Axpy are given in terms of the unperturbed light ray, but a
replacement according to (66) would cause an error of the
order O(c™*) in these terms which would spoil the 2PN
approximation.

B. The transformation ¢ to k

In the boundary value problem the unit-vector k, point-
ing from light source towards observer, is of fundamental
importance:

X1 —Xp

k = (72)

ey = xo '

In order to get the expression for the time delay, one needs
the transformation from ¢ to k. In Newtonian approxima-
tion we have

6 =k+0O(c?). (73)

In 1PN approximation one obtains from (69)
6 =k =g lkx (Aripn(x1,30) X K] + O(c™).  (74)
For later purposes it is noticed here that (74) implies
6-k=1+0(c*). (75)

Because the three-vector ¢ appears in the Newtonian
terms in (69), one also needs the transformation ¢ to k
in 2PN approximation. By iteration, using (74), one obtains
from (69)
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o=k _%[k X (Axpx (X1, %) X k)]

—%[k X (szpN(xlsxO) X k)]

1
R2

3 1
5 klk x Ax iy (x1.%0)[* + O(c70) (76)

[Axpn (X1, X0) X (k X Axjpx (X1, %0))]

which generalizes Eq. (68) in [53] which was valid in the
field of one monopole at rest.

C. The Shapiro time delay
Using the expressions for the transformation ¢ to k in
Egs. (73)-(76), one obtains from (69) the travel time of a
light signal in the field of one body at rest where its
monopole and quadrupole structure is taken into account,

c(ty —t9) = R —k - Axpn(x1,x0) —k - Axopn (X1, X)

1
+ﬁ ke x Axipn(x1,%0))* + O(c™®), (77)

which generalizes Eq. (67) in [53] which was valid in the
field of one monopole at rest. However, formula (77) is still
implicit, because Axpy and Ax,py are given in terms of 6.
Clearly, the last two terms in (77) are 2PN terms which are
of the order O(c™), hence one may immediately replace
the vector & by the vector k. But the term k - Axpy in (77) is
a 1PN term, hence one has to use the transformation ¢ to k
in 1PN approximation (74) in order to achieve a formula for
Axpy in terms of vector k rather than 6. Only in this way
one arrives at a formula for the time delay in 2PN
approximation fully in terms of vector k, which is the
central topic of this section.

The term k - Ax,py is calculated in Appendix H and
given by Eq. (HS5). The term k- Axpy is calculated in
Appendix I and given by Eq. (I136). The term |k x Ax py|?
is calculated in Appendix J and given by Eq. (J2).
According to these results, the light travel time in 2PN
approximation in the gravitational field of one body at rest
with monopole and quadrupole structure given as follows:

c(ty —to) = R+ Actihy + Act)i
+ACT a[;XM(zI+O( —6)

(78)

+ActhiM + Acrzp

where the individual terms are given by the following
expressions:

GM

ACTllvll)N = —P (x],x0> (79)

GMa

ACTlPN = : Z Sub (n) (X1, %0), (80)
G*M?

Acthi =+ - Ry (x1,%0), (81)

MxM .,

Actypy

G>Mi,
—+7”Zsab ) (x1,x),  (82)

abXMzd

G>M M . ; 2~
Actit M — +$ZT%€€1T("> (x1,%0). (83)
n=1

The tensors S and T9¢? are defined by Eqs. (H3) and

(n) (n)

(H4). The scalar functions P ;) and Q) for the IPN terms
are given by Eq. (I37) and Eqs (I38)—(140), while the scalar
functions Ry, S, and T’y for the 2PN terms are given by
Egs. (K8), (K9), and (K10).

In order to determine the 2PN effect of the time delay,
higher mass multipoles beyond the mass quadrupole as
well as spin multipoles have been neglected, as indicated by
Egs. (45) and (46). These higher mass multipoles and spin
multipoles can be taken into account just by adding the
other 1PN mass multipole terms in (32) (beyond mass
quadrupole) as well as the 1.5PN spin multipole terms in
(33)—(78) in an appropriate manner; cf. text below Eqgs. (45)
and (46) as well as in the introductory section. That means,
one has to keep in mind that (78) is given in terms of three-
vector k, while (32) and (33) are given in terms of three-
vector ¢. Therefore, in order to do that consistently, one has
to replace the three-vector & in (30) as well as in (32) and
(33) by the three-vector k. In view of relations (73) and (75)
such a replacement is correct up to higher 2PN multipole
terms beyond the mass quadrupole.

D. The upper limits of 2PN terms in the
Shapiro time delay

The upper limits for 1PN mass monopole and mass
quadrupole time delay were given by Egs. (38) and (39),
while the upper limits for 2PN mass monopole and mass
quadrupole terms were derived by Egs. (K15), (K19), and
(K22). They read

GM 4)C0)C]

|ATlPN| < 2 In (dk)2 > (84)
11GM P\2
adl <3 m(r). 69)
k
G*M? x P\2
APM| <g 2 = 1 () 86
sl <3O (0) 60

104052-11



SVEN ZSCHOCKE

PHYS. REV. D 106, 104052 (2022)

TABLE III.  The effect of 2PN terms of (one-way) Shapiro time
delay in the gravitational field of the Sun and giant planets of the
Solar System according to the upper limits presented by Eqgs. (86),
(87), and (88). The values are given for grazing rays (impact
parameter d; equals body’s equatorial radius P). The time delay is
given in units of picoseconds: ps = 107!2 sec. The presented
numerical values should be compared with the goal accuracy of
0.001 picoseconds in time delay measurements. A blank entry
means a delay of less than a femtosecond.

Object Aghxm AghMer AhlanMea
Sun 1.8 x 10* 0.004 e
Jupiter 6.1 0.14 0.001
Saturn 1.6 0.04 .

“ G*M?* x P\2
s <2 (F) e

(;ZM2 X1 P 2
()

The upper limits of the 1PN mass monopole term (84) and
IPN mass quadrupole term (85) were already given by
Eqgs. (38) and (39) [with coefficient A, in (42)], while their
numerical values have been presented in Table II for
grazing light rays at the Sun, Jupiter, and Saturn.

The numerical values for the 2PN terms (86)—(88) are
presented in Table III for grazing light rays at the Sun,
Jupiter, and Saturn. It is remarkable that the numerical
value of the 2PN monopole-quadrupole term (87) for
Jupiter and Saturn is of similar magnitude than the 1PN
spin-dipole term (40) for Jupiter and Saturn. Similarly, the
numerical value of the 2PN quadrupole-quadrupole term
for Jupiter and Saturn (88) is of similar magnitude than the
IPN spin-octupole term (41) (with By = 7/6) for Jupiter
and Saturn.

Finally, by comparing the 2PN values presented in
Table III with the 1PN values given in Table I in [47],
one finds that the 2PN monopole-quadrupole effects for
Jupiter and Saturn are larger than the 1PN quadrupole
effects for Earth-like planets of the Solar System.

Ay M| < 8

VI. SUMMARY

The Shapiro time delay is the difference between the
travel time of a light signal in the gravitational field of a
body and the Euclidean distance between source and
observer divided by the speed of light, which belongs to
the four classical tests of general relativity. For a spherically
symmetric body with mass M, the Shapiro time delay in the
1PN approximation is given by

2GM . x, +k-x
AT = Int L 89
TIPN C3 n.X'() +k'X0 ( )

The first measurements of this effect (89) have been
performed by radar signals, which were emitted from
Earth and which were reflected either by the inner planets
or by spacecrafts. Since the early days of time delay
measurements in the Solar System, the accuracies have
been improved from a few microseconds in 1968 and 1971
by radar echoes from Mercury and Venus [6,7] towards a
few nanoseconds in 2003 by radar echoes from the Cassini
spacecraft which orbits Saturn [10].

Future time delay measurements in the Solar System aim
at the picosecond and sub-picosecond level of accuracy,
which will be performed by optical laser rather than radar
signals, as suggested by a series of several ESA mission
proposals [11-16]. These advancements make it necessary
to improve the theoretical models of time delay measure-
ments up to an accuracy of 0.001 picoseconds. On this level
of precision the Shapiro time delay in 1PN monopole
approximation (89) is by far not sufficient. It is necessary to
take into account higher mass multipoles M, (describe
shape and inner structure of the massive body) and some
spin multipoles S, (describe rotational motions and inner
currents of the massive body) in the post-Newtonian (1PN
and 1.5PN) approximation,

. My - St
Ar = IZ(; Atypy + 121: AT\ 5py- (90)

The mathematical expressions for the PN and 1.5PN terms
in the Shapiro time delay were derived a long time ago [34].
In this investigation we have quantified these terms and
have clarified that only the first eight mass multipoles and
the spin-dipole term and the spin-hexapole term (for
Jupiter) are required in order to achieve an assumed
accuracy of about 0.001 picoseconds. The numerical values
for the 1PN mass multipoles and 1.5PN spin-dipole term
were presented in Table II. It has been shown that higher
mass multipoles / > 10 as well as spin multipoles / > 5 are
not relevant for an accuracy of about 0.001 picoseconds in
time delay measurements in the Solar System.

It is clear that on the sub-picosecond level of accuracy in
time delay measurements some 2PN effects need to be
taken into account. Thus far, however, the knowledge about
2PN effects in the Shapiro time delay was restricted to the
case of spherically symmetric bodies. The next term in the
multipole decomposition is the mass quadrupole term. In
this investigation we have taken into account the monopole
and quadrupole structure of a massive body at rest and have
determined the 2PN quadrupole effects on time delay for a
light signal,

_ M M,
At = Arjpy + AT

+ A+ AL+ AN (91)

The explicit expression of the 1PN terms in (91) were
presented by Egs. (79) and (80) and the 2PN terms in (91)
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were presented by Egs. (81)-(83). The 2PN quadrupole
effect amounts up to 0.004, 0.14, and 0.04 picosecond for
grazing light rays at the Sun, Jupiter, and Saturn, respec-
tively; see Table III. The values of the 2PN terms are tiny
but, nevertheless, they are comparable with the 1PN and
1.5PN terms of some higher mass multipoles and spin
dipoles on time delay; see Table II.

In the expression for the time delay in 2PN approxima-
tion (91) higher multipoles beyond the quadrupole are not
taken into account. It is, however, not certain whether such
higher multipole terms can be neglected in 2PN approxi-
mation on the level of 0.001 picosecond in the accuracy of
time delay measurements. Namely, the next 2PN term
beyond the monopole-quadrupole term, M x M ,;,, which is
proportional to the second zonal harmonic coefficient J,,
would be the monopole-octupole term, M x M ,,.,;, which
is proportional to the fourth zonal harmonic coefficient J4.
Taking the ratio J4/J, and multiplying with the 2PN
monopole-quadrupole effect one obtains about 0.02,
0.006, and 0.002 picosecond time delay for grazing rays
at the Sun, Jupiter, and Saturn. These rough estimates show
that the monopole-octupole term might be relevant for time
delay measurements on the level of 0.001 picosecond. On
the other side, these 2PN monopole-octupole terms scale
with (P/d;)* where P is the equatorial radius of the
massive body and dj is the impact parameter of the light
ray. Thus, these 2PN effects decrease very rapidly with
increasing distance from the massive body.

Finally, it is also mentioned that the impact of the mass
monopole on a time delay has been determined in the 3PN
approximation for the case of one body at rest [55], where it
has been shown that on the picosecond level such 3PN
effects are relevant, but only in case of grazing light ray at
the Sun, that means light signals which pass near the limb
of the Sun.
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APPENDIX A: NOTATION

Throughout the investigation the same notation as in
Ref. [35] is in use:

(i) Lower case Latin indices i, j, ... take values 1,2,3.

(i) f denotes total time derivative of f.

(iii) f; = df/ox" denotes partial derivative of f with
respect to x'.
(iv) Kronecker delta: §=6;;=67 =diag(+1,+1,+1).
v) n'=n(n—=1)(n—=2)---2-1 is the factorial for
positive integer (0! = 1).
(vi) n''=n(n—-2)(n—4)---(2orl) is the double fac-
torial for positive integer (0!! = 1).
(vii) & = €% with €53 = +1 is the fully antisymmetric
Levi-Civita symbol.
(viii) Triplet of three-vectors are in boldface, e.g. a, b,
o, X.
(ix) Contravariant components of three-vectors: a' =
(a',a* a*).
(x) Absolute value of a three-vector:
Vala' + d?a* + a’d’.
(xi) Scalar product of three-vectors: a -b = §;;a'b/.
(xii) Vector product of two three-vectors: (a x b)' =
£ ,-jkaj bk.
(xiii)) Angle between three-vectors @ and b is denoted
by é(a,b).
(xiv) Lowercase Greek indices take values 0,1,2,3.
(xv) f, = df/ox* denotes partial derivative of f with
respect to x*.
(xvi) ng5 =n* = diag(—1,+1,+1,+1) is the metric
tensor of flat space-time.
(xvii) g,s and g* are the covariant and contravariant
components of the metric tensor.
(xviii) Contravariant components of four-vectors: a* =
(@, a',a? a*).
(xix) Repeated indices are implicitly summed over
(Einstein’s sum convention).

APPENDIX B: MASS AND SPIN MULTIPOLES
1. STF tensors

Here we will present only those few standard notations
about symmetric trace-free (STF) tensors, which are really
necessary for our considerations, while further STF rela-
tions can be found in [38,39,41,56].
(1) L =iqiy...0; is a Cartesian multi-index of a given
tensor 7, that means T) =T, .

(i) Two 1identical multi-indices imply summation:
ALB = Zi,,,_i, Ai,...i,Bilu.i,-

(iii) The symmetric part of a Cartesian tensor 7 is
[cf. Eq. (2.1) in [38]]):

1
Tty = Tiioi) = 11 ) Ainiroinys (B1)

where ¢ is running over all permutations of
(1,2,...,D).

(iv) The symmetric trace-free part of a Cartesian tensor
T (notation: 7, =STF, T, = T, . .iy)is[cf. Eq.(2.2)
in [38]):
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(/2]

T, = Z alk&(ili2»~-5i2k—1izkSi2k+1...ilja1al...akak ’
k=0

(B2)

where [//2] means the largest integer less than or
equal to [/2, and S; =T, abbreviates the sym-
metric part of tensor 7;. The coefficient in (B2) is
given by

I (20=2k— 1)
(I=2k)!1 (21 = DN 2K)IT

ayp = (=1)* (B3)

Three comments are in order about STF. First of all, the

Kronecker delta has no symmetric trace-free part,

STF,,6% = 0. (B4)

Second, the symmetric trace-free part of any tensor which

contains a Kronecker delta is zero, if the Kronecker delta
has not any summation (dummy) index, for instance,

STE, .6 d¢ = 0, (BS)

STF,,.6%°6¢ = 0. (B6)
And third, the following relation is very useful [cf. Eq. (A1)
in [56]],

ALEL :ALBL :ALBL (B7)
which often simplifies the analytical evaluations, because
the STF structure can be determined at the very end of the
calculations. In this appendix the normalizations and
definitions as used in [3] will be applied. In particular,
we need the following Cartesian STF tensor,

A x<z, xil>
n; = T,
r r

(B8)

where x; are the spatial coordinates of some arbitrary field
point and r = |x|; we note that x; = x’ and 7, = al.

A basis in the (2/ + 1)-dimensional space of STF tensors
with L indices is provided by the tensors f/lL’”. They are
given by [cf. Egs. (A6.2)-(A6.c) in [39]; a few examples of
these basis tensors are provided in Box 1.5 p. 33 in [3]]

Yy =AmER, (B9)
where E{j, = STF;,_; E}" ; with
= (8}, +i8;)...(6] +1i8; )5, ...5; (B10)

and

. | 20+ 1
Alm — (=1) (21_1)"\/47z(1—m)!(1+m)!' (B11)

These basis tensors are normalized by [cf. Eq. (2.26a) in
[38] or cf. Eq. (A7) in [39]]

20+ 1)1

*lm'
VPV = S 4zl

(B12)

where ¥ #Im are the complex conjugate of the basis tensors.

Using the transformation between Cartesian coordinates

(x', x%,x*) and spherical coordinates (r, 8, ¢),

1

x!' =rsinfcos¢, x*

=rsinfsing, x*=rcos6,

(B13)
one may show that the STF basis tensors ¥ are related to
the spherical harmonics Y, as follows [cf. Eq. (2.11) in
[38] or Eq. (A8) in [39]]

Vi =Y, (B14)
which are normalized by [cf. Eq. (1.117) in [3]]
/ Yle]’  dQ = 6mm’5ll” (BIS)

where Y7, are the complex conjugate of spherical harmon-
ics and dQ = sin 6 d6 d¢ is the infinitesimal solid angle in
the direction (6, ¢).

Any STF tensor 7', can be expanded in terms of these
basis tensors

. 4rl! !

T, = ) ”ZT,mY (B16)

The expansion coefficients 7', are called moments of the
STF tensor TL and are obtained by the inverse of (B16).

That means, if both sides of (B16) are multiplied with ¥
then one obtains

A

Ty = T,Y;™, (B17)

where the normalization (B12) of the STF basis tensors
has been used. Let us notice that the normalization

prefactor o f] I is convention and appears either in front

of (B16) or (B17). Only the combination of (B16) and
(B17) is relevant, which agrees with the combinations of
Egs. (2.13a) and (2.13b) in [38]. Here we follow the
convention as used, for instance, in [3,56].

In particular, we need the expansion of the STF part
%, = r'A; in terms of these basis tensors, which reads

104052-14



TIME DELAY IN THE QUADRUPOLE FIELD OF A BODY AT ...

PHYS. REV. D 106, 104052 (2022)

. 4rl! !
XL = 21+ ” Z Xim Y (Blg)
According to (B17), the moments are given by
X = X, ViIm =1 Y5, (B19)

where the relation between the STF basis tensors (B14) has
been used. Hence, one obtains for the expansion of the STF
tensor X; the following expression [cf. Eq. (2.23) in [56]]:

A 4rl! 1 lm
Y
LT Z ’

which will be used in order to determine the mass multipole
moments and spin multipole moments.

(B20)

2. Mass multipoles

The mass multipoles M . have been obtained in [41].
In case of time-independent multipoles, they simplify to the
following form, up to terms of the order O(c™*)
[cf. Eq. (5.38) in [41]]

ML:/ &dxi 2z, (B21)

where ¥ = (T% + T*)/¢? is the gravitational mass energy
density of the body with 7% being the stress-energy
tensor of the body. The integration runs over the three-
dimensional volume of the body. The zeroth term [/ = 0 is
the mass of the body: M, = M. The first term [ = 1 is the
mass dipole moment which defines the spatial position of
the center of mass of the body. In case the origin of the
coordinate system coincides with the center of mass of
the body the mass dipole moment would vanish [3,5,38]
[cf. Eq. (8.14c) in [38]]. According to Eq. (B16) the
expansion of the STF mass multipole (B21) in terms of
basis tensors ¥ reads

i - 4rl! ! M, i
L= @r+1 HZ Im

(B22)
The mass moments M, are obtained from the inverse
of (B22) and read [cf. Eq. (B17)]
M,, = M, Y™, (B23)
Let us notice that the combination of relations (B22) and
(B23) coincides with the combination of Egs. (4.6a) and
(4.7a) in [38] in case of time-independent multipoles. By
inserting (B21) into (B23) one obtains, with virtue of (B20)

and (B12), the following expression for the mass moments
[cf. Eq. (1.139) in [3]]

(B24)

M,, = /d%xrlZY;‘m,
where the integration runs over the volume of the body. The
giant planets can be described by a rigid axisymmetric
body. Accordingly, in order to determine the impact of
mass multipoles on the Shapiro time delay we consider a
Newtonian rigid axisymmetric body, having the shape

()2, @2 @)
A? *

+B2 C?

=1,

(B25)

where A = B is the semimajor axis (i.e. equatorial radius P)
and C is the semiminor axis of the body. The oblateness of
the axisymmetric body is parametrized by the ellipticity
parameter €> = (A?> — C?)/A? which is also used in the
IAU resolutions (p. 2698 in [46]). It is assumed that the
unit-vector e is the symmetry axis of the massive body
and the x> direction of the coordinate system is aligned with
the symmetry axis of the body. Then, the multipole
moments (B24) vanish for m # 0, that means we need

Ml():/d3xrlZY;‘0. (B26)
The spherical harmonics for m =0 are real valued

functions, Yj, =Y, and they are related to the
Legendre polynomials P; [cf. Eq. (1.112) in [3]]

(B27)

where 6 is the angle between integration variable x and the
x* direction of the coordinate system (azimuth angle).
Performing these integrals in (B26) one finds that they are
proportional to the mass M of the body and the /th power of
the equatorial radius of the body, (P)' (which should not be
confused with Legendre polynomial P;) and they are
nonvanishing only for even I,

Mo=— ey )
for 1=0,2,4,6,.... Equation (B28) coincides with
Eq. (1.143) in [3]. The dimensionless parameter J‘;l in
(B28) are the gravitoelectric zonal harmonic coefficients,
and follow from inserting (B28) into (B26) [cf. Eq. (17)
in [57]]

1
el _ _
1 M(P)l

/ d*xr'ZP;(cos 0)  (B29)

for [ =0,2,4,6.... For an axisymmetric body (B25) with
A = B) with uniform density one obtains [cf. Eq. (56)
in [54]]
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3

It = (_1)1/2+1—(1+ 1)(l+3)€

! (B30)

for 1 =0,2,4,6.... Obviously, higher mass moments
(I > 0) vanish for ¢ = 0, that means for spherically sym-
metric bodies only the mass monopole is nonzero. By
inserting (B28) into (B22) one obtains for the mass
multipole (B21)

. 20+ 1 4xl! .
M, =- M P JS VP,
L 4z (21 + 1N Lo

(B31)

where P! means the I/th power of the equatorial radius,
while the suffix /in J¢! is an index and denotes the /th zonal

harmonic coefficient. The basis tensors ¥ for m = 0 are
given by [cf. Egs. (A6.a)—(A6.c) in [39]]

2A4+1,
4nl!1!5<f1"‘5iz

Y9 = (21-1)N (B32)

)

Finally, inserting (B32) into (B31) yields for the mass
multipoles for the case of an axisymmetric rigid body with
uniform density the following expression:

v — [ yel §3 3
My = -MPUSS, .8

< (B33)

for [=2,4,6,.... The STF terms are products of
Kronecker symbols which are symmetric and traceless
with respect to indices i;...i;. They are given by the
formula (cf. Eq. (1.155) in [3]):

1/2)
20-2p -1l
£ & :Z(_l)p(l p-1)

X [6,p6} _»p + sym.(q)]. (B34)
where [1/2] is equal to /2 for even [ and equal to (I — 1)/2
for odd [. The symbol &,p stands for the product of p
Kronecker deltas with indices running from
Siyiy X oo X By iy - The symbol &; ,, stands for the
product of [ —2p Kronecker deltas with indices running
from &] x...x 8. The notation sym.(g) means sym-
P+l !

metrization with respect to the 2p indices i;...i,,, where
the total number of these symmetrized terms is
qg=1/[(1-2p)!(2p)!"]. The terminology of the first
mass-multipoles reads:

(i) [ = 0: mass monopole,

(i) [ = 2: mass quadrupole,

(iii) [/ = 4: mass octupole,

(iv) [ = 6: mass dodecapole,

(v) I = 8: mass hexadecapole,

(vi) [ = 10: mass-icosadecapole.

Let us show that expression (B33) coincides with the
IAU resolutions [46] for the case of mass quadrupole.

Equation (48) in [46] states M, =-C, where C; =
STF;, ;C; ., with the tensor C; ; given by Eq. (46)
in [46]. In case of an axisymmetric rigid body with uniform
density the explicit values Cyy = Cyy = M(A% + C?)/5
and C;; = 2MA?/5 were presented [see text below
Eq. (48) in [46]]. Using (B2) one may determine their
STF expressions, which, using Eq. (48) in [46], results in
Myy = Myy = M(A2 = C?)/15 and My, = —2M(A? —
C?)/15, which is in agreement with our expression given
by Eq. (B33) for [ = 2.

In reality the mass distribution X of the Sun and the giant
planets is not uniform but depends on the radial distance.
Therefore, the theoretical values of the zonal harmonic
coefficients, J?l, as calculated for a axisymmmetric body
with uniform density by Eq. (B30), are a bit larger than
their actual values. Instead to calculate these actual values
by relation (B29) with a model-dependent assumption for
the mass density, the actual zonal harmonic coefficients are
deduced from real measurements of the gravitational fields
of the giant planets and are denoted by J,. These values are
given in Table I. If one replaces in (B33) the theoretical
values of the zonal harmonic coefficients, J‘}l, by these
actual values from real measurements, J;, then one obtains
the mass multipoles for the case of an axisymmetric rigid
body with radial-dependent mass density:

M, =-MP'J & 8

i (B35)

)
forl =2,4,6, .... For estimations of the Shapiro time delay
only the first eight terms of the mass multipoles (B35) are
needed, even on the sub-picosecond level. The mass
quadrupole and the mass octupole are given in their explicit
form as follows:

. 1
Mab = +MP2J2 |:§5ab—52513):|, (B36)
N 1
M peqg = —M P* Jy |:g (5ab5cd + 64¢0pa + 5ad5bc)
1
+ 63525353 - 7 (5ab53531 + 5ac525?1 + 5ad5262)

1
Lo+ sl + i) (B37)

3. Spin multipoles

The spin multipoles S; have been obtained in [41].
In case of time-independent multipoles, they simplify to
the following form, up to terms of the order O(c™*)
[cf. Eq. (5.40) in [41]]

S'L :/ d3xejk<l-, 5\CL—1> .X'j Zk (B38)

104052-16



TIME DELAY IN THE QUADRUPOLE FIELD OF A BODY AT ...

PHYS. REV. D 106, 104052 (2022)

where the notation =¥ = T%/¢ has been adopted, with 7%
being the stress-energy tensor of the body and the inte-
gration runs over the three-dimensional volume of the
body. The first term [ = 1 is the spin-dipole and describes
the rotational motion of the body as a whole. In case the
body is rigid and spherically symmetric, then the higher
spin multipoles would vanish. However, in case the body is
not spherically symmetric, then these higher spin multi-
poles [ > 3 account for the rotational motion of the body as
a whole. In addition, if there are inner currents of the body,
then the higher spin multipoles account also for these inner
circulations.

According to Eq. (B16) the expansion of the STF spin
multipole (B38) in terms of basis tensors ¥ Im reads

/

A 4zl
.= m Z Sim V1"

B
@ +nn (B39)

The spin-moments S, are obtained from the inverse
of (B39) and read [cf. Eq. (B17)]

Sy = S Y3, (B40)

Let us notice that the combination of relations (B39) and
(B40) coincides with the combination of Egs. (4.6b)
and (4.7b) in [38] in case of time-independent multipoles.
By inserting (B38) into (B40) one obtains, with virtue
of (B20), the following expression for the spin moments:

4r(l—1)! )
Szmziﬂ( )/d3xrln12k

(20— 1)

-1 .
XY e VENT Y, i (BAL)
m'=—I+1

where the integration runs over the volume of the body;
note that n/ = x//r and ¥;"" = ¥;" ;. Now we make use
of the following relation [cf. Eq. (2.26b) in [38]]:

QI+ [ 1
anlt V2i+1

Py = (11=10m'|lm) e

(B42)

where (1/—10m'|lm) are the Clebsch-Gordan coeffi-
cients [58] and eé’ is the i{; component of unit three-vector
e5. By inserting (B42) into (B4 1) one encounters the vector
spherical harmonics [38,58] [cf. Eq. (2.16) in [38] or
Eq. (2.221) in [58]]

-1

Yzl_l'l’” = Z (11=10m'llm)Y;_, ., eél.
m'=—I+1

(B43)

Thus, in view of (B42) and (B43) one obtains for the spin
moments (B41)

21 1
+ \/21+1/d xr eukankY*l Lim —(B44)

where the spatial dummy index i; has been designated into
the new spatial dummy index i. Now we use a relation
between vector spherical harmonics and STF harmonics
[cf. Eq. (2.24a) in [38]]

k= m l * m ~
Yil M - \/214_1 l£ 1r-1» (B45)
as well as [cf. Eq. (2.23b) in [38]]
A l
epn! Vii™ fpy =— —'l— v (B46)
where Y, “B.dm §s the complex conjugate of one of the pure

spin-vector harmonics [cf. Eq. (2.18b) in [38]] and obtain

N+1
Slm = - —il_ / dxrlzt Y]tB’lm- (B47)

Finally, we use the definition of the pure spin-vector
harmonics [cf. Eq. (2.18b) in [38]]

*B,lm __

T Thals X V)Y

Im>

(B438)

where V = e,0, +e,r™'0y + e, (r sin )7 9, is the gra-
dient operator of Euclidean three-space in spherical coor-
dinates which acts on the complex conjugate of spherical
harmonics Y}, and the position vector in spherical coor-
dinates reads x = re,.. Inserting (B48) into (B47) yields the
following expression for the spin moments:

(B49)

Sim :% / d3xrl(xXE) VY?m’
where the integration runs over the three-dimensional
volume of the body. The steps from (B39) until (B49)
coincide with the steps from Eq. (5.17b) to Eq. (5.18b) in
[38] for the case of time-independent multipoles. Below we
will show, for the case of axisymmetric bodies, that (B49)
coincides with the IAU resolutions [46]. Let us also notice
that the combination of expressions (B39) and (B49)
coincides with the combination of Eqgs. (10) and (11)
in [59].

In order to determine the impact of spin multipoles on
the Shapiro time delay we consider a rigid Newtonian body
in uniform rotational motion and having axisymmetric
shape (B25), where the unit-vector e; is the symmetry
axis of the massive body and the x* direction of the
coordinate system is aligned with the rotational axis of
the body. Then, the rotational angular velocity Q is
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independent of time and for the momentum-density of the
body one may write [cf. Eq. (12) in [59] and IAU
resolutions (p. 2698 in [46]] where spin moments for the
model of a rigidly rotating Earth have been considered):
T =2(Qxx)=2XQr sinfe,. (B50)
It has been shown in [59] that the only nonvanishing spin

moments (B49) are those for m = 0 and odd / [cf. Eq. (20)
in [59]]:

1
S =+- /d3xrl(xx2)-VY;‘0,

l
1 21+ 1 oP 0
:_7,/—;; Q/d3x2rl+1 sin(971(aceOS ),

(B51)

where the spherical harmonics for m = 0 are related to the
Legendre polynomials as given by Eq. (B27) and where @ is
again the angle between integration variable x = re, and
the x? direction of the coordinate system (azimuth angle)
and e, X e, = —ey has been used. Performing these inte-
grals in (B51) one finds that they are proportional to the
angular velocity €, to the mass M of the body and the
(I 4+ 1)th power of the equatorial radius P of the body and
they are nonvanishing only for odd /,

21+ 1 .

for [ =1,3,5,.... The parameter J;" in (B52) are the
gravitomagnetic zonal harmonic coefficients and follow
from inserting (B51) into (B52),

1 1 . 0P;(cos)
Jem _ _ Bxrtlys 0!
! MPY I+ 1) / ST e
(B53)

for [ =1,3,5,.... For an axisymmetric body [(B25) with
A = B] with uniform mass density they are given by
[cf. Eq. (25) in [59]]

3

e G R 1 )
r==0 0+2)(1+4)°

-1 (BS4)

for [ =1,3,5,.... where the ellipticity parameter et =
(A% — C?)/A? has already been defined above. The combi-
nations of the equations (B39) with (B52) and (B54) agrees
with the combination of the equations (10) with (22) and (25)
in [59]. Obviously, higher spin moments (! > 1) vanish for
€ = 0, that means for spherically symmetric bodies only the
spin dipole is nonzero. A comparison between (B54) and
(B30) leads to the following remarkable relation between
the gravitomagnetic and gravitoelectric zonal harmonic

coefficients for an axisymmetric body with uniform mass
density and in uniform rotational motion [cf. Eq. (28)
in [59]]:

el
_ Jl—l

B = :
! I+4

(BS5)

Finally, in view of relation (B55) and by inserting (B54)
and (B52) into (B39) one obtains for the spin multipoles for
the case of an axisymmetric rigid body with uniform mass
density and in uniform rotational motion the following
expression:

SL:—MQPI+1JCI [+1 3

3
1714 %

> (B56)
for [ =1,3,5,.... The terminology of the first spin multi-
poles reads:

(1) [ = 1: spin dipole,

(i1) [ = 3: spin hexapole,

(iii) [/ = 5: spin decapole,

(iv) [ =T7: spin quattuordecapole,

(v) [ =9: spin octodecapole.

Let us show that expression (B56) coincides with the
IAU resolutions [46] for the case of spin hexapole.
Equation (45) in [46] states S'L = C, Q4 where Cp ;=
STF; ;i Ci,. iq which is given by Eq. (46) in [46].
Assuming Q¢=(0,0,Q) the nonvanishing terms are Syy, =
Syyz = 31Q and S,,, = —65Q with 5 = 4MA*e%/525,
which is in agreement with our expression given by
Eq. (B56) for [ = 3.

The spin multipoles in (B56) are valid for a rigid
axisymmetric body with uniform mass density and in
uniform rotation with angular velocity Q = 2z/T where
T is the rotational period around the spin axis of the body.
However, in reality the mass distribution of the Sun and the
giant planets is not uniform, but increasing towards the
center of the massive body. In case of mass multipoles this
fact has been taken into account in the step from (B33) to
(B35), where the gravitoelectric zonal harmonic coeffi-
cients J¢!, for an axisymmetric body with uniform mass
density given by (B30), have been replaced by the actual
zonal harmonic coefficients J; which are determined by
real measurements of the gravitational fields of these bodies
by space missions. Here, in a similar manner, the gravito-
electric zonal harmonic coefficients J{™ for an axisym-
metric body with uniform density in (B56) are replaced by
their actual gravitoelectric zonal harmonic coefficients J,,
as they are given in Table I. In this way, one obtains for the
spin multipoles for the case of a axisymmetric rigid body in
uniform rotational motion and with radial-dependent mass
density the following expression:

A [+1
_ I+1 3 3
S, = -MQP*,_, I O

(B57)
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for I =1,3,5,.... Actually, for estimations of the Shapiro
time delay only the first two terms of the spin multipoles
(B57) are needed, even on the sub-picosecond level: spin
dipole and spin hexapole. They are given in their explicit
form as follows:

N 2
Sa:+§MQP2(S3a, (B58)
. 4 4
Sabc = +7MQP J2
1
X5 (8ap03c +84c03p + Opc03a) = 84305303 |- (BS9)
In (B58) we have used ng = Jy = —1, that means for

[ =1 the theoretical gravitoelectric zonal harmonic coef-
ficient for a body with uniform mass density and the actual
zonal harmonic coefficient for a body with radius-
dependent mass density are equal. Thus, a replacement
of either of these terms from (B56) to (B57) has no impact
on the spin dipole in (B58). Therefore, in order to account
for the fact that the density of the massive bodies is not
uniform, one considers the following reasoning for the spin
dipole. In general, the absolute value of the exact spin
dipole |S,| [i.e. I=1 in Eq. (B38)] is the body’s spin
angular momentum, which is related to the body’s moment
of inertia [ as follows:
IS,| = IQ. (B60)
For a solid sphere with uniform density the moment
of inertia is [ :%MPZ [cf. Eq. (1.20) in [48]], hence
S.| =2M P>Q in agreement with the absolute value of
the spin dipole (B58). In order to take into account also
for the spin dipole the fact that in reality the mass
density is increasing towards the center of these massive
Solar System bodies, we implement the so-called
dimensionless moment of inertia x%, which is defined
as follows [48]:

1
2=——, B61
© TP (B61)

Then, the spin angular momentum of the body (B60) is
given by [48,60]
IS,| = kM P2 Q. (B62)
For k*> = 0.4 one recovers the case of a solid sphere with
uniform density [cf. (B58)], while for real Solar System
bodies k> < 0.4 because their mass density increases
towards the center of the bodies. These realistic values
for k* have been determined for several solar system bodies
in [48] using the Darwin-Radau relation [e.g. Eq. (18) in
[61]]. Similar values are given in the planetary fact sheets.
For the Sun the value of x> fairly coincides with

helioseismology data of the Sun’s spin angular momentum
[62]. Accordingly, instead of (B58) we will adopt the
following expression for the spin dipole:

S, =4+K2M P2 Q35,,, (B63)

where x2 is given in Table I for the Sun, Jupiter, and Saturn.

APPENDIX C: THE 1PN SHAPIRO EFFECT
OF MASS QUADRUPOLE

From (32) one obtains the following expression
for the impact of the 1PN mass quadrupole on Shapiro
time delay:

GM
62

Acrﬁ;” =+
X (O In (ry+ )|y, — O In (ry+ 1) lezty)-
(C1)

The application of the differential operator (30), without
the STF procedure, yields

R
Oy In (ry + c7) = P) PP —

d
b afjl @ In (rN+CT>

0
+20,P} 31 755 In (ry + c7)
d 0
——In(ry + c7),

C2
Jctoct (€2)

+ 640p

where the STF operation with respect to the indices ab
has been omitted in view of relation (B7). With ry =

V& + 1 one gets

Oy In (rN + CT) = +P£11 Piz 5/1/2

1 1

EI‘N +c7T
_ pi P.iZé' & 1 1
a b 2j12) (rN)S rNy+ct
_phphrg g -
a b 6}1 512 (rN)Z (rN + C‘L’)z

; 1
J2

20,Py ¢, (rn)?

Here we have used 0&'/0& = 5;, because we treat
the spatial components of vector & as formally
independent. Therefore, a subsequent projection onto the
two-dimensional plane perpendicular to the three-vector
o is performed [cf. text above Eq. (31) in [36]]. It is
emphasized that this projection is automatically included
here, namely in the differential operator, which has been
introduced in the form given by Eq. (30). Using P{/¢; = &,
[cf. Eq. (29) in [36]] and finally replacing ct = & - x as well
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as &4 = d¢, one obtains for the 1PN quadrupole Shapiro
effect (C1):

GM
M, ab
Actp =+ =
1 [o6-x; a-xo) <G-x1 a-xoﬂ ub
X - - - O O
[(%)2( X1 X0 (x1)* (%)
GM,,
2

(-5 G- E e
_Gi‘zah[ 2 -~ 2 3]6%12’
(x1)* (x0)

(C4)

C

where M ,;,8,, = 0 has been used. In order to determine the
upper limit of (C4) the mass quadrupole for an axisym-
metric body (B36) is inserted, which yields (cf. Eq. (46)
in [47])

GM P2
M,
Act|py = -l—?Jz(—

() )
X1 Xo d,
o-x, (d;\? o6-x5(d;\?
5 e
X1\ Xo \Xo
c-x, (d;\? o d;\?%\ [d,-e;\?
X1 X1 X0 X0 dtf
d 3 d 3 d -3
21 (=2) - (=2 . d , C5
2((5)-(8) )ea )] ©
where 6 - e; = 0> and d,, - e; = d> are the x’-components
of these vectors, because the symmetry axis of the body e;
is aligned with the x*-axis of the coordinate system.
Furthermore, in order to determine the upper limit of

(C4), the relations for the angle oy = 6(6,x,) and a; =
6(e,x,) are very useful:

Q
=
<)

6 X0 _ (x1)* = (x0)* — R

cos ay = xo 2Rx, ) (Co)
c-x; _ (%)= (%) + R

= = . Cc7

cos a; - 2Ry, (C7)

These relations can be shown by using (72) and (73) and
they are valid up to terms of the order O(c~2). Let us note
that for the impact vectors one gets d, =xqsinay=x; sinq;.
It is also meaningful to introduce a further variable

2= with 0<z< oo, (C8)

X0

as well as the angle

a=6(xg,x;) with 0<a<2xr. (C9)

Then one may rewrite (C4) in terms of these two
independent variables, z and @. By using the computer
algebra system MAPLE [63], one obtains for the upper limit

of the 1PN quadrupole term in the Shapiro time delay:

11GM P\2
adil <+ 5 S(2) o
which coincides with coefficient A, asserted by Eq. (42).
For a correct determination of the upper limit given by
(C10) one has to take care about the fact that the three-
vectors ¢ and d,; are perpendicular to each other, which
restricts their possible angles with rotational vector e5. That
means, one may rotate the coordinate system such that ¢ is
aligned with the x axis and d, is aligned with the y axis,
while e3 = (€3, €3, €5) has three components now [see also
endnote [99] in [42]]. Taking into account that e is a unit
vector, one obtains the upper limit asserted in (C10).

APPENDIX D: THE TENSORIAL COEFFICIENTS
AND SCALAR FUNCTIONS OF THE
1PN SOLUTION

The tensorial coefficients in Egs. (55) and (56) are given
by [cf. Egs. (52)—(57) in [35]]

Aé3) (xn) = +26°, (D1)
Bl () = =24, (D2)
Cl(g‘)b (xn) = +66° 8" +306%6" &, (D3)
Cigf (xx) = =15(d,)*60"c' + 15 df dj o'
-300%db di, (D4)
Dl(g‘)h (xn) = +6d2 8" — 1566 d. + 186°db6',  (D5)
Dl(';)b(xN) =—15d2d%d, + 15 (d,)* 6% o* d',
—-30(d,)? od’6’, (D6)
where [cf. Egs. (57) and (58)]
d, =06 % (xgx06) =06 % (xx(t) X0). (D7)

Actually, the tensorial coefficients in (D1) and (D3) do
not depend on xy but only on o. Nevertheless, we will keep
their arguments as is, in favor of a unique notation for these
tensorial coefficients (D1)—(D6). We note that the tensorial

coefficients Al (xn) =Af) (x0). ... Dz%’ (xn)= D’(;‘f (x0).
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The scalar functions in Eq. (56) are given by
[cf. Egs. (D29), (D31), (D33), (D35), (D37), (D39) in [35]]

Wi (1) = In (xy — 6 - xy). (D8)
Wis) (1) = —% (d;zaj;zN, (DY)
Wo 0=t (o Fa i) @
AQ@(ﬂ-—(aiy(xN4—6'xNL (DI1)
%o 0 =3 (M) o

m (1) :%ﬁ
(e sy O

where xy = xn(2) and xy = xy(7). One also needs the
scalar functions W (1), ..., X(7)(ty) which one obtains
from (D8)—(D13) by replacing xy and xy by x; and x,
respectively, because xy(7y) = xo and xy(7y) = xo; note
that d,; is time independent.

APPENDIX E: TENSORIAL COEFFICIENTS
IN (62) AND (63)

It is convenient to introduce the impact vector,
d=06X%(xxo0), (El)

where the spatial variable x can either be the unperturbed
light ray xy in (59) or the light ray in 1PN approximation
x1py in (60); the spatial components of this impact vector
are d'.

The tensorial coefficients of monopole-monopole term
of the new representation of light trajectory in (62)
and (63) are

(x) =o', (E2)
Uiy (x) = d. (E3)

The tensorial coefficients of monopole-quadrupole term
of the new representation of light trajectory in (62)
and (63) are

V’“” (x) = 68", (E4)
1% “h(x) = ds", (ES)
Vzé‘)h( x) = 6%c’o, (E6)
Vi (x) = o%d’d, (E7)

V'g)b(x) = d*d’c’, (EB)

Vigh(x) = dedd’, (E9)
iab _ ~a,b jgi

Vi (x) = o“od", (E10)

Vigh(x) = od"d'. (E11)

The tensorial coefficients of quadrupole-quadrupole
term of the new representation of light trajectory in (63) are

Wiiped (x) = 6aP5™, (E12)

Wisped(x) = 5°d’s”, (E13)
WEé‘;’Cd( x) = 6“6 5, (E14)
Wighed (x) = o090 de 5, (E15)
W§e(x) = o"d"o 57, (E16)
Wigrd(x) = o*d’d s, (E17)
Wigped(x) = d*d’ o5, (E18)
Wigred(x) = d*d’d s, (E19)

Wigred(x) = 5s"o, (E20)
Wit (x) = 8*c’od, (E21)
Wiihd(x) = 6c”d'’, (E22)
Wi (x) = *dd’s', (E23)
Wéfé’)Cd( x) = o%c’0°0%', (E24)
Wi (x) = o6’ c¢d'c’ (E25)
Wiahed (x) = 090 dd’o, (E26)
Wiie!(x) = od’o¢d’s’ (E27)
Wiihed(x) = o“d’d*d’s", (E28)
Wiigd(x) = a*d’d d’s’, (E29)

Wit (x) = 8*o™d’, (E30)
Wit (x) = 8*cPold’, (E31)
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Wi (x) = 6c”a’d’, (E32)
Wigd(x) = §*dd’d’, (E33)
WE%’;“’( x) = o%oc?d’, (E34)
Wi (x) = oo’ otd’d’, (E35)
Wighed(x) = oo d°d’d’, (E36)
Wisec(x) = od’otd'd’, (E37)
Wighd (x) = o%ddd’d, (E38)
Wiserd (x) = a“dvdcd’d’. (E39)

APPENDIX F: SCALAR FUNCTIONS
IN (62) AND (63)

To simplify the notation, it is appropriate to introduce the
following scalar functions:

g (¥) = (x+ 6 x)", (F1)
b () = 55 (F2)

() =T (F3)

dyy) (x) =In(x—6-x), (F4)

dpyy (x) = arctan¥ + g , (F5)

dis) (x) = arctan¥, (F6)

dyy () = % <arctan% + g) . (F7)

Then, the scalar functions in the new representation in
(62) and (63) can be expressed in terms of these functions
(F1)—(F7).

The scalar functions of the monopole term of the new
representation in (62) are given by

mx) =+2d) (F8)

Fp)(x) = —2%- (F9)

The scalar functions of the quadrupole term of the new
representation in (62) are given by

G (x) = —2%, (F10)

G (x) = +4(aé—;;— Z;—;;, (F11)

G (x) = +% ). (F12)

Gy (x) = —4 (’Z;L + 235;; +2bs),  (F13)
Gs) (x) (C;—;L - &—;;, (F14)
Ge)(x) _—(;3661(1)+4Z;;l+(b$)2’ (F15)
Gy (x) = —&a(,) +Z§—;)2—b(;), (F16)
Gig)(x) = +4 (CC;)L + 2% (F17)

The scalar functions of the monopole-monopole term of
the new representation in (63) are given by

an) ¢ 15dg
X — 14 2270 F18
W) =TTt Ty (F18)
ap) | bpy 15dy
X — 14 B 279 Fl
@)= (d,)* 4 4 (d)? (F19)

These functions in combination with the coefficients
(E2) and (E3) are in agreement with Eq. (51) in [53].

The scalar functions of the monopole-quadrupole term of
new representation in (63) are given by

() = +12ﬁ_ fé;;_%%_% "
—%553—3)3 (F20)
Vo () = —1622 2100 _ T, g c0
(d)® 32(d)* 16 (d)*
43625{‘3‘;, (F21)
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am | . b 29 ¢y
Y3 () = =80 4 2~ op 4 222
O =S 2 P Ty
111 5 285 d3)
e —2(d F22
HE R 8()C<)+64(d) (F22)
. a(2> 155 b( 2) 199 _§ 2
Y(4) (x) - (d)6 32 (d)Z b<4 4 (d) b(5)
cay _, €@ _ 465 d( 2
BB R F23
@ 2w 23)
am _,bay b 209 cp
Y —qgtW 47 5 70)
00 =G
91cw 5 465 d (3)
B F24
32(d)? " 8°9 7 64 (@) (F24)
ap) [ 263bo)  883bwy S
Y — 4482 0027 | 2
© @) =+ T @ T 32 (@ T80
1) _ 4 C@) _2325dw
—16- 0 4O , F25
@ e @ 2
apy 235bp 71 5.0
Y () = 16— 4+ 220 ) 2 (@)
0 () = H6 T 6+ 64 @ ~ 320 "5 (@b
C( ) 855 d(4)
Sk F26
(d)z 64 (d)4 ( )
b bz 8lc
aq) 1) () @
Y 320 412 8 o
) = <d> R ar TR
9l cw 5 465 dis)
> F27
16(d) +4 ‘Ot %@y (F27)

The scalar functions of the quadrupole-quadrupole term
of the new representation in (63) are given by

Z<1>(x)=+sé—;>6_ Z;_;L_%&_;L_é(cé_;é
+ 3890 T Dy (F28)
Zoy (x) = 16%_%%_%5(—;) izbu
8+ T (F29)
Ziy (@) = +4 (5 4(‘;;_;; %ﬁ gé&))
2431 +3%()C<s>—551%i;—;>5, (F30)

ag 27019by) | 1585bi S
=162 _ > b
Zw (x) () 1536 (d)* ' 768 (d ) T
9 1) o)  5515dy
~(d)?big +20-1 8 . (F31
TR @bt @5 (@) 512 (@) (F31)
ap 3859 ba 1609 by 79
Zis)(x) = +16-20 222 70) bs
©0) = +160% 68 @) * 382 (@) +96
9 2 €y _2285dy
Z b 8 , F32
T e T s e e P

b b 6381 ¢
- —16(d>) +24ﬁ— 6(;)1 %(;—)g
2323 ¢y 119¢e 9 2285 d3)
T 384 (4 96 (d)? 16°® T 256 (d )7’
(F33)

Z) (x) =

b 14]9 C(2)

Zi (x) = +16 20 4 16
nE @r " OaE ST
U 5515 dsy
192(d)? 32°® 7 512 (@)7

2443 cy)
768 (d)4

(F34)

4831be) 877bw 43be 9
512 (d)° 256 (d)* 64 (d)? 32°®
] C(3) 2205 d(4)

@) 512 (@) (F35)

1 de)
128 (d)>”
(F36)

1 C(z)
~ sy

+Li@i n
192 (d) " 48°©

89 ¢y | 199
@) " ()" 256 (d)* " 384 (d)’
85 15, ,  185dpy

=960 + 16 (@0 = 355 1)

a b

(F37)

a 2521 b
Z(ll) (x) = +16—2> +—=— (2)

197 b 85b
(d) " 384 (&)

9377 380
985 d Ay

D
+—(d)*bs) — SW 128 ()

(F38)

Z = —_-—
120 0) = =356 (0 384 (@) 96 (d)?
15 985dg,

e — ) F39
16°® 7256 (a)7 (F39)
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a( ) b( 1) b(3) 3237 C
Z =4 - 14—
09 6) = = M s
969 c) | 395 369

7024 (47 T 2560 " 128 Vew

15, ., 15525 d;3)
> bt O] F4
1600 T 20a8 s (F40)
8507 by 1217 by 393
z - - b
00 ®) =+ 573~ 256 (0 T 6a O
369 C(1)
- (@b —(d)“ b0 =125
€ _945dy
e 7R F41
(d)* 512(ad)° (F41)
agy 2677 cpy 5515 ¢y 335 cg)
z =161 4 =070
1) (x) (d)® " 1024 (4)° " 1536 (d)* ' 384 (d)?
249 15, 5515 d 3,
2 e == D) (p42
64 <& =g [ co0 T iga e (F42)

b(l) b(3) 10477 C(2)
—24 16 —
P e I
5395 cqy 311 C(6) 249

Ze) (x) = 162

768 (d)* ' 192(a) " 32 °®
2285 d3)
T F4
( ) 10) 512 ( )7’ ( 3)
7 (x) B _7667 b(z) 2153 b(4) E b((,) 261 b
777512 (d)f 256 (d)* T 64 (d)? ' 32 %
15 €@3) 2205 d(4)
— = (d)*b(1g) — 8 F44
4() (10) (d)6+512 @F (F44)
7 (x) - +2205 C(2) 3361 ¢4 ) 365 c(s ) 129 c(g
8712048 (d)8 1024 (d)® 256 (d)* 128 (d)
15 2205 d3)
= 20 7). F4
1609 T 2048 (@) (F45)
5 b 1 b 5 5 d<4)
z =B ____ "B -
19) (x) 384(d)4 192 (d ) 4870 T 128 (a)F
(F46)
3997 by 569 by 95 15
7 = — - _ - d 2b
00 %) = =6 @) 384 (a) 9670 T b
925 day
F47
256 (d)°” (F47)

an) bay o bi) | 985 c)
z —48 400 1 g 7@
e == O ¥ sy
601C4) 5 ¢ 15
——————C
192 (d)* " 48(d)? 8 @
985 d(3)
F48
280y (F48)
apy 13039 bpy 611 by 5 b(6)
z — 464 22w
@) =640+ 68 (@) T 384 (@)t T 96 (a)?
15 48 6895 d(4)
— b)) =5~ S T8 F49
16~ ® (d)8 ¢ 256 (d)g (F49)

1024 (d)? ~ 256 ©

a(z) 4 31153 b(2>

Zy (¥) = 2008 T 2088 ()

1t 15, ., C() €(@3)
- e —q4 Y )
128 (47w 16 (A boo) (d)° +8(d)4
25875 da)
_ 28 G F50
2048 (d)° (FS0)
by by 11343 ¢y
z 2420 _ 3¢ 1620 —
o0 () = 424 =30 s H 1O 51 (s
59 ¢4y 65¢6 9 15
= e ——(d
256 (d) 64 (a)y ~32°® ~ 7 (@
945 d(3)
F51
512 (d)7” (FS1)
) | 93133 by 11479 by
z 64
os) ) =+ (@) 3072 (d)6 1536 (d)*
433be 9, 15
R R —~(d)?b
384(d)? 64 ® 78 ()b
cn) ¢y 19405 d (4)
—48- 116 , (F52)
(@) (d)° 1024 (d)®
ano) 5893 b(z) 5887 b(4) 457 b(6)
z = —64 - -
o) (x) (@) 1536 (a)° ~ 768 (d)* 192 (d)’
9 15, cay 6395 d Ay
- _ b 48—
3200 =% (@ buo + S T (@
(F53)
) 26781 Cpy  T457 cy)
z — 481 b O]
6) = =48 i+ (g5 =573 1 + 75
493 cq) 129 g + 15
64 (d) 32 (d) €(0)
2205 dgz)
F54
512 (d)” (F54)
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47575 by 10965@ ﬂ@
2048 (d)® ' 1024 (d)S 256 (d)
1296 15, 46

Zog)(x) =
128(d)° 16710 T ap
19845 d)
2048 (d)lo’

(F55)

APPENDIX G: AGREEMENT
OF (55)-(56) AND (62)—(63)

In this appendix some basic ideas are presented about
how to get from the old representation (54) with (55) and
(56), to the new representation (61) with (62) and (63). For
that demonstration one needs the following relations which
are valid up to terms of the order O(c™):

xipn(t) = xn (1) + Axypn(2, 1), (G1)
- xn(1) - Axypn(2, 1)
xipn (1) = xn (1) + (1) ; (G2)
1 1 n xn (1) Axipn(2,1p)
) PN 1) L)) LR N R
Let us notice here that
xo = xn(to) = x1pn(to) (G4)

which follows from (5) and (13). Furthermore, one

encounters the following impact vector:
d, =0 x (x;px(1) X 0) (G5)

and its absolute value d, = |d,|. This impact vector d, in
(G5) is related to the impact vector d; in (58) as follows [up
to terms of the order O(c™)]:

o~

d, =d, 406 x (Axpx(1. 1)) X 6), (Go6)
N d. - Ax ,
d(, _ d(, + c cliPN(t tO) . (G7)
1 1 n d,- Axpy(t 1)
L . (G8)
(d,)" (do)"  (ds) (d,)?

In relations (G1)—(G3) as well as (G6)—(G8) one needs the
light ray perturbation in 1PN approximation, Axpx(7, 1),
where it is advantageous to take Eqgs. (G11) and (G12).

The entire procedure is separated into four steps:

First step: The 1PN terms in Eq. (55) contain 6 tensorial
coefficients given in (D1)-(D6):

Ay, Bly(ey), Cof(ry). D(xy).

These tensorial coefficients (G9) consist of 10 different
tensors as given by (E2)—(E11) with the argument x = xy:

(G9)

Uly(xn),  Uly(ey),  Viet(xy).  (G10)
Accordingly, one may rewrite the 1PN terms in Eq. (55)

in terms of these 10 individual tensors:

Axipy (1, 19) = Axipy (1) = Axipy(to) (G11)
with
i GM i
Axipy (1) = oz (Ul F ) (n)
n=1
GM )~

+=57)_ (VilGu)xn).  (G12)

n=1

where the scalar functions F(,) and G, are given by
Egs. (F8) and (F9) and Egs. (F10)—(F17), respectively,
where the argument x = xy. One may easily show that
(G11) with (G12) is identical with (55).

Second step: Similarly, the 2PN terms in Eq. (56) contain
51 tensorial coefficients given by Eqs. (E28)—-(E39) and
Eqgs. (E41)-(E65) as well as Eqs. (E67)—(E87) in [35]:

gén) (xN)’ "Fl(n) (xN>7 gl(s) (xN)’ Hén) (x )7
K Gen). L1535 Oew). M Gew). N3 Gew).

Pé,?fC‘l(xN)v QEZ)}’Cd(xN)- (G13)

These 51 tensorial coefficients (G13) consist of 38
different tensors given by (E2)-(E11) and (E12)—~(E39):
UE])(xN)v Ufz) (xn), VEZ/)?(xN)’ WE,‘;)}wd(xN)- (G14)
Accordingly, one may rewrite the 2PN terms in Eq. (56)
in terms of these 38 individual tensors:

Axhpy (1, 10) = Axhpy (1) = Axbpy(1o) (G15)

with

: GPM> S~ . .
AXZZPN(I) =+ C4 § :(Ul(n)x
n=1

G*MM 2~
t—a > (Vs () (en)

(n))(xN>

n=1

GzMuchd 2 iabed
TZ(WWb Z) (o)
n=1

(G16)

The scalar functions in (G16) can be deduced just by
inserting these 51 tensorial coefficients (G13) into (56) and
then combining all those scalar terms belonging to one and
the same tensorial coefficient in (G14). However, these
scalar functions are an intermediate step and will not be
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given in their explicit form here, in order to simplify the
representation. It is noticed again that (G15) and (G16) are
identical with (56).

The form of (G15) and (G16) resembles already the
structure of (62) and (63), respectively. However, the
arguments in (G15) are the unperturbed light rays, xy,
while in (62) the arguments are the light rays in 1PN
approximation, xpy. Furthermore, the scalar functions
X Y(u)» Z(yy in (G16) are not identical with the scalar
functions X ), Y(,), Z(,) in (63). In order to arrive at (62)
and (63) two further steps are necessary.

Third step: In order to arrive at (62) and (63) the
argument in the tensorial coefficients as well as in the
scalar functions in (G12) have to be replaced by the light
ray in 1PN approximation. Then one obtains:

2
Z U Fn leN)

AleN

—_

A

GMa 8 )
2 bz VmbG )(x1pn) + 0xpy, (G17)

n=1

c

where 6x§PN is just the difference (G12) minus (G17):

5x§PN
GM & 4 .
= + S MW Fiy) ) = (U P eren)
n=1
GM,, [$~ .
+ TR IS (VG o) = (VG i)
n=1

(G18)

Eq. (G17) is identical with (G12).

Fourth step: In order to determine the expression in
(G18), one has to perform a series expansion of those terms
in (G18) having as an argument the light ray in 1PN
approximation. For that calculation one needs the same
relations as given previously by Egs. (G1)-(G3) and
Egs. (G6)—(GS).

The determination of 5x§PN in (G18) has been assisted by
the computer algebra system MAPLE [63]. One finally
arrives at the following form:

A GCM> .
Ox3pN = + pra Z(Ul(n)X(n))(xN)

n=1

GPMM gy <~ oo
+ TZ (V(,,})}Y(n))(xN)

G* M1,
o dz (WiehedZ ) (xn),  (G19)

C

which is separated into three terms proportional to
monopole-monopole, monopole-quadrupole, and quadru-
pole-quadrupole. The tensorial coefficients are defined

by (E2) and (E3), (E4)-(E11), and (E12)—(E39), respec-
tively. The scalar functions in (G19) are an intermediate
step and will not be given in their explicit form here, in
favor of a clear representation.

The term 6xpy, defined by Eq. (G18) and determined by
Eq. (G19), is obviously of second post-Newtonian order
and should, therefore, be added to (G16) rather than (G17).
Accordingly, the sum of (G16) and (G17) can be written in
the form

XopN (1) = xg + c(t — ty) 6 + Axypn (1) — Axpn(to)

+ Axopn (2) — Axopy (fo), (G20)

: GM S~
Axipy (1) = 2 (Ui F
n=1
GM S~
T2 . Z(Vl(ilfG(n))(xle),

n=1

(n))(leN)

(G21)

GZMZZ (v, x

szpN

MMy~
+ TZ (VEY () (xn)

GZMabMCd S iabc
+ TS Wz (). (G22)

¢ n=1

where, by taking account of (G16) and(G19), the new
scalar functions

Xy =Xn) + X (), (G23)
Yy =Y + ¥, (G24)
Zy =Zwy + Zn (G25)

have been introduced. The solution (G20) with (G21) and
(G22) agrees with expression (61) with (62) and (63),
where the scalar functions (G23)—(G25) are given by
Egs. (F18)—(F55) in their explicit form.

APPENDIX H: CALCULATION
OF k - Ax,py IN TERMS OF k

In this appendix we consider the term

k - Axopy(x1,x0) =k - Axypy (X)) — k- Axgpy (x9)  (HI1)
in Eq. (77) which needs fully to be expressed in terms of
vector k. The expression of Ax,py(x) is given by Eq. (63),

hence one obtains
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GCM> 3~
k- Axypy (x) :+TZ(k’U’<n)X(n))(x)
n=1

G*MM 2~
+sz (k' VEZ')’ Y() (x)
n=1

G*M M g 2
+#Z (K'Wiabedz ) (x).  (H2)
n=1

The tensorial coefficients in (E2)—-(E39) as well as the
scalar functions in (F18)—(F55) are given in terms of vector
o rather than vector k. But in view of relation (73) we have
6 =k+ O(c™?). Thus, a replacement 6 by k in the
tensorial coefficients as well as in the scalar functions in
(H2) would cause an error of the order O(c~%) in line with
the 2PN approximation. The tensorial coefficients in (H2)
are contracted with k’. For instance one obtains up to terms
of the order O(c™): k'U{;, =1, kK'Uy =0, kiVE”’; =
kK, ... kW5 = 0. After performing these contrac-
tions one may dlstmgulsh the following tensors:

Sth=kk", S =kedy, S =didy,  (H3)
T?de 5aLkhkd Y?érd 5“‘khdz,
T = kkkkd, T = kekkedy,
Tehed = kedpkedy, T = kK didy,
T = kedpdidy, TR =88,
Ty =svdydy,  T{ = didydidy. (H4)

where the symmetries a <> b and ¢ <> d as well as a <
cANb<d and a < d A b < c have been taken into
account, according to the corresponding symmetries of
the quadrupole tensors in front of the individual terms in
(H2). As mentioned, in the scalar functions (F18)—(F55)
one may replace ¢ by k. Then, one obtains the following
expression:

G*M?
k- Axypn(xy,x0) = T”(l) (x1,x0)
G>*MM ,,
a Sab
M >

(xlva)
n=1

G2 M 1, M g
Rl ik Z T Wiy (x1.%0)

C4 n=1
(H5)
where the scalar functions are given by
4 g 15h1
w) (x1,%0) = + +2 270 (e

@)V a T

4 2
sfa) 21

vy (X1,X0) = +——<€1) — ——
B =G0 )

157 9(2) 97 5 5
2
(dk)z g 8( k) g(ﬁ)
285 h
, H7
o () (H7)
2 5.,
V() (X1,X0) = +(dT>2f(2) + 12f 4 _Z(dk) f6)
4 4
——290) — 73 903)> H8
@0 @ p o e
8 4 2
v(3)(x1,%0) = +W€(1> _Wf(l) - er)
_29 90 O gw S5 465 ha
64 (d)* 324’ 879 64 (a5
(H9)
) — 4 135 90185 gy 59
w , — -—
(1Y) =056 (d)* 384 (d,)2 967
15, ., 185 hg
— H10
+16(k)9()+256( 05 (H10)
fa 15
W) (X1, %) = + (dk)4f(2) + (di))z ->fe+ 3 —(d)*fs)-
(H11)
B 4 5175 9 835 gw
W X0) =+ 55556 = 5018 (a0 T 1024 (d,)*
487 333 15
+Rg(6) ~ 128 (dk)zg( 8) T 6 (di)*yg 9(10)
5175 hy)
H12
T 2048 (d,) (HI2)
3 f 449
W) (x1,x0) = —Wf(z) E(dk) f
171 15
_E(dk)zf T — (do)*f 10)- (H13)
wis) (81.%0) = 2285 g2 | 749 gu 73 9(6)
() %o 512 (dy)° ' 768 ( ) 192 (dy)?
231 15 2285 hy)
+ 3796 _I<dk)2g( 0+ 3 @)
(H14)
5515 g 629 g
We F1%o) =+ 5 5e S0 = 1024 (a)F T 1536 (dy)°
49 gg 231 15
384 (d, + e 96) —g(dk)zg(lo)
5515 hq
H1
T 1024 (dy)” (HIS)
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wer (x1.%0) = 709 fo) 319 fy 25 fie)
LR 128( ) 64 (dp)* ' 16 (dy )
15
+ gf(z;) = (d)*f o) (H16)
1 99 1 99 5
¥ [1-%0) = R )3 T 102 (42 T 480
1 Ay
H17
128 (d,)3° (H17)
wior (x x)__%g _y 9(4) _i 9(6)
©) 10 256 (d,)° 384 (d,)* 96 (dy)?
15 985 hy
D , HIS
169(3) 256( )7 ( )
B 2205 9y 3361 9wy 365 g
W0 (F1:X0) = e 0 T 1024 (dy)® 256 (d,)!
129 g5y 15 2205 hy
A M = W (H19
12874, 16709 Y 20ag g0 Y
where the abbreviations
e (X1,x0) = (x; +k-x1)" = (xo +k-x0)", (H20)
F (1) = (H21)
T )T ()
k-x, k-x
9(n) (x17x0) = ( - . (HZZ)

k
hy (x1,%0) = arctan

k-
Y arctan— X0 , (H23)
k dy

+k-x1 <arctank i _|_f>
dy dy 2
k * X k * X /4
d. <arctan 4 + 5) ,

have been introduced.

h) (x1,%) =

(H24)

APPENDIX I: CALCULATION OF £ - Axpy
IN TERMS OF VECTOR k

In this appendix we consider the term

k- Axp(xy,x0) =k - Axypn(x1) — k- Axpn(xp) (I1)
in Eq. (77) which needs fully to be expressed in terms of
vector k. The expression of Ax py(x) is given by Eq. (62).

One obtains

GM 2
k-Ax k’U’
N(X) = +—5- 2 Z

n=1

GM,, &
- c2hz (KVIG ) (x),  (12)

n=1

where the spatial variable x can either be x; or x,. The
tensorial coefficients in Eqs. (E2)—(E11) and the scalar
functions in Egs. (F8)—(F17) are given in terms of vector &
and need to be expressed in terms of vector k.

The boundary value problem is defined by Eqgs. (64) and
(65), that means the spatial position of the source, x,, and
the spatial position of the observer, x;. Hence, in (I1)—(12)
one naturally encounters both impact vectors

d, =0 % (xyx0), (13)
d, =06 x (x| x0). (14)

For the treatment of the boundary value problem a
further impact vector in terms of k is needed, defined by
dekX(xOXk):kx(xlxk). (IS)

In order to rewrite (I1) fully in terms of vector k one
needs a relation between the impact vector (I3) and (I5) and

between the impact vector (I4) and (I5). These relations can
be obtained by inserting (74) into Egs. (I3) and (I4):

d, - Ax k-

dazdk+ k R 1PNk+ RxokX(AleNXk), <I6)
d, - Ax k

dy = d+ == Rxlkx(Aleka) (17)

where Ax py = Axpn(¥1,Xp). These relations are valid up
to terms of the order O(c~*). The subsequent relations will
be applied which are valid up to terms of the order O(c™):

k-c=1, (I8)
di - Axipy
k-d,= I
d, = 2 (19
k- j,_dk'Ax”’N, (110)
R
1 — 1 _ﬁ(k'xo)(dk'Axle) (Ill)
(ds)"  (d)" R (dy)"*? ’
1 _ 1 _ﬁ(k‘xl)(dk'Axle) (112)
(d,)"  (d)" R (d)"? ’
c xO:k.xO—dk'ixle, (113)
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dk ) AleN

R (114)

G- X :k'xl—

where Ax py = Axpn(X1,Xg). These relations follow from
(74) and (I6) and (I7). Here it useful to notice that
(k xx) - (k x Axjpy) = dy - Axpp.

Using (74) and (I6)—(I10) one obtains for the tensorial
coefficients in (I2) when expressed in terms of vector k the
following expressions, which are valid up to terms of the
order O(c™):

KU, (x) =1, (115)
irgi 1
k U(z)(x) = E(dk - Axp), (116)
iyyiab a k kakb
k V(l) (x) = kK __Axle + (k Axpy), (I17)
o 1
KVis) () = dik? + (k- 2) Axfpuk”
E(dk Axypy) kK"
1
E(k x)(k - Axpn)kk",  (118)
L 2 kA kb
KVigh (x) = kb — kaA 11)>N+2 (k-Axipy), (119)

- 1
KV (x) = kedy + g (e-x) ke Axboy

1 1
+E(dk - Axpy) K kP —ﬁ(k -x) (k- Axypy) kKD

1 1
Al (ke Axp)kedf, (120)
iyyiab a b 2 (a b)
KV, (x) = didy +ﬁ(k -x)d; Ax py
2 a
+ e Ax py)d\ k)
2 a
— 2 (e-x) (k- Axyp)d 'K (121)
iyyiab dadb
kvish () = S8 (g, Axypy), (122)
iyyiab kakb
kv (x) = T(dk - Axpy), (123)
iyyiab kadi
KV (x) = T(dk - Axipy), (124)
where in (I16)—-(I24) the abbreviation Axpy =

Axpn (¥, %0) is used, and A“BY) = (A“Bb + APB%)/2

denotes symmetrization. Similarly, using (I11)—(I14) one
obtains for the scalar functions in (I2) when expressed in
terms of vector k the following expressions:

Fy(x) =42 In(x - kx>+(di) (x+k- )‘%
+O(c™), (125)
Fp (x) = —W (x+k-x)+0(c?), (126)
2 k- 4 (k-x)*(d,  Ax
G(l)( ) _ (dk)sz (dk)4( X) (ka IPN)
4 2 1
G(Z) (x) = +(dk)4 (x+k-x)- (dk)zx
4 di-Axpy _12 k-x B .
CAR (1 PER AR )>
+O(E) (128)
1 k-
G ) =+ g7t
di - Axipy 1 L (k- x)*
Rx ((doz T @) )
+ O(c™), (129)
4 2 1 2
G(4) (x) = _(dk)4 (X+k-3€) + (dk)2;+w
4 dy Doy (| kex kex
T@F R (1 IR ’”)
+O(c™), (130)
2 k- 1 k
G =~ s @R
1 di-Axppn [ 4 L _ (x)?
@) Rx (<d AT <dk>4>
+ O(c™), (131)
8 4 1 1
Go &) =~y D @ e
+0O(c?), (132)
2 1 1 1
o= e G TGy
+0O(c?), (133)
4 k-x 2 k-x >
G(g) (X) = +(dk)47+ (dk)zw (C ), (134)

104052-29



SVEN ZSCHOCKE

PHYS. REV. D 106, 104052 (2022)

where the functions in (126) and (I132)—(I134) need to be calculated up to terms of the order O (c‘z) because their corresponding
tensorial coefficients in (116) and (122)—(124) contain only terms of the order O(c~2). By inserting (115)—(124) and (125)—(134)

into (I2) one obtains:

2GM

k- Axipn(x) =+ 2 In(x-k-x)
2GMy, [ 1 kex ,, 1 1 k-x
é {u)‘* M @ oy
2GM k-x[ 4
& (d)t x [(de)?
+O(c‘6),

where Axpy = Axpn(X;,Xo) and the spatial argument x
in (I35) can either be x; or x,. By inserting (70) with (62)
into (I35) and taking account of (I1), one finally arrives at

k- Axipn(x1,X0)

GM Gl
= ZS“b ) (*1,%0)

= +7P( ) (1,%x0) +

1

G*M? G*MM,, S
+ c V(])(xl»xo)+TwZS%S(n>(xhxo)
=1

G*M Moy
+$Z T8edt ) (x1,%0) + O(c™0),  (136)
n=1

where the tensors have been defined by Eqs. (H3) and (H4)
and the scalar functions are

—k-x; xi+k-x
P , 2 l ——=-2Ih—, (I37
1 (x1,x0) =+ xo—k'xo n Tk x (137)
ga
O)(x1,x0) = (d(k))z +903)s (138)
Q) (x1,%0) = +2f 3, (139)
2 9(3)
) , 140
Q(3) (xl x()) (d )4 g(l) (dk)2 ( )
(1) (x1,%9) =0, (141)
4
(1) (x1,%0) = + @) emg) (142)
2) (x1,%9) =0 (143)
53 (*1,%0) = + @) emy) (144)
t(l) (xl,xo) 0, (145)

vy + 5

1 1 k-x 1k-x
_kakb___kakb__dakb:|
2(dy)* x 2(x)? (x)?

(dy - Axypn)didl + (dy - Axpn)KOkD + 2(k - Ax py)dékb — ZdzAxi’PN}

(135)
8
1) (X1, %) AL 991 (146)
2
1(3) (x1.%0) +W€(1)9(1) d )4f(1)g(1)
2
+ Wf(?))g(l)’ (147)
4
ta)(X1,X0) = + @) Im9a) @) 9n9pz).  (148)
16 8
L(s) (x1,x0) (d )g My (dk)(,f(l)g(l)7 (149)
16 8
te) (X1,%0) = +W€(1)9(1) ()" Fam
4
—f®901) 150
~(dyT (0
8
(x1,x0) (d )(, 91) 933)» (I51)
t(8) (x1,%0) = 0, (152)
16 8
toy (X1,X)) = +——=e€ - , 153
(9) (x1,%0) @) M9 (dk)ﬁfu)gu) (153)
4
tao) (*1.%0) = —Wf@)g(n (154)

The scalar functions e f (n)> 9(n)
by Egs. (H20)—(H24).

( ) were introduced

APPENDIX J: CALCULATION OF |k x Ax;pn|?

In this appendix we consider the term

k< Axpy (xl,xo)‘z = Axipn (X1, X0) - Axipn (X1, X0)
—(k~Ax1PN(x1,x0))2 (1)
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in Eq. (77). The calculation of (J1) can considerably be
simplified by omitting all terms proportional to vector k in
Axpy. Then, by inspection of (62) one obtains

G*M?

[k x Axpy(x1.%0) > = 7x(1)(x1,x0)

G*MM &
TZ Stn v (x1.%0)
n=1
G2MuhMcd . abc.
D T 2 (1, x0),
n=1
(J2)

where the tensors have been defined by Eqs. (H3) and (H4)
and scalar functions are

4
X1y (%1, %) =+ (d,)? e(n) e (J3)
4
Y1) (xhxo) = +W€(1) €() _We(l)f(l) +4€(1)f(3)7
(J4)
8 8
Y(z)(xhxo) = _We(l) 9a) _We(l) 903)> (J5)
16 8
V) (X1, X0) = +W€(1) e) _We(l)f(l)
4
_We(l)f(?a)v (J6)
4
z)(x1,%9) = +W9(1) 9(1)» (7)

16 8

2() (x1,%) = _We(l) 9 +Wf(l) g, (I8)

4 4

23) (*1,%0) = +W€(1) e _Wg(l) 91
1
TSt gyeoln
4
tarewlo-Hale
+ (d)*f3) f3)» (J9)
8 4
2y (*1.%0) = +W€(1) g _Wf(l) 9(1)
8 4

(110)

16 16
“laF e em g ssem o

8 4
+ Wg(l) 9i3) — Wf(l)f@)

2(s) (x1,%9) =

4
rEv) s J11
16 16
%o (\1:%0) =+ 755 e €~ s em S
4 4
+Weu)fm +wf<1>f(1>
2
—?fu)f@) -2f3) f3)» (J12)
(di)
16 8
Z(7)(x1»x0) = —We(l)ga) —Wf@)g(l)
8
+Wf(1)9(3)7 (J13)
2(8) (x1,x9) =0, (J14)
16 16
%) (1Xo) = +asem em ~ s em o
4
7 , J15
+(dk)4f(l)f<1) ( )
8 4
2(10)(X1,%9) = _We(l)f(S) +mef(3)
1
+Wf(3) fo)- (J16)

The scalar functions e, f(n)> 9n)> h(n) are given by
Eqgs. (H20)—(H24).

APPENDIX K: ESTIMATION
OF SHAPIRO TIME DELAY

1. The expression of the Shapiro time delay

According to Eq. (77) the time delay of a light signal in
the field of one body at rest, where its monopole and
quadrupole structure is taken into account, is given by

c(ty = t9) = R —k - Axypn(x1,X0) —k - Axopy (X1, %)

1
+ﬁ|kxAleN(xlﬂxO)|2+O(c_6)' (K1)

The term k- Ax,py has been given by Eq. (HS5) in
Appendix H. The term k- Ax;py has been given by
Eq. (I36) in Appendix 1. The term |k x Ax,py|? has been
given by Eq. (J2) in Appendix J. According to these results
the Shapiro time delay in 2PN approximation in the
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gravitational field of one body at rest with monopole and
quadrupole structure is given as follows [cf. Eq. (78):
c(ty —1y) = R+ Actlhy + Act)i

My xM g

+ At 4 AcghTMar 1 Aeghl e (K2)

up to terms of the order O(c~%) and where the individual
terms are

GM
ACT%N:—7P(]> (x],xO), (K3)
m, _ GMyy
Actipy = _C_zaz; S(“f)Q(n) (x1,x0),  (K4)
G’M?
ACT%;&M = +TR<1) (xl,xo), (KS)
MXMab GzMMab 2 ab
ActhMa — +TZ SE Sy (x1,%0),  (K6)
n=1
G2 M oy, M g >
M, XM, ab™™ cd abce
ACTZPIG 4= +7C4 z T(riz)) dT(n) (xl,xo). (K7)
n=1

The tensors SE‘,}I’) and T%"d are defined by Eqgs. (H3)
and (H4) and the scalar functions are introduced:

Ry = =rq) —uq) + 5% (K8)
1

Stn) = =S(n) = Vin) T 55V (- (K9)
1

T(n) ==l — W) + ﬁz(”)' (K10)

The functions in (K8) are defined by Eqgs. (I41) and
(H6) and (J3). The functions in (K9) are defined by
Egs. (I42)—(144) and (H7)-(H9) and (J4)—(J6). The func-
tions in (K10) are defined by Eqs. (145)-(I54) and
(H10)—(H19) and (J7)—(J16). In these functions the abbre-
viations as given by Egs. (H20)-(H24) have been used.

In this appendix we will determine the upper limits of the
individual terms in Shapiro time delay formula (K2). One
may distinguish two scenarios of Shapiro time delay mea-
surements: one-way and two-way scenario. In the one-way
scenario a signal is emitted from the celestial object (e.g.
spacecraft, pulsar) and received by the observer. In the two-
way scenario a signal is emitted from the observer, then
reflected off the celestial object (e.g. planet or spacecraft), and
finally received back by the observer. If one assumes that the
gravitating body as well as observer and celestial object are at
rest, then both these scenarios just differ by a factor 2. Here
the upper limits are given for the one-way Shapiro effect.

2. Estimation of 2PN monopole-monopole term

The 2PN monopole-monopole term in (K2) reads

G*M?
o Ry (x1, %),

ActibM — (K11)

where the scalar function R(;) has been defined by
Eq. (K8). Equation (K11) agrees with the 2PN term in
Eq. (3.2.51) in [4] as well as Eq. (69) in [53] (for PPN
parameter the values of GR, y = 1, must be chosen); note
that Rd;, = |xo x x;|. Inserting the abbreviations (I41) and
(H6) and (J3) into (K8) one obtains for the function R,

2 (x—x)*—R 1(k-x; k-x
Ry =+ 4.2 R 4 2 2
(dy) (x1)* (xo)
151 : )
+ Isd_k (arctankdjl - arctankd:())- (K12)

In order to determine the upper limit of (K12), the
relations for the angle fy = 6(k,xq) and ; = 5(k,x,) are
very useful:

k- 2 ()2 — R2

cos fy = x:Co - (x1) 25:;(3 . (K13)
k- 2 ()2 4+ R2

cos fi; = XTI — (x1) 25;;1) * . (K14)

These relations are exactly valid and can be shown by
using (72). The impact parameters are d; = x, sin iy =
x; sin ;. Then, the expression in (K12) can be rewritten in
terms of variable z in (C8) as well as angle @ = (x,x;) in
(C9). By using the computer algebra system MAPLE [63]
one obtains for the upper of (K11)

8 G*M?

MxM
|Actipy |5WX1T-

(K15)

Numerical values of (K15) are presented in Table III for
the Sun and giant planets. If one implements the inequality

X1X0

Rt
(x1 + xp)?

S X1 (K16)

into the first term on the right-hand side of Eq. (70) in [53],
one verifies that the estimation in (K15) is in agreement
with that estimation in our article [53]. Here we note that
the term which was estimated by Eq. (71) in [53] has been
absorbed in our upper limit given in (K15).
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3. Estimation of 2PN monopole-quadrupole term
The 2PN monopole-quadrupole term in (K2) reads

G2MM 4y
MxM, ab a
n=1

where the tensorial coefficients S“f) are given by Egs. (H3)
and the scalar functions S, have i)een defined by Eq. (K9).
Their explicit form is obtained by inserting the abbrevia-
tions (H20)—(H24) into the scalar functions s, [given by
Egs. (142)-(144)] and v(, [given by Egs. (H7)-(H9)] and
Y(n) [given by Egs. (J4)-(J6)] into (K9). In order to estimate
the upper limit of the individual terms in (K17) the
assumption is adopted that to a good approximation the
giant planets can be considered as axially symmetric
bodies, that means the STF quadrupole tensor in the
following form is used [cf. Eq. (B36)]

N 1
M, = MJ,P? <§6ab - 51135};3)’ (K18)

where it is assumed that the x* axis of the coordinate system
is aligned with the symmetry axis e; of the massive body.
The parameter in (K18), that means M (mass of the body)
J, (actual second zonal harmonic coefficient), P (equatorial
radius of the body) are given in Table I for the Sun and giant
planets of the Solar System. It is advisable to apply
relations (K13)—(K14) as well as the parameter (CS8)-
(C9), which considerably simplify the expressions in
(K17). Then, the estimation proceeds in very similar
way as for (K11) and one finds, by means of the computer
algebra system MAPLE [63] the following upper limit:

12 G*M? p?
X1

|ACTMXMah|S
(dp)? ct (dy)

2PN

5ol (K19)

Numerical values of (K19) are presented in Table III for
the Sun and giant planets. In order to get correct upper
limits one has to take into account that k and d; are
perpendicular to each other, which restricts their possible
values and angles with e; (see also endnote [99] in [35]).

4. Estimation of 2PN quadrupole-quadrupole term
The 2PN quadrupole-quadrupole term in (K2) reads

PPN
abXMq G™M ;M

10
Actiyg M — 4 ZT;lj)ch(n)(xl,xo), (K20)
n=1

where the tensorial coefficients T”f“d are given by
Eq. (H4) and the scalar functions 7', have been defined
by Eq. (K10). In order to estimate the upper limit of the
individual terms in (K20) the assumption is adopted that to
a good approximation the giant planets can be considered
as axially symmetric bodies, that means for the product of
two mass quadrupole tensors [cf. Eq. (B36)] the following
expression is used:

Mab Mcd = M2|‘12|2P4

1 1 1
X <§ Oapbed — §5ab5c35d3 3 04301364

+ 5a35b35c35d3> ; (K21)

where it is assumed that the x* axis of the coordinate system
is aligned with the symmetry axis e; of the massive body. It
is advisable to introduce the parameter (C8) and (C9) as
well as relations (K13)—(K14), which considerably simplify
the expressions in (K20). Then, the estimation proceeds in a
very similar way as for (K11) and one finds, by means of
the computer algebra system MAPLE [63] the following
upper limit:

G*M? p*
¢ (dy)

8
M, XM,
|ACT2PIEI ‘ < (dk)le

4 |J2|2- (K22)

Numerical values of (K22) are presented in Table I1I for
the Sun and giant planets. In order to get correct upper
limits one has to take into account that k and d; are
perpendicular to each other, which restricts their possible
values and angles with e; [see also endnote [99] in [35]].
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