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The time delay of a light signal in the quadrupole field of a body at rest is determined in the second post-
Newtonian (2PN) approximation in harmonic coordinates. For grazing light rays at the Sun, Jupiter, and
Saturn the 2PN quadrupole effect in time delay amounts up to 0.004, 0.14, and 0.04 picosecond,
respectively. These values are compared with the time delay in the first post-Newtonian (1PN and 1.5PN)
approximation, where it turns out that only the first eight mass multipoles and the spin dipole of these
massive bodies are required for a given goal accuracy of 0.001 picosecond in time delay measurements in
the solar system. In addition, the spin-hexapole of Jupiter is required on that scale of accuracy.
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I. INTRODUCTION

The time delay of a light signal in the gravitational field
of a massive body was predicted by Shapiro in 1964 [1] and
belongs to the four classical tests of general relativity:
perihelion precession of Mercury, light deflection at the
Sun, gravitational redshift of light, and light-travel time
delay [2]. In its original formulation of the Shapiro effect
one considers a light signal which propagates in the
monopole field of one massive body with mass M which
is at rest with respect to the coordinate system.
Assume the space-time to be covered by harmonic

coordinates, ðt; xÞ [2–5] [cf. Eq. (5.177) in [3]] and let the
origin of spatial axes be located at the center-of-mass of the
massive body. The light signal is emitted by a light source at
ðt0; x0Þ and then received by an observer at ðt1; x1Þ. The
Shapiro time delay is the difference between the light travel
time, ðt1 − t0Þ, and the Euclidean distance between source
and observer, R ¼ jx1 − x0j, divided by the speed of light,

Δτ ¼ ðt1 − t0Þ −
R
c
: ð1Þ

The Newtonian theory predicts no time delay. In general
relativity (GR), however, the light travel time differs from
R=c, because the light signal propagates through the
gravitational fields of the massive body, which decelerate
the speed of the light signal. In first post-Newtonian (1PN)
approximation for a massive body at rest the time delay is
given by [2–4]

ΔτM1PN ¼ 2GM
c3

ln
x1 þ k · x1
x0 þ k · x0

; ð2Þ

where k ¼ ðx1 − x0Þ=R is the unit vector pointing from the
source towards the observer; superscript label M stands for
monopole.

In the first time delay measurements, performed in 1968
[6] and 1971 [7], radar signals were emitted from Earth,
which have passed nearby the limb of the Sun, then they
were reflected by an inner planet, either Mercury or Venus,
and finally the radar signals were received back on Earth.
This round trip of the light signal is called two-way Shapiro
effect and yields the double of Eq. (2) [cf. Eq. (10.102)
in [3]] which gives up to 248 microseconds for the
constellation Earth-Sun-Mercury, and amounts up to 251
microseconds for the constellation Earth-Sun-Venus. In
these experiments the time delay predicted by GR has been
confirmed up to an error of a few percent, which corre-
sponds to a precision in time measurements of a few
microseconds. Ever since, time delay measurements have
been performed with increasing accuracy. In 1977 the
Viking1 and Viking2 spacecrafts (Mars landers and orbiters)
were used as radar reflectors, where an accuracy of about
0.5% in time delay measurements was achieved [8], which
was later improved towards an accuracy of about 0.1% [9],
which corresponds to a precision in time measurements of
about 300 nanoseconds. The most accurate time delay
measurements in the Solar System were achieved in 2003
by using the Cassini spacecraft (orbiting Saturn) as
reflector of the radar signals with an error of about
0.001% [10]. The two-way Shapiro time delay for a grazing
ray at the Sun for the configuration Earth-Sun-Saturn
amounts up to 288 microseconds, thus that error corre-
sponds to an accuracy of a few nanoseconds in time delay
measurements.
Future time delay experiments will be performed by

optical laser rather than radar signals, as suggested by
several mission proposals of the European Space Agency
(ESA) [11–16]. These missions are designed to signifi-
cantly improve the test of relativistic gravity of the Solar
System. One aim of these experiments are time delay
measurements at the picosecond and sub-picosecond level
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of accuracy. In these mission proposals it has been
suggested that a laser signal is emitted by the observer
and then reflected by the spacecraft and afterwards received
back by the observer. The decisive advantage of this two-
way Shapiro effect is that there is no need for clock
synchronization between observer and spacecraft [17].
Thus, besides laser availability and reliability, significant
improvements in measurements of the Shapiro effect are
mainly dependent on advancements in the determination of
the proper time at the observer’s position, either at ground
stations or in space, which have made impressive progress
during recent decades.
Today, accuracies on the sub-nanosecond scale and even

picosecond scale in time measurements are becoming
standard in high-precision experiments in space. For in-
stance, both Lunar Laser Ranging (LLR) as well as Satellite
Laser Ranging (SLR) have reached the sub-nanosecond and
even the picosecond level of accuracy [18–23] which
implies a standard deviation of the atomic clocks of about
Δt=t ∼ 10−13. In these experiments a laser signal is sent from
a ground station to theMoon or satellite, where it is reflected
from retroreflectors, and then the laser signal is received
back by the ground station; a review of LLR and future
developments of SLRare given in [21,24].Meanwhile, there
exists a global network of 45 active ground stations which
represent the International Laser Ranging Service. The
measurement of the round-trip travel time allows one to
determine the distance to the Moon or spacecraft, and such
laser transfermeasurements have reached the centimeter and
even the millimeter level of accuracy, which corresponds to
an accuracy of about 3 picoseconds in time measurements.
Furthermore, the two hydrogen maser atomic clocks

onboard each satellite of the European Galileo navigation
system are mentioned, which have a standard deviation of
Δt=t ∼ 10−14 which can be considered as minimal criterion
for present-day technology of time measurements in space.
The present-day most precise atomic clock onboard a
satellite is the Deep Space Atomic Clock (DSAC) [25]
launched in 2019 by National Aeronautics and Space
Administration (NASA), which has a standard deviation
of Δt=t ∼ 10−15. For a light signal in the Solar System with
a travel time of about 104 s such a standard deviation of
DSAC implies an accuracy of about Δt ∼ 10 picosecond,
which one may consider as minimal criterion for present-
day technology of time measurements for the time of flight
of such a light signal. In fact, by comparing DSAC to the
U.S. Naval Observatory’s hydrogen maser master clock on
the ground, the researchers found that the space clock
deviates by about 26 picoseconds during one day [26]. A
follow-up project, DSAC-2, has recently been selected by
NASA for demonstration on the upcoming space mission
VERITAS (Venus Emissivity Radio Science Insar
Topography and Spectroscopy) to Venus [27].
The atmosphere of the Earth has a significant impact on

the speed and trajectory of light signals. In view of this fact,

the advantage of space-based missions is that the
atmosphere of Earth cannot disturb the time-of-flight
measurements of light signals between spacecrafts. If
ground-stations on Earth are involved in time-of-flight
measurements, then the local meteorological data (i.e.
altitude profile of temperature, pressure, humidity) need
carefully to be determined with high accuracy during the
period of time measurements. The modeling and descrip-
tion of atmospheric corrections of the ground-to-satellite
time transfer of light signals has made important advance-
ments during recent years and has reached the picosecond
level of accuracy [28]. Thus, time delay measurements with
ground stations remain an option also for future highly
precise experiments on the picosecond and maybe on the
sub-picosecond level.
Examples of Earth-bound clocks are the Caesium atomic

clocks NIST-F1 and NIST-F2 at the National Institute of
Standard and Technology (NIST) are mentioned, where a
standard deviation of Δt=t ∼ 10−16 has been achieved [29].
The highest accuracies for Earth-bound atomic clocks have
been achieved with optical atomic clocks with a standard
deviation of Δt=t ∼ 10−19 [30]. If one considers a light
signal emitted from Earth towards a spacecraft located in
the Solar System, for instance, nearby Uranus, and back,
then the light travel time would be about t ∼ 104 s. Hence,
the standard deviation of such an atomic clock corresponds
to a precision of about Δt ∼ 0.001 picosecond, which one
may consider as maximal criterion for present-day accuracy
of time measurements for the time of flight of such a light
signal, being aware that in the near future the precision of
optical atomic clocks will further be improved.
Accordingly, in consideration of these facts and being

aware of further rapid progress in the precisions of time
measurements in the foreseen future [31], it seems neces-
sary to develop the theoretical model of Shapiro time delay
up to an accuracy of about Δt ¼ 0.001 picosecond. Also
regarding the fact that a theoretical model should be at least
one order of magnitude more precise than actual real
measurements, this magnitude should be assumed as the
most upper accuracy threshold in theoretical considerations
for prospective astrometry missions.
In view of these considerations it becomes apparent that

the classical monopole formula (2) of time delay is by far
not sufficient to meet near-future accuracies in time
measurements and it is clear that the shape and inner
structure of the bodies as well as their rotational motions
become relevant on such scale of accuracy [32,33]. The
expansion of the metric tensor in terms of mass multipoles,
M̂L, and spin multipoles, ŜL, of the massive Solar System
bodies allows one to account for these effects. The multi-
pole expansion of the metric tensor implicates a corre-
sponding multipole expansion of the Shapiro time delay in
terms of mass multipoles and spin multipoles. In particular,
it is necessary to include some post-Newtonian terms (1PN
and 1.5PN) in the theory of light propagation,
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Δτ ¼
X∞
l¼0

ΔτML
1PN þ

X∞
l¼1

ΔτSL1.5PN þOðc−4Þ; ð3Þ

where the first term (l ¼ 0) is just the 1PN mass-monopole
term as given by (2). It is clear that some of these higher
mass multipoles M̂L (describe shape and inner structure of
the massive body) and perhaps some spin multipoles ŜL
(describe rotational motions and inner currents of the
massive body) are relevant on the sub-picosecond level
of accuracy. The mathematical expressions for the 1PN
mass-multipole and 1.5PN spin-multipole terms in the
Shapiro time delay, ΔτML

1PN and ΔτSL1.5PN, were derived a
long time ago [34]. It is one aim of this investigation to
quantify these terms and to clarify which of these 1PN and
1.5PN terms need to be taken into account for the assumed
goal accuracy of about 0.001 picosecond.
Besides these 1PN and 1.5PN terms in (3) it might well

be that also some 2PN terms are relevant on the sub-
picosecond level of accuracy in time delay measurements.
For a long time, the knowledge about 2PN effects in the
Shapiro time delay was restricted to the case of spherically
symmetric bodies; that means in 2PN approximation only
the mass-monopole term M has been taken into account.
The next subsequent term in the multipole decomposition is
the mass-quadrupole termMab. Clearly, these terms are the
most dominant 2PN terms beyond the 2PNmass monopole.
Recently, the light trajectory in 2PN approximation in
the field of one body at rest with mass-monopole and
mass-quadrupole structure was determined [35]. The inves-
tigation in [35] allows us to determine these 2PN mass-
quadrupole terms in the Shapiro time delay; that means

Δτ ¼ ΔτM1PN þ ΔτMab
1PN;

þ ΔτM×M
2PN þ ΔτM×Mab

2PN þ ΔτMab×Mcd
2PN þOðc−6Þ: ð4Þ

In this investigation we will examine the impact of the
2PN monopole-monopole term, ΔτM×M

2PN , the monopole-
quadrupole term, ΔτM×Mab

2PN , and the quadrupole-quadrupole
term, ΔτMab×Mcd

2PN , and will compare them with the 1PN and
1.5PN terms in (3). Of course, the 1PN terms in (3) beyond
the mass quadrupole as well as the 1.5PN terms in (3) can
finally be added to (4) in an appropriate manner.
The manuscript is organized as follows: In Sec. II the

exact geodesic equation and the exact metric tensor for a
body at rest is discussed. The 1PN and 1.5PN effect on the
Shapiro time delay is determined in Sec. III. The initial
value problem of the 2PN light propagation in the quadru-
pole field of one body at rest is considered in the Sec. IV.
The Shapiro time delay in 2PN approximation is examined
in Sec. V. Finally a summary and outlook are given in
Sec. VI. The notations as well as details of the calculations
are relegated to a set of several appendices.

II. GEODESIC EQUATION
AND METRIC TENSOR

A unique interpretation of astrometric observations, like
the time delay of light signals, requires the determination of
light trajectory, xðtÞ, as a function of coordinate time. In
Minkowskian space-time, a light signal would travel along
a straight trajectory, the so-called unperturbed light ray. If
the flat space-time is covered by Cartesian coordinates,
the components of the Minkowskian metric read ηαβ ¼
ð−1;þ1;þ1;þ1Þ and then the trajectory of a light signal is
given by

xN ¼ x0 þ cðt − t0Þσ; ð5Þ

where the subindex N stands for Newtonian. That means a
light signal, emitted at the spatial position of the light
source, x0, would propagate along a straight line in the
direction of some unit vector σ. For graphical illustration of
the unperturbed light trajectory see Fig. 1.
The trajectory of a light signal propagating in curved

space-time is determined by the geodesic equation (6) and
isotropic condition (7), which in terms of coordinate time
read as follows [2,4,5] [e.g. Eqs. (1.2.48) and (1.2.49) in [4]
or Eqs. (7.20)–(7.23) in [5]]:

ẍiðtÞ
c2

þ Γi
μν
_xμðtÞ
c

_xνðtÞ
c

− Γ0
μν
_xμðtÞ
c

_xνðtÞ
c

_xiðtÞ
c

¼ 0; ð6Þ

gαβ
_xαðtÞ
c

_xβðtÞ
c

¼ 0; ð7Þ

where gαβ are the covariant components of the metric tensor
of space-time; for the signature, ð−;þ;þ;þÞ has been

FIG. 1. A geometrical representation of the propagation of a
light signal through the gravitational field of a massive solar
system body at rest. The light signal is emitted by the light source
at x0 and propagates along the exact light trajectory xðtÞ. The unit
tangent vector along the light trajectory at past null infinity is σ.
The unperturbed light ray xNðtÞ is given by Eq. (5) and
propagates in the direction of σ along a straight line through
the position of the light source at x0. The impact vector dσ of the
unperturbed light ray is given by Eq. (57). The impact vector d̂σ is
defined by Eq. (I4) and is parallel to the impact vector dσ but a
tiny bit smaller and not shown in the diagram.
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chosen. The isotropic condition (7) states that light trajec-
tories are null rays, a condition which must be satisfied at
any point along the light trajectory. Furthermore, a dot
denotes total derivative with respect to coordinate time, and
Γα
μν are the Christoffel symbols, given by [2,4,5] [e.g.

Eq. (21.27) in [2]]

Γα
μν ¼

1

2
gαβ

�
∂gβμ
∂xν

þ ∂gβν
∂xμ

−
∂gμν
∂xβ

�
: ð8Þ

The Christoffel symbols are functions of the metric
tensor. For weak gravitational fields it is meaningful to
separate the metric tensor into the flat metric and a metric
perturbation,

gαβðt; xÞ ¼ ηαβ þ hαβðt; xÞ: ð9Þ

The geodesic equation is a differential equation of
second order of one variable, t, thus a unique solution
of (6) necessitates two initial-boundary conditions: the
spatial position of light source x0 and the unit direction σ of
the light signal at past infinity [4,32–34,36,37]:

σ ¼ _xðtÞ
c

����
t¼−∞

with σ · σ ¼ 1; ð10Þ

x0 ¼ xðtÞjt¼t0 : ð11Þ

Then, by inserting the decomposition (9) into (6) and
using the initial boundary conditions (10) and (11), the
solution of the second integration of geodesic equation
(trajectory of light signal) (6) is given by

xðtÞ ¼ x0 þ cðt − t0Þσ þ Δxðt; t0Þ; ð12Þ

where Δx is the correction to the trajectory of the
unperturbed light ray (5). The formal solution of the initial
value problem (12) implies the following limit:

lim
t→t0

Δxðt; t0Þ ¼ 0; ð13Þ

in order to be consistent with the condition (11).
For solving the geodesic equation (6) one needs the

metric tensor (9) of the specific problem under consid-
eration. Usually, the metric tensor (9) is not known in its
exact form and one has to apply for some approximation
scheme. If the gravitational fields are weak and the speed of
matter is slow compared to the speed of light, then one can
utilize the post-Newtonian expansion (weak-field slow-
motion expansion) of the metric tensor, which is an
expansion of the metric tensor in inverse powers of the
speed of light [38,39],

gαβðt; xÞ ¼ ηαβ þ
X∞
n¼2

hðnÞαβ ðt; x; ln cÞ: ð14Þ

In general, the post-Newtonian expansion (14) is a
nonanalytic series, because at higher order n ≥ 8 nonana-
lytic terms involving powers of logarithms occur [38,39],
while by definition the nth post-Newtonian perturbation,

hðnÞαβ , is the factor of nth inverse power of c.
In reality, a solar system body can be of arbitrary shape,

inner structure, rotational, and oscillating motions and can
have inner currents of matter. From the multipolar post-
Minkowskian (MPM) formalism [38–40] it follows that the
post-Newtonian solution for the metric tensor for such a
body can be given in terms of two kinds of symmetric and
trace-free (STF) multipoles: mass multipoles M̂L (describ-
ing shape, inner structure, and oscillations of the body) and
spin multipoles ŜL (describing rotational motions and inner
currents of the body)

gαβðt; xÞ ¼ ηαβ þ
X∞
n¼2

hðnÞαβ ðM̂LðsÞ; ŜLðsÞ; ln cÞ; ð15Þ

where the origin of spatial axes of the coordinate system is
located somewhere nearby the center of mass of the source
of matter (body), and s ¼ t − x=c is the retarded time
which describes the fact that the metric at field point ðt; xÞ
is determined by the multipoles at the earlier time s because
gravitational action propagates with the finite speed of
light. In case of a stationary source of matter the multipoles
and the metric perturbations are time independent and then
the post-Newtonian expansion of the metric tensor reads

gαβðxÞ ¼ ηαβ þ
X∞
n¼2

hðnÞαβ ðM̂L; ŜL; ln cÞ: ð16Þ

These multipoles M̂L and ŜL in (15) and (16) are
integrals over the stress-energy tensor of the source of
matter. They are considered in Appendix B.

III. SHAPIRO EFFECT IN 1.5PN APPROXIMATION

In 1.5PN approximation the expansion (16) reads

gαβ ¼ ηαβ þ hð2Þαβ ðM̂LÞ þ hð3Þαβ ðŜLÞ ð17Þ
up to terms of the order Oðc−4Þ, and where the non-

vanishing metric perturbations hð2Þαβ and hð3Þαβ are given by
[34,38,39,41,42]

hð2Þ00 ¼ þ 2

c2
X∞
l¼0

ð−1Þl
l!

M̂L∂̂L
1

r
; ð18Þ

hð3Þ0i ¼ þ 4

c3
X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabŜbL−1∂̂aL−1

1

r
; ð19Þ
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hð2Þij ¼ þ 2

c2
δij

X∞
l¼0

ð−1Þl
l!

M̂L∂̂L
1

r
; ð20Þ

where r ¼ jxj and

∂̂L ¼ STFi1…il∂i1…∂il : ð21Þ

The mass multipoles and spin multipoles in (18)–(20) in
case of stationary source of matter are given by

M̂L ¼
Z

d3xx̂LΣ; ð22Þ

ŜL ¼
Z

d3xϵjk<il x̂L−1>x
jΣk; ð23Þ

where the notation Σ ¼ ðT00 þ TkkÞ=c2 and Σk ¼ T0k=c
has been adopted, with Tαβ being the stress-energy tensor
of the body, and where the integrals run over the three-
dimensional volume of the body. The geodesic equation in
1.5PN approximation can be deduced from the exact
geodesic equation (6) and is given by Eq. (2.2.49) in [4]
(up to a global sign convention). Inserting the metric
perturbations (18)–(20) into the geodesic equation in
1.5PN approximation yields

ẍ
c2

¼
X∞
l¼0

ẍML
1PN

c2
þ
X∞
l¼1

ẍSL1.5PN
c2

ð24Þ

up to terms of the order Oðc−4Þ, and where ẍML
1PN and ẍSL1.5PN

are given by Eq. (13) in [34]. The solution of (24) reads
formally as follows:

xðtÞ ¼ x0 þ cðt − t0Þσ þ
X∞
l¼0

ΔxML
1PN þ

X∞
l¼1

ΔxSL1.5PN ð25Þ

up to terms of the order Oðc−4Þ, and where ΔxnPN ¼
Oðc−2nÞ. In [34] advanced integration methods have been
introduced which allow one to integrate (24) exactly and
which lead to the exact expression of (25), given by
Eqs. (33), (36), and (38) in [34]. In that approach two
new parameters were introduced,

cτ ¼ σ · xN; ð26Þ

ξi ¼ Pi
jx

j
N; ð27Þ

where Pij ¼ δij − σiσj is a projection operator onto the
plane perpendicular to vector σ; note that Pij ¼ Pij ¼ Pi

j.
Obviously, the unperturbed light ray (5) expressed in terms
of these new variables takes the form

xN ¼ ξ þ cτσ: ð28Þ

The three-vector ξ is laying in the two-dimensional plane
perpendicular to σ, hence only two components are
independent, which implies ∂ξi=∂ξj ¼ Pi

j. But in practical
calculations it is convenient to treat the spatial components
of this vector as formally independent, which implies
∂ξi=∂ξj ¼ δij. Therefore, a subsequent projection onto this
two-dimensional plane bymeans ofPij is necessary [cf. text
above Eq. (31) in [36] as well as Eqs. (11.2.12) and
(11.2.13) in [23]]. Then, for a spatial derivative expressed
in terms of these new variables, one obtains

∂

∂xi
¼ Pj

i
∂

∂ξj
þ σi

∂

∂cτ
: ð29Þ

In case of time-independent functions, relation (33) in
[36] coincides with relation (29). Then, using (29) and the
binomial theorem, one finds the differential operator in (21)
expressed in terms of these new variables,

∂̂L ¼ STFi1…il

Xl

p¼0

l!
ðl − pÞ!p! σi1…σip

× P
jpþ1

ipþ1
…Pjl

il

∂

∂ξjpþ1
…

∂

∂ξjl

�
∂

∂cτ

�
p
: ð30Þ

Here we prefer to use the operator as given by Eq. (30)
where ∂ξi=∂ξj ¼ δij, while if one applies the operator as

TABLE I. Numerical parameter for mass M, radius P, actual
zonal harmonic coefficients Jl, distance between observer and
body x1, of the Sun, Jupiter, and Saturn. The values for GM=c2

and P are taken from [48]. The value for Jl for the Sun are taken
from [49] and references therein. The values Jl with n ¼ 2, 4, 6
for Jupiter and Saturn are taken from [50], while Jl with n ¼ 8,
10 for Jupiter and Saturn are taken from [51] and [52],
respectively. The angular velocity Ω ¼ 2π=T (with rotational
period T) are taken from NASA planetary fact sheets. The
dimensionless moment of inertia κ2 is defined by Eq. (B61)
and their values are taken from [48]. For the distance between
light source and body we assume x0 ¼ 1011 m so that the light
source is within the near zone of the Solar System, while x1 is
computed under the assumption that the observer (spacecraft) is
located at Lagrange point L2, i.e. 1.5 × 109 m from Earth.

Parameter Sun Jupiter Saturn

GM=c2ðmÞ 1476.8 1.41 0.42
PðmÞ 696 × 106 71.5 × 106 60.3 × 106

J2 1.7 × 10−7 14.696 × 10−3 16.291 × 10−3

J4 9.8 × 10−7 −0.587 × 10−3 −0.936 × 10−3

J6 4 × 10−8 0.034 × 10−3 0.086 × 10−3

J8 −4 × 10−9 −2.5 × 10−6 −10.0 × 10−6

J10 −2 × 10−10 0.21 × 10−6 2.0 × 10−6

Ω ðsec−1Þ 2.865 × 10−6 1.758 × 10−4 1.638 × 10−4

κ2 0.059 0.254 0.210
x1 ðmÞ 0.150 × 1012 0.59 × 1012 1.20 × 1012
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given by Eq. (24) in [34] then ∂ξi=∂ξj ¼ Pi
j. The results of

either these operations are identical. Then, using the basic
integral (25) in [34] one finds for the second integration
the formulas given by Eq. (27) in [34], which lead to
the solution for the second integration of geodesic
equation (24).
The approach introduced in [34] for bodies at rest and

time-independent multipoles has further been developed for
the case of light propagation in the gravitational field of a
time-dependent source of matter at rest [36,43,44], as well
as in the gravitational field of N slowly moving bodies with
time-dependent multipoles in our investigations in [32,33].
According to the solution for the light trajectory as given

by Eq. (31) with (33), (36), (38) in [34], the time of flight in
the gravitational field of a body with full mass-multipole
and spin-multipole structure is given by the following
formula [cf. Eq. (40) in [34]]:

cðt1 − t0Þ ¼ Rþ
X∞
l¼0

ΔcτML
1PN þ

X∞
l¼1

ΔcτSL1.5PN ð31Þ

up to terms of the order Oðc−4Þ. The mass-multipole
(gravitoelectric) term reads [cf. Eqs. (41) and (42) in [34]]

ΔcτML
1PN¼þ2G

c2
ð−1Þl
l!

M̂L

×ð∂̂L lnðrNþcτÞjτ¼t1− ∂̂L lnðrNþcτÞjτ¼t0Þ; ð32Þ

and the spin-multipole (gravitomagnetic) term reads
[cf. Eq. (43) in [34]; note an overall sign error in
Eq. (43) in [34]; see also footnote 3 in [45] as well as
Ref. ½73� in [33]]

ΔcτSL1.5PN¼þ4G
c3

ð−1Þll
ðlþ1Þ!σiϵ

iabŜbL−1

×ð∂̂aL−1 lnðrNþcτÞjτ¼t1 − ∂̂aL−1 lnðrNþcτÞjτ¼t0Þ;
ð33Þ

where rN ¼ jxNj with xN in (28), that means rN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ c2τ2

p
. These equations were also given by

Eqs. (11.2.34) and (11.2.35) in [23]. In (32) and (33)
the differentiations have to be performed. Afterwards one
has to substitute the unperturbed light ray by the standard
expression as given by Eq. (5) where the coordinate time is
either t1 or t0 as indicated by the sublabels. In particular, at
the very end of the calculations one has to replace cτ by
σ · xN and ξ by dσ. For details about how to perform the
differentiations, the reader is referred to [23,34]. Because
the mass quadrupole is of specific relevance in our
investigation, we consider the application of (32) for the
mass quadrupole explicitly in Appendix C.
The largest effect of Shapiro effect is expected from the

Sun and the giant planets of the Solar System. In order to

determine the Shapiro time delay one needs the explicit
form for mass multipoles (22) and for spin multipoles (23).
For an estimation of the individual terms in (32) and (33),
one may approximate the Sun and the giant planets by a
rigid axisymmetric body with radial dependent mass
distribution and in uniform rotational motion around the
symmetry axis of the body, which is aligned with the x3

axis of the coordinate system. Then, the higher mass
multipoles for such a body are given by Eq. (B35) in
Appendix B, while the spin dipole and higher spin multi-
poles for such a body are given by Eqs. (B63) and (B57) in
Appendix B:

M̂0 ¼ M; ð34Þ

M̂L ¼ −MðPÞlJlδ3<i1
…δ3il>

with l ¼ 2; 4; 6;…; ð35Þ
Ŝa ¼ κ2MΩP2δ3a; ð36Þ

ŜL ¼ −MΩðPÞlþ1Jl−1
lþ 1

lþ 4
δ3<i1

…δ3il>

with l ¼ 3; 5; 7;…; ð37Þ
where M is the Newtonian mass of the body, P its
equatorial radius, Jl are the actual zonal harmonic coef-
ficients of index l, κ2 is the dimensionless moment of
inertia, Ω is the angular velocity of the rotating body,
and δ3<i1

…δ3il> ¼ STFi1…ilδ3i1…δ3il denotes products of
Kronecker symbols which are symmetric and traceless
with respect to indices i1…il. These multipoles (35) and
(37) are in agreement with the multipoles for an rigid
axisymmetric body in uniform rotational motion as given
in the resolutions of the International Astronomical Union
(IAU) [46]; that agreement is shown explicitly in
Appendix B for the mass quadrupole as well as for the
spin hexapole in case of a rigid axisymmetric body with
uniform mass density.
The calculations can considerably be simplified by

inserting the mass multipoles and spin multipoles (35)
and (37) into (32) and (33), respectively, and afterwards
one starts with the evaluation of the Shapiro time delay.
Then, one obtains the following upper limits of the
individual terms of Shapiro time delay [cf. text below
Eq. (43) in [34]]:

jΔτM1PNj ≤ 2
GM
c3

ln
4x0x1
ðdσÞ2

; ð38Þ

jΔτML
1PNj ≤ Al

GM
c3

jJlj
�
P
dσ

�
l

with l ¼ 2; 4; 6;…; ð39Þ

jΔτS1.5PNj ≤ 4
GM
c4

κ2PΩ; ð40Þ
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jΔτSL1.5PNj ≤ Bl
GM
c4

PΩjJl−1j
�
P
dσ

�
l

with l ¼ 3; 5; 7;…; ð41Þ

where in (40) we have used relation (B63). The non-
vanishing coefficients for the first few mass multipoles and
spin multipoles read

A2 ¼
11

5
; A4 ¼

7

6
; A6 ¼

3

5
;

A8 ¼
3

10
; A10 ¼

3

20
; ð42Þ

B3 ¼
7

6
: ð43Þ

The calculation of coefficient A2 is given in some detail
in Appendix C, while the determination of the other
coefficients in (42) and (43) proceeds in a very similar
manner. Thus far, to the best of our knowledge, these upper
limits have only been determined for mass monopole, mass
quadrupole, and spin dipole, which were given in [47].
Numerical values of the upper limits in (38)–(41) are
presented in Table II for the first mass multipoles and spin
multipoles in case of grazing rays at the Sun and the giant
planets of the Solar System.
In Table II for the Sun, Jupiter, and Saturn a time delay of

mass quadrupole of 1.8, 152.1, and 50.6 ps are given. These
values differ from the values in Table I in [47], where for
the Sun, Jupiter, and Saturn a time delay of mass quadru-
pole of 16, 240, and 73 ps were given. These differences
originate from different upper limits. Here, according to
Eq. (39), we have used ΔτM2

1PN ≤ 2.2 GM
c3 jJ2j [which coin-

cides with Eq. (53) in [47]], while in Table I in [47] an
upper limit of ΔτM2

1PN ≤ 3.18 GM
c3 jJ2j has been used

[cf. Eq. (47) in [47]]. In addition, for the Sun different

values for the second zonal harmonic coefficient J2 have
been used. On the other side, the values for the time delay
of the spin dipole presented in Table II coincide with the
values given in Table II in [47].
Finally, an important comment should be in order. The

solutions for the light trajectory as well as Shapiro time
delay in the 1PN and 1.5PN approximation are given in
terms of the unit vector σ, which can immediately be
replaced by the unit vector k, because they differ by terms
beyond the 1PN and 1.5PN approximation: σ¼kþOðc−2Þ
and σ · k ¼ 1þOðc−4Þ. However, in 2PN approximation
one has carefully to distinguish among these vectors. In
addition, in 2PN approximation one must not replace
xNðt1Þ by the spatial position of the observer x1, because
such a replacement causes an error of the order Oðc−4Þ
which is of second post-Newtonian order. Both of these
aspects make the treatment of the determination of Shapiro
time delay in 2PN approximation more involved and will
be considered in the next sections.

IV. LIGHT PROPAGATION IN 2PN
APPROXIMATION: INITIAL

VALUE PROBLEM

A unique solution of geodesic equation (6) is given by
the initial value problem as defined by Eqs. (10) and (11).
In order to get the geodesic equation one needs the metric
tensor in Eq. (16). In 2PN approximation the expansion in
Eq. (16) reads as follows:

gαβ ¼ ηαβ þ hð2Þαβ ðM̂LÞ þ hð3Þαβ ðŜLÞ þ hð4Þαβ ðM̂LÞ ð44Þ

up to terms of the order Oðc−5Þ, and where the mass
multipoles M̂L and spin multipoles ŜL are given by
Eqs. (B21) and (B38), respectively, and they are assumed
to be time independent. The 1PN and 1.5PN metric

perturbations, hð2Þαβ and hð3Þαβ , were given by Eqs. (18)–
(20), while the 2PN metric perturbations hð4Þαβ have been
derived from the MPM formalism [38,39] and were given
by Eqs. (115)–(117) and Eqs. (134)–(136) in our article
[42] for the case of time-independent multipoles.
For our considerations about the 2PN effect of time delay

in the gravitational field of one body at rest, where only the
mass monopole and mass quadrupole will be taken into
account, that means

M̂L ¼ 0 for l > 2; ð45Þ

ŜL ¼ 0 for l ≥ 1: ð46Þ

But we will keep in mind the exact solution of the
geodesic equation in 1.5PN approximation in (25) and
the Shapiro time delay in 1.5PN approximation in (31),
and we may finally add these terms at the very end of

TABLE II. The effect of 1PN mass multipole ΔτMl
1PN and 1.5PN

spin multipole terms ΔτSl1.5PN of (one-way) Shapiro time delay in
the gravitational field of the Sun and giant planets of the Solar
System according to the upper limits presented by Eqs. (38)–(41).
The time delay is given in units of picoseconds: 1 ps ¼
10−12 sec. The values are given for grazing rays (impact
parameter dσ equals body’s equatorial radius P). Values for
ΔτMl

1PN with l ≥ 10 and ΔτSl1.5PN with l ≥ 5 are not shown because
they are less than a femtosecond for any Solar System body. The
numerical values should be compared with the assumed goal
accuracy of 0.001 picoseconds in time delay measurements. A
blank entry means a delay of less than a femtosecond.

Object ΔτM1PN ΔτM2

1PN ΔτM4

1PN ΔτM6

1PN ΔτM8

1PN ΔτS11.5PN ΔτS31.5PN
Sun 1.6 × 108 1.8 5.6 0.1 0.006 7.7 −
Jupiter 2.2 × 105 152.1 3.2 0.1 0.004 0.2 0.001
Saturn 6.8 × 104 50.6 1.5 0.07 0.004 0.04 −
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our calculations of the Shapiro time delay in 2PN
approximation.
Thus far, our knowledge about 2PN effects in the theory

of light propagation was restricted to the case of light
propagation in the field of monopoles [4,37,53]. In our
recent article [35] the initial value problem of 2PN light
propagation in the field of one body at rest with quadrupole
structure has been solved. The metric (44) for one massive
Solar System body at rest with monopole and quadrupole
structure takes the form [cf. Eq. (16) in [35]]

gαβ ¼ ηαβ þ hð2Þαβ ðM; M̂abÞ þ hð4Þαβ ðM; M̂abÞ ð47Þ

up to terms of the order Oðc−6Þ [there are no terms of the
order Oðc−5Þ because the spin multipoles are neglected],
and where higher mass multipoles as well as spin multi-
poles have been neglected; the origin of spatial axes of
the coordinate system is located at the center of mass of
the body and, therefore, the mass dipole vanishes
[cf. Eq. (8.14c) in [38]). The explicit expressions for the
metric perturbations in (47) have been derived by
Eqs. (145) and (147) as well as Eqs. (148)–(150) in our
article [42]. By inserting the 2PN metric tensor (47) in the
geodesic equation (6) one obtains the geodesic equation in
2PN approximation [cf. Eq. (74) in [35]]

ẍ
c2

¼ ẍM1PN
c2

þ ẍMab
1PN

c2
þ ẍM×M

2PN

c2
þ ẍM×Mab

2PN

c2
þ ẍMab×Mcd

2PN

c2
ð48Þ

up to terms of the orderOðc−6Þ. The geodesic equation (48)
can be written in terms of time-independent tensorial
coefficients and time-dependent scalar functions. For the
explicit form of geodesic equation (48) we refer to
Eqs. (47)–(49) in [35] for the 1PN terms as well as
Eqs. (75) and (78)–(79) in [35] for the 2PN terms. The
solution of the second integration of the geodesic equa-
tion (48) reads [cf. Eq. (86) in [35]]

xðtÞ ¼ x0þ cðt− t0ÞσþΔx1PNðt; t0ÞþΔx2PNðt; t0Þ ð49Þ

up to terms of the order Oðc−6Þ, and where Δx1PN ¼
Oðc−2Þ and Δx2PN ¼ Oðc−4Þ. In favor of a simpler

notation, the monopole and quadrupole terms in (49) have
been summarized as follows:

Δx1PN ¼ ΔxM1PN þ ΔxMab
1PN; ð50Þ

Δx2PN ¼ ΔxM×M
2PN þ ΔxM×Mab

2PN þ ΔxMab×Mcd
2PN ; ð51Þ

in obvious meaning: index M means terms proportional to
the monopole, index Mab means terms proportional to the
quadrupole, index M ×M means terms proportional to the
monopole times monopole, index M ×Mab means terms
proportional to the monopole times quadrupole, and index
Mab ×Mcd means terms proportional to the quadrupole
times quadrupole. In this section we reconsider the solution
of the second integration (49) as it has been obtained in our
article [35]. However, it is necessary to rewrite this solution
into a new form which is appropriate for subsequent
considerations of the Shapiro time delay.

A. Old representation

The iterative solution of the second integration of
geodesic equation in 2PN approximation (48) reads [35]:

xN ¼ x0 þ cðt − t0Þσ; ð52Þ

x1PN ¼ xN þ Δx1PNðxNÞ − Δx1PNðx0Þ; ð53Þ

x2PN ¼ xN þ Δx1PNðxNÞ − Δx1PNðx0Þ
þ Δx2PNðxNÞ − Δx2PNðx0Þ; ð54Þ

where the spatial components of 1PN terms are given by

Δxi1PNðxNÞ ¼
GM
c2

½Ai
ð3ÞWð3ÞðtÞ þ Bi

ð3ÞX ð3ÞðtÞ�

þ GM̂ab

c2
X
n¼5;7

½CiabðnÞWðnÞðtÞ þDiab
ðnÞX ðnÞðtÞ�;

ð55Þ

and the spatial components of 2PN terms are given by

Δxi2PNðxNÞ ¼
G2M2

c4

�X6
n¼3

Ei
ðnÞWðnÞðtÞ þ

X6
n¼2

F i
ðnÞX ðnÞðtÞ þ Gi

ð5ÞYð5ÞðtÞ þ
X
n¼3;5

Hi
ðnÞZðnÞðtÞ

�

þ G2MM̂ab

c4

�X10
n¼3

Kiab
ðnÞWðnÞðtÞ þ

X10
n¼2

Liab
ðnÞX ðnÞðtÞ þ

X9
n¼7

Miab
ðnÞYðnÞðtÞ þ

X9
n¼5

N iab
ðnÞZðnÞðtÞ

�

þ G2M̂abM̂cd

c4

�X14
n¼5

Piabcd
ðnÞ WðnÞðtÞ þ

X14
n¼4

Qiabcd
ðnÞ X ðnÞðtÞ

�
: ð56Þ
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In order to get Δx1PNðx0Þ and Δx2PNðx0Þ we notice that
x0 ¼ xNðt0Þ, that means one has to take the time-argument
t0 in the scalar functions in (55) and (56).
The tensorial coefficients Ai

ð3Þ, B
i
ð3Þ, C

iab
ðnÞ , D

iab
ðnÞ are given

by Eqs. (52)–(57) in [35]. In what follows these coefficients
are essential and have, therefore, been given by Eqs. (D1)–
(D6) in Appendix D. The tensorial coefficients Ei

ðnÞ, F
i
ðnÞ,

Gi
ð5Þ, H

i
ðnÞ, and Kiab

ðnÞ , L
iab
ðnÞ , M

iab
ðnÞ , N

iab
ðnÞ , as well as P

iabcd
ðnÞ ,

Qiabcd
ðnÞ are given by Eqs. (E28)–(E39) and Eqs. (E41)–

(E65) as well as Eqs. (E67)–(E87) in [35] (note some
corrections1).
The scalar functions WðnÞ, X ðnÞ, YðnÞ, ZðnÞ are defined

by Eqs. (D20)–(D23) in [35] and can be solved in closed
form as given by Eqs. (D25)–(D28) in [35]. Some explicit
solutions for these functions are provided by Eqs. (D29)–
(D42) in [35]. In what follows, the scalar functions WðnÞ
and X ðnÞ for n ¼ 3, 5, 7 are essential and have been given
again by Eqs. (D8)–(D13) in Appendix D.
Both the scalar functions as well as the tensorial

coefficients in (55)–(56) are functions of the unperturbed
light ray xN ¼ xNðtÞ and x0 ¼ xNðt0Þ. In particular, the
tensorial coefficients as well as the scalar functions contain
the impact vector

dσ ¼ σ × ðx0 × σÞ ð57Þ

and its absolute value dσ ¼ jdσj which is called impact
parameter dσ. The impact vector is perpendicular to the
spatial direction of the unperturbed light ray, that means
σ · dσ ¼ 0, and points from the origin of the coordinate
system towards the unperturbed light ray at the moment of
closest approach; see also Fig. 1. It is noticed that the
impact vector (57) can also be written in terms of the
unperturbed light ray [cf. Eq. (33) in [35]]

dσ ¼ σ × ðxN × σÞ ð58Þ

which is a time-independent quantity as one may see by
inserting (5) into (58).

B. New representation

For the solution of the Shapiro time delay it is necessary
to rewrite the 2PN solution, given by Eqs. (52)–(56), in the
following form:

xN ¼ x0 þ cðt − t0Þσ; ð59Þ

x1PN ¼ xN þ Δx1PNðxNÞ − Δx1PNðx0Þ; ð60Þ

x2PN ¼ xN þ Δx1PNðx1PNÞ − Δx1PNðx0Þ
þ Δx2PNðxNÞ − Δx2PNðx0Þ; ð61Þ

where the spatial components of 1PN terms are given by

Δxi1PNðxÞ ¼
GM
c2

X2
n¼1

ðUi
ðnÞFðnÞÞðxÞ

þGM̂ab

c2
X8
n¼1

ðViab
ðnÞGðnÞÞðxÞ; ð62Þ

and the spatial components of 2PN terms are given by

Δxi2PNðxÞ ¼
G2M2

c4
X2
n¼1

ðUi
ðnÞXðnÞÞðxÞ

þ G2MM̂ab

c4
X8
n¼1

ðViab
ðnÞYðnÞÞðxÞ

þ G2M̂abM̂cd

c4
X28
n¼1

ðWiabcd
ðnÞ ZðnÞÞðxÞ: ð63Þ

The tensorial coefficients Ui
ðnÞ, V

iab
ðnÞ , and Wiabcd

ðnÞ are given

by Eqs. (E2) and (E3), Eqs. (E4)–(E11), and Eqs. (E12)–
(E39) in Appendix E. The scalar functions FðnÞ andGðnÞ are
given by Eqs. (F8) and (F9) and Eqs. (F10)–(F17) in
Appendix F. The scalar functions XðnÞ, YðnÞ, and ZðnÞ are
given by Eqs. (F18) and (F19), Eqs. (F20)–(F27), and
Eqs. (F28)–(F55) in Appendix F.
The difference between the old representation in (54)

and the new representation in (61) is the argument of
Δx1PN. In the old representation in (54) the argument of
this term is the light trajectory in Newtonian approxima-
tion, xN, while in the new representation in (61) the
argument of this term is the light trajectory in 1PN
approximation, x1PN. But it is emphasized that the new
representation (59)–(63) agrees with the old representation
(52)–(56) up to terms beyond the 2PN approximation. The
basic ideas of how to demonstrate the agreement of the old
representation and the new representation are given in
Appendix G.
The terms proportional to M in (62) agree with Eq. (50)

in [53], and the terms proportional to M ×M in (63) agree
with Eq. (51) in [53]. The terms proportional to M × M̂ab

and M̂ab × M̂cd in (63) are the new quadrupole terms of the
second post-Newtonian approximation. In the following we
will investigate the influence of these 2PN quadrupole
terms within the boundary value problem and in particular
their impact on the Shapiro time delay.

1(i) In Eq. (E67) in [35]: − 24
ðdσÞ4 σ

aσbdcσδdi → − 24
ðdσÞ4 σ

adbσσcδdi.
(ii) In Eq. (E69) in [35]: þ 90

ðdσÞ2
1

ðx0Þ3 σ
adbσdcσddσdiσ →

þ 60
ðdσÞ2

1
ðx0Þ3 σ

adbσdcσddσdiσ . (iii) In Eq. (E69) in [35]: − 60
ðdσÞ2

1
ðx0Þ3 ×

daσdbσdcσddσσi → − 30
ðdσÞ2

1
ðx0Þ3 d

a
σdbσdcσddσσi. (iv) In Eq. (E71) in [35]:

þ 210
ðdσÞ2

σ·x0
x0

σadbσdcσddσσi → þ 630
ðdσÞ2

σ·x0
x0

σadbσdcσddσσi.
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V. THE SHAPIRO TIME DELAY IN 2PN
APPROXIMATION

A. The boundary value problem

The initial value problem has been defined by Eqs. (10)
and (11). The solution of the initial value problem for the
propagation of a light signal in the monopole and quadru-
pole field of one body at rest in 2PN approximation has
been presented in the previous section. In order to deter-
mine the Shapiro time delay one needs the solution of the
boundary-value problem, where a unique solution of
geodesic equation is defined by the space-time point
ðt0; x0Þ of the light source and by the space-time point
ðt1; x1Þ of the observer [5,17]:

x0 ¼ xðtÞjt¼t0 ; ð64Þ

x1 ¼ xðtÞjt¼t1 : ð65Þ

The spatial position of the observer ðt1; x1Þ is assumed to
be known, while the spatial position of the light source
ðt0; x0Þ has to be determined by a unique interpretation of
astronomical observations which is the primary aim of
astrometric data reduction [4,5,17,37,54].
The solution of the boundary value problem (64) and

(65), that means a solution of the geodesic equation in
terms of the spatial position of source and observer, x0 and
x1, can be obtained from the new representation of the
initial-boundary solution as given by Eq. (61) in the
following way. The spatial coordinates of the unperturbed
light ray at the time of observation coincides with the
spatial coordinates of the observer up to terms of the order
Oðc−2Þ,

x1 ¼ xNðt1Þ þOðc−2Þ: ð66Þ

Therefore, a replacement of xNðt1Þ by x1 in the expres-
sion Δx2PNðxNÞ in (61) causes an error of the order Oðc−6Þ
which would be in line with the 2PN approximation.
Furthermore, the spatial coordinates of the light ray in
1PN approximation at the time of observation coincides
with the spatial coordinates of the observer up to terms of
the order Oðc−4Þ,

x1 ¼ x1PNðt1Þ þOðc−4Þ: ð67Þ

Therefore, a replacement of x1PNðt1Þ by x1 in the expres-
sion Δx1PNðx1PNÞ in (61) causes also an error of the order
Oðc−6Þ which would be in line with the 2PN approxima-
tion. Finally, the spatial coordinates of the light ray in 2PN
approximation at the time of observation coincides with
the spatial coordinates of the observer up to terms of the
order Oðc−6Þ,

x1 ¼ x2PNðt1Þ þOðc−6Þ: ð68Þ

Therefore, a replacement of x2PNðt1Þ by x1 in the left-hand
side of equation (61) causes an error of the order Oðc−6Þ
which would be in line with the 2PN approximation.
The sequence of replacements (66)–(68) in (61) leads to

the following expression which is valid in 2PN approxi-
mation, that means valid up to terms of the order Oðc−6Þ:

cðt1 − t0Þσ ¼ Rk − Δx1PNðx1; x0Þ − Δx2PNðx1; x0Þ; ð69Þ

with R ¼ jx1 − x0j and where

Δx1PNðx1; x0Þ ¼ Δx1PNðx1Þ − Δx1PNðx0Þ; ð70Þ

Δx2PNðx1; x0Þ ¼ Δx2PNðx1Þ − Δx2PNðx0Þ; ð71Þ

with Δx1PNðxÞ and Δx2PNðxÞ given by (62) and (63). It is
emphasized that such a replacement would not be possible
in the old representation (54) because there the corrections
Δx1PN are given in terms of the unperturbed light ray, but a
replacement according to (66) would cause an error of the
order Oðc−4Þ in these terms which would spoil the 2PN
approximation.

B. The transformation σ to k

In the boundary value problem the unit-vector k, point-
ing from light source towards observer, is of fundamental
importance:

k ¼ x1 − x0
jx1 − x0j

: ð72Þ

In order to get the expression for the time delay, one needs
the transformation from σ to k. In Newtonian approxima-
tion we have

σ ¼ kþOðc−2Þ: ð73Þ

In 1PN approximation one obtains from (69)

σ ¼ k −
1

R
½k × ðΔx1PNðx1; x0Þ × kÞ� þOðc−4Þ: ð74Þ

For later purposes it is noticed here that (74) implies

σ · k ¼ 1þOðc−4Þ: ð75Þ

Because the three-vector σ appears in the Newtonian
terms in (69), one also needs the transformation σ to k
in 2PN approximation. By iteration, using (74), one obtains
from (69)
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σ ¼ k −
1

R
½k × ðΔx1PNðx1; x0Þ × kÞ�

−
1

R
½k × ðΔx2PNðx1; x0Þ × kÞ�

þ 1

R2
½Δx1PNðx1; x0Þ × ðk × Δx1PNðx1; x0ÞÞ�

−
3

2

1

R2
kjk × Δx1PNðx1; x0Þj2 þOðc−6Þ ð76Þ

which generalizes Eq. (68) in [53] which was valid in the
field of one monopole at rest.

C. The Shapiro time delay

Using the expressions for the transformation σ to k in
Eqs. (73)–(76), one obtains from (69) the travel time of a
light signal in the field of one body at rest where its
monopole and quadrupole structure is taken into account,

cðt1 − t0Þ ¼ R − k · Δx1PNðx1; x0Þ − k · Δx2PNðx1; x0Þ

þ 1

2R
jk × Δx1PNðx1; x0Þj2 þOðc−6Þ; ð77Þ

which generalizes Eq. (67) in [53] which was valid in the
field of one monopole at rest. However, formula (77) is still
implicit, because Δx1PN and Δx2PN are given in terms of σ.
Clearly, the last two terms in (77) are 2PN terms which are
of the order Oðc−4Þ, hence one may immediately replace
the vector σ by the vector k. But the term k · Δx1PN in (77) is
a 1PN term, hence one has to use the transformation σ to k
in 1PN approximation (74) in order to achieve a formula for
Δx1PN in terms of vector k rather than σ. Only in this way
one arrives at a formula for the time delay in 2PN
approximation fully in terms of vector k, which is the
central topic of this section.
The term k · Δx2PN is calculated in Appendix H and

given by Eq. (H5). The term k · Δx1PN is calculated in
Appendix I and given by Eq. (I36). The term jk × Δx1PNj2
is calculated in Appendix J and given by Eq. (J2).
According to these results, the light travel time in 2PN
approximation in the gravitational field of one body at rest
with monopole and quadrupole structure given as follows:

cðt1− t0Þ¼RþΔcτM1PNþΔcτMab
1PN

þΔcτM×M
2PN þΔcτM×Mab

2PN þΔcτMab×Mcd
2PN þOðc−6Þ;

ð78Þ

where the individual terms are given by the following
expressions:

ΔcτM1PN ¼ −
GM
c2

Pð1Þðx1; x0Þ; ð79Þ

ΔcτMab
1PN ¼ −

GM̂ab

c2
X3
n¼1

SabðnÞQðnÞðx1; x0Þ; ð80Þ

ΔcτM×M
2PN ¼ þG2M2

c4
Rð1Þ ðx1; x0Þ; ð81Þ

ΔcτM×Mab
2PN ¼ þG2MM̂ab

c4
X3
n¼1

SabðnÞSðnÞ ðx1; x0Þ; ð82Þ

ΔcτMab×Mcd
2PN ¼ þG2M̂abM̂cd

c4
X10
n¼1

Tabcd
ðnÞ TðnÞ ðx1; x0Þ: ð83Þ

The tensors SabðnÞ and Tabcd
ðnÞ are defined by Eqs. (H3) and

(H4). The scalar functions Pð1Þ and QðnÞ for the 1PN terms
are given by Eq. (I37) and Eqs. (I38)–(I40), while the scalar
functions Rð1Þ, SðnÞ, and TðnÞ for the 2PN terms are given by
Eqs. (K8), (K9), and (K10).
In order to determine the 2PN effect of the time delay,

higher mass multipoles beyond the mass quadrupole as
well as spin multipoles have been neglected, as indicated by
Eqs. (45) and (46). These higher mass multipoles and spin
multipoles can be taken into account just by adding the
other 1PN mass multipole terms in (32) (beyond mass
quadrupole) as well as the 1.5PN spin multipole terms in
(33)–(78) in an appropriate manner; cf. text below Eqs. (45)
and (46) as well as in the introductory section. That means,
one has to keep in mind that (78) is given in terms of three-
vector k, while (32) and (33) are given in terms of three-
vector σ. Therefore, in order to do that consistently, one has
to replace the three-vector σ in (30) as well as in (32) and
(33) by the three-vector k. In view of relations (73) and (75)
such a replacement is correct up to higher 2PN multipole
terms beyond the mass quadrupole.

D. The upper limits of 2PN terms in the
Shapiro time delay

The upper limits for 1PN mass monopole and mass
quadrupole time delay were given by Eqs. (38) and (39),
while the upper limits for 2PN mass monopole and mass
quadrupole terms were derived by Eqs. (K15), (K19), and
(K22). They read

jΔτM1PNj ≤ 2
GM
c3

ln
4x0x1
ðdkÞ2

; ð84Þ

jΔτMab
1PNj ≤

11

5

GM
c3

jJ2j
�
P
dk

�
2

; ð85Þ

jΔτM×M
2PN j ≤ 8

G2M2

c5
x1

ðdσÞ2
�
P
dk

�
2

; ð86Þ
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jΔτM×Mab
2PN j ≤ 12

G2M2

c5
x1

ðdσÞ2
jJ2j

�
P
dk

�
2

; ð87Þ

jΔτMab×Mcd
2PN j ≤ 8

G2M2

c5
x1

ðdσÞ2
jJ2j2

�
P
dk

�
2

: ð88Þ

The upper limits of the 1PN mass monopole term (84) and
1PN mass quadrupole term (85) were already given by
Eqs. (38) and (39) [with coefficient A2 in (42)], while their
numerical values have been presented in Table II for
grazing light rays at the Sun, Jupiter, and Saturn.
The numerical values for the 2PN terms (86)–(88) are

presented in Table III for grazing light rays at the Sun,
Jupiter, and Saturn. It is remarkable that the numerical
value of the 2PN monopole-quadrupole term (87) for
Jupiter and Saturn is of similar magnitude than the 1PN
spin-dipole term (40) for Jupiter and Saturn. Similarly, the
numerical value of the 2PN quadrupole-quadrupole term
for Jupiter and Saturn (88) is of similar magnitude than the
1PN spin-octupole term (41) (with B3 ¼ 7=6) for Jupiter
and Saturn.
Finally, by comparing the 2PN values presented in

Table III with the 1PN values given in Table I in [47],
one finds that the 2PN monopole-quadrupole effects for
Jupiter and Saturn are larger than the 1PN quadrupole
effects for Earth-like planets of the Solar System.

VI. SUMMARY

The Shapiro time delay is the difference between the
travel time of a light signal in the gravitational field of a
body and the Euclidean distance between source and
observer divided by the speed of light, which belongs to
the four classical tests of general relativity. For a spherically
symmetric body with massM, the Shapiro time delay in the
1PN approximation is given by

ΔτM1PN ¼ 2GM
c3

ln
x1 þ k · x1
x0 þ k · x0

: ð89Þ

The first measurements of this effect (89) have been
performed by radar signals, which were emitted from
Earth and which were reflected either by the inner planets
or by spacecrafts. Since the early days of time delay
measurements in the Solar System, the accuracies have
been improved from a few microseconds in 1968 and 1971
by radar echoes from Mercury and Venus [6,7] towards a
few nanoseconds in 2003 by radar echoes from the Cassini
spacecraft which orbits Saturn [10].
Future time delay measurements in the Solar System aim

at the picosecond and sub-picosecond level of accuracy,
which will be performed by optical laser rather than radar
signals, as suggested by a series of several ESA mission
proposals [11–16]. These advancements make it necessary
to improve the theoretical models of time delay measure-
ments up to an accuracy of 0.001 picoseconds. On this level
of precision the Shapiro time delay in 1PN monopole
approximation (89) is by far not sufficient. It is necessary to
take into account higher mass multipoles M̂L (describe
shape and inner structure of the massive body) and some
spin multipoles ŜL (describe rotational motions and inner
currents of the massive body) in the post-Newtonian (1PN
and 1.5PN) approximation,

Δτ ¼
X∞
l¼0

ΔτML
1PN þ

X∞
l¼1

ΔτSL1.5PN: ð90Þ

The mathematical expressions for the 1PN and 1.5PN terms
in the Shapiro time delay were derived a long time ago [34].
In this investigation we have quantified these terms and
have clarified that only the first eight mass multipoles and
the spin-dipole term and the spin-hexapole term (for
Jupiter) are required in order to achieve an assumed
accuracy of about 0.001 picoseconds. The numerical values
for the 1PN mass multipoles and 1.5PN spin-dipole term
were presented in Table II. It has been shown that higher
mass multipoles l ≥ 10 as well as spin multipoles l ≥ 5 are
not relevant for an accuracy of about 0.001 picoseconds in
time delay measurements in the Solar System.
It is clear that on the sub-picosecond level of accuracy in

time delay measurements some 2PN effects need to be
taken into account. Thus far, however, the knowledge about
2PN effects in the Shapiro time delay was restricted to the
case of spherically symmetric bodies. The next term in the
multipole decomposition is the mass quadrupole term. In
this investigation we have taken into account the monopole
and quadrupole structure of a massive body at rest and have
determined the 2PN quadrupole effects on time delay for a
light signal,

Δτ ¼ ΔτM1PN þ ΔτMab
1PN

þ ΔτM×M
2PN þ ΔτM×Mab

2PN þ ΔτMab×Mcd
2PN : ð91Þ

The explicit expression of the 1PN terms in (91) were
presented by Eqs. (79) and (80) and the 2PN terms in (91)

TABLE III. The effect of 2PN terms of (one-way) Shapiro time
delay in the gravitational field of the Sun and giant planets of the
Solar System according to the upper limits presented by Eqs. (86),
(87), and (88). The values are given for grazing rays (impact
parameter dk equals body’s equatorial radius P). The time delay is
given in units of picoseconds: ps ¼ 10−12 sec. The presented
numerical values should be compared with the goal accuracy of
0.001 picoseconds in time delay measurements. A blank entry
means a delay of less than a femtosecond.

Object ΔτM×M
2PN ΔτM×Mab

2PN ΔτMab×Mcd
2PN

Sun 1.8 × 104 0.004 � � �
Jupiter 6.1 0.14 0.001
Saturn 1.6 0.04 � � �
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were presented by Eqs. (81)–(83). The 2PN quadrupole
effect amounts up to 0.004, 0.14, and 0.04 picosecond for
grazing light rays at the Sun, Jupiter, and Saturn, respec-
tively; see Table III. The values of the 2PN terms are tiny
but, nevertheless, they are comparable with the 1PN and
1.5PN terms of some higher mass multipoles and spin
dipoles on time delay; see Table II.
In the expression for the time delay in 2PN approxima-

tion (91) higher multipoles beyond the quadrupole are not
taken into account. It is, however, not certain whether such
higher multipole terms can be neglected in 2PN approxi-
mation on the level of 0.001 picosecond in the accuracy of
time delay measurements. Namely, the next 2PN term
beyond the monopole-quadrupole term,M ×Mab, which is
proportional to the second zonal harmonic coefficient J2,
would be the monopole-octupole term, M ×Mabcd, which
is proportional to the fourth zonal harmonic coefficient J4.
Taking the ratio J4=J2 and multiplying with the 2PN
monopole-quadrupole effect one obtains about 0.02,
0.006, and 0.002 picosecond time delay for grazing rays
at the Sun, Jupiter, and Saturn. These rough estimates show
that the monopole-octupole term might be relevant for time
delay measurements on the level of 0.001 picosecond. On
the other side, these 2PN monopole-octupole terms scale
with ðP=dkÞ4 where P is the equatorial radius of the
massive body and dk is the impact parameter of the light
ray. Thus, these 2PN effects decrease very rapidly with
increasing distance from the massive body.
Finally, it is also mentioned that the impact of the mass

monopole on a time delay has been determined in the 3PN
approximation for the case of one body at rest [55], where it
has been shown that on the picosecond level such 3PN
effects are relevant, but only in case of grazing light ray at
the Sun, that means light signals which pass near the limb
of the Sun.
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APPENDIX A: NOTATION

Throughout the investigation the same notation as in
Ref. [35] is in use:

(i) Lower case Latin indices i; j;… take values 1,2,3.
(ii) _f denotes total time derivative of f.

(iii) f;i ¼ ∂f=∂xi denotes partial derivative of f with
respect to xi.

(iv) Kronecker delta: δij¼δij¼δij¼diagðþ1;þ1;þ1Þ.
(v) n! ¼ nðn − 1Þðn − 2Þ · · · 2 · 1 is the factorial for

positive integer ð0! ¼ 1Þ.
(vi) n!! ¼ nðn − 2Þðn − 4Þ · · · ð2 or 1Þ is the double fac-

torial for positive integer ð0!! ¼ 1Þ.
(vii) εijk ¼ εijk with ε123 ¼ þ1 is the fully antisymmetric

Levi-Civita symbol.
(viii) Triplet of three-vectors are in boldface, e.g. a, b,

σ, x.
(ix) Contravariant components of three-vectors: ai ¼

ða1; a2; a3Þ.
(x) Absolute value of a three-vector: a ¼ jaj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1a1 þ a2a2 þ a3a3
p

.
(xi) Scalar product of three-vectors: a · b ¼ δijaibj.
(xii) Vector product of two three-vectors: ða × bÞi ¼

εijkajbk.
(xiii) Angle between three-vectors a and b is denoted

by δða; bÞ.
(xiv) Lowercase Greek indices take values 0,1,2,3.
(xv) f;μ ¼ ∂f=∂xμ denotes partial derivative of f with

respect to xμ.
(xvi) ηαβ ¼ ηαβ ¼ diagð−1;þ1;þ1;þ1Þ is the metric

tensor of flat space-time.
(xvii) gαβ and gαβ are the covariant and contravariant

components of the metric tensor.
(xviii) Contravariant components of four-vectors: aμ ¼

ða0; a1; a2; a3Þ.
(xix) Repeated indices are implicitly summed over

(Einstein’s sum convention).

APPENDIX B: MASS AND SPIN MULTIPOLES

1. STF tensors

Here we will present only those few standard notations
about symmetric trace-free (STF) tensors, which are really
necessary for our considerations, while further STF rela-
tions can be found in [38,39,41,56].

(i) L ¼ i1i2…il is a Cartesian multi-index of a given
tensor T, that means TL ≡ Ti1i2…il .

(ii) Two identical multi-indices imply summation:
ALBL ≡P

i1…il Ai1…ilBi1…il .
(iii) The symmetric part of a Cartesian tensor TL is

[cf. Eq. (2.1) in [38]]):

TðLÞ ¼ Tði1…ilÞ ¼
1

l!

X
σ

Aiσð1Þ…iσðlÞ ; ðB1Þ

where σ is running over all permutations of
ð1; 2;…; lÞ.

(iv) The symmetric trace-free part of a Cartesian tensor
TL (notation: T̂L≡STFLTL≡Thi1…ili) is [cf. Eq. (2.2)
in [38]):
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T̂L ¼
X½l=2�
k¼0

alkδði1i2…δi2k−1i2kSi2kþ1…ilÞa1a1…akak
; ðB2Þ

where ½l=2� means the largest integer less than or
equal to l=2, and SL ≡ TðLÞ abbreviates the sym-
metric part of tensor TL. The coefficient in (B2) is
given by

alk ¼ ð−1Þk l!
ðl − 2kÞ!

ð2l − 2k − 1Þ!!
ð2l − 1Þ!!ð2kÞ!! : ðB3Þ

Three comments are in order about STF. First of all, the
Kronecker delta has no symmetric trace-free part,

STFabδab ¼ 0: ðB4Þ

Second, the symmetric trace-free part of any tensor which
contains a Kronecker delta is zero, if the Kronecker delta
has not any summation (dummy) index, for instance,

STFabcδabdcσ ¼ 0; ðB5Þ

STFabcδabσc ¼ 0: ðB6Þ

And third, the following relation is very useful [cf. Eq. (A1)
in [56]],

ÂLB̂L ¼ ALB̂L ¼ ÂLBL ðB7Þ

which often simplifies the analytical evaluations, because
the STF structure can be determined at the very end of the
calculations. In this appendix the normalizations and
definitions as used in [3] will be applied. In particular,
we need the following Cartesian STF tensor,

n̂L ¼ x<i1
r

…
xil>
r

; ðB8Þ

where xi are the spatial coordinates of some arbitrary field
point and r ¼ jxj; we note that xi ¼ xi and n̂L ¼ n̂L.
A basis in the (2lþ 1)-dimensional space of STF tensors

with L indices is provided by the tensors Ŷlm
L . They are

given by [cf. Eqs. (A6.a)–(A6.c) in [39]; a few examples of
these basis tensors are provided in Box 1.5 p. 33 in [3]]

Ŷlm
L ¼ AlmElm

hLi; ðB9Þ

where Elm
hLi ¼ STFi1…ilE

lm
i1…il

with

Elm
L ¼ ðδ1i1 þ iδ2i1Þ…ðδ1im þ iδ2imÞδ3imþ1

…δ3il ðB10Þ

and

Alm ¼ ð−1Þmð2l − 1Þ!!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1

4πðl −mÞ!ðlþmÞ!

s
: ðB11Þ

These basis tensors are normalized by [cf. Eq. (2.26a) in
[38] or cf. Eq. (A7) in [39]]

Ŷlm
L Ŷ�lm0

L ¼ δmm0
ð2lþ 1Þ!!

4πl!
ðB12Þ

where Ŷ�lm
L are the complex conjugate of the basis tensors.

Using the transformation between Cartesian coordinates
ðx1; x2; x3Þ and spherical coordinates ðr; θ;ϕÞ,

x1¼r sinθ cosϕ; x2¼r sinθ sinϕ; x3¼r cosθ; ðB13Þ

one may show that the STF basis tensors Ŷlm
L are related to

the spherical harmonics Ylm as follows [cf. Eq. (2.11) in
[38] or Eq. (A8) in [39]]

Ŷlm
L n̂L ¼ Ylm; ðB14Þ

which are normalized by [cf. Eq. (1.117) in [3]]Z
YlmY�

l0m0 dΩ ¼ δmm0δll0 ; ðB15Þ

where Y�
lm are the complex conjugate of spherical harmon-

ics and dΩ ¼ sin θ dθ dϕ is the infinitesimal solid angle in
the direction ðθ;ϕÞ.
Any STF tensor T̂L can be expanded in terms of these

basis tensors

T̂L ¼ 4πl!
ð2lþ 1Þ!!

Xl

m¼−l
Tlm Ŷlm

L : ðB16Þ

The expansion coefficients Tlm are called moments of the
STF tensor T̂L and are obtained by the inverse of (B16).
That means, if both sides of (B16) are multiplied with Ŷ�lm0

L ,
then one obtains

Tlm ¼ T̂LŶ
�lm
L ; ðB17Þ

where the normalization (B12) of the STF basis tensors
has been used. Let us notice that the normalization
prefactor 4πl!

ð2lþ1Þ!! is convention and appears either in front

of (B16) or (B17). Only the combination of (B16) and
(B17) is relevant, which agrees with the combinations of
Eqs. (2.13a) and (2.13b) in [38]. Here we follow the
convention as used, for instance, in [3,56].
In particular, we need the expansion of the STF part

x̂L ¼ rln̂L in terms of these basis tensors, which reads
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x̂L ¼ 4πl!
ð2lþ 1Þ!!

Xl

m¼−l
xlm Ŷlm

L : ðB18Þ

According to (B17), the moments are given by

xlm ¼ x̂L Ŷ
�lm
L ¼ rl Y�

lm; ðB19Þ

where the relation between the STF basis tensors (B14) has
been used. Hence, one obtains for the expansion of the STF
tensor x̂L the following expression [cf. Eq. (2.23) in [56]]:

x̂L ¼ 4πl!
ð2lþ 1Þ!! r

l
Xl

m¼−l
Y�
lm Ŷlm

L ; ðB20Þ

which will be used in order to determine the mass multipole
moments and spin multipole moments.

2. Mass multipoles

The mass multipoles M̂L have been obtained in [41].
In case of time-independent multipoles, they simplify to the
following form, up to terms of the order Oðc−4Þ
[cf. Eq. (5.38) in [41]]

M̂L ¼
Z

d3 x x̂L Σ; ðB21Þ

where Σ ¼ ðT00 þ TkkÞ=c2 is the gravitational mass energy
density of the body with Tαβ being the stress-energy
tensor of the body. The integration runs over the three-
dimensional volume of the body. The zeroth term l ¼ 0 is
the mass of the body: M̂0 ¼ M. The first term l ¼ 1 is the
mass dipole moment which defines the spatial position of
the center of mass of the body. In case the origin of the
coordinate system coincides with the center of mass of
the body the mass dipole moment would vanish [3,5,38]
[cf. Eq. (8.14c) in [38]]. According to Eq. (B16) the
expansion of the STF mass multipole (B21) in terms of
basis tensors Ŷlm

L reads

M̂L ¼ 4πl!
ð2lþ 1Þ!!

Xl

m¼−l
Mlm Ŷlm

L : ðB22Þ

The mass moments Mlm are obtained from the inverse
of (B22) and read [cf. Eq. (B17)]

Mlm ¼ M̂L Ŷ
�lm
L : ðB23Þ

Let us notice that the combination of relations (B22) and
(B23) coincides with the combination of Eqs. (4.6a) and
(4.7a) in [38] in case of time-independent multipoles. By
inserting (B21) into (B23) one obtains, with virtue of (B20)
and (B12), the following expression for the mass moments
[cf. Eq. (1.139) in [3]]

Mlm ¼
Z

d3 x rl ΣY�
lm; ðB24Þ

where the integration runs over the volume of the body. The
giant planets can be described by a rigid axisymmetric
body. Accordingly, in order to determine the impact of
mass multipoles on the Shapiro time delay we consider a
Newtonian rigid axisymmetric body, having the shape

ðx1Þ2
A2

þ ðx2Þ2
B2

þ ðx3Þ2
C2

¼ 1; ðB25Þ

where A ¼ B is the semimajor axis (i.e. equatorial radius P)
and C is the semiminor axis of the body. The oblateness of
the axisymmetric body is parametrized by the ellipticity
parameter ϵ2 ¼ ðA2 − C2Þ=A2 which is also used in the
IAU resolutions (p. 2698 in [46]). It is assumed that the
unit-vector e3 is the symmetry axis of the massive body
and the x3 direction of the coordinate system is aligned with
the symmetry axis of the body. Then, the multipole
moments (B24) vanish for m ≠ 0, that means we need

Ml0 ¼
Z

d3 x rl ΣY�
l0: ðB26Þ

The spherical harmonics for m ¼ 0 are real valued
functions, Y�

l0 ¼ Yl0, and they are related to the
Legendre polynomials Pl [cf. Eq. (1.112) in [3]]

Yl0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Pl ðcos θÞ; ðB27Þ

where θ is the angle between integration variable x and the
x3 direction of the coordinate system (azimuth angle).
Performing these integrals in (B26) one finds that they are
proportional to the massM of the body and the lth power of
the equatorial radius of the body, ðPÞl (which should not be
confused with Legendre polynomial Pl) and they are
nonvanishing only for even l,

Ml0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
M ðPÞl Jell ðB28Þ

for l ¼ 0; 2; 4; 6;…. Equation (B28) coincides with
Eq. (1.143) in [3]. The dimensionless parameter Jell in
(B28) are the gravitoelectric zonal harmonic coefficients,
and follow from inserting (B28) into (B26) [cf. Eq. (17)
in [57]]

Jell ¼ −
1

MðPÞl
Z

d3 x rl ΣPl ðcos θÞ ðB29Þ

for l ¼ 0; 2; 4; 6…. For an axisymmetric body (B25) with
A ¼ B) with uniform density one obtains [cf. Eq. (56)
in [54]]
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Jell ¼ ð−1Þl=2þ1
3

ðlþ 1Þðlþ 3Þ ϵ
l ðB30Þ

for l ¼ 0; 2; 4; 6…. Obviously, higher mass moments
(l > 0) vanish for ϵ ¼ 0, that means for spherically sym-
metric bodies only the mass monopole is nonzero. By
inserting (B28) into (B22) one obtains for the mass
multipole (B21)

M̂L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
4πl!

ð2lþ 1Þ!!MPl Jell Ŷ
l0
L ; ðB31Þ

where Pl means the lth power of the equatorial radius,
while the suffix l in Jell is an index and denotes the lth zonal
harmonic coefficient. The basis tensors Ŷlm

L for m ¼ 0 are
given by [cf. Eqs. (A6.a)–(A6.c) in [39]]

Ŷl0
L ¼ ð2l − 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4πl!l!

r
δ3hi1…δ3ili: ðB32Þ

Finally, inserting (B32) into (B31) yields for the mass
multipoles for the case of an axisymmetric rigid body with
uniform density the following expression:

M̂L ¼ −MPlJell δ
3
hi1…δ3ili ðB33Þ

for l ¼ 2; 4; 6;…. The STF terms are products of
Kronecker symbols which are symmetric and traceless
with respect to indices i1…il. They are given by the
formula (cf. Eq. (1.155) in [3]):

δ3<i1…δ3il> ¼
X½l=2�
p¼0

ð−1Þp ð2l − 2p − 1Þ!!
ð2l − 1Þ!!

× ½δ2Pδ3L−2P þ sym:ðqÞ�; ðB34Þ

where ½l=2� is equal to l=2 for even l and equal to ðl − 1Þ=2
for odd l. The symbol δ2P stands for the product of p
Kronecker deltas with indices running from
δi1i2 ×… × δi2p−1i2p . The symbol δ3L−2P stands for the
product of l − 2p Kronecker deltas with indices running
from δ3i2pþ1

×… × δ3il . The notation sym:ðqÞ means sym-

metrization with respect to the 2p indices i1…i2p, where
the total number of these symmetrized terms is
q ¼ l!=½ðl − 2pÞ!ð2pÞ!!�. The terminology of the first
mass-multipoles reads:

(i) l ¼ 0: mass monopole,
(ii) l ¼ 2: mass quadrupole,
(iii) l ¼ 4: mass octupole,
(iv) l ¼ 6: mass dodecapole,
(v) l ¼ 8: mass hexadecapole,
(vi) l ¼ 10: mass-icosadecapole.
Let us show that expression (B33) coincides with the

IAU resolutions [46] for the case of mass quadrupole.

Equation (48) in [46] states M̂L ¼ −ĈL where ĈL ¼
STFi1…ilCi1…il with the tensor Ci1…il given by Eq. (46)
in [46]. In case of an axisymmetric rigid body with uniform
density the explicit values CXX ¼ CYY ¼ MðA2 þ C2Þ=5
and CZZ ¼ 2MA2=5 were presented [see text below
Eq. (48) in [46]]. Using (B2) one may determine their
STF expressions, which, using Eq. (48) in [46], results in
M̂XX ¼ M̂YY ¼ MðA2 − C2Þ=15 and M̂ZZ ¼ −2MðA2 −
C2Þ=15, which is in agreement with our expression given
by Eq. (B33) for l ¼ 2.
In reality the mass distribution Σ of the Sun and the giant

planets is not uniform but depends on the radial distance.
Therefore, the theoretical values of the zonal harmonic
coefficients, Jell , as calculated for a axisymmmetric body
with uniform density by Eq. (B30), are a bit larger than
their actual values. Instead to calculate these actual values
by relation (B29) with a model-dependent assumption for
the mass density, the actual zonal harmonic coefficients are
deduced from real measurements of the gravitational fields
of the giant planets and are denoted by Jl. These values are
given in Table I. If one replaces in (B33) the theoretical
values of the zonal harmonic coefficients, Jell , by these
actual values from real measurements, Jl, then one obtains
the mass multipoles for the case of an axisymmetric rigid
body with radial-dependent mass density:

M̂L ¼ −MPl Jl δ3hi1…δ3ili ðB35Þ

for l ¼ 2; 4; 6;…. For estimations of the Shapiro time delay
only the first eight terms of the mass multipoles (B35) are
needed, even on the sub-picosecond level. The mass
quadrupole and the mass octupole are given in their explicit
form as follows:

M̂ab ¼ þMP2J2

�
1

3
δab − δ3a δ

3
b

�
; ðB36Þ

M̂abcd ¼ −MP4 J4

�
1

35
ðδabδcd þ δacδbd þ δadδbcÞ

þ δ3aδ
3
bδ

3
cδ

3
d −

1

7
ðδabδ3cδ3d þ δacδ

3
bδ

3
d þ δadδ

3
bδ

3
cÞ

−
1

7
ðδbcδ3aδ3d þ δbdδ

3
aδ

3
c þ δcdδ

3
aδ

3
bÞ
�
: ðB37Þ

3. Spin multipoles

The spin multipoles ŜL have been obtained in [41].
In case of time-independent multipoles, they simplify to
the following form, up to terms of the order Oðc−4Þ
[cf. Eq. (5.40) in [41]]

ŜL ¼
Z

d3 x ϵjk<il x̂L−1> xj Σk ðB38Þ
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where the notation Σk ¼ T0k=c has been adopted, with Tαβ

being the stress-energy tensor of the body and the inte-
gration runs over the three-dimensional volume of the
body. The first term l ¼ 1 is the spin-dipole and describes
the rotational motion of the body as a whole. In case the
body is rigid and spherically symmetric, then the higher
spin multipoles would vanish. However, in case the body is
not spherically symmetric, then these higher spin multi-
poles l ≥ 3 account for the rotational motion of the body as
a whole. In addition, if there are inner currents of the body,
then the higher spin multipoles account also for these inner
circulations.
According to Eq. (B16) the expansion of the STF spin

multipole (B38) in terms of basis tensors Ŷlm
L reads

ŜL ¼ 4πl!
ð2lþ 1Þ!!

Xl

m¼−l
Slm Ŷlm

L : ðB39Þ

The spin-moments Slm are obtained from the inverse
of (B39) and read [cf. Eq. (B17)]

Slm ¼ ŜL Ŷ
�lm
L : ðB40Þ

Let us notice that the combination of relations (B39) and
(B40) coincides with the combination of Eqs. (4.6b)
and (4.7b) in [38] in case of time-independent multipoles.
By inserting (B38) into (B40) one obtains, with virtue
of (B20), the following expression for the spin moments:

Slm ¼ 4πðl − 1Þ!
ð2l − 1Þ!!

Z
d3 x rl nj Σk

×
Xl−1

m0¼−lþ1

ϵjk<il Ŷ
l−1m0
L−1> Y�

l−1m0 Ŷ�lm
L ðB41Þ

where the integration runs over the volume of the body;
note that nj ¼ xj=r and Ŷ�lm

L ¼ Ŷ�lm
ilL−1. Now we make use

of the following relation [cf. Eq. (2.26b) in [38]]:

Ŷl−1m0
L−1 Ŷ�lm

ilL−1 ¼
ð2lþ 1Þ!!

4πl!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2lþ 1

r
ð1 l − 1 0m0jlmÞ eil3

ðB42Þ

where ð1 l − 1 0m0jlmÞ are the Clebsch-Gordan coeffi-
cients [58] and eil3 is the il component of unit three-vector
e3. By inserting (B42) into (B41) one encounters the vector
spherical harmonics [38,58] [cf. Eq. (2.16) in [38] or
Eq. (2.221) in [58]]

Y�l−1;lm
il

¼
Xl−1

m0¼−lþ1

ð1 l − 1 0m0jlmÞY�
l−1m0 e

il
3 : ðB43Þ

Thus, in view of (B42) and (B43) one obtains for the spin
moments (B41)

Slm ¼ 2lþ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2lþ 1

r Z
d3 x rl ϵijk nj Σk Y�l−1;lm

i ; ðB44Þ

where the spatial dummy index il has been designated into
the new spatial dummy index i. Now we use a relation
between vector spherical harmonics and STF harmonics
[cf. Eq. (2.24a) in [38]]

Y�l−1;lm
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2lþ 1

r
Ŷ�lm
iL−1 n̂L−1; ðB45Þ

as well as [cf. Eq. (2.23b) in [38]]

ϵijk nj Ŷ
�lm
iL−1 n̂L−1 ¼ −

ffiffiffiffiffiffiffiffiffiffi
lþ 1

l

r
Y�B;lm
k ; ðB46Þ

where Y�B;lm
k is the complex conjugate of one of the pure

spin-vector harmonics [cf. Eq. (2.18b) in [38]] and obtain

Slm ¼ −
ffiffiffiffiffiffiffiffiffiffi
lþ 1

l

r Z
d3 x rl Σk Y�B;lm

k : ðB47Þ

Finally, we use the definition of the pure spin-vector
harmonics [cf. Eq. (2.18b) in [38]]

Y�B;lm
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lðlþ 1Þ

s
ðx × ∇Þk Y�

lm; ðB48Þ

where ∇ ¼ er∂r þ eθr−1∂θ þ eϕðr sin θÞ−1 ∂ϕ is the gra-
dient operator of Euclidean three-space in spherical coor-
dinates which acts on the complex conjugate of spherical
harmonics Y�

lm and the position vector in spherical coor-
dinates reads x ¼ rer. Inserting (B48) into (B47) yields the
following expression for the spin moments:

Slm ¼ 1

l

Z
d3 x rl ðx × ΣÞ · ∇Y�

lm; ðB49Þ

where the integration runs over the three-dimensional
volume of the body. The steps from (B39) until (B49)
coincide with the steps from Eq. (5.17b) to Eq. (5.18b) in
[38] for the case of time-independent multipoles. Below we
will show, for the case of axisymmetric bodies, that (B49)
coincides with the IAU resolutions [46]. Let us also notice
that the combination of expressions (B39) and (B49)
coincides with the combination of Eqs. (10) and (11)
in [59].
In order to determine the impact of spin multipoles on

the Shapiro time delay we consider a rigid Newtonian body
in uniform rotational motion and having axisymmetric
shape (B25), where the unit-vector e3 is the symmetry
axis of the massive body and the x3 direction of the
coordinate system is aligned with the rotational axis of
the body. Then, the rotational angular velocity Ω is
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independent of time and for the momentum-density of the
body one may write [cf. Eq. (12) in [59] and IAU
resolutions (p. 2698 in [46]] where spin moments for the
model of a rigidly rotating Earth have been considered):

Σ ¼ ΣðΩ × xÞ ¼ ΣΩ r sin θ eϕ: ðB50Þ

It has been shown in [59] that the only nonvanishing spin
moments (B49) are those for m ¼ 0 and odd l [cf. Eq. (20)
in [59]]:

Sl0 ¼ þ 1

l

Z
d3 x rl ðx × ΣÞ · ∇Y�

l0;

¼ −
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Ω

Z
d3 xΣ rlþ1 sin θ

∂Pl ðcos θÞ
∂θ

;

ðB51Þ

where the spherical harmonics for m ¼ 0 are related to the
Legendre polynomials as given by Eq. (B27) and where θ is
again the angle between integration variable x ¼ rer and
the x3 direction of the coordinate system (azimuth angle)
and er × eϕ ¼ −eθ has been used. Performing these inte-
grals in (B51) one finds that they are proportional to the
angular velocity Ω, to the mass M of the body and the
(lþ 1)th power of the equatorial radius P of the body and
they are nonvanishing only for odd l,

Sl0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
ðlþ 1ÞMΩðPÞlþ1 Jgml ðB52Þ

for l ¼ 1; 3; 5;…. The parameter Jgml in (B52) are the
gravitomagnetic zonal harmonic coefficients and follow
from inserting (B51) into (B52),

Jgml ¼ −
1

MðPÞlþ1

1

lðlþ 1Þ
Z

d3 x rlþ1 Σ sin θ
∂Pl ðcos θÞ

∂θ

ðB53Þ

for l ¼ 1; 3; 5;…. For an axisymmetric body [(B25) with
A ¼ B] with uniform mass density they are given by
[cf. Eq. (25) in [59]]

Jgml ¼ ð−1Þðl−1Þ=2 3

lðlþ 2Þðlþ 4Þ ϵ
l−1 ðB54Þ

for l ¼ 1; 3; 5;…. where the ellipticity parameter ϵ2 ¼
ðA2 − C2Þ=A2 has already been defined above. The combi-
nations of the equations (B39) with (B52) and (B54) agrees
with the combination of the equations (10)with (22) and (25)
in [59]. Obviously, higher spin moments (l > 1) vanish for
ϵ ¼ 0, that means for spherically symmetric bodies only the
spin dipole is nonzero. A comparison between (B54) and
(B30) leads to the following remarkable relation between
the gravitomagnetic and gravitoelectric zonal harmonic

coefficients for an axisymmetric body with uniform mass
density and in uniform rotational motion [cf. Eq. (28)
in [59]]:

Jgml ¼ −
Jell−1
lþ 4

: ðB55Þ

Finally, in view of relation (B55) and by inserting (B54)
and (B52) into (B39) one obtains for the spin multipoles for
the case of an axisymmetric rigid body with uniform mass
density and in uniform rotational motion the following
expression:

ŜL ¼ −MΩPlþ1 Jell−1
lþ 1

lþ 4
δ3hi1…δ3ili ðB56Þ

for l ¼ 1; 3; 5;…. The terminology of the first spin multi-
poles reads:

(i) l ¼ 1: spin dipole,
(ii) l ¼ 3: spin hexapole,
(iii) l ¼ 5: spin decapole,
(iv) l ¼ 7: spin quattuordecapole,
(v) l ¼ 9: spin octodecapole.
Let us show that expression (B56) coincides with the

IAU resolutions [46] for the case of spin hexapole.
Equation (45) in [46] states ŜL ¼ ĈLdΩd where ĈLd ¼
STFi1…ilCi1…ild which is given by Eq. (46) in [46].
AssumingΩd¼ð0;0;ΩÞ the nonvanishing terms are ŜXXZ ¼
ŜYYZ ¼ 3ηΩ and ŜZZZ ¼ −6ηΩ with η ¼ 4MA4ϵ2=525,
which is in agreement with our expression given by
Eq. (B56) for l ¼ 3.
The spin multipoles in (B56) are valid for a rigid

axisymmetric body with uniform mass density and in
uniform rotation with angular velocity Ω ¼ 2π=T where
T is the rotational period around the spin axis of the body.
However, in reality the mass distribution of the Sun and the
giant planets is not uniform, but increasing towards the
center of the massive body. In case of mass multipoles this
fact has been taken into account in the step from (B33) to
(B35), where the gravitoelectric zonal harmonic coeffi-
cients Jell , for an axisymmetric body with uniform mass
density given by (B30), have been replaced by the actual
zonal harmonic coefficients Jl which are determined by
real measurements of the gravitational fields of these bodies
by space missions. Here, in a similar manner, the gravito-
electric zonal harmonic coefficients Jeml for an axisym-
metric body with uniform density in (B56) are replaced by
their actual gravitoelectric zonal harmonic coefficients Jl,
as they are given in Table I. In this way, one obtains for the
spin multipoles for the case of a axisymmetric rigid body in
uniform rotational motion and with radial-dependent mass
density the following expression:

ŜL ¼ −MΩPlþ1 Jl−1
lþ 1

lþ 4
δ3hi1…δ3ili ðB57Þ
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for l ¼ 1; 3; 5;…. Actually, for estimations of the Shapiro
time delay only the first two terms of the spin multipoles
(B57) are needed, even on the sub-picosecond level: spin
dipole and spin hexapole. They are given in their explicit
form as follows:

Ŝa ¼ þ 2

5
MΩP2 δ3a; ðB58Þ

Ŝabc¼þ4

7
MΩP4 J2

×

�
1

5
ðδabδ3cþδacδ3bþδbcδ3aÞ−δa3δb3δc3

�
: ðB59Þ

In (B58) we have used Jel0 ¼ J0 ¼ −1, that means for
l ¼ 1 the theoretical gravitoelectric zonal harmonic coef-
ficient for a body with uniform mass density and the actual
zonal harmonic coefficient for a body with radius-
dependent mass density are equal. Thus, a replacement
of either of these terms from (B56) to (B57) has no impact
on the spin dipole in (B58). Therefore, in order to account
for the fact that the density of the massive bodies is not
uniform, one considers the following reasoning for the spin
dipole. In general, the absolute value of the exact spin
dipole jSaj [i.e. l ¼ 1 in Eq. (B38)] is the body’s spin
angular momentum, which is related to the body’s moment
of inertia I as follows:

jSaj ¼ IΩ: ðB60Þ

For a solid sphere with uniform density the moment
of inertia is I ¼ 2

5
MP2 [cf. Eq. (1.20) in [48]], hence

jSaj ¼ 2
5
MP2 Ω in agreement with the absolute value of

the spin dipole (B58). In order to take into account also
for the spin dipole the fact that in reality the mass
density is increasing towards the center of these massive
Solar System bodies, we implement the so-called
dimensionless moment of inertia κ2, which is defined
as follows [48]:

κ2 ¼ I
MP2

: ðB61Þ

Then, the spin angular momentum of the body (B60) is
given by [48,60]

jSaj ¼ κ2MP2Ω: ðB62Þ

For κ2 ¼ 0.4 one recovers the case of a solid sphere with
uniform density [cf. (B58)], while for real Solar System
bodies κ2 < 0.4 because their mass density increases
towards the center of the bodies. These realistic values
for κ2 have been determined for several solar system bodies
in [48] using the Darwin-Radau relation [e.g. Eq. (18) in
[61]]. Similar values are given in the planetary fact sheets.
For the Sun the value of κ2 fairly coincides with

helioseismology data of the Sun’s spin angular momentum
[62]. Accordingly, instead of (B58) we will adopt the
following expression for the spin dipole:

Ŝa ¼ þκ2MP2Ω δ3a; ðB63Þ

where κ2 is given in Table I for the Sun, Jupiter, and Saturn.

APPENDIX C: THE 1PN SHAPIRO EFFECT
OF MASS QUADRUPOLE

From (32) one obtains the following expression
for the impact of the 1PN mass quadrupole on Shapiro
time delay:

ΔcτMab
1PN¼þGM̂ab

c2

× ð∂̂ab ln ðrNþcτÞjτ¼t1 − ∂̂ab ln ðrNþcτÞjτ¼t0Þ:
ðC1Þ

The application of the differential operator (30), without
the STF procedure, yields

∂ab ln ðrN þ cτÞ ¼ Pj1
a Pj2

b
∂

∂ξj1
∂

∂ξj2
ln ðrN þ cτÞ

þ 2σaP
j2
b

∂

∂cτ
∂

∂ξj2
ln ðrN þ cτÞ

þ σaσb
∂

∂cτ
∂

∂cτ
ln ðrN þ cτÞ; ðC2Þ

where the STF operation with respect to the indices ab

has been omitted in view of relation (B7). With rN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ c2τ2

p
one gets

∂ab ln ðrN þ cτÞ ¼ þPj1
a Pj2

b δj1j2
1

rN

1

rN þ cτ

− Pj1
a Pj2

b ξj1 ξj2
1

ðrNÞ3
1

rN þ cτ

− Pj1
a Pj2

b ξj1 ξj2
1

ðrNÞ2
1

ðrN þ cτÞ2

− 2σaP
j2
b ξj2

1

ðrNÞ3
− σaσb

cτ
ðrNÞ3

: ðC3Þ

Here we have used ∂ξi=∂ξj ¼ δij, because we treat
the spatial components of vector ξ as formally
independent. Therefore, a subsequent projection onto the
two-dimensional plane perpendicular to the three-vector
σ is performed [cf. text above Eq. (31) in [36]]. It is
emphasized that this projection is automatically included
here, namely in the differential operator, which has been
introduced in the form given by Eq. (30). Using Pj1

a ξj1 ¼ ξa
[cf. Eq. (29) in [36]] and finally replacing cτ ¼ σ · x as well
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as ξa ¼ daσ , one obtains for the 1PN quadrupole Shapiro
effect (C1):

ΔcτMab
1PN¼þGM̂ab

c2

×

�
1

ðdσÞ2
�
σ ·x1
x1

−
σ ·x0
x0

�
−
�
σ ·x1
ðx1Þ3

−
σ ·x0
ðx0Þ3

��
σaσb

þGM̂ab

c2

×

�
2

ðdσÞ2
�
σ ·x1
x1

−
σ ·x0
x0

�
þ
�
σ ·x1
ðx1Þ3

−
σ ·x0
ðx0Þ3

��
daσdbσ
ðdσÞ2

−
GM̂ab

c2

�
2

ðx1Þ3
−

2

ðx0Þ3
�
σadbσ ; ðC4Þ

where M̂abδab ¼ 0 has been used. In order to determine the
upper limit of (C4) the mass quadrupole for an axisym-
metric body (B36) is inserted, which yields (cf. Eq. (46)
in [47])

ΔcτMab
1PN¼þGM

c2
J2ð

P
dσ
Þ2

×

��
σ ·x1
x1

−
σ ·x0
x0

��
1−ðσ ·e3Þ2−2

�
dσ ·e3
dσ

�
2
�

þ
�
σ ·x1
x1

�
dσ
x1

�
2

−
σ ·x0
x0

�
dσ
x0

�
2
�
ðσ ·e3Þ2

−
�
σ ·x1
x1

�
dσ
x1

�
2

−
σ ·x0
x0

�
dσ
x0

�
2
��

dσ ·e3
dσ

�
2

þ2

��
dσ
x1

�
3

−
�
dσ
x0

�
3
�
ðσ ·e3Þ

�
dσ ·e3
dσ

��
; ðC5Þ

where σ · e3 ¼ σ3 and dσ · e3 ¼ d3σ are the x3-components
of these vectors, because the symmetry axis of the body e3
is aligned with the x3-axis of the coordinate system.
Furthermore, in order to determine the upper limit of
(C4), the relations for the angle α0 ¼ δðσ; x0Þ and α1 ¼
δðσ; x1Þ are very useful:

cos α0 ¼
σ · x0
x0

¼ ðx1Þ2 − ðx0Þ2 − R2

2Rx0
; ðC6Þ

cos α1 ¼
σ · x1
x1

¼ ðx1Þ2 − ðx0Þ2 þ R2

2Rx1
: ðC7Þ

These relations can be shown by using (72) and (73) and
they are valid up to terms of the order Oðc−2Þ. Let us note
that for the impact vectors one gets dσ¼x0 sinα0¼x1 sinα1.
It is also meaningful to introduce a further variable

z ¼ x1
x0

with 0 ≤ z ≤ ∞; ðC8Þ

as well as the angle

α ¼ δðx0; x1Þ with 0 ≤ α ≤ 2π: ðC9Þ

Then one may rewrite (C4) in terms of these two
independent variables, z and α. By using the computer
algebra system MAPLE [63], one obtains for the upper limit
of the 1PN quadrupole term in the Shapiro time delay:

jΔτMab
1PNj ≤ þ 11

5

GM
c3

jJ2j
�
P
dσ

�
2

; ðC10Þ

which coincides with coefficient A2 asserted by Eq. (42).
For a correct determination of the upper limit given by
(C10) one has to take care about the fact that the three-
vectors σ and dσ are perpendicular to each other, which
restricts their possible angles with rotational vector e3. That
means, one may rotate the coordinate system such that σ is
aligned with the x axis and dσ is aligned with the y axis,
while e3 ¼ ðex3; ey3; ez3Þ has three components now [see also
endnote [99] in [42]]. Taking into account that e3 is a unit
vector, one obtains the upper limit asserted in (C10).

APPENDIX D: THE TENSORIAL COEFFICIENTS
AND SCALAR FUNCTIONS OF THE

1PN SOLUTION

The tensorial coefficients in Eqs. (55) and (56) are given
by [cf. Eqs. (52)–(57) in [35]]

Ai
ð3Þ ðxNÞ ¼ þ2σi; ðD1Þ

Bi
ð3Þ ðxNÞ ¼ −2diσ; ðD2Þ

Ci abð5Þ ðxNÞ ¼ þ6 σa δbi þ 3 σa σb σi; ðD3Þ

Ci abð7Þ ðxNÞ ¼ −15ðdσÞ2σaσbσi þ 15daσ dbσ σi

− 30 σa dbσ diσ; ðD4Þ

Di ab
ð5Þ ðxNÞ ¼ þ6 daσ δbi − 15σaσbdiσ þ 18 σa dbσ σi; ðD5Þ

Di ab
ð7Þ ðxNÞ ¼ −15 daσ dbσ diσ þ 15 ðdσÞ2 σa σb diσ

− 30 ðdσÞ2 σadbσσi; ðD6Þ

where [cf. Eqs. (57) and (58)]

dσ ¼ σ × ðx0 × σÞ ¼ σ × ðxNðtÞ × σÞ: ðD7Þ

Actually, the tensorial coefficients in (D1) and (D3) do
not depend on xN but only on σ. Nevertheless, we will keep
their arguments as is, in favor of a unique notation for these
tensorial coefficients (D1)–(D6). We note that the tensorial
coefficients Ai

ð3ÞðxNÞ¼Ai
ð3Þðx0Þ;…;Diab

ð7Þ ðxNÞ¼Diab
ð7Þ ðx0Þ.
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The scalar functions in Eq. (56) are given by
[cf. Eqs. (D29), (D31), (D33), (D35), (D37), (D39) in [35]]

Wð3Þ ðtÞ ¼ ln ðxN − σ · xNÞ; ðD8Þ

Wð5Þ ðtÞ ¼ −
1

3

1

ðdσÞ2
σ · xN
xN

; ðD9Þ

Wð7Þ ðtÞ ¼ −
2

15

1

ðdσÞ2
�
σ · xN
xN

1

ðdσÞ2
þ 1

2

σ · xN
ðxNÞ3

�
; ðD10Þ

X ð3Þ ðtÞ ¼
1

ðdσÞ2
ðxN þ σ · xNÞ; ðD11Þ

X ð5Þ ðtÞ ¼
2

3

1

ðdσÞ2
�
xN þ σ · xN

ðdσÞ2
−
1

2

1

xN

�
; ðD12Þ

X ð7Þ ðtÞ¼
8

15

1

ðdσÞ2

×

�
xNþσ ·xN

ðdσÞ4
−
1

2

1

xN

1

ðdσÞ2
−
1

8

1

ðxNÞ3
�
; ðD13Þ

where xN ¼ xNðtÞ and xN ¼ xNðtÞ. One also needs the
scalar functions Wð3Þðt0Þ;…;X ð7Þðt0Þ which one obtains
from (D8)–(D13) by replacing xN and xN by x0 and x0,
respectively, because xNðt0Þ ¼ x0 and xNðt0Þ ¼ x0; note
that dσ is time independent.

APPENDIX E: TENSORIAL COEFFICIENTS
IN (62) AND (63)

It is convenient to introduce the impact vector,

d ¼ σ × ðx × σÞ; ðE1Þ
where the spatial variable x can either be the unperturbed
light ray xN in (59) or the light ray in 1PN approximation
x1PN in (60); the spatial components of this impact vector
are di.
The tensorial coefficients of monopole-monopole term

of the new representation of light trajectory in (62)
and (63) are

Ui
ð1Þ ðxÞ ¼ σi; ðE2Þ

Ui
ð2Þ ðxÞ ¼ di: ðE3Þ

The tensorial coefficients of monopole-quadrupole term
of the new representation of light trajectory in (62)
and (63) are

Viab
ð1Þ ðxÞ ¼ σaδbi; ðE4Þ

Viab
ð2Þ ðxÞ ¼ daδbi; ðE5Þ

Viab
ð3Þ ðxÞ ¼ σaσbσi; ðE6Þ

Viab
ð4Þ ðxÞ ¼ σadbσi; ðE7Þ

Viab
ð5Þ ðxÞ ¼ dadbσi; ðE8Þ

Viab
ð6Þ ðxÞ ¼ dadbdi; ðE9Þ

Viab
ð7Þ ðxÞ ¼ σaσbdi; ðE10Þ

Viab
ð8Þ ðxÞ ¼ σadbdi: ðE11Þ

The tensorial coefficients of quadrupole-quadrupole
term of the new representation of light trajectory in (63) are

Wiabcd
ð1Þ ðxÞ ¼ δacσbδdi; ðE12Þ

Wiabcd
ð2Þ ðxÞ ¼ δacdbδdi; ðE13Þ

Wiabcd
ð3Þ ðxÞ ¼ σaσbσcδdi; ðE14Þ

Wiabcd
ð4Þ ðxÞ ¼ σaσbdcδdi; ðE15Þ

Wiabcd
ð5Þ ðxÞ ¼ σadbσcδdi; ðE16Þ

Wiabcd
ð6Þ ðxÞ ¼ σadbdcδdi; ðE17Þ

Wiabcd
ð7Þ ðxÞ ¼ dadbσcδdi; ðE18Þ

Wiabcd
ð8Þ ðxÞ ¼ dadbdcδdi; ðE19Þ

Wiabcd
ð9Þ ðxÞ ¼ δacδbdσi; ðE20Þ

Wiabcd
ð10Þ ðxÞ ¼ δacσbσdσi; ðE21Þ

Wiabcd
ð11Þ ðxÞ ¼ δacσbddσi; ðE22Þ

Wiabcd
ð12Þ ðxÞ ¼ δacdbddσi; ðE23Þ

Wiabcd
ð13Þ ðxÞ ¼ σaσbσcσdσi; ðE24Þ

Wiabcd
ð14Þ ðxÞ ¼ σaσbσcddσi; ðE25Þ

Wiabcd
ð15Þ ðxÞ ¼ σaσbdcddσi; ðE26Þ

Wiabcd
ð16Þ ðxÞ ¼ σadbσcddσi; ðE27Þ

Wiabcd
ð17Þ ðxÞ ¼ σadbdcddσi; ðE28Þ

Wiabcd
ð18Þ ðxÞ ¼ dadbdcddσi; ðE29Þ

Wiabcd
ð19Þ ðxÞ ¼ δacδbddi; ðE30Þ

Wiabcd
ð20Þ ðxÞ ¼ δacσbσddi; ðE31Þ
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Wiabcd
ð21Þ ðxÞ ¼ δacσbdddi; ðE32Þ

Wiabcd
ð22Þ ðxÞ ¼ δacdbdddi; ðE33Þ

Wiabcd
ð23Þ ðxÞ ¼ σaσbσcσddi; ðE34Þ

Wiabcd
ð24Þ ðxÞ ¼ σaσbσcdddi; ðE35Þ

Wiabcd
ð25Þ ðxÞ ¼ σaσbdcdddi; ðE36Þ

Wiabcd
ð26Þ ðxÞ ¼ σadbσcdddi; ðE37Þ

Wiabcd
ð27Þ ðxÞ ¼ σadbdcdddi; ðE38Þ

Wiabcd
ð28Þ ðxÞ ¼ dadbdcdddi: ðE39Þ

APPENDIX F: SCALAR FUNCTIONS
IN (62) AND (63)

To simplify the notation, it is appropriate to introduce the
following scalar functions:

aðnÞ ðxÞ ¼ ðxþ σ · xÞn; ðF1Þ

bðnÞ ðxÞ ¼
1

ðxÞn ; ðF2Þ

cðnÞ ðxÞ ¼
σ · x
ðxÞn ; ðF3Þ

dð1Þ ðxÞ ¼ ln ðx − σ · xÞ; ðF4Þ

dð2Þ ðxÞ ¼ arctan
σ · x
d

þ π

2
; ðF5Þ

dð3Þ ðxÞ ¼ arctan
σ · x
d

; ðF6Þ

dð4Þ ðxÞ ¼
σ · x
d

�
arctan

σ · x
d

þ π

2

�
: ðF7Þ

Then, the scalar functions in the new representation in
(62) and (63) can be expressed in terms of these functions
(F1)–(F7).
The scalar functions of the monopole term of the new

representation in (62) are given by

Fð1ÞðxÞ ¼ þ2 dð1Þ; ðF8Þ

Fð2Þ ðxÞ ¼ −2
að1Þ
ðdÞ2 : ðF9Þ

The scalar functions of the quadrupole term of the new
representation in (62) are given by

Gð1Þ ðxÞ ¼ −2
cð1Þ
ðdÞ2 ; ðF10Þ

Gð2Þ ðxÞ ¼ þ4
að1Þ
ðdÞ4 − 2

bð1Þ
ðdÞ2 ; ðF11Þ

Gð3Þ ðxÞ ¼ þ cð1Þ
ðdÞ2 þ cð3Þ; ðF12Þ

Gð4ÞðxÞ ¼ −4
að1Þ
ðdÞ4 þ 2

bð1Þ
ðdÞ2 þ 2bð3Þ; ðF13Þ

Gð5Þ ðxÞ ¼ −2
cð1Þ
ðdÞ4 −

cð3Þ
ðdÞ2 ; ðF14Þ

Gð6ÞðxÞ ¼ −
8

ðdÞ6 að1Þ þ 4
bð1Þ
ðdÞ4 þ

bð3Þ
ðdÞ2 ; ðF15Þ

Gð7ÞðxÞ ¼ −
2

ðdÞ4 að1Þ þ
bð1Þ
ðdÞ2 − bð3Þ; ðF16Þ

Gð8ÞðxÞ ¼ þ4
cð1Þ
ðdÞ4 þ 2

cð3Þ
ðdÞ2 : ðF17Þ

The scalar functions of the monopole-monopole term of
the new representation in (63) are given by

Xð1Þ ðxÞ ¼ þ4
að1Þ
ðdσÞ2

þ cð2Þ
4

−
15

4

dð3Þ
d

; ðF18Þ

Xð2Þ ðxÞ ¼ þ4
að2Þ
ðdσÞ4

þ bð2Þ
4

−
15

4

dð4Þ
ðdÞ2 : ðF19Þ

These functions in combination with the coefficients
(E2) and (E3) are in agreement with Eq. (51) in [53].
The scalar functions of the monopole-quadrupole term of

new representation in (63) are given by

Yð1ÞðxÞ ¼ þ12
að1Þ
ðdÞ4 − 4

bð1Þ
ðdÞ2 −

93

32

cð2Þ
ðdÞ2 −

7

16
cð4Þ

−
285

32

dð3Þ
ðdÞ3 ; ðF20Þ

Yð2Þ ðxÞ ¼ −16
að2Þ
ðdÞ6 −

91

32

bð2Þ
ðdÞ2 −

7

16
bð4Þ þ 4

cð1Þ
ðdÞ4

þ 465

32

dð4Þ
ðdÞ4 ; ðF21Þ
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Yð3Þ ðxÞ ¼ −8
að1Þ
ðdÞ4 þ 2

bð1Þ
ðdÞ2 þ 2bð3Þ þ

29

64

cð2Þ
ðdÞ2

þ 111

32
cð4Þ −

5

8
ðdÞ2cð6Þ þ

285

64

dð3Þ
ðdÞ3 ; ðF22Þ

Yð4Þ ðxÞ ¼ þ16
að2Þ
ðdÞ6 þ

155

32

bð2Þ
ðdÞ2 þ

199

16
bð4Þ −

5

4
ðdÞ2bð6Þ

− 8
cð1Þ
ðdÞ4 − 4

cð3Þ
ðdÞ2 −

465

32

dð4Þ
ðdÞ4 ; ðF23Þ

Yð5Þ ðxÞ ¼ þ8
að1Þ
ðdÞ6 − 4

bð1Þ
ðdÞ4 − 2

bð3Þ
ðdÞ2 −

209

64

cð2Þ
ðdÞ4

−
91

32

cð4Þ
ðdÞ2 þ

5

8
cð6Þ −

465

64

dð3Þ
ðdÞ5 ; ðF24Þ

Yð6Þ ðxÞ ¼ þ48
að2Þ
ðdÞ8 þ

263

64

bð2Þ
ðdÞ4 þ

883

32

bð4Þ
ðdÞ2 þ

5

8
bð6Þ

− 16
cð1Þ
ðdÞ6 − 4

cð3Þ
ðdÞ4 −

2325

64

dð4Þ
ðdÞ6 ; ðF25Þ

Yð7Þ ðxÞ ¼ þ16
að2Þ
ðdÞ6 þ

235

64

bð2Þ
ðdÞ2 −

71

32
bð4Þ −

5

8
ðdÞ2bð6Þ

þ 4
cð3Þ
ðdÞ2 −

855

64

dð4Þ
ðdÞ4 ; ðF26Þ

Yð8Þ ðxÞ ¼ −32
að1Þ
ðdÞ6 þ 12

bð1Þ
ðdÞ4 þ 8

bð3Þ
ðdÞ2 þ

81

32

cð2Þ
ðdÞ4

þ 91

16

cð4Þ
ðdÞ2 þ

5

4
cð6Þ þ

465

32

dð3Þ
ðdÞ5 : ðF27Þ

The scalar functions of the quadrupole-quadrupole term
of the new representation in (63) are given by

Zð1Þ ðxÞ ¼ þ8
að1Þ
ðdÞ6 − 8

bð1Þ
ðdÞ4 −

327

128

cð2Þ
ðdÞ4 −

7

192

cð4Þ
ðdÞ2

þ 13

48
cð6Þ þ

185

128

dð3Þ
ðdÞ5 ; ðF28Þ

Zð2Þ ðxÞ ¼ −16
að2Þ
ðdÞ8 −

985

384

bð2Þ
ðdÞ4 −

5

192

bð4Þ
ðdÞ2 þ

13

48
bð6Þ

þ 8
cð1Þ
ðdÞ6 þ

985

128

dð4Þ
ðdÞ6 ; ðF29Þ

Zð3Þ ðxÞ ¼ þ4
að1Þ
ðdÞ6 þ 4

bð1Þ
ðdÞ4 −

2103

512

cð2Þ
ðdÞ4 þ

451

256

cð4Þ
ðdÞ2

þ 23

64
cð6Þ þ

9

32
ðdÞ2 cð8Þ −

5175

512

dð3Þ
ðdÞ5 ; ðF30Þ

Zð4Þ ðxÞ¼−16
að2Þ
ðdÞ8−

27019

1536

bð2Þ
ðdÞ4þ

1585

768

bð4Þ
ðdÞ2þ

5

96
bð6Þ

þ 9

32
ðdÞ2bð8Þþ20

cð1Þ
ðdÞ6−8

cð3Þ
ðdÞ4þ

5515

512

dð4Þ
ðdÞ6 ; ðF31Þ

Zð5ÞðxÞ ¼ þ16
að2Þ
ðdÞ8 −

3859

768

bð2Þ
ðdÞ4 þ

1609

384

bð4Þ
ðdÞ2 þ

79

96
bð6Þ

þ 9

16
ðdÞ2bð8Þ − 8

cð1Þ
ðdÞ6 −

2285

256

dð4Þ
ðdÞ6 ; ðF32Þ

Zð6Þ ðxÞ ¼ −16
að1Þ
ðdÞ8 þ 24

bð1Þ
ðdÞ6 − 16

bð3Þ
ðdÞ4 þ

6381

256

cð2Þ
ðdÞ6

−
2323

384

cð4Þ
ðdÞ4 −

119

96

cð6Þ
ðdÞ2 −

9

16
cð8Þ þ

2285

256

dð3Þ
ðdÞ7 ;

ðF33Þ

Zð7Þ ðxÞ ¼ þ16
að1Þ
ðdÞ8 þ 16

bð1Þ
ðdÞ6 −

1419

512

cð2Þ
ðdÞ6 −

2443

768

cð4Þ
ðdÞ4

−
143

192

cð6Þ
ðdÞ2 −

9

32
cð8Þ −

5515

512

dð3Þ
ðdÞ7 ; ðF34Þ

Zð8Þ ðxÞ ¼ þ 4831

512

bð2Þ
ðdÞ6 −

877

256

bð4Þ
ðdÞ4 −

43

64

bð6Þ
ðdÞ2 −

9

32
bð8Þ

þ 8
cð3Þ
ðdÞ6 −

2205

512

dð4Þ
ðdÞ8 ; ðF35Þ

Zð9Þ ðxÞ ¼ þ 1

128

cð2Þ
ðdÞ4 þ

1

192

cð4Þ
ðdÞ2 þ

5

48
cð6Þ þ

1

128

dð3Þ
ðdÞ5 ;

ðF36Þ

Zð10Þ ðxÞ ¼ −8
að1Þ
ðdÞ6 þ 8

bð1Þ
ðdÞ4 þ

839

256

cð2Þ
ðdÞ4 þ

199

384

cð4Þ
ðdÞ2

−
85

96
cð6Þ þ

15

16
ðdÞ2cð8Þ −

185

256

dð3Þ
ðdÞ5 ; ðF37Þ

Zð11Þ ðxÞ ¼ þ16
að2Þ
ðdÞ8 þ

2521

384

bð2Þ
ðdÞ4 þ

197

192

bð4Þ
ðdÞ2 −

85

48
bð6Þ

þ 15

8
ðdÞ2bð8Þ − 8

cð1Þ
ðdÞ6 −

985

128

dð4Þ
ðdÞ6 ; ðF38Þ

Zð12Þ ðxÞ ¼ −
985

256

cð2Þ
ðdÞ6 −

217

384

cð4Þ
ðdÞ4 −

5

96

cð6Þ
ðdÞ2

−
15

16
cð8Þ −

985

256

dð3Þ
ðdÞ7 ; ðF39Þ
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Zð13Þ ðxÞ ¼ −4
að1Þ
ðdÞ6 − 4

bð1Þ
ðdÞ4 þ 14

bð3Þ
ðdÞ2 þ

3237

2048

cð2Þ
ðdÞ4

−
969

1024

cð4Þ
ðdÞ2 þ

395

256
cð6Þ −

369

128
ðdÞ2cð8Þ

þ 15

16
ðdÞ4cð10Þ þ

15525

2048

dð3Þ
ðdÞ5 ; ðF40Þ

Zð14Þ ðxÞ ¼ þ 8507

512

bð2Þ
ðdÞ4 −

1217

256

bð4Þ
ðdÞ2 þ

393

64
bð6Þ

−
369

32
ðdÞ2bð8Þ þ

15

4
ðdÞ4 bð10Þ − 12

cð1Þ
ðdÞ6

þ 8
cð3Þ
ðdÞ4 −

945

512

dð4Þ
ðdÞ6 ; ðF41Þ

Zð15Þ ðxÞ ¼ −16
að1Þ
ðdÞ8 −

2677

1024

cð2Þ
ðdÞ6 þ

5515

1536

cð4Þ
ðdÞ4 þ

335

384

cð6Þ
ðdÞ2

þ 249

64
cð8Þ −

15

8
ðdÞ2 cð10Þ þ

5515

1024

dð3Þ
ðdÞ7 ; ðF42Þ

Zð16Þ ðxÞ ¼ þ16
að1Þ
ðdÞ8 − 24

bð1Þ
ðdÞ6 þ 16

bð3Þ
ðdÞ4 −

10477

512

cð2Þ
ðdÞ6

þ 5395

768

cð4Þ
ðdÞ4 þ

311

192

cð6Þ
ðdÞ2 þ

249

32
cð8Þ

−
15

4
ðdÞ2 cð10Þ −

2285

512

dð3Þ
ðdÞ7 ; ðF43Þ

Zð17Þ ðxÞ ¼ −
7667

512

bð2Þ
ðdÞ6 þ

2153

256

bð4Þ
ðdÞ4 þ

143

64

bð6Þ
ðdÞ2 þ

261

32
bð8Þ

−
15

4
ðdÞ2bð10Þ − 8

cð3Þ
ðdÞ6 þ

2205

512

dð4Þ
ðdÞ8 ; ðF44Þ

Zð18Þ ðxÞ ¼ þ2205

2048

cð2Þ
ðdÞ8 −

3361

1024

cð4Þ
ðdÞ6 −

365

256

cð6Þ
ðdÞ4 −

129

128

cð8Þ
ðdÞ2

þ 15

16
cð10Þ þ

2205

2048

dð3Þ
ðdÞ9 ; ðF45Þ

Zð19Þ ðxÞ ¼ −
5

384

bð2Þ
ðdÞ4 −

1

192

bð4Þ
ðdÞ2 þ

5

48
bð6Þ þ

5

128

dð4Þ
ðdÞ6 ;

ðF46Þ

Zð20Þ ðxÞ ¼ −
3997

768

bð2Þ
ðdÞ4 −

569

384

bð4Þ
ðdÞ2 −

95

96
bð6Þ þ

15

16
ðdÞ2bð8Þ

þ 925

256

dð4Þ
ðdÞ6 ; ðF47Þ

Zð21ÞðxÞ ¼ −48
að1Þ
ðdÞ8 þ 40

bð1Þ
ðdÞ6 þ 8

bð3Þ
ðdÞ4 þ

985

128

cð2Þ
ðdÞ6

þ 601

192

cð4Þ
ðdÞ4 þ

5

48

cð6Þ
ðdÞ2 −

15

8
cð8Þ

þ 985

128

dð3Þ
ðdÞ7 ; ðF48Þ

Zð22ÞðxÞ ¼ þ64
að2Þ
ðdÞ10 þ

13039

768

bð2Þ
ðdÞ6 þ

611

384

bð4Þ
ðdÞ4 þ

5

96

bð6Þ
ðdÞ2

−
15

16
bð8Þ −

48

ðdÞ8 cð1Þ −
6895

256

dð4Þ
ðdÞ8 ; ðF49Þ

Zð23Þ ðxÞ ¼ þ12
að2Þ
ðdÞ8 þ

31153

2048

bð2Þ
ðdÞ4 −

2371

1024

bð4Þ
ðdÞ2 −

37

256
bð6Þ

−
111

128
ðdÞ2bð8Þ þ

15

16
ðdÞ4bð10Þ − 4

cð1Þ
ðdÞ6 þ 8

cð3Þ
ðdÞ4

−
25875

2048

dð4Þ
ðdÞ6 ; ðF50Þ

Zð24Þ ðxÞ ¼ þ24
að1Þ
ðdÞ8 − 36

bð1Þ
ðdÞ6 þ 16

bð3Þ
ðdÞ4 −

11343

512

cð2Þ
ðdÞ6

þ 59

256

cð4Þ
ðdÞ4 −

65

64

cð6Þ
ðdÞ2 −

9

32
cð8Þ −

15

4
ðdÞ2cð10Þ

þ 945

512

dð3Þ
ðdÞ7 ; ðF51Þ

Zð25Þ ðxÞ ¼ þ64
að2Þ
ðdÞ10 þ

93133

3072

bð2Þ
ðdÞ6 −

11479

1536

bð4Þ
ðdÞ4

−
433

384

bð6Þ
ðdÞ2 −

9

64
bð8Þ −

15

8
ðdÞ2bð10Þ

− 48
cð1Þ
ðdÞ8 þ 16

cð3Þ
ðdÞ6 −

19405

1024

dð4Þ
ðdÞ8 ; ðF52Þ

Zð26Þ ðxÞ ¼ −64
að2Þ
ðdÞ10 þ

5893

1536

bð2Þ
ðdÞ6 −

5887

768

bð4Þ
ðdÞ4 −

457

192

bð6Þ
ðdÞ2

−
9

32
bð8Þ −

15

4
ðdÞ2bð10Þ þ 48

cð1Þ
ðdÞ8 þ

6395

512

dð4Þ
ðdÞ8 ;

ðF53Þ

Zð27ÞðxÞ ¼ −48
bð1Þ
ðdÞ8 þ

48

ðdÞ6 bð3Þ −
26781

512

cð2Þ
ðdÞ8 þ

7457

256

cð4Þ
ðdÞ6

þ 493

64

cð6Þ
ðdÞ4 þ

129

32

cð8Þ
ðdÞ2 þ

15

4
cð10Þ

−
2205

512

dð3Þ
ðdÞ9 ; ðF54Þ
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Zð28ÞðxÞ ¼ −
47575

2048

bð2Þ
ðdÞ8 þ

10965

1024

bð4Þ
ðdÞ6 −

445

256

bð6Þ
ðdÞ4

þ 129

128

bð8Þ
ðdÞ2 þ

15

16
bð10Þ − 24

cð3Þ
ðdÞ8

þ 19845

2048

dð4Þ
ðdÞ10 : ðF55Þ

APPENDIX G: AGREEMENT
OF (55)–(56) AND (62)–(63)

In this appendix some basic ideas are presented about
how to get from the old representation (54) with (55) and
(56), to the new representation (61) with (62) and (63). For
that demonstration one needs the following relations which
are valid up to terms of the order Oðc−4Þ:

x1PNðtÞ ¼ xNðtÞ þ Δx1PNðt; t0Þ; ðG1Þ

x1PNðtÞ ¼ xNðtÞ þ
xNðtÞ · Δx1PNðt; t0Þ

xNðtÞ
; ðG2Þ

1

ðx1PNðtÞÞn
¼ 1

ðxNðtÞÞn
−

n
ðxNðtÞÞn

xNðtÞ ·Δx1PNðt;t0Þ
ðxNðtÞÞ2

: ðG3Þ

Let us notice here that

x0 ¼ xNðt0Þ ¼ x1PNðt0Þ ðG4Þ
which follows from (5) and (13). Furthermore, one
encounters the following impact vector:bdσ ¼ σ × ðx1PNðtÞ × σÞ ðG5Þ
and its absolute value d̂σ ¼ jd̂σj. This impact vector d̂σ in
(G5) is related to the impact vector dσ in (58) as follows [up
to terms of the order Oðc−4Þ]:

bdσ ¼ dσ þ σ × ðΔx1PNðt; t0Þ × σÞ; ðG6Þ

d̂σ ¼ dσ þ
dσ · Δx1PNðt; t0Þ

dσ
; ðG7Þ

1

ðd̂σÞn
¼ 1

ðdσÞn
−

n
ðdσÞn

dσ · Δx1PNðt; t0Þ
ðdσÞ2

: ðG8Þ

In relations (G1)–(G3) as well as (G6)–(G8) one needs the
light ray perturbation in 1PN approximation, Δx1PNðt; t0Þ,
where it is advantageous to take Eqs. (G11) and (G12).
The entire procedure is separated into four steps:
First step: The 1PN terms in Eq. (55) contain 6 tensorial

coefficients given in (D1)–(D6):

Ai
ð3ÞðxNÞ; Bi

ð3ÞðxNÞ; CiabðnÞ ðxNÞ; Diab
ðnÞ ðxNÞ: ðG9Þ

These tensorial coefficients (G9) consist of 10 different
tensors as given by (E2)–(E11) with the argument x ¼ xN:

Ui
ð1ÞðxNÞ; Ui

ð2ÞðxNÞ; Viab
ðnÞ ðxNÞ: ðG10Þ

Accordingly, one may rewrite the 1PN terms in Eq. (55)
in terms of these 10 individual tensors:

Δxi1PNðt; t0Þ ¼ Δxi1PNðtÞ − Δxi1PNðt0Þ ðG11Þ

with

Δxi1PNðtÞ ¼
GM
c2

X2
n¼1

ðUi
ðnÞFðnÞÞðxNÞ

þ GM̂ab

c2
X8
n¼1

ðViab
ðnÞGðnÞÞðxNÞ; ðG12Þ

where the scalar functions FðnÞ and GðnÞ are given by
Eqs. (F8) and (F9) and Eqs. (F10)–(F17), respectively,
where the argument x ¼ xN. One may easily show that
(G11) with (G12) is identical with (55).
Second step: Similarly, the 2PN terms in Eq. (56) contain

51 tensorial coefficients given by Eqs. (E28)–(E39) and
Eqs. (E41)–(E65) as well as Eqs. (E67)–(E87) in [35]:

Ei
ðnÞ ðxNÞ;F i

ðnÞðxNÞ;Gi
ð5ÞðxNÞ;Hi

ðnÞðxNÞ;
Ki ab

ðnÞ ðxNÞ;Li ab
ðnÞ ðxNÞ;Mi ab

ðnÞ ðxNÞ;N i ab
ðnÞ ðxNÞ;

Pi abcd
ðnÞ ðxNÞ;Qi abcd

ðnÞ ðxNÞ: ðG13Þ

These 51 tensorial coefficients (G13) consist of 38
different tensors given by (E2)–(E11) and (E12)–(E39):

Ui
ð1ÞðxNÞ; Ui

ð2ÞðxNÞ; Viab
ðnÞ ðxNÞ;Wiabcd

ðnÞ ðxNÞ: ðG14Þ

Accordingly, one may rewrite the 2PN terms in Eq. (56)
in terms of these 38 individual tensors:

Δxi2PNðt; t0Þ ¼ Δxi2PNðtÞ − Δxi2PNðt0Þ ðG15Þ

with

Δxi2PNðtÞ ¼ þG2M2

c4
X2
n¼1

ðUi
ðnÞX̃ðnÞÞðxNÞ

þ G2MM̂ab

c4
X8
n¼1

ðViab
ðnÞ ỸðnÞÞðxNÞ

þ G2M̂abM̂cd

c4
X28
n¼1

ðWiabcd
ðnÞ Z̃ðnÞÞðxNÞ: ðG16Þ

The scalar functions in (G16) can be deduced just by
inserting these 51 tensorial coefficients (G13) into (56) and
then combining all those scalar terms belonging to one and
the same tensorial coefficient in (G14). However, these
scalar functions are an intermediate step and will not be
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given in their explicit form here, in order to simplify the
representation. It is noticed again that (G15) and (G16) are
identical with (56).
The form of (G15) and (G16) resembles already the

structure of (62) and (63), respectively. However, the
arguments in (G15) are the unperturbed light rays, xN,
while in (62) the arguments are the light rays in 1PN
approximation, x1PN. Furthermore, the scalar functions
X̃ðnÞ, ỸðnÞ, Z̃ðnÞ in (G16) are not identical with the scalar
functions XðnÞ, YðnÞ, ZðnÞ in (63). In order to arrive at (62)
and (63) two further steps are necessary.
Third step: In order to arrive at (62) and (63) the

argument in the tensorial coefficients as well as in the
scalar functions in (G12) have to be replaced by the light
ray in 1PN approximation. Then one obtains:

Δxi1PNðtÞ ¼
GM
c2

X2
n¼1

ðUi
ðnÞFðnÞÞðx1PNÞ

þGM̂ab

c2
X8
n¼1

ðViab
ðnÞGðnÞÞðx1PNÞ þ δxi2PN; ðG17Þ

where δxi2PN is just the difference (G12) minus (G17):

δxi2PN

¼ þGM
c2

X2
n¼1

½ðUi
ðnÞFðnÞÞðxNÞ − ðUi

ðnÞFðnÞÞðx1PNÞ�

þ GM̂ab

c2

�X8
n¼1

ðViab
ðnÞGðnÞÞðxNÞ − ðViab

ðnÞGðnÞÞðx1PNÞ
�
:

ðG18Þ
Eq. (G17) is identical with (G12).
Fourth step: In order to determine the expression in

(G18), one has to perform a series expansion of those terms
in (G18) having as an argument the light ray in 1PN
approximation. For that calculation one needs the same
relations as given previously by Eqs. (G1)–(G3) and
Eqs. (G6)–(G8).
The determination of δxi2PN in (G18) has been assisted by

the computer algebra system MAPLE [63]. One finally
arrives at the following form:

δxi2PN ¼ þG2M2

c4
X2
n¼1

ðUi
ðnÞX̂ðnÞÞðxNÞ

þ G2MM̂ab

c4
X8
n¼1

ðViab
ðnÞ ŶðnÞÞðxNÞ

þ G2M̂abM̂cd

c4
X28
n¼1

ðWiabcd
ðnÞ ẐðnÞÞðxNÞ; ðG19Þ

which is separated into three terms proportional to
monopole-monopole, monopole-quadrupole, and quadru-
pole-quadrupole. The tensorial coefficients are defined

by (E2) and (E3), (E4)–(E11), and (E12)–(E39), respec-
tively. The scalar functions in (G19) are an intermediate
step and will not be given in their explicit form here, in
favor of a clear representation.
The term δxi2PN, defined by Eq. (G18) and determined by

Eq. (G19), is obviously of second post-Newtonian order
and should, therefore, be added to (G16) rather than (G17).
Accordingly, the sum of (G16) and (G17) can be written in
the form

x2PN ðtÞ ¼ x0 þ cðt − t0Þ σ þ Δx1PNðtÞ − Δx1PNðt0Þ
þ Δx2PNðtÞ − Δx2PN ðt0Þ; ðG20Þ

Δxi1PNðtÞ ¼
GM
c2

X2
n¼1

ðUi
ðnÞFðnÞÞðx1PNÞ

þ GM̂ab

c2
X8
n¼1

ðViab
ðnÞGðnÞÞðx1PNÞ; ðG21Þ

Δxi2PNðtÞ ¼
G2M2

c4
X2
n¼1

ðUi
ðnÞXðnÞÞðxNÞ

þ G2MM̂ab

c4
X8
n¼1

ðViab
ðnÞ YðnÞÞðxNÞ

þ G2M̂abM̂cd

c4
X28
n¼1

ðWiabcd
ðnÞ ZðnÞÞðxNÞ; ðG22Þ

where, by taking account of (G16) and(G19), the new
scalar functions

XðnÞ ¼ X̃ðnÞ þ X̂ðnÞ; ðG23Þ

YðnÞ ¼ ỸðnÞ þ ŶðnÞ; ðG24Þ

ZðnÞ ¼ Z̃ðnÞ þ ẐðnÞ ðG25Þ

have been introduced. The solution (G20) with (G21) and
(G22) agrees with expression (61) with (62) and (63),
where the scalar functions (G23)–(G25) are given by
Eqs. (F18)–(F55) in their explicit form.

APPENDIX H: CALCULATION
OF k · Δx2PN IN TERMS OF k

In this appendix we consider the term

k · Δx2PNðx1; x0Þ ¼ k · Δx2PN ðx1Þ − k · Δx2PN ðx0Þ ðH1Þ

in Eq. (77) which needs fully to be expressed in terms of
vector k. The expression of Δx2PNðxÞ is given by Eq. (63),
hence one obtains
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k ·Δx2PN ðxÞ¼þG2M2

c4
X2
n¼1

ðkiUi
ðnÞXðnÞÞðxÞ

þG2MM̂ab

c4
X8
n¼1

ðkiViab
ðnÞYðnÞÞðxÞ

þG2M̂abM̂cd

c4
X28
n¼1

ðkiWiabcd
ðnÞ ZðnÞÞðxÞ: ðH2Þ

The tensorial coefficients in (E2)–(E39) as well as the
scalar functions in (F18)–(F55) are given in terms of vector
σ rather than vector k. But in view of relation (73) we have
σ ¼ kþOðc−2Þ. Thus, a replacement σ by k in the
tensorial coefficients as well as in the scalar functions in
(H2) would cause an error of the order Oðc−6Þ in line with
the 2PN approximation. The tensorial coefficients in (H2)
are contracted with ki. For instance one obtains up to terms
of the order Oðc−2Þ: kiUi

ð1Þ ¼ 1, kiUi
ð2Þ ¼ 0, kiViab

ð1Þ ¼
kakb;…; kiWiabcd

ð28Þ ¼ 0. After performing these contrac-

tions one may distinguish the following tensors:

Sabð1Þ ¼ kakb; Sabð2Þ ¼ kadbk; Sabð3Þ ¼ dakd
b
k; ðH3Þ

Tabcd
ð1Þ ¼ δackbkd; Tabcd

ð2Þ ¼ δackbddk;

Tabcd
ð3Þ ¼ kakbkckd; Tabcd

ð4Þ ¼ kakbkcddk;

Tabcd
ð5Þ ¼ kadbkk

cddk; Tabcd
ð6Þ ¼ kakbdckd

d
k;

Tabcd
ð7Þ ¼ kadbkd

c
kd

d
k; Tabcd

ð8Þ ¼ δacδbd;

Tabcd
ð9Þ ¼ δacdbkd

d
k; Tabcd

ð10Þ ¼ dakd
b
kd

c
kd

d
k; ðH4Þ

where the symmetries a ↔ b and c ↔ d as well as a ↔
c ∧ b ↔ d and a ↔ d ∧ b ↔ c have been taken into
account, according to the corresponding symmetries of
the quadrupole tensors in front of the individual terms in
(H2). As mentioned, in the scalar functions (F18)–(F55)
one may replace σ by k. Then, one obtains the following
expression:

k · Δx2PNðx1; x0Þ ¼
G2M2

c4
uð1Þ ðx1; x0Þ

þ G2MM̂ab

c4
X3
n¼1

SabðnÞ vðnÞ ðx1; x0Þ

þ G2M̂abM̂cd

c4
X10
n¼1

Tabcd
ðnÞ wðnÞ ðx1; x0Þ

ðH5Þ
where the scalar functions are given by

uð1Þ ðx1; x0Þ ¼ þ 4

ðdkÞ2
eð1Þ þ

gð2Þ
4

−
15

4

hð1Þ
dk

; ðH6Þ

vð1Þ ðx1; x0Þ ¼ þ 4

ðdkÞ4
eð1Þ −

2

ðdkÞ2
fð1Þ þ 2fð3Þ

−
157

64

gð2Þ
ðdkÞ2

þ 97

32
gð4Þ −

5

8
ðdkÞ2gð6Þ

−
285

64

hð1Þ
ðdkÞ3

; ðH7Þ

vð2Þ ðx1; x0Þ ¼ þ 2

ðdkÞ2
fð2Þ þ 12fð4Þ −

5

4
ðdkÞ2fð6Þ

−
4

ðdkÞ4
gð1Þ −

4

ðdkÞ2
gð3Þ; ðH8Þ

vð3Þðx1; x0Þ ¼ þ 8

ðdkÞ6
eð1Þ −

4

ðdkÞ4
fð1Þ −

2

ðdkÞ2
fð3Þ

−
209

64

gð2Þ
ðdkÞ4

−
91

32

gð4Þ
ðdkÞ2

þ 5

8
gð6Þ −

465

64

hð1Þ
ðdkÞ5

;

ðH9Þ

wð1Þ ðx1; x0Þ ¼ þ 185

256

gð2Þ
ðdkÞ4

þ 185

384

gð4Þ
ðdkÞ2

−
59

96
gð6Þ

þ 15

16
ðdkÞ2gð8Þ þ

185

256

hð1Þ
ðdkÞ5

; ðH10Þ

wð2Þðx1; x0Þ ¼ þ 4

ðdkÞ4
fð2Þ þ

fð4Þ
ðdkÞ2

−
3

2
fð6Þ þ

15

8
ðdkÞ2fð8Þ;

ðH11Þ

wð3Þðx1; x0Þ ¼ þ 14

ðdkÞ2
fð3Þ −

5175

2048

gð2Þ
ðdkÞ4

þ 835

1024

gð4Þ
ðdkÞ4

þ 487

256
gð6Þ −

333

128
ðdkÞ2gð8Þ þ

15

16
ðdkÞ4gð10Þ

−
5175

2048

hð1Þ
ðdkÞ5

; ðH12Þ

wð4Þ ðx1; x0Þ ¼ −
6

ðdkÞ4
fð2Þ þ

3

2

fð4Þ
ðdkÞ2

þ 449

64
fð6Þ

−
171

16
ðdkÞ2fð8Þ þ

15

4
ðdkÞ4fð10Þ; ðH13Þ

wð5Þ ðx1; x0Þ ¼ þ 2285

512

gð2Þ
ðdkÞ6

þ 749

768

gð4Þ
ðdkÞ4

þ 73

192

gð6Þ
ðdkÞ2

þ 231

32
gð8Þ −

15

4
ðdkÞ2gð10Þ þ

2285

512

hð1Þ
ðdkÞ7

;

ðH14Þ

wð6Þ ðx1; x0Þ ¼ þ 16

ðdkÞ6
fð1Þ −

5515

1024

gð2Þ
ðdkÞ6

þ 629

1536

gð4Þ
ðdkÞ4

þ 49

384

gð6Þ
ðdkÞ2

þ 231

64
gð8Þ −

15

8
ðdkÞ2gð10Þ

−
5515

1024

hð1Þ
ðdkÞ7

; ðH15Þ
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wð7Þ ðx1; x0Þ ¼ −
709

128

fð2Þ
ðdkÞ6

þ 319

64

fð4Þ
ðdkÞ4

þ 25

16

fð6Þ
ðdkÞ2

þ 63

8
fð8Þ −

15

4
ðdkÞ2fð10Þ; ðH16Þ

wð8Þ ðx1; x0Þ ¼ þ 1

128

gð2Þ
ðdkÞ4

þ 1

192

gð4Þ
ðdkÞ2

þ 5

48
gð6Þ

þ 1

128

hð1Þ
ðdkÞ5

; ðH17Þ

wð9Þ ðx1; x0Þ ¼ −
985

256

gð2Þ
ðdkÞ6

−
217

384

gð4Þ
ðdkÞ4

−
5

96

gð6Þ
ðdkÞ2

−
15

16
gð8Þ −

985

256

hð1Þ
ðdkÞ7

; ðH18Þ

wð10Þ ðx1;x0Þ¼þ2205

2048

gð2Þ
ðdkÞ8

−
3361

1024

gð4Þ
ðdkÞ6

−
365

256

gð6Þ
ðdkÞ4

−
129

128

gð8Þ
ðdkÞ2

þ15

16
gð10Þ þ

2205

2048

hð1Þ
ðdkÞ9

; ðH19Þ

where the abbreviations

eðnÞ ðx1; x0Þ ¼ ðx1 þ k · x1Þn − ðx0 þ k · x0Þn; ðH20Þ

fðnÞ ðx1; x0Þ ¼
1

ðx1Þn
−

1

ðx0Þn
; ðH21Þ

gðnÞ ðx1; x0Þ ¼
k · x1
ðx1Þn

−
k · x0
ðx0Þn

; ðH22Þ

hð1Þ ðx1; x0Þ ¼ arctan
k · x1
dk

− arctan
k · x0
dk

; ðH23Þ

hð2Þ ðx1; x0Þ ¼ þ k · x1
dk

�
arctan

k · x1
dk

þ π

2

�
−
k · x0
dk

�
arctan

k · x0
dk

þ π

2

�
; ðH24Þ

have been introduced.

APPENDIX I: CALCULATION OF k · Δx1PN
IN TERMS OF VECTOR k

In this appendix we consider the term

k · Δx1PNðx1; x0Þ ¼ k · Δx1PNðx1Þ − k · Δx1PNðx0Þ ðI1Þ

in Eq. (77) which needs fully to be expressed in terms of
vector k. The expression of Δx1PNðxÞ is given by Eq. (62).
One obtains

k · Δx1PNðxÞ ¼ þGM
c2

X2
n¼1

ðkiUi
ðnÞFðnÞÞðxÞ

þ GM̂ab

c2
X8
n¼1

ðkiViab
ðnÞGðnÞÞðxÞ; ðI2Þ

where the spatial variable x can either be x1 or x0. The
tensorial coefficients in Eqs. (E2)–(E11) and the scalar
functions in Eqs. (F8)–(F17) are given in terms of vector σ
and need to be expressed in terms of vector k.
The boundary value problem is defined by Eqs. (64) and

(65), that means the spatial position of the source, x0, and
the spatial position of the observer, x1. Hence, in (I1)–(I2)
one naturally encounters both impact vectors

dσ ¼ σ × ðx0 × σÞ; ðI3Þ

d̂σ ¼ σ × ðx1 × σÞ: ðI4Þ

For the treatment of the boundary value problem a
further impact vector in terms of k is needed, defined by

dk ¼ k × ðx0 × kÞ ¼ k × ðx1 × kÞ: ðI5Þ
In order to rewrite (I1) fully in terms of vector k one

needs a relation between the impact vector (I3) and (I5) and
between the impact vector (I4) and (I5). These relations can
be obtained by inserting (74) into Eqs. (I3) and (I4):

dσ ¼ dk þ
dk · Δx1PN

R
kþ k · x0

R
k × ðΔx1PN × kÞ; ðI6Þ

bdσ ¼ dk þ
dk · Δx1PN

R
kþ k · x1

R
k × ðΔx1PN × kÞ; ðI7Þ

where Δx1PN ¼ Δx1PNðx1; x0Þ. These relations are valid up
to terms of the order Oðc−4Þ. The subsequent relations will
be applied which are valid up to terms of the order Oðc−4Þ:

k · σ ¼ 1; ðI8Þ

k · dσ ¼
dk · Δx1PN

R
; ðI9Þ

k · d̂σ ¼
dk · Δx1PN

R
; ðI10Þ

1

ðdσÞn
¼ 1

ðdkÞn
−
n
R
ðk · x0Þðdk · Δx1PNÞ

ðdkÞnþ2
; ðI11Þ

1

ðd̂σÞn
¼ 1

ðdkÞn
−
n
R
ðk · x1Þðdk · Δx1PNÞ

ðdkÞnþ2
; ðI12Þ

σ · x0 ¼ k · x0 −
dk · Δx1PN

R
; ðI13Þ
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σ · x1 ¼ k · x1 −
dk · Δx1PN

R
; ðI14Þ

where Δx1PN ¼ Δx1PNðx1; x0Þ. These relations follow from
(74) and (I6) and (I7). Here it useful to notice that
ðk × xÞ · ðk × Δx1PNÞ ¼ dk · Δx1PN.
Using (74) and (I6)–(I10) one obtains for the tensorial

coefficients in (I2) when expressed in terms of vector k the
following expressions, which are valid up to terms of the
order Oðc−4Þ:

kiUi
ð1Þ ðxÞ ¼ 1; ðI15Þ

kiUi
ð2ÞðxÞ ¼

1

R
ðdk · Δx1PNÞ; ðI16Þ

kiVi ab
ð1Þ ðxÞ ¼ kakb −

kb

R
Δxa1PN þ kakb

R
ðk · Δx1PNÞ; ðI17Þ

kiVi ab
ð2Þ ðxÞ ¼ dakk

b þ 1

R
ðk · xÞΔxa1PNkb

þ 1

R
ðdk · Δx1PNÞkakb

−
1

R
ðk · xÞðk · Δx1PNÞkakb; ðI18Þ

kiViab
ð3Þ ðxÞ¼ kakb−

2

R
kðaΔxbÞ1PNþ2

kakb

R
ðk ·Δx1PNÞ; ðI19Þ

kiVi ab
ð4Þ ðxÞ¼ kadbk þ

1

R
ðk ·xÞkaΔxb1PN

þ 1

R
ðdk ·Δx1PNÞka kb−

1

R
ðk ·xÞðk ·Δx1PNÞkakb

−
1

R
Δxa1PNdbk þ

1

R
ðk ·Δx1PNÞkadbk; ðI20Þ

kiViab
ð5Þ ðxÞ ¼ dakd

b
k þ

2

R
ðk · xÞdðak ΔxbÞ1PN

þ 2

R
ðdk · Δx1PNÞdðak kbÞ

−
2

R
ðk · xÞðk · Δx1PNÞdðak kbÞ; ðI21Þ

kiViab
ð6Þ ðxÞ ¼

dakd
b
k

R
ðdk · Δx1PNÞ; ðI22Þ

kiVi ab
ð7Þ ðxÞ ¼

kakb

R
ðdk · Δx1PNÞ; ðI23Þ

kiVi ab
ð8Þ ðxÞ ¼

kadbk
R

ðdk · Δx1PNÞ; ðI24Þ

where in (I16)–(I24) the abbreviation Δx1PN ¼
Δx1PNðx1; x0Þ is used, and AðaBbÞ ¼ ðAaBb þ AbBaÞ=2

denotes symmetrization. Similarly, using (I11)–(I14) one
obtains for the scalar functions in (I2) when expressed in
terms of vector k the following expressions:

Fð1ÞðxÞ ¼ þ2 ln ðx − k · xÞ þ 2

ðdkÞ2
ðxþ k · xÞ dk · Δx1PN

R

þOðc−4Þ; ðI25Þ

Fð2Þ ðxÞ ¼ −
2

ðdkÞ2
ðxþ k · xÞ þOðc−2Þ; ðI26Þ

Gð1ÞðxÞ ¼ −
2

ðdkÞ2
k · x
x

þ 4

ðdkÞ4
ðk · xÞ2ðdk · Δx1PNÞ

Rx

þ 2

ðdkÞ2
dk · Δx1PN

Rx
þOðc−4Þ; ðI27Þ

Gð2Þ ðxÞ ¼þ 4

ðdkÞ4
ðxþ k · xÞ− 2

ðdkÞ2
1

x

−
4

ðdkÞ4
dk ·Δx1PN

R

�
1−

k · x
x

þ 4
k · x
ðdkÞ2

ðxþ k · xÞ
�

þOðc−4Þ; ðI28Þ

Gð3Þ ðxÞ ¼ þ 1

ðdkÞ2
k · x
x

þ k · x
ðxÞ3

−
dk · Δx1PN

Rx

�
1

ðdkÞ2
þ 1

ðxÞ2 þ 2
ðk · xÞ2
ðdkÞ4

�
þOðc−4Þ; ðI29Þ

Gð4Þ ðxÞ¼−
4

ðdkÞ4
ðxþk ·xÞþ 2

ðdkÞ2
1

x
þ 2

ðxÞ3

þ 4

ðdkÞ4
dk ·Δx1PN

R

�
1−

k ·x
x

þ4
k ·x
ðdkÞ2

ðxþk ·xÞ
�

þOðc−4Þ; ðI30Þ

Gð5Þ ðxÞ ¼ −
2

ðdkÞ4
k · x
x

−
1

ðdkÞ2
k · x
ðxÞ3

−
1

ðdkÞ2
dk · Δx1PN

Rx

�
4

ðdkÞ2
þ 1

ðxÞ2 − 8
ðxÞ2
ðdkÞ4

�
þOðc−4Þ; ðI31Þ

Gð6Þ ðxÞ ¼ −
8

ðdkÞ6
ðxþ k · xÞ þ 4

ðdkÞ4
1

x
þ 1

ðdkÞ2
1

ðxÞ3
þOðc−2Þ; ðI32Þ

Gð7Þ ðxÞ ¼ −
2

ðdkÞ4
ðxþ k · xÞ þ 1

ðdkÞ2
1

x
−

1

ðxÞ3
þOðc−2Þ; ðI33Þ

Gð8Þ ðxÞ ¼ þ 4

ðdkÞ4
k · x
x

þ 2

ðdkÞ2
k · x
ðxÞ3 þOðc−2Þ; ðI34Þ
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where the functions in (I26) and (I32)–(I34) need to be calculated up to terms of the orderOðc−2Þ because their corresponding
tensorial coefficients in (I16) and (I22)–(I24) contain only terms of the orderOðc−2Þ. By inserting (I15)–(I24) and (I25)–(I34)
into (I2) one obtains:

k · Δx1PNðxÞ ¼ þ 2GM
c2

ln ðx − k · xÞ

−
2GM̂ab

c2

�
1

ðdkÞ4
k · x
x

dakd
b
k þ

1

2

1

ðdkÞ2
k · x
ðxÞ3 d

a
kd

b
k þ

1

2

1

ðdkÞ2
k · x
x

kakb −
1

2

k · x
ðxÞ3 k

akb −
1

ðxÞ3 d
a
kk

b

�
−
2GM̂ab

c2
1

ðdkÞ4
k · x
x

�
4

ðdkÞ2
ðdk · Δx1PNÞdakdbk þ ðdk · Δx1PNÞkakb þ 2ðk · Δx1PNÞdakkb − 2dakΔxb1PN

�
þOðc−6Þ; ðI35Þ

where Δx1PN ¼ Δx1PNðx1; x0Þ and the spatial argument x
in (I35) can either be x1 or x0. By inserting (70) with (62)
into (I35) and taking account of (I1), one finally arrives at

k ·Δx1PNðx1;x0Þ

¼ þGM
c2

Pð1Þ ðx1;x0Þ þ
GM̂ab

c2
X3
n¼1

SabðnÞQðnÞðx1;x0Þ

þG2M2

c4
rð1Þ ðx1;x0Þ þ

G2MM̂ab

c4
X3
n¼1

SabðnÞsðnÞ ðx1;x0Þ

þG2M̂abM̂cd

c4
X10
n¼1

Tabcd
ðnÞ tðnÞ ðx1;x0Þ þOðc−6Þ; ðI36Þ

where the tensors have been defined by Eqs. (H3) and (H4)
and the scalar functions are

Pð1Þ ðx1;x0Þ ¼ þ2 ln
x1 − k · x1
x0 − k · x0

¼ −2 ln
x1 þ k · x1
x0 þ k · x0

; ðI37Þ

Qð1Þðx1; x0Þ ¼ −
gð1Þ
ðdkÞ2

þ gð3Þ; ðI38Þ

Qð2Þ ðx1; x0Þ ¼ þ2fð3Þ; ðI39Þ

Qð3Þ ðx1; x0Þ ¼ −
2

ðdkÞ4
gð1Þ −

gð3Þ
ðdkÞ2

; ðI40Þ

rð1Þ ðx1; x0Þ ¼ 0; ðI41Þ

sð1Þ ðx1; x0Þ ¼ þ 4

ðdkÞ4
eð1Þgð1Þ; ðI42Þ

sð2Þ ðx1; x0Þ ¼ 0; ðI43Þ

sð3Þ ðx1; x0Þ ¼ þ 8

ðdkÞ6
eð1Þgð1Þ; ðI44Þ

tð1Þ ðx1; x0Þ ¼ 0; ðI45Þ

tð2Þ ðx1; x0Þ ¼ −
8

ðdkÞ6
gð1Þgð1Þ; ðI46Þ

tð3Þ ðx1; x0Þ ¼ þ 4

ðdkÞ6
eð1Þgð1Þ −

2

ðdkÞ4
fð1Þgð1Þ

þ 2

ðdkÞ2
fð3Þgð1Þ; ðI47Þ

tð4Þðx1; x0Þ ¼ þ 4

ðdkÞ6
gð1Þgð1Þ −

4

ðdkÞ4
gð1Þgð3Þ; ðI48Þ

tð5Þ ðx1; x0Þ ¼ −
16

ðdkÞ8
eð1Þgð1Þ þ

8

ðdkÞ6
fð1Þgð1Þ; ðI49Þ

tð6Þ ðx1; x0Þ ¼ þ 16

ðdkÞ8
eð1Þgð1Þ −

8

ðdkÞ6
fð1Þgð1Þ

−
4

ðdkÞ4
fð3Þgð1Þ; ðI50Þ

tð7Þðx1; x0Þ ¼ −
8

ðdkÞ6
gð1Þ gð3Þ; ðI51Þ

tð8Þ ðx1; x0Þ ¼ 0; ðI52Þ

tð9Þ ðx1; x0Þ ¼ þ 16

ðdkÞ8
eð1Þgð1Þ −

8

ðdkÞ6
fð1Þgð1Þ; ðI53Þ

tð10Þ ðx1; x0Þ ¼ −
4

ðdkÞ6
fð3Þgð1Þ: ðI54Þ

The scalar functions eðnÞ, fðnÞ, gðnÞ, hðnÞ were introduced
by Eqs. (H20)–(H24).

APPENDIX J: CALCULATION OF jk × Δx1PNj2
In this appendix we consider the term

jk × Δx1PN ðx1; x0Þj2 ¼ Δx1PNðx1; x0Þ · Δx1PNðx1; x0Þ
− ðk · Δx1PNðx1; x0ÞÞ2 ðJ1Þ
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in Eq. (77). The calculation of (J1) can considerably be
simplified by omitting all terms proportional to vector k in
Δx1PN. Then, by inspection of (62) one obtains

jk × Δx1PNðx1; x0Þj2 ¼
G2M2

c4
xð1Þðx1; x0Þ

þG2MM̂ab

c4
X3
n¼1

SabðnÞyðnÞðx1; x0Þ

þG2M̂abM̂cd

c4
X10
n¼1

Tabcd
ðnÞ zðnÞðx1; x0Þ;

ðJ2Þ
where the tensors have been defined by Eqs. (H3) and (H4)
and scalar functions are

xð1Þ ðx1; x0Þ ¼ þ 4

ðdkÞ2
eð1Þ eð1Þ; ðJ3Þ

yð1Þ ðx1;x0Þ ¼ þ 8

ðdkÞ4
eð1Þ eð1Þ −

4

ðdkÞ2
eð1Þ fð1Þ þ 4eð1Þ fð3Þ;

ðJ4Þ

yð2Þðx1; x0Þ ¼ −
8

ðdkÞ4
eð1Þ gð1Þ −

8

ðdkÞ2
eð1Þ gð3Þ; ðJ5Þ

yð3Þðx1; x0Þ ¼ þ 16

ðdkÞ6
eð1Þ eð1Þ −

8

ðdkÞ4
eð1Þ fð1Þ

−
4

ðdkÞ2
eð1Þ fð3Þ; ðJ6Þ

zð1Þðx1; x0Þ ¼ þ 4

ðdkÞ4
gð1Þ gð1Þ; ðJ7Þ

zð2Þ ðx1; x0Þ ¼ −
16

ðdkÞ6
eð1Þ gð1Þ þ

8

ðdkÞ4
fð1Þ gð1Þ; ðJ8Þ

zð3Þ ðx1; x0Þ ¼ þ 4

ðdkÞ6
eð1Þ eð1Þ −

4

ðdkÞ4
gð1Þ gð1Þ

−
4

ðdkÞ4
eð1Þ fð1Þ þ

1

ðdkÞ2
fð1Þ fð1Þ

þ 4

ðdkÞ2
eð1Þ fð3Þ − 2fð1Þ fð3Þ

þ ðdkÞ2fð3Þ fð3Þ; ðJ9Þ

zð4Þ ðx1; x0Þ ¼ þ 8

ðdkÞ6
eð1Þ gð1Þ −

4

ðdkÞ4
fð1Þ gð1Þ

−
8

ðdkÞ4
eð1Þ gð3Þ −

4

ðdkÞ2
fð3Þ gð1Þ

þ 4

ðdkÞ2
fð1Þ gð3Þ − 4fð3Þ gð3Þ; ðJ10Þ

zð5Þ ðx1; x0Þ ¼ −
16

ðdkÞ8
eð1Þ eð1Þ þ

16

ðdkÞ6
eð1Þ fð1Þ

þ 8

ðdkÞ4
gð1Þ gð3Þ −

4

ðdkÞ4
fð1Þ fð1Þ

þ 4

ðdkÞ2
gð3Þ gð3Þ; ðJ11Þ

zð6Þ ðx1; x0Þ ¼ þ 16

ðdkÞ8
eð1Þ eð1Þ −

16

ðdkÞ6
eð1Þ fð1Þ

þ 4

ðdkÞ4
eð1Þ fð3Þ þ

4

ðdkÞ4
fð1Þ fð1Þ

−
2

ðdkÞ2
fð1Þ fð3Þ − 2fð3Þ fð3Þ; ðJ12Þ

zð7Þðx1; x0Þ ¼ −
16

ðdkÞ6
eð1Þgð3Þ −

8

ðdkÞ4
fð3Þgð1Þ

þ 8

ðdkÞ4
fð1Þgð3Þ; ðJ13Þ

zð8Þ ðx1; x0Þ ¼ 0; ðJ14Þ

zð9Þ ðx1; x0Þ ¼ þ 16

ðdkÞ8
eð1Þ eð1Þ −

16

ðdkÞ6
eð1Þ fð1Þ

þ 4

ðdkÞ4
fð1Þ fð1Þ; ðJ15Þ

zð10Þðx1; x0Þ ¼ −
8

ðdkÞ6
eð1Þ fð3Þ þ

4

ðdkÞ4
fð1Þ fð3Þ

þ 1

ðdkÞ2
fð3Þ fð3Þ: ðJ16Þ

The scalar functions eðnÞ, fðnÞ, gðnÞ, hðnÞ are given by
Eqs. (H20)–(H24).

APPENDIX K: ESTIMATION
OF SHAPIRO TIME DELAY

1. The expression of the Shapiro time delay

According to Eq. (77) the time delay of a light signal in
the field of one body at rest, where its monopole and
quadrupole structure is taken into account, is given by

cðt1 − t0Þ ¼ R − k · Δx1PNðx1; x0Þ − k · Δx2PN ðx1; x0Þ

þ 1

2R
jk × Δx1PNðx1; x0Þj2 þOðc−6Þ: ðK1Þ

The term k · Δx2PN has been given by Eq. (H5) in
Appendix H. The term k · Δx1PN has been given by
Eq. (I36) in Appendix I. The term jk × Δx1PNj2 has been
given by Eq. (J2) in Appendix J. According to these results
the Shapiro time delay in 2PN approximation in the
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gravitational field of one body at rest with monopole and
quadrupole structure is given as follows [cf. Eq. (78):

cðt1 − t0Þ ¼ RþΔcτM1PN þΔcτMab
1PN

þΔcτM×M
2PN þΔcτM×Mab

2PN þΔcτMab×Mcd
2PN ; ðK2Þ

up to terms of the order Oðc−6Þ and where the individual
terms are

ΔcτM1PN ¼ −
GM
c2

Pð1Þ ðx1; x0Þ; ðK3Þ

ΔcτMab
1PN ¼ −

GM̂ab

c2
X3
n¼1

SabðnÞQðnÞ ðx1; x0Þ; ðK4Þ

ΔcτM×M
2PN ¼ þG2M2

c4
Rð1Þ ðx1; x0Þ; ðK5Þ

ΔcτM×Mab
2PN ¼ þG2MM̂ab

c4
X3
n¼1

SabðnÞSðnÞ ðx1; x0Þ; ðK6Þ

ΔcτMab×Mcd
2PN ¼ þG2M̂abM̂cd

c4
X10
n¼1

Tabcd
ðnÞ TðnÞ ðx1; x0Þ: ðK7Þ

The tensors SabðnÞ and Tabcd
ðnÞ are defined by Eqs. (H3)

and (H4) and the scalar functions are introduced:

Rð1Þ ¼ −rð1Þ − uð1Þ þ
1

2R
xð1Þ; ðK8Þ

SðnÞ ¼ −sðnÞ − vðnÞ þ
1

2R
yðnÞ; ðK9Þ

TðnÞ ¼ −tðnÞ − wðnÞ þ
1

2R
zðnÞ: ðK10Þ

The functions in (K8) are defined by Eqs. (I41) and
(H6) and (J3). The functions in (K9) are defined by
Eqs. (I42)–(I44) and (H7)–(H9) and (J4)–(J6). The func-
tions in (K10) are defined by Eqs. (I45)–(I54) and
(H10)–(H19) and (J7)–(J16). In these functions the abbre-
viations as given by Eqs. (H20)–(H24) have been used.
In this appendix we will determine the upper limits of the

individual terms in Shapiro time delay formula (K2). One
may distinguish two scenarios of Shapiro time delay mea-
surements: one-way and two-way scenario. In the one-way
scenario a signal is emitted from the celestial object (e.g.
spacecraft, pulsar) and received by the observer. In the two-
way scenario a signal is emitted from the observer, then
reflected off the celestial object (e.g. planet or spacecraft), and
finally received back by the observer. If one assumes that the
gravitating body aswell as observer and celestial object are at
rest, then both these scenarios just differ by a factor 2. Here
the upper limits are given for the one-way Shapiro effect.

2. Estimation of 2PN monopole-monopole term

The 2PN monopole-monopole term in (K2) reads

ΔcτM×M
2PN ¼ G2M2

c4
Rð1Þðx1; x0Þ; ðK11Þ

where the scalar function Rð1Þ has been defined by
Eq. (K8). Equation (K11) agrees with the 2PN term in
Eq. (3.2.51) in [4] as well as Eq. (69) in [53] (for PPN
parameter the values of GR, γ ¼ 1, must be chosen); note
that Rdk ¼ jx0 × x1j. Inserting the abbreviations (I41) and
(H6) and (J3) into (K8) one obtains for the function Rð1Þ:

Rð1Þ ¼ þ 2

ðdkÞ2
ðx1 − x0Þ2 − R2

R
−
1

4

�
k · x1
ðx1Þ2

−
k · x0
ðx0Þ2

�
þ 15

4

1

dk

�
arctan

k · x1
dk

− arctan
k · x0
dk

�
: ðK12Þ

In order to determine the upper limit of (K12), the
relations for the angle β0 ¼ δðk; x0Þ and β1 ¼ δðk; x1Þ are
very useful:

cos β0 ¼
k · x0
x0

¼ ðx1Þ2 − ðx0Þ2 − R2

2Rx0
; ðK13Þ

cos β1 ¼
k · x1
x1

¼ ðx1Þ2 − ðx0Þ2 þ R2

2Rx1
: ðK14Þ

These relations are exactly valid and can be shown by
using (72). The impact parameters are dk ¼ x0 sin β0 ¼
x1 sin β1. Then, the expression in (K12) can be rewritten in
terms of variable z in (C8) as well as angle α ¼ δðx0; x1Þ in
(C9). By using the computer algebra system MAPLE [63]
one obtains for the upper of (K11)

jΔcτM×M
2PN j ≤ 8

ðdkÞ2
x1

G2M2

c4
: ðK15Þ

Numerical values of (K15) are presented in Table III for
the Sun and giant planets. If one implements the inequality

R
x1x0

ðx1 þ x0Þ2
≤ x1 ðK16Þ

into the first term on the right-hand side of Eq. (70) in [53],
one verifies that the estimation in (K15) is in agreement
with that estimation in our article [53]. Here we note that
the term which was estimated by Eq. (71) in [53] has been
absorbed in our upper limit given in (K15).
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3. Estimation of 2PN monopole-quadrupole term

The 2PN monopole-quadrupole term in (K2) reads

ΔcτM×Mab
2PN ¼ G2MM̂ab

c4
X3
n¼1

SabðnÞSðnÞ ðx1; x0Þ; ðK17Þ

where the tensorial coefficients SabðnÞ are given by Eqs. (H3)
and the scalar functions SðnÞ have been defined by Eq. (K9).
Their explicit form is obtained by inserting the abbrevia-
tions (H20)–(H24) into the scalar functions sðnÞ [given by
Eqs. (I42)–(I44)] and vðnÞ [given by Eqs. (H7)–(H9)] and
yðnÞ [given by Eqs. (J4)–(J6)] into (K9). In order to estimate
the upper limit of the individual terms in (K17) the
assumption is adopted that to a good approximation the
giant planets can be considered as axially symmetric
bodies, that means the STF quadrupole tensor in the
following form is used [cf. Eq. (B36)]

M̂ab ¼ MJ2P2

�
1

3
δab − δa3δb3

�
; ðK18Þ

where it is assumed that the x3 axis of the coordinate system
is aligned with the symmetry axis e3 of the massive body.
The parameter in (K18), that means M (mass of the body)
J2 (actual second zonal harmonic coefficient), P (equatorial
radius of the body) are given in Table I for the Sun and giant
planets of the Solar System. It is advisable to apply
relations (K13)–(K14) as well as the parameter (C8)–
(C9), which considerably simplify the expressions in
(K17). Then, the estimation proceeds in very similar
way as for (K11) and one finds, by means of the computer
algebra system MAPLE [63] the following upper limit:

jΔcτM×Mab
2PN j ≤ 12

ðdkÞ2
x1

G2M2

c4
P2

ðdkÞ2
jJ2j: ðK19Þ

Numerical values of (K19) are presented in Table III for
the Sun and giant planets. In order to get correct upper
limits one has to take into account that k and dk are
perpendicular to each other, which restricts their possible
values and angles with e3 (see also endnote [99] in [35]).

4. Estimation of 2PN quadrupole-quadrupole term

The 2PN quadrupole-quadrupole term in (K2) reads

ΔcτMab×Mcd
2PN ¼ G2M̂abM̂cd

c4
X10
n¼1

Tabcd
ðnÞ TðnÞðx1; x0Þ; ðK20Þ

where the tensorial coefficients Tabcd
ðnÞ are given by

Eq. (H4) and the scalar functions TðnÞ have been defined
by Eq. (K10). In order to estimate the upper limit of the
individual terms in (K20) the assumption is adopted that to
a good approximation the giant planets can be considered
as axially symmetric bodies, that means for the product of
two mass quadrupole tensors [cf. Eq. (B36)] the following
expression is used:

M̂ab M̂cd ¼ M2jJ2j2P4

×

�
1

9
δabδcd −

1

3
δabδc3δd3 −

1

3
δa3δb3δcd

þ δa3δb3δc3δd3

�
; ðK21Þ

where it is assumed that the x3 axis of the coordinate system
is aligned with the symmetry axis e3 of the massive body. It
is advisable to introduce the parameter (C8) and (C9) as
well as relations (K13)–(K14), which considerably simplify
the expressions in (K20). Then, the estimation proceeds in a
very similar way as for (K11) and one finds, by means of
the computer algebra system MAPLE [63] the following
upper limit:

jΔcτMab×Mcd
2PN j ≤ 8

ðdkÞ2
x1

G2M2

c4
P4

ðdkÞ4
jJ2j2: ðK22Þ

Numerical values of (K22) are presented in Table III for
the Sun and giant planets. In order to get correct upper
limits one has to take into account that k and dk are
perpendicular to each other, which restricts their possible
values and angles with e3 [see also endnote [99] in [35]].
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