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I define here a novel function on a modeled space of gravitational-wave signals, before studying its
properties as a statistic for detection, as an objective function for identification, and as an effective
likelihood function for inference. The main motivation behind this work is the open data-analysis problem
for signals from extreme-mass-ratio inspirals, which is severely hindered by the presence of strong nonlocal
parameter degeneracy in the signal space. I demonstrate the utility of the proposed function for the analysis
of such signals, and suggest various possible directions for future research.
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I. INTRODUCTION

The scientific inverse problem in gravitational-wave
(GW) astronomy comprises three distinct data-analysis
procedures (in addition of course to the vital tasks of noise
characterization and forward source modeling, both of
which we will assume can be achieved at full accuracy
for present purposes). In the order they are performed, these
procedures are:

(i) Detection: Establishing the statistically significant
presence of a GW signal in noisy detector data;

(ii) Identification: Mapping the detected signal (suffi-
ciently) accurately to the source parameters of a
(sufficiently) representative forward model;

(iii) Inference: Estimating the Bayesian posterior prob-
ability of the actual source parameters.

Detection can be performed with or without models, while
identification requires at least an approximate model, and
inference relies on a highly accurate one. The combination
of detection and identification is commonly referred to as
“search.” For almost all classes of GW source, identifica-
tion is unnecessary when inference in the full model space
is feasible, and/or guaranteed when accurate models are
straightforward to invert (hence its complete neglect in
much of the literature).
In the case of the extreme-mass-ratio inspirals (EMRIs)

that will be observed by the near-future ESA–NASA
mission LISA [1–4], the traditional dichotomy of detection
and inference (or “parameter estimation”) breaks down.
Indeed, the overall EMRI inverse problem remains an open
one, with well-documented obstacles arising from the

theoretical challenges in achieving the required accuracy
and extensiveness for models [5,6]; computational limi-
tations in attaining sufficient model efficiency [7,8]; as well
as the inherent difficulty in exploring the voluminous
EMRI signal space, due to strong and nonlocal parameter
degeneracy. This last feature was recently characterized
qualitatively by Chua and Cutler [9], and is the primary
hindrance to all three procedures of detection (uncertain
criteria for reliable candidates), identification (multiple
spurious candidates across signal space), and inference
(impractical without highly localized priors) within the
EMRI data-analysis problem. Past work on EMRI search
[10–14] has sought to provide practical solutions, but has
not shown that identification in particular can be acco-
mplished both reliably and efficiently.
For a fresh take on the problem, I propose in this

manuscript a “one-stop” function with various favorable
geometrical and statistical properties for EMRI detection,
identification and inference. These properties are analyti-
cally and numerically characterized to an extent that should
in my opinion leave little doubt over the utility of the
function in realistic applications; stress tests on full-scale
EMRI simulations are consequently left for future studies.
The function takes the form

fðθÞ ≔ XðθÞ exp
�
−
1

2
βðθÞχ2ðθÞ

�
: ð1Þ

Here, X is the standard matched-filtering detection statistic
for a single signal template [Eq. (5)]; β > 0 is a temper-
aturelike calibration factor that is fully specified by the
template model [Eq. (17)]; and χ2 reduces for actual signals
to a chi-squared statistic with M degrees of freedom*alvincjk@nus.edu.sg
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[Eq. (14)], arising from a suitable decomposition of the
template model into M > 1 modes. Equation (1) is then to
be used in a stochastic sampling algorithm, where the target
probability density is ∝ exp f (and so its logarithm, which
is the commonly supplied quantity, is f þ const). It has no
tuning parameters.
The manuscript also touches on a larger second thesis:

that most classes of coherent (phase-matching) statistics
employed in stochastic GW searches are actually subopti-
mal due to uncontrolled variations of the search statistic
over the model space, caused by nonlocal signal correla-
tions as well as the manifestation of detector noise. Such
variations can generally be eliminated in f for any specific
application of coherent search, through the choice of χ2 (the
mode decomposition) and β. While these are tailored here
to the qualitative nature of the EMRI signal space, they
might also be defined for example to suppress the impact of
transient noise artifacts, or to aid future searches for long-
duration signals from precessing and eccentric comparable-
mass binaries (where nonlocal degeneracy could likewise
be an issue).

II. DERIVATION

In this section, we will expand on the derivation of
Eq. (1) in some detail. Our starting point is the generic
decomposition of a GW-signal template hðθÞ as

hðθÞ ¼
XM
m¼1

hmðθÞ þ ϵðθÞ; ð2Þ

with the following assumptions, valid for all m, m0:

hhmjhmi > 1; jhhmjhm0 ij ≪ 1; hϵjϵi ≪ 1; ð3Þ

where h·j·i is the usual detector-noise-weighted inner
product on the space of fixed-length time series [15].
We will use the term “modes” to refer to any set fhmg
satisfying (2) and (3), rather than the familiar angular
modes fhlmg of gravitational radiation. (In fact, fhlmg
generally does not satisfy the first two conditions of (3).)
The decomposition (2) and (3) can still be achieved

phenomenologically for comparable-mass binary mergers
by a simple partition of their signals in the frequency
domain [16], and thus the proposed function (1) might be
beneficial (but not nearly as crucial) for the analysis of such
sources. Equations (2) and (3) might also be satisfied by
the near-monochromatic signals from quasicircular early-
inspiral binaries, through a partition in the time domain. A
more physically motivated decomposition can be obtained
for generically inclined and eccentric EMRIs into a Kerr
black hole, where the signal power is spread across various
harmonics of the three fundamental frequencies; indeed,
the canonical modeling approach relies on an angular and

frequency-based decomposition h ¼ P
hlmkn in the first

place [17].
Let us now quickly revisit various familiar quantities and

identities in GW data analysis, before introducing several
new ones. The optimal signal-to-noise ratio (SNR) for a
template h is its norm with respect to h·j·i:

ρðθÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhðθÞjhðθÞi

p
: ð4Þ

We will denote the time-series data from the detector as x,
and work primarily with two scenarios (hypotheses): the
null H0, where x equals the (assumed stationary and
Gaussian) detector noise n; and H1, where x ¼ h� þ n
for a single EMRI signal h�. Further assume that h� lies in
the signal space described by the template model hðθÞ, such
that h� ¼ hðθ�Þ for some θ�. The detection SNR for a
template h is the scalar projection of x on h, and is a statistic
of the data (so we will henceforth refer to it as the standard
detection statistic). It is defined as

XðθÞ ≔ hxjĥðθÞi ≔ hxjhðθÞi
ρðθÞ : ð5Þ

Recall that for all time series a, b, the noise-weighted
inner product satisfies the identities

E½hnjai� ¼ 0; E½hnjaihnjbi� ¼ hajbi: ð6Þ

Thus at the template parameters θ� (with corresponding
optimal SNR ρ�), we have

XjH0 ∼N ð0; 1Þ; XjH1 ∼N ðρ�; 1Þ: ð7Þ

Finally, we have the standard Bayesian (log-)likelihood
function of the source parameters θ, given H1:

lnLðθÞ ≔ −
1

2
hx − hðθÞjx − hðθÞi

¼ hxjhi − 1

2
ðhhjhi þ hxjxiÞ: ð8Þ

There is a clearly a close relationship between X and L; we
can make this more intuitive by observing that the term
hxjxi is constant over parameter space, while we also have
∂θhhjhi ≪ ∂θhxjhi. Thus exp ðXρÞ ¼ exp hxjhi is an excel-
lent local approximation to L as a density function (i.e.,
modulo a normalization factor).
We may now define analogous vector-valued versions of

ρ and X using the mode decomposition (2), and denote
these using boldface by ρ and X. These M-vectors are
given component-wise by

½ρðθÞ�m ≔ ρmðθÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhmðθÞjhmðθÞi

p
; ð9Þ
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½XðθÞ�m ≔ XmðθÞ ≔ hxjĥmðθÞi ≔
hxjhmðθÞi
ρmðθÞ

: ð10Þ

It is straightforward to see that

X · ρ ¼ hxjhi ¼ Xρ ð11Þ

and, from the second assumption in Eq. (3), that

jρj2 ¼ ρ · ρ ¼ hhjhi ¼ ρ2; ð12Þ

but note that jXj2 ¼ X ·X ≠ hxjxi.
From the noise identities (6) [and the second assumption

in Eq. (3)], we have for θ� and all m:

XmjH0 ∼N ð0; 1Þ; XmjH1 ∼N ðρ�m; 1Þ; ð13Þ

where the ρ�m sum to ρ in quadrature from Eq. (12). Thus
the chi-squaredlike statistic

χ2ðθÞ ≔ jXðθÞ − ρðθÞj2 ð14Þ

has a chi-squared distribution with M degrees of freedom,
but only given H1 and when evaluated at the point θ�.
The appearance of χ2 in the exponential factor of f

suppresses secondary peaks arising from nonlocal param-
eter degeneracy, which lifts the main barrier to EMRI
search and inference. At this point, the observant reader
might note that the exponential amplification of any
discrepancy between the signal and the secondary template
also fulfills the same purpose. Crucially, however, the
additional information provided by the effective decom-
position of the detection statistic X into M > 1 modes
allows secondary suppression to be achieved without a
severe impact on the overall detection sensitivity of f at θ�.
We will return to this point shortly in Sec. II A.
Let us now turn to the remaining undefined quantity in

Eq. (1), which is the calibration factor β. Without loss of
generality, we may sort the decomposition in Eq. (2) by
imposing hhmjhmi ≤ hhmþ1jhmþ1i, such that the dominant
mode is hM (which is often h2200, in large regions of the
signal space). One of the key findings in Chua and Cutler
[9] is that the strongest secondary peaks in the likelihood
(or detection statistic) over the model parameter space are
overwhelmingly caused by the dominant mode of a non-
local template being phase-aligned with the dominant mode
of the actual signal, without significant contribution from
any alignment of the other modes.
We may use this observation to calibrate the secondary

suppression of Eq. (1) with n ¼ 0 against the noise
properties of XjH0; this can be performed using only
information about the signal space. For each θ, let us
consider the corresponding putative signal hðθÞ, and then
require that f2 ¼ VarðXÞ ¼ 1 for any putative template
with a dominant mode that perfectly matches that of

hðθÞ, but no other matched modes. Such templates are
not explicitly required, of course, since they satisfy by
definition

Xm ¼ ρmðθÞδmM; ð15Þ

where δ is the Kronecker delta function. For these temp-
lates, it follows that

f ¼ ρMðθÞ exp
�
−
1

2
βðθÞðρ2ðθÞ − ρ2MðθÞÞ

�
¼ 1: ð16Þ

Thus we arrive at

βðθÞ ≔ 2 ln ðαðθÞρðθÞÞ
ð1 − αðθÞ2ÞρðθÞ2 ; ð17Þ

where we have defined α ≔ ρM=ρ as the fractional optimal
SNR of the dominant mode relative to the full template at
each parameter point (and so α2 is the fractional power).
Note that βðαÞ is monotonically increasing; also,

1 < M < ρ2;
1ffiffiffiffiffi
M

p < α <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 −M þ 1

p
ρ

ð18Þ

from the first assumption in Eq. (3), so β is well defined:

ðln ρ2 − lnMÞM
ρ2ðM − 1Þ < β <

ln ðρ2 −M þ 1Þ
M − 1

: ð19Þ

Finally, this particular definition of β allows Eq. (1) to be
written alternatively as

f ¼ XðαρÞ−χ2=ðð1−α2Þρ2Þ; ð20Þ

which is useful for direct evaluation—but we shall keep
working with the exponential form for analytical con-
venience. The end result of the calibration is, essentially,
that any secondary peaks in fjH1 arising from nonlocal
degeneracy will have a maximum height comparable to the
typical variation of XjH0 due to detector noise.

A. Relationship to other functions

It is useful to construe the proposed function f as an
approximation to a more easily interpreted function

f0ðθÞ ≔ XðθÞ
�
1 − γ

�
M
2
;
β0ðθÞχ2ðθÞ

2

��
; ð21Þ

where γ denotes the regularized lower incomplete gamma
function (i.e., the cumulative distribution function of β0χ2 if
it were chi-squared-distributed). The approximation of f0
by f is exact in the caseM ¼ 2 and β0 ¼ β. ForM > 2, the
approximation is still reasonably preserved by the
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calibration factor β0, which is now ≠ β but similarly
determined by requiring f0 ¼ 1 at the location of a pure
dominant-mode secondary in the case of n ¼ 0:

β0 ¼ 2

ð1 − α2Þρ2 γ
−1
�
M
2
; 1 −

1

αρ

�
: ð22Þ

The flatter profile in the vicinity of θ� of the 1 − γ factor
relative to the exponential factor in Eq. (1) means that f0 is
locally a closer approximation to X than f, which could be
beneficial in practical terms. Nevertheless, the function f0 is
more difficult than f to characterize analytically, and is thus
left for future investigation.
When β0 is simply set to unity across the signal space, f0

evokes the chi-squared-weighted SNR seen in ground-
based pipelines (as introduced in [18]). There, however, X
is weighted by an empirically determined function of χ2 to
suppress nonstationary/non-Gaussian noise, and the prod-
uct of the two has not been fundamentally characterized in
the manner of Sec. III (to the best of my knowledge). The
β0 ¼ 1 case is also equivalent to the modified hxjhi term in
the first of the two “veto likelihoods” proposed in Chua and
Cutler [9], modulo a factor of ρ. The functions in that paper
also fulfill the specific aim of secondary suppression, but in
a more ad hoc way and, crucially, as an adjustment to lnL
rather than X.
There exists another interesting interpretation of f as the

product of X and L0, where the (scaled) logarithm of the
latter is written in a deliberately evocative way as

lnL0

β
≔ hxjhi − 1

2

�
hhjhi þ

X
m

hxjĥmihĥmjxi
�
: ð23Þ

The function L0 bears obvious structural similarities to L,
with the key difference being that the squared norm (with
respect to h·j·i) of x is replaced with the squared norm (with
respect to the Euclidean inner product) of its projection
onto the mode basis describing each template. One may
then wonder whether the function XL, or even XL0 with
M ¼ 1, might provide a similar suppression of secondaries
with suitable calibration. However, there is no way to
define a sufficiently discriminative calibration without
mode information—any attempt leads to an over-suppres-
sion of templates in the local vicinity of θ�, which is further
amplified in the presence of noise and destroys the
sensitivity of the template at θ� itself.

III. PROPERTIES

To study the various geometrical and statistical properties
of the functionf for EMRI data analysis, wewillmake use of
the AAK template model for generically inclined and
eccentric Kerr EMRIs [19,20], along with the long-
wavelength LISA response [21]. We keep to the slightly
older implementation employed in Chua and Cutler [9],
rather than the latest version introduced in [8] (to avoid

redoing the computationally tedious search for secondaries in
the space of a newmodel). As in [9], our analysis is restricted
to six intrinsic parameters: the two component masses, the
spin of the primary mass, and the three initial conditions for
the orbit/frequencies. These are commonly parametrized as

θ ≔
�
lg

μ

M⊙
; lg

M
M⊙

;
a
M

;
p0

M
; e0; cos ι0

�
; ð24Þ

where ðμ;M ≫ μÞ are the masses, a is the usual spin length
scale describing Kerr spacetime, and ðp0; e0; ι0Þ are the
initial quasi-Keplerian semi-latus rectum, eccentricity and
inclination of the orbit.
The signal injection and “secondary B” from [9] are

chosen here as a representative injection and secondary
template, respectively; their associated parameters are

θ� ¼ ð1; 6; 0.5; 9.5; 0.2; 0.866Þ; ð25Þ

θS ¼ θ� þ ð3;−12;−54; 170; 1; 64Þ × 10−3: ð26Þ

While the secondary parameters might not look particularly
nonlocal to the uninitiated reader at first glance, they lie
well beyond any realistic Bayesian credible region for the
inferred parameters. At a typical SNR of 20, the 1-sigma
values for these parameters (relative to the maximum
a posteriori estimate) are

�ð0.07; 0.2; 0.5; 3; 0.06; 0.8Þ × 10−3: ð27Þ

There are however some key changes between the setup
here and in [9]. For the present analysis, we consider only
full templates sampled at 0.1 Hz, and not the phase-
trajectory “templates” adopted in that work. White noise
and the Euclidean inner product on time series are used here
for convenience, and without much loss of generality—this
simplification has negligible impact on the correlation
structure of signal space at the considered scales, while
the properties of any statistics derived from the noise-
weighted inner product are preserved. More crucially, the
exact definition of modes is slightly different in the two
studies. In [9], only M ¼ 4 radial modes with ðl; m; kÞ ¼
ð2; 2; 0Þ and −1 ≤ n ≤ 2 are considered; here, we still use
M ¼ 4, l ¼ 2 and −1 ≤ n ≤ 2, but with an implicit sum
over ðm; kÞ (i.e., the modes now include their sidebands
from Lense–Thirring precession, and essentially form the
partially decomposed quadrupolar harmonic basis intro-
duced by Barack and Cutler [22]). Finally, the signals we
examine here are shortened from a duration of two years
to six months, but renormalized accordingly to retain an
injection SNR of 20. This does not change the loca-
tion of strong secondaries, at least not significantly (see
Sec. IV B 1 in [9] to understand why).
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A. As a detection statistic

Let us now examine the statistical properties of fðθ�Þ
under the two hypothesesH0∶ x ¼ n andH1∶ x ¼ h� þ n.
Closed-form descriptions of the full probability distribu-
tions are not straightforward to obtain, but their first couple
of moments are comfortably within reach:

E½fjH0� ¼
βρ

ðβ þ 1ÞðMþ2Þ=2 exp
�
−

βρ2

2ðβ þ 1Þ
�
; ð28Þ

E½f2jH0� ¼
4β2ρ2 þ 2β þ 1

ð2β þ 1ÞðMþ4Þ=2 exp
�
−

βρ2

2β þ 1

�
; ð29Þ

E½fjH1� ¼
ρ

ðβ þ 1ÞM=2 ; ð30Þ

E½f2jH1� ¼
ð2β þ 1Þρ2 þ 1

ð2β þ 1ÞðMþ2Þ=2 : ð31Þ

The full distributions of fjH0 and fjH1 are strongly non-
Gaussian, and so the moments (28)–(31) are only loosely
indicative of their location and scale. Nevertheless, the
usual means E½f� and 1-sigma values E½f� � ðE½f2� −
E½f�2Þ1=2 are convenient quantities for examining how
these distributions depend on α, M and ρ�. In Fig. 1, the
mean and spread of fjH0 and fjH1 are plotted as a function
of α for the representative values of M ¼ 4 and ρ� ¼ 20.
Also included are curves for an increased number of modes
(M ¼ 30 is approximately the minimum number to
describe EMRIs of all eccentricities in the Barack–Cutler
harmonic basis [22]), as well as for a slightly higher
injection SNR of 30.
For all considered M and ρ�, the mean and spread of

fjH0 are ≪ 1 for most values of α—i.e., the statistic f is
highly insensitive to noise. Its sensitivity to an actual signal
is also reduced from that of X, although this reduction is
limited for M ¼ 4 and α ≲ 0.8 (since fjH1 retains a mean
of ≈ρ� with a spread of ≈1 in that regime). As α approaches
its maximal value in Eq. (18), the sensitivity of f vanishes,
which diminishes its utility for near-equatorial Kerr EMRIs
with eccentricities that are ≪ 1 (since h ≈ hM ¼ h2200).
This is a narrow region of signal space, however, and higher
l-modes might still carry enough power for α to be
suppressed in parts of the region (if sufficient SNR is
accumulated close to plunge).
Even with the Barack–Cutler mode decomposition, a

fairly large number of modes must be included in Eq. (2)
for a global description of the signal space [22]. This is
detrimental to the sensitivity of f (see red curve in Fig. 1)—
less so for high-eccentricity sources, where α is lower due
to the larger spread of power across the modes, but certainly
for low-eccentricity ones, which would be better analyzed
with fewer modes. However, as M is a discrete parameter,
we will prefer to avoid varying it across signal space. It is

clear fromEq. (30) andFig. 1 that the ideal decomposition for
each signal in the space is with both α and M as small as
possible. This might be accomplished for fixedM through a
θ-dependent definition of the decomposition itself, e.g.,
relaxing the third assumption in Eq. (3) by just choosing
the M strongest modes for each template, or even treating ϵ
(the sum of the remaining modes) as a single mode if it
satisfies the first two assumptions and is not dominant. Such
variants ensure that f still changes smoothly over the signal
space; we will leave their study to future global analyses.
To characterize the discriminative power of f as a

detection statistic for the representative signal injection
considered in this work, we may empirically estimate
pðfjH0Þ and pðfjH1Þ by generating 104 realizations of
each statistic, then fitting the samples to a large family of
common distributions with a Kolmogorov–Smirnov test.
The empirical distribution for fjH0 admits no satisfactory
fits, but is observed to satisfy Pðf > 0jH0Þ ≈ 1=2 to a very
good approximation. Since we are concerned only with the
positive realizations of fjH0 (denoted by fþjH0) when
computing false-alarm thresholds, we may fit only these

FIG. 1. Top: dependence of the means (solid lines) and 1-sigma
values (dotted lines) of fðθ�ÞjH0 on α, for variousM and ρ�. Note
that the vertical axis is in logarithmic scale. Bottom: dependence
of the means and 1-sigma values of fðθ�ÞjH1 on α. The triangle
corresponds to the representative injection considered in this
work, for which α ≈ 0.9.
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and simply reduce the fitted probability density by a factor
of two. The distribution of fþjH0 is best fit by a log-
normal distribution with a Kolmogorov–Smirnov statistic
D104 ≈ 0.01, while fjH1 obeys a generalized beta distribu-
tion with D104 ≈ 0.006 (see Fig. 2).
With the fitted probability densities pðfþjH0Þ and

pðfjH1Þ in hand, we may then estimate the false-alarm
probability for f given some fixed detection probability. To
achieve a minimum detection probability

PD ≔
Z

∞

fT

dfpðfjH1Þ ¼ 1 − 10−3; ð32Þ

the maximum threshold value for f is fT ≈ 9, and the
corresponding false-alarm probability is

PF ≔
Z

∞

fT

dfþ
1

2
pðfþjH0Þ ∼ 10−21: ð33Þ

An analogous calculation for the standard detection statistic
X yields a threshold XT ≈ 17 and PF ∼ 10−64. Thus f is
formally less discriminative than X due to both its reduced
sensitivity and the heavier tail of its (fitted) null distribu-
tion, although the practical difference between the two is
negligible at an SNR of 20 (and this representative choice
of θ�).
Across the full signal space, nonlocal degeneracy greatly

complicates any attempt at global analysis, and diminishes
the validity of idealized treatments, e.g., highly conservative
estimates of the required detection-statistic threshold at fixed
false-alarm probability for a putative bank of uncorrelated
templates fhðθiÞg spanning the space [20,23]. Furthermore,
the joint distributions of the corresponding statistics ffig
under both hypotheses depend strongly on the mode struc-
ture across signal space, as opposed to those for fXig. The
single-template analysis from above would seem to indicate
that ffig ismore prone to Type-II errors than fXig for a fixed
false-alarm probability; however, it also completely fails to
address global issues such as the increased Type-I error rate
of fXig over ffig when detecting the exact set of signals
present in data, since it cannot account for false alarms due to
secondaries of actual signals.

B. As an objective function

The identification aspect of search is in essence an
optimization problem—specifically, the global maximiza-
tion of some objective function that describes how well the
data matches each point in the space of a template model.
Pure optimization techniques are highly efficient when
maximizing concave(-down) or even log-concave func-
tions, while optimization through sampling is more suitable
for functions that are only concave or log-concave beyond a
bounded region [24]. Sampling, or at least stochastic
optimization, would seem to be the only viable option
for nontextbook objective functions such as X and L.
Although these functions are log-concave in a highly
localized region, their large-scale structure is not (unless
a globally log-concave prior is specified, but this rather
defeats the purpose of search). Furthermore, they suffer not
only from intrinsic variations due to nonlocal signal
correlations (with EMRIs being the most extreme mani-
festation of this), but also from noise variations that are
locally correlated on the same length scales as the points in
the template model.
While the function f is derived with secondary sup-

pression as the primary motivation, it has the beneficial side
effect of significantly suppressing noise as well; this fact
turns out to be quite useful for the purposes of identifica-
tion. In Fig. 3, the values of fjH1 and XjH1 are compared
along an (extended) connecting line in parameter space
between the injection parameters θ� and the considered

FIG. 2. Top: probability distributions of lg fþðθ�ÞjH0 (red;
empirical and normal fit) and lgXþðθ�ÞjH0 (black) for the
representative injection considered in this work. Bottom: prob-
ability distributions of fðθ�ÞjH1 (red; empirical and generalized-
beta fit) and Xðθ�ÞjH1 (black). In both plots, the exact means
(dashed lines) and 1-sigma values (dotted lines) of fðθ�Þ are
included for reference.
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secondary parameters θS. Following Chua and Cutler [9],
we will refer to the restriction of each function to this one-
dimensional domain as a connection. Not shown in the
figure is lnL, which is effectively Xρ� with a slight gradient
in the baseline due to changes in ρðθÞ (these become
significant on global length scales, and so the likelihood is
ill suited to search). Alternatively, expX is locally an
annealed version of L with temperature ρ�.
Also included in the comparison is a semicoherent

statistic SN where both data and template are transformed
into the time–frequency domain (with a time resolution of
N), and the statistic is the sum of N less informative
statistics defined on the individual time segments. This
concept is most simply realized through a short-time
discrete Fourier transform of both time series, with a
partition into N similar-length segments (indexed by i)
and no window. We may define a semi-coherent inner
product between data and template as

hxjhiN ≔
XN
i¼1

max
ext:

hxijhii; ð34Þ

where the maximization is over a subset of the extrinsic
degrees of freedom. These are not the extrinsic parameters
per se, and can bleed into the intrinsic parameters in the
standard EMRI parametrization. Note that hxjhi1 ≠ hxjhi;
also, for white noise (or whitened time series with the
Euclidean inner product), each hxjhiN reduces exactly to
hxjhi in the absence of maximization.
For present purposes, we will restrict to analytically

maximizing over an overall time shift [25], but not an
overall phase shift [26] for all modes (which is less trivial to
perform analytically in the case of EMRIs). Our semi-
coherent statistic itself is then defined as

SN ≔
hxjhiNffiffiffiffiffiffiffiffiffiffiffiffiffihhjhiN

p ¼ hxjhiN
ρ

¼ hxjĥiN: ð35Þ

Maximizing over some extrinsic degrees of freedom
naturally simplifies the global structure of SN , at the cost
of losing information about those degrees of freedom. This
manifests as a significantly broadened peak for SN around
θ�, where the broadening increases with N (see Fig. 3).
More generally, semicoherent filtering for EMRI search
[27] is an oft-discussed but as yet unactualized paradigm,
since it provides an effective means of constructing
objective functions with similar properties to SN . It is also
highly suited to the nature of LISA data, being overtly
compatible with estimation of the nonstationary detector
noise [28,29], as well as analysis approaches in the
presence of data gaps [30,31]. While promising in princi-
ple, however, we will see that the main benefit of semi-
coherent statistics such as SN (a broadened peak around θ�)
is slightly negated by the retained susceptibility to noise
(which is on par with that of X).
Rather than performing multiple realizations of full-scale

Markov-chain Monte Carlo simulations, we may gain some
insight into the intrinsic traversability of various objective
functions by simply examining the typical speed of a directed
Metropolis–Hastings chain along the connecting line from
secondary to injection. This approach is used to conduct a
ceteris-paribus comparison of the noisy (x ¼ h� þ n) func-
tions shown in the bottom panel of Fig. 3, with minimal and
identical assumptions on the sampling algorithm that is used.
It is clear thatX itself is significantlymore difficult to traverse
than the other functions, so we shall anneal it by an effective
temperature of ρ� to ensure a fair fight. Other functions have
also been proposed in the literature (or are currently under
investigation), both generally and specifically for EMRIs
[9,32,33]. We do not consider these here, but only note that
the same set of criticisms raised in this manuscript are likely
to apply (they are either overly ad hoc, or susceptible
to noise).
In this simple directed-chain analysis, a Markov chain is

constrained to lie on the connecting line fθig from θS

(i ¼ 1) to θ�, with a fixed-step transition �ðθiþ1 − θiÞ that
is small enough to resolve the fine structure in all

FIG. 3. Top: extended connections of X, S6, S12 and f between
injection and secondary parameters, without noise (x ¼ h�). Also
included are an annealed standard detection statistic X=ρ�, as well
as f for a different signal space (with a truncated duration of three
months from the reference initial time). Bottom: as above, but
with noise (x ¼ h� þ n).
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connections (i.e., the variations due to noise). The proposal
distribution is

PPðθjjθiÞ ¼
�
1 − 1=ðGþ 1Þ j > i

1=ðGþ 1Þ i < j
; ð36Þ

where G > 1 is a “diffusion gradient” of sorts, and the
acceptance probability for each objective function F is

PAðθjjθi;FÞ ¼ min

�
1;

1

G
exp ðFðθjÞ − FðθiÞÞ

�
: ð37Þ

Each Markov chain is allowed a maximum length of 103,
and 103 such chains are produced for the four functions
X=ρ�, S6, S12 and f. The results are summarized in Fig. 4,
where the minimum, median, and maximum locations of
the chain (i.e., the indices of θi) are shown at each step
in the chain. Perhaps unsurprisingly, the median chain
speed for each objective function is dictated by the degree
of noise in the corresponding connections; the least-
traversable function is S6, followed by S12 (which is
visually smoother from the bottom panel of Fig. 3), then
X=ρ� (which retains the secondary peak but is even
smoother in the tail region) and finally f (which is virtually
constant in the tail region). This trend does not appear to
depend on the diffusion gradient, with the speed order
preserved at various examined values of G.
The above analysis is not fully conclusive, of course,

since the chains are directed along a line toward the global
peak for the sake of efficiency. In a higher-dimensional
setting, a search with f will take longer to chance upon the
peak, whose extent at the baseline value is determined by
the local length scale of fully coherent signal correlations
(the same holds for X and lnL, regardless of any annealing
factor). This is not nearly as localized as the posterior bulk

itself, whose characteristic length scale is inversely propor-
tional to the injection SNR; see Sec. III C. Thus the global
peak in f is no more difficult to find than its counterpart
in, say, the highest-temperature likelihood of a parallel-
tempering algorithm. On the other hand, while the larger
“capture region” of the semicoherent statistic will no doubt
be beneficial, strong nonlocal variations due to signal
correlations are still present in its tail region (this is not
evident along the connections shown in Fig. 3, but the
baseline is certainly not ≈−5 across the signal space).
Whether or not these larger-scale gradients will be a net
help or hindrance to semicoherent search remains to be
determined.
It is also possible to construct f-based functions with

broadened peaks by conducting less informative compar-
isons between data and template, but without resorting to
the partial maximization or marginalization of the function
over some degrees of freedom. The most direct approach is
simply to alter the signal space altogether, by truncating the
signal templates (and data) to some shorter observation
duration with the original reference initial time (defined
implicitly by ðp0; e0; ι0Þ). An example of f for a truncated
duration of three months is shown in Fig. 3 (dashed red
connections), where the broadening of the primary peak
and the retained suppression of all other variations are both
evident. The function f with a range of truncated obser-
vation durations might thus be used in a sampling scheme
that is akin to parallel tempering, or similar hierarchical-
style searches.
We have thus far been considering only the single-signal

hypothesis H1 for identification. In the case of multiple
EMRI signals, the difficulty in searching the signal space is
amplified for all functions. However, it is not hard to see
that the complexity of f will only be weakly affected
(unless secondaries from different signals are likely to
combine, but an analytical calculation in Chua and Cutler
[9] indicates that they are not). Strong peaks in f exist only
at the parameters of actual signals; while search chains will
tend to be trapped at each location, this does not detract
from either parallelized or sequential search, and is even
beneficial as it facilitates a direct transition into inference
(see Sec. III C).
The efficiency of sampling algorithms when used for

optimization relies not only on the global structure of the
objective function, but also the intrinsic cost of evaluating
the function. While the evaluation of the vector-valued
detection statistic X incurs an overt factor of M in
computational complexity over X (or L), this only multi-
plies the cost of the inner-product operation h·j·i. The cost
of each such operation certainly dominates the total cost on
the signal-processing end—but the EMRI template h itself
is also notoriously expensive to generate without computa-
tional enhancements, and ultimately even irreducibly so
due to its sheer length and complexity. Depending on the
efficiency of the template model, the function f should thus

FIG. 4. Minimum, median and maximum locations of 103

chains for each objective function (with maximum length 103),
directed along the connecting line from secondary to injection.
The diffusion gradient is G ¼ 2, chosen such that approximately
half of the chains for f reach the injection parameters.
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be evaluable at little to modest additional computational
cost over X or L.

C. As a likelihood function

Finally we turn to the procedure of inference, by ex-
amining the utility of fjH1 as an effective (log-)likelihood
function. Recall that at leading order, the standard log-
likelihood (8) in the vicinity of θ� is simply [34]

lnL ¼ −
1

2
ΔTIΔþOðjΔj3Þ; ð38Þ

where Δ ≔ θ − θ�, and the Fisher information I is given
component-wise by the pullback metric on signal space:

I ¼ h∂θhj∂θhijθ¼θ� : ð39Þ

At a sufficiently high SNR, the full likelihood becomes
well represented by Eq. (38), and the resultant posterior
appears close to Gaussian in the bulk region. For the sake of
concreteness, we will define the posterior-bulk region here
as the set of points where lnL exceeds the 3-sigma value
−9=2 for the leading-order likelihood (with a locally
uninformative prior).
Assuming the components of ∂θρ2 ¼ 2hhj∂θhi and ∂θβ

are negligible in the bulk (which is generally valid for all
parameters but the luminosity distance), a similar expan-
sion of f about θ� yields

f ¼ −
1

2
ΔTI 0ΔþOðjΔj3Þ; ð40Þ

where

I 0 ¼ βρ

�
I −

X
m

Im

�
þ 1

ρ
I ; ð41Þ

with the “Fisher information” for each mode given by

Im ¼ h∂θhmj∂θhmijθ¼θ� : ð42Þ

The exponential factor in Eq. (1) contributes to the first
term in Eq. (41), while the second term is proportional to
the Fisher information and arises from the expansion of X
about θ� (with the additional factor of 1=ρ due to the
template normalization in X).
Positive-definiteness induces a partial ordering on the set

of all symmetric matrices (and thus the subset of positive-
definite matrices as well). We now assume that Im ≺
Imþ1 ≺ I for all m. Then (very roughly):

I −
X
m

Im ≈ I − IM ≈ ð1 − α2ÞI ; ð43Þ

and we have

I 0 ≈
2 ln ðαρÞ þ 1

ρ
I : ð44Þ

Since the decomposition (2) for EMRIs is in terms of
signal-like modes with the same underlying dependence on
the source parameters, these modes vary in qualitatively
similar ways to the full signal template, such that Eq. (44) is
not a terrible approximation. In fact, the local profile of f
about θ� generally looks consistent with negative excess
kurtosis, in which case the approximation is actually
conservative. For ρ > 5 and all α, Eq. (44) indicates a
broadening of f over lnL, since we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

2 ln ðαρÞ þ 1

r
> 1; ð45Þ

where the left-hand side is the associated length-scale
factor. This quantity is plotted as a function of α in
Fig. 5, for various values of ρ� [it does not depend on
M due to the crude approximation in Eq. (43)].
For our representative signal injection, α ≈ 0.9 and the

estimated length-scale factor is ≈1.7—this is a slight
underestimate of the actual broadening of f over lnL,
which is by a factor of between two and three (see Fig. 6).
Also included in Fig. 6 are the profiles of f0 from Eq. (21)
(which, recall, is slightly more flat-topped and locally
closer to X), as well as X itself (where the broadening over
lnL is by a factor of ðρ�Þ1=2 ≈ 4.5, as expected).
With the general broadening of f over lnL, the extent of

the recovered distribution from the sampling of f provides
useful prior localization for regular posterior estimation
with L. More promisingly, note from Fig. 5 that the
broadening is also modest (no more than a factor of five
at an SNR of 20). This constrained broadening of f over
lnL implies that the search chains might (upon a suitable
level of convergence) be used directly as posterior samples,
with the unnormalized importance weights

FIG. 5. Dependence of the estimated length-scale factor (45) on
α, for various ρ�. The triangle corresponds to the representative
injection considered in this work, for which α ≈ 0.9.
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w ≔ Lπ exp ð−fÞ; ð46Þ

where π is the desired Bayesian prior.

IV. CONCLUSION

In this manuscript, I propose a potentially useful one-
stop function fðθÞ for various tasks in GW data analysis; it
is conditioned on the detector data x, and defined for some
signal-template model hðθÞ with a general mode decom-
position. The basic mechanics of f rely critically on a set
of assumptions about the decomposition—essentially that
signal templates may readily be written as the sum of
M > 1 uncorrelated modes, each with substantial power.
This work is primarily motivated by the deep-rooted
problem of strong nonlocal parameter degeneracy in
the space of EMRI signals, and so recent results by
Chua and Cutler [9] on the nature of this phenomenon
are used to define a model-specified calibration of the
function for EMRI data analysis. I then build a case for the
utility of f by examining its properties as a statistic for
detection, as an objective function for identification, and
as an effective likelihood function for inference.
The main difficulty in EMRI data analysis is the

procedure of source identification, which is essentially a
large-scale optimization problem. Traditionally defined
objective functions over the model space, such as the
standard detection statistic or standard likelihood function
in GW data analysis, suffer from the presence of numerous
and highly pronounced secondary peaks that hinder iden-
tification. The function proposed here is based on the
principle of deemphasizing these peaks in some way, which
is shared by well-known strategies such as semicoherent
filtering or annealing-type sampling algorithms. Semi-
coherent filtering also falls under another class of strategies
(including, e.g., F-statistic searches [32]) that use partial
maximization or marginalization to conduct less informa-
tive comparisons between data and template. This is useful

for EMRI identification in another way, since it broadens
all peaks in the function—including the primary peak
containing the global maximum, which is highly localized
relative to the model space.
I posit a different tenet here: that a function with virtually

no gradients is easier to search than one with uncontrolled
variations at both large and small length scales. This is
realized in the proposed function by using exponential
suppression to de-emphasize secondaries, rather than
congealing them (as in the case of semicoherent filtering)
or simply rescaling the entire function (annealing). As a by-
product, any less-pronounced variations in the function due
to signal correlations or detector noise are suppressed to a
near-constant baseline. I argue in Sec. III B that the
elimination of such variations might play a larger role in
the efficacy of search algorithms than any other individual
factor, although the jury is still out on whether exponential
suppression is generally superior to partial maximization or
vice versa. To provide a useful (if somewhat biased)
analogy, the latter is akin to searching for a bigger needle
in a haystack (really a field of haystacks), while the former
only involves finding a smaller needle in an open field.
The “one-stop” aspect of the proposed function also

connects identification to detection and inference more
seamlessly, at least at the conceptual level. In practice, of
course, one must still assess the statistical significance of
signal candidates through traditional methods, and will
likely take the effort to repeat inference on identified
signals directly with the standard likelihood—but neither
is intrinsically challenging to do for EMRIs. As briefly
discussed in Sec. III B, the function can easily be used in
hierarchical approaches to replicate the advantages of
partial maximization. It is also viable in the broader context
of the LISA global fit: search and inference for individual
(resolvable) EMRI signals will almost certainly be per-
formed independently using the catalog residuals, as they
do not strongly impact noise estimates, or inference on
signals of a different source type [35] (or even on one
another [9]). That being said, some thought might be
required to adapt the function for the presence of data
gaps. Beyond the setting of EMRI data analysis, the general
principle of exponential suppression should also, at mini-
mum, provide an interesting alternative to the existing
paradigms in coherent GW searches.
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FIG. 6. Extended connections of lnL, X, f and f0 between
injection and secondary parameters, with noise and zoomed in on
(a one-dimensional slice of) the posterior-bulk region.
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