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Thanks to unparalleled near-horizon images of the shadows of Messier 87* (M87*) and Sagittarius A*
(Sgr A*) delivered by the Event Horizon Telescope (EHT), two amazing windows opened up to us for the
strong-field test of the gravity theories as well as fundamental physics. Information recently published from
EHT about the Sgr A*’s shadow lets us have a novel possibility of exploration of Lorentz symmetry
violation (LSV) within the Standard-Model extension (SME) framework. Despite the agreement between
the shadow image of Sgr A* and the prediction of the general theory of relativity, there is still a slight
difference which is expected to be fixed by taking some fundamental corrections into account. We bring
up the idea that the recent inferred shadow image of Sgr A* is explicable by a minimal SME-inspired
Schwarzschild metric containing the Lorentz-violating (LV) terms obtained from the post-Newtonian
approximation. The LV terms embedded in Schwarzschild metric are dimensionless spatial coefficients s̄jk

associated with the field responsible for LSV in the gravitational sector of the minimal SME theory. In this
way, one can control Lorentz invariance violation in the allowed sensitivity level of the first shadow image
of Sgr A*. Actually, using the bounds released within 1σ uncertainty for the shadow size of Sgr A* and
whose fractional deviation from standard Schwarzschild, we set upper limits for the two different
combinations of spatial diagonal coefficients and the time-time coefficient of the SME, as well. The best
upper bound is at the 10−2 level, which should be interpreted differently from those constraints previously
extracted from well-known frameworks since unlike standard SME studies it is not obtained from a Sun-
centered celestial frame but comes from probing the black hole horizon scale.
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I. INTRODUCTION

Black holes address the most extreme regions of space-
time [1], and represent one of the most important and
natural predictions of the general theory of relativity
(GTR). It is widely believed that our understanding of
the nature of space-time, as well as some aspects of
fundamental physics, particularly the behavior of gravity
in the strong-field regime and the quantum gravity issue
(the reconciliation of quantum mechanics and gravity in a
unified framework), is deeply dependent on uncovering
the mystery of the black hole [2]. In other words, the main
clue to fundamental physics is expected to come from the
black hole. In the light of extraordinary advances of the

technology, we have now been ushered into a golden era
where black holes and their observational consequences are
detectable on a wide range of scales. One of impressive
examples in this sense are the first images of space-time
around supermassive black holes delivered by the team of
Event Horizon Telescope1 (EHT). This exciting adventure
to uncover the mystery of the deep of spacetime, in essence,
began in 2019 with recording the first image of the M87*
compact object [17–20] and exposing the structure of
the surrounding magnetic field [21,22]. In this direction,
EHT’s team has recently surprised us again by recording
the first images of a supermassive compact object located
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1In this respect, it is essential to mention some leading
literature related to prior observations of black holes in the
galactic center by LIGO/Virgo detectors [3–8] and the Keck
Telescope/Gravity Collaboration [9–16].
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at the center of the Milky Way galaxy i.e., Sagittarius A*
(Sgr A*) [23–27].
The main trait observed in these VLBI-based images,

indicating the existence of a compact object such as the black
hole in the universe, is a bright emission ring surrounding a
central dark depression so that the latter is expected to be the
black hole shadow [28]. The essential condition so that the
radius of the bright ring can act as a proxy for the black
hole shadow radius is that the geometrically and optically
emission regions are, respectively, thick and thin at the
wavelength related to the VLBI network, see for example
Refs. [29,30]. This is exactly the case for both compact
objects M87* and Sgr A*. However, there are some concerns
among researchers about whether the VLBI near-horizon
images related to M87* and Sgr A* address the black hole
shadow surrounded by the photon ring [31–35]. The hori-
zonless compact objects known as black hole mimickers2

are candidates of interest which may disclose the nature of
the mentioned shadow images [40–46] (see also review
paper [47]). Specifically, by making this assumption that
maybe the object at the center of the Milky Way galaxy is a
horizonless supermassive object with a surface reemitting
incident radiation, in Ref. [26] it has been demonstrated that
the present information of Sgr A* provides strong upper
bounds on the radius of such a thermal surface. However,
with a closer look at the key assumption at the heart of this
analysis, its results were challenged in [48]. It is interesting
to note that the next generation of EHT, owing to a high
dynamic range, will provide the possibility to penetrate
the shadow of compact object (filling the photon ring),
giving a direct observation of the event horizon as the key
characteristic of a black hole [49]. The relation between
the bright ring and black hole shadow angular diameters
gives us this unprecedented possibility of using the black
hole shadow to test fundamental physics. This is possible,
especially once the black hole mass-to-distance ratio is
known [50,51]. Since the release ofM87*’s shadowbyEHT,
many papers have addressed the corrections originating
from alternative theories of gravity and new physics (see,
e.g., Refs. [52–83]).3 Despite extensive previous studies
in the light of M87*’s shadow, rearranging them this time
for the Sgr A* is well justified and recommended in the
literature [84–86]. In Ref. [87] one can find a list of reasons
for evaluating the theories via Sgr A*’s shadow, in addition
to its counterpart M87*. As a result, upon the recent release
of updated and new information on the near-horizon image
of Sgr A*, we are faced with a spectrum of observational
evaluations of different metrics [87–99].

In light of the above discussion, the scope of this
manuscript is to use the first image of Sgr A* to constrain
the Lorentz symmetry violation (LSV). Lorentz invariance,
as is well known, represents one of the fundamental
symmetries in nature which both GTR and the standard
model of particle physics rely on. Such a symmetry
asserts that the outcome of any local experiment does
not depend on the velocity as well as the orientation of the
laboratory in which experiments are performed. However,
this idea that Lorentz symmetry may not be a fundamental
symmetry of nature and breaks down at some levels is
supported by some fundamental theories, such as string
theories [100,101], loop quantum gravity [102], multi-
verses [103], brane-world scenarios [104–106], Einstein-
aether gravity [107] (see also [108,109] for other theories).
In the last years, several tests in different fields of physics
have been proposed to search for a possible breaking of
Lorentz symmetry [110]. Generally, one can consider three
theoretical motivations for doing these tests. First, funda-
mental theories based on unifying the quantum and
gravitation principles claim that the search for new physics
(particularly Planck-scale physics) is strongly dependent on
disclosing the mystery of Lorentz symmetry. Second, due
to the deep relation between Lorentz symmetry and CPT
(charge, parity, and time-reversal), the symmetry allows
to predict the behavior of antimatter by investigating the
behavior of matter. Third, in nongravitational experiments,
Lorentz symmetry is part of the Einstein equivalence
principle (EEP). If LSV occurs, the equations of motion
may change depending on whether the experiment is
boosted or rotated relative to a background field. The
EEP, as the foundation of GTR and all metric theories of
gravity, implies that the spacetime metric minimally cou-
ples to all forms of matter [111], meaning that EEP breaks
down if the matter part of the action is modified. It is worth
noting that the shadow image of M87* has made it possible
to perform some tests on the EEP [112,113].
From a theoretical point of view, having an effective

field theory is essential for describing observable signals
of LSV. In this regard, Kostelesky and collaborators have
developed a well-established effective field theory, the so-
called Standard Model Extension (SME), which incorpo-
rates all possible violations of the Lorentz invariance
[114,115]. More precisely, it extends the standard model
of particle physics and GTR by including all possible
Lorentz-violating (LV) terms that can be constructed at the
level of the Lagrangian. In fact, the characterization of low-
energy effects of Planck-scale physics and LSV is at the
heart of the SME. So, in the framework of the SME, large
numbers of new coefficients are introduced, which are
constrained experimentally. Apart from these, it should
be stressed on this point that SME is merely an effective
field theory framework, meaning that it does not include
all dynamics of other LV-specific theories such as the
Einstein-aether theory [107] (for more details see [116]).
In the SME, matter-gravity couplings occur through some

2There are some interesting proposals that try to distinguish
between black holes and mimickers through the footprints left in
gravitational waves, see [36–39].

3We need to point out that due to a large number of papers on
this matter and the lack of possibility to mention all of them here,
these cited references are merely examples of a much more
extensive collection.
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coefficients, leading to a breaking of the EEP [117].
Actually, in the minimal SME, the purely gravitational
part of Einstein-Hilbert action gets modified by employing
new terms that induce LV corrections in the gravitational
sector. Based on the fact that Lorentz symmetry is the
foundation of both GTR and the standard model of particle
physics, in experimental searches for LSVs one can take the
advantage of either gravitational or nongravitational forces
or both.
In this paper, we are interested in a SME-based probing

LSV via a novel gravitational compact object, the Sgr A*’s
shadow. Recalling some well-known gravitational frame-
works that in the last years have been devoted to con-
straining the Lorentz violating coefficients (LVCs) s̄μν is
useful. These LVCs, in essence, come from the gravita-
tional sector of the minimal SME framework and contain a

squared matrix 4 × 4 with sixteen coefficients made by the
temporal and spatial components T, and X, Y, Z, respec-
tively. Because the matrix s̄μν has two properties, sym-
metric and traceless, thereby, there are nine independent
coefficients. Although we here briefly list some of the most
famous ones, to find more details, one can see the review
paper [118].

(i) Cerenkov radiation [119] (see also review paper
[120])—If a particle moves with a velocity exceed-
ing the phase velocity of gravity, the gravitational
Cerenkov radiation arises. In this way, the relevant
particle emits gravitational radiation until it loses
enough energy to drop below the gravity speed.
High-energy cosmic rays, in case of not losing
whole their energy via Cerenkov radiation, can
provide constraints on LVCs in the SME framework

−1.9 × 10−13 < s̄XX þ s̄YY − 2s̄ZZ < 1.3 × 10−13; −3.9 × 10−14 < s̄XY; s̄YZ < 6.2 × 10−14;

−5.4 × 10−14 < s̄XZ < 5.4 × 10−14; 2.8 × 10−14 < s̄TX < 2.8 × 10−14;

−3.1 × 10−14 < s̄TY < 2.4 × 10−14; 1.7 × 10−14 < s̄TZ < 2.4 × 10−14:

s̄TT > −6 × 10−15; −9 × 10−14 < s̄XX − s̄YY < 1.2 × 10−13:

(ii) Lunar laser ranging (LLR) [121,122]—LLR experiment allows high precision measurements of the light travel time
ranging from short laser pulses emitted by an LLR station until getting it again at a receiver station upon reflecting it
by a lunar retro-reflector. From this experiment one gets the following constraints for LVCs

s̄XX − s̄YY ¼ð0.6�4.2Þ×10−11; s̄XY ¼ð−5.7�7.7Þ×10−12; s̄XZ ¼ð−2.2�5.9Þ×10−12;

s̄TZ ¼ð−0.9�1.0Þ×10−8; s̄TY þ0.43s̄TZ ¼ð6.2�7.0Þ×10−9; s̄XXþ s̄YY −4.5s̄ZZ ¼ð2.3�4.5Þ×10−11:

(iii) Atomic gravimetry [123,124]—Gravimeter tests are the most sensitive Earth-based experiments looking for LSV in
the minimal gravity sector of SME. Owing to Earth rotation, the signal recorded in a gravimeter would be modulated
by the LSV terms, resulting in the following constraints

s̄XX − s̄YY ¼ ð4.4� 1.1Þ × 10−9; s̄XY ¼ ð0.2� 3.9Þ × 10−9; s̄XZ ¼ ð−2.6� 4.4Þ × 10−9;

s̄YZ ¼ ð−0.3� 4.5Þ × 10−5; s̄TX ¼ ð−3.1� 5.1Þ × 10−5; s̄TY ¼ ð0.1� 5.4Þ × 10−5;

s̄TZ ¼ ð1.4� 6.6Þ × 10−9:

(iv) Binary pulsars timing [125,126]—After observing the first binary star system composed of a neutron star and a
pulsar known as PSR 1913þ 16 [127], the binary pulsar systems have become a laboratory for measuring or
constraining free parameters of gravitational theories. Regarding the SME coefficients one has

s̄TX ¼ ð0.05� 5.25Þ × 10−9; s̄TY ¼ ð0.5� 8.0Þ × 10−9; s̄TZ ¼ ð−0.05� 5.85Þ × 10−9

js̄TT j < 2.8 × 10−4; s̄XX − s̄YY ¼ ð0.2� 9.9Þ × 10−11; s̄XX þ s̄YY − 2s̄ZZ ¼ ð−0.05� 12.25Þ × 10−11;

s̄XY ¼ ð0.05� 3.55Þ × 10−11; s̄XZ ¼ ð0.0� 2.0Þ × 10−11; s̄YZ ¼ ð0.0� 3.3Þ × 10−11;

(v) Planetary ephemerides [128,129]—Historically, the
advance of theMercurio perihelion rotating around the
Sun was the first verification of GTR predictions.
Since then, planetary ephemerides are considered a
robust tool to test GTR and constrain the modified

theories of gravity. There are different effects arising
from the LSV in the gravity sector of SME, that can
have implications on planetary ephemerides analysis:
effects on the light propagation and the orbital dy-
namics. From these one can infer the following bounds
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s̄XX − s̄YY ¼ ð−0.8� 2.0Þ × 10−10; s̄XX þ s̄YY − 2s̄ZZ ¼ ð−0.8� 2.7Þ × 10−10;

s̄XY ¼ ð−0.3� 1.1Þ × 10−10; s̄XZ ¼ ð−1.0� 3.5Þ × 10−11; s̄YZ ¼ ð8.8� 5.2Þ × 10−12;

s̄TX ¼ ð−2.9� 1.1Þ × 10−9; s̄TY ¼ ð0.3� 1.4Þ × 10−8; s̄YZ ¼ ð−0.2� 5.0Þ × 10−8;

(vi) Very long baseline interferometry (VLBI) [130]—
VLBI is a type of astronomical interferometry
employed in radio astronomy to measure the time
difference in the arrival of a radio wavefront. The
latter, in essence, is emitted by a far quasar
and is measured through at least two Earth-based
radio telescopes. VLBI provides the possibility of
probing the gravitational sector of the minimal SME
framework via constraining the time-time coeffi-
cient s̄TT ¼ ð−5� 8Þ × 10−5.

(vii) Gravity Probe B (GPB) [131,132]—Based on the
prediction of GTR, a gyroscope due to orbiting
move around a rotating body experiences two
relativistic precessions relative to a far inertial frame:
a geodetic drift in the orbital plane and a frame-
dragging. The former is due to the motion of the
gyroscope in the curved spacetime, and the latter is
generated by the spin of the central body. By
shedding light from a satellite-based experiment
known as GPB on the evolution of the spin of a
gyroscope, at the parametrized post-Newtonian
(PPN) approximation, one infers the following
bounds for the combinations of LVCs

s̄TT þ 970ðs̄XX − s̄YYÞ − 0.05ðs̄XX þ s̄YY − 2s̄ZZÞ
þ 2895s̄XY − 3235s̄XZ − 11240s̄YZ

¼ ð0.7� 3.1Þ × 10−3;

s̄XX − s̄YY þ 3.025s̄XY þ 1.05s̄YZ

¼ ð−1.1� 3.8Þ × 10−7:

The above upper bounds, in essence, tell us about the
different sensitivity levels of SME-based search for LSV,
typically at the level of 10−5 to 10−15. With the advent of
gravitational waves, we also deal with a novel observa-
tional platform to provide a clean test of the Lorentz
invariance in the pure-gravity sector of the minimal SME
[133–135]. Although we are interested in searching for
LSV within the gravity sector, LSV is not limited merely to
that, rather it could occur in other sectors such as the
electron and the photon, too (see Ref. [110]). Concerning
the nonminimal SME, one can also find a number of
constraints in Ref. [136].
In this regard, in this paper we will introduce another

treasure of nature so-called shadow image of Sgr A*, as a
novel framework for exploring LSV in gravity. It would be
interesting to mention that despite some works [137,138],

there are no exact black hole solutions for the general SME
framework. As a subclass of minimal SME involving
vector field, one can be mentioned to Bumblebee gravity-
based Schwarzschild-like solution [139]. It would be
interesting to note that the modified Schwarzschild space-
time solution released in [139] comes from only a nonzero
radial component, while in a recent paper [140] calcula-
tions are performed for the case of a nonzero temporal
component of the bumblebee field. Throughout this paper
we will in fact follow our aim by comparing the minimal
SME-inspired Schwarzschild metric obtained from a PPN
approach in the weak-field limit, with the first image of Sgr
A*. Generally, any extended framework of gravitation can
yield corrections to the Newtonian potential, which in the
PPN formalism is related to the metric tensor and, in this
way, gives rise to a corrected Schwarzschild solution [141].
Apart from simplicity, the main reason for adopting the
metric with spherical symmetry is related to the fact that
there is no consensus on the value of Sgr A* spin and
observation angle. Even though it seems that to describe the
Sgr A*’s shadow, there is a consistency between large spin
and low observation angle. Its opposite case, i.e., low spin
and large observation angle, conclusively has not been
ruled out yet [23,25]. In such a position, we prefer to adopt
a conservative approach and, in agreement with the
philosophy of simplicity, take into account a simple metric
corrected by LV terms enjoying spherical symmetry.
The outline of the rest of this manuscript is as follows. In

the light of the effective Newtonian potential obtained from
the PPN approximation within the framework of the pure-
gravity sector of the minimal SME, in Sec. II we derive a
Schwarzschild metric corrected by the LVCs. In Sec. III,
we extract shadows related to the Schwarzschild metric
corrected by LV terms. In Sec. IV we then confront the
resulting shadows to the shadow of Sgr A* recently inferred
by the EHT’s team, to set some constraints on the LVCs
induced by the underlying minimal SME. Finally, we
present a summary of our discussions and conclusions in
Sec. V. Throughout this paper, for simplicity, we work with
the units c ¼ ℏ ¼ 1.

II. SME INSPIRED SCHWARZSCHILD METRIC

By taking the minimal version of the SME in the
Riemann spacetime limit, one deals with an effective action
given by

S ¼ SHE þ Sm þ SLV; ð1Þ
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where SHE ¼ ð16πGÞ−1 R d4xeðR − 2ΛÞ (here e≡ ffiffiffiffiffiffi−gp
is

the determinant of the vierbein) is the standard Hilbert-
Einstein action including the cosmological constant Λ, Sm
is the general matter action, and SLV [142]

SLV ¼ 1

16πG

Z
d4xeð−uRþ sμνRT

μν þ tκλμνCκλμνÞ; ð2Þ

with the trace-free Ricci tensor RT and the Weyl conformal
tensor Cκλμν, which address the LV gravitational couplings.
Given that we are just interested in incorporating the
gravitational interaction in SME, we do not pay attention
to action Sm, which includes LV matter-gravity coupling.4

The coefficients u, sμν and tκλμν are real and dimensionless
so that the second and third ones satisfy the Ricci and
Riemann properties (symmetry with respect to switching
indices and also obeying the Bianchi identity), respectively,
and are also traceless, i.e., sμμ ¼ 0, tκλκλ ¼ 0, tκμκλ ¼ 0. By
restricting ourselves to the case u ¼ 0 and tκλμν ¼ 0,
thereby, across this paper, the origination of Lorentz
violation degrees of freedom come just from the coeffi-
cients sμν.5 Now, by varying the action S with respect to the
background metric, we have the following extended
Einstein field equations [142]

Gμν − ðTRsÞμν ¼ 8πGTμν
g ; ð3Þ

where

ðTRsÞμν ¼ 1

2
gμνðRαβ −∇α∇βÞsαβ

þ 1

2
ð∇α∇μsαν þ∇α∇νsαμ −∇α∇αsμνÞ: ð4Þ

Here Gμν ¼ Rμν − ðR=2Þgμν is the standard Einstein
tensor. Avoiding details, the PPN approximation studied
in [142] for the theory at hand yields a two-point-particle

Lagrangian, which gives the effective equations of motion
for a two bodies system (with massesM (heaviest) and test
particle m), in the coordinate acceleration. If M ≫ m so
that the heaviest body M be at rest relative to m, then the
effective two bodies Lagrangian in the presence of Lorentz
violation coefficients s̄μν, takes the following form

L ¼ 1

2
mv2 þGmM

r

�
1þ 3

2
s̄00 þ 1

2
s̄jk

xjxk
r2

�

−
GmM
r

�
3s̄0jvj þ s̄0j

xj
r
vk

xk
r

�
; ð5Þ

where 00 denotes the time-time (TT) coefficient and
indexes j, k, run from 1–3 (equivalent to x1 ¼X, x2 ¼ Y
and x3 ¼ Z in Cartesian coordinates) and v2¼v21þv22þv23,
r2 ¼ x21 þ x22 þ x23, vk ¼ _xk (the derivative is taken with
respect to the coordinate time). By adopting a stationary
and weak gravitational field regime in which the test
particle moves slowly in comparison with the speed of
light (v ≪ 1), one can then discard the terms depending on
the velocity v in (5). As a result, the effective potential reads

VðrÞ ¼ UðrÞ
m

¼ −
GM
r

�
1þ 3

2
s00 þ 1

2
s̄jk

xjxk
r2

�
: ð6Þ

However, this is not the final form since the scalar factor
ð1þ 3s̄00=2Þ merely rescales the gravitational constant and
can be absorbed in it [142]. So, the function VðrÞ modified
by Lorentz violation coefficients s̄μν is given by the
following expression

VðrÞ ¼ −
GeffM

r

�
1þ s̄jkeff

xjxk
r2

�
; ð7Þ

where

Geff ¼ G

�
1þ 3

2
s̄00

�
; s̄jkeff ¼

s̄jk

2þ 3s̄00
: ð8Þ

It is important to note two points here. First, the term
s̄jkxjxk=r2 cannot be reabsorbed since in fact it is a term
with dependency on the directions xjxk=r2. Second, since
the factors containing s̄00 are unobservable, by the end of
this manuscript we shall work withGeff ≡G and s̄jkeff ≡ s̄jk.
Now we take the effective potential produced by a

general metric of the form

ds2 ¼ fðrÞdt2 − gikðx1; x2; x3Þdxidxk; ð9Þ

where r ¼ jxj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p
. As a spacial case, the

above general metric produces the Schwarzschild metric in
the standard form

4In the light of probing the LSV via the MICROSCOPE space
mission, it has been extracted some tight constraints for the
matter-gravity couplings [143] (see also [144]).

5To avoid a challenge with the Bianchi identity, in Riemann’s
geometry is assumed the LVCs are dynamical fields, and the LV
owing to a spontaneous symmetry breaking, is caused
[116,145,146]. The vacuum expectation value of LV fields
may be nonzero. By adopting a linearized gravity limit, one
can be integrated out the fluctuations surrounding the vacuum
values, meaning that just the vacuum expectation values of the
SME’s coefficients stay, and they may affect observations [142].
The coefficient ū, in the minimal SME, is unobservable since it is
nothing but a rescaling of the gravitational constant, while the
coefficients t̄κλμν do not play, at the PPN level, any role (t-puzzle)
[147]. It would be interesting to note that authors recently in
Refs [148,149] have developed a Hamiltonian formalism (ADM-
decomposition) for the background fields u and sμν in the
minimal gravitational SME. By employing these background
fields also has been proposed the diffeomorphism violation-based
cosmology [150,151].
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ds2¼
�
1−

2GM
r

�
dt2−

�
1−

2GM
r

�
−1
dr2− r2dΩ2; ð10Þ

where dΩ2 ¼ sin2θdθ2 þ dφ2. As is well known, any
general metric of the form

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − gðrÞdΩ2; ð11Þ

can be brought into the form (9). In case of the metric be in
the form (9), in Cartesian coordinates, by utilizing the well-
known procedures in Ref. [152], one can easily show that
the effective Newtonian potential is of the form

VðrÞ ≃ 1

2
ðfðrÞ − 1Þ: ð12Þ

More exactly, the effective Newtonian potential is produced
by the metric given in (9) for a point particle moving slowly
in a stationary and weak gravitational field, which is
equivalent to quasi-Minkowskian spacetime far way from
the source, i.e., r → ∞. As a consequence, the metric (11)
is able to mimic the corrected Newtonian potential (7) with
the LV terms, where the laps function fðrÞ is given by

fðrÞ ¼ 1 −
2GM
r

ð1þ s̄jkχjkðθ;ϕÞÞ; ð13Þ

where we introduced the standard spherical coordinates
x¼ rðsinθcosϕ;sinθ sinϕ;cosθÞ and xjxk=r2 ¼ χjkðθ;ϕÞ.
Although, in case of relaxing the LVCs i.e., s̄jk → 0, the
standard form of Schwarzschild is recovered, (13)
addresses merely a weak-field based black hole solution
in the framework of the SME. Notice that, in the context of
the scenario at hand explicit angular dependency χjkðθ;ϕÞ
will cause trouble. To bypass the angular dependency of
χjkðθ;ϕÞ, we follow two ways. First, taking a overall

averaging over ðθ;ϕÞ, i.e., hxjxki ¼ r2
3
δjk, resulting in

fIðrÞ¼ 1−
2GM
r

�
1þ ξ

3

�
; ξ¼ s̄ii≡ s̄XXþ s̄YY þ s̄ZZ:

ð14Þ

Second, by opening the expression s̄jkχjkðθ;ϕÞ and putting
θ ¼ π=2, we have ðs̄XX − s̄YYÞcos2ϕþ s̄YY þ s̄XY sin 2ϕ.
By taking an average over ðϕÞ, the lapse function (13),
reads as

fIIðrÞ ¼ 1 −
2GM
r

�
1þ η

2

�
;

η ¼ ξ − s̄ZZ ≡ s̄XX þ s̄YY: ð15Þ

Note that, setting θ ¼ π=2 is safe since in calculating
spherically symmetric shadows, one commonly works in
the equatorial plane. In some special positions, one can

restrict angular dependency in the metric (13) to positive
values and assume that jχjkðθ;ϕÞj ≃ 1 [153,154]. For the
distinction between these two, we labeled them with
subscripts “I” and “’II.” Our main aim in the following
is to constrain the dimensionless parameters ξ and η
(including two different combinations of spatial diagonal
LVCs) in the light of the first image released of Sgr A*’s
shadow. Two comments are in order here. First, due to the
spherical symmetry of the metric at hand, in this scenario
we no longer are able to address the off-diagonal LVCs.
Second, the tracelessness condition sμμ¼0 i.e., s̄TT−ξ¼0

allows us to indirectly apply some constraints on the
temporal diagonal LVC s̄TT , too. The upper limits, which
in the following will be extracted for ξ work for s̄TT, too.
Given that the LV-corrected lapse function (13) has not

been derived from an exact manner and merely is an
approximate solution of the underlying minimal SME
theory, one has to be careful in the use of the PPN formalism.
Recall that in the case of carrying higher-order corrections in
the PPN approach, it can be a very effective framework for
the description of the strong field regimes with the fast
motion of particles [155]. However, as it is obvious, in this
scenario we restricted ourselves to leading corrections at the
linear level of PPN. It is for that by going beyond the linear
level, i.e., taking higher-order corrections induced by the
SME into account in the PPN, there is no longer a guarantee
that subsequently the relevant lapse function be the solution
of the theory at hand with Eqs. (2)–(4).

III. THE EFFECT OF LV ON THE SHADOW SIZE
OF SCHWARZSCHILD BLACK HOLE

In this section, we investigate the shadow radius
of the Schwarzschild solution corrected with LV terms
inspired by SME parameters. Being located on the
plane of a faraway observer, the boundary of the black
hole shadow marks the apparent image of the photon
region via separating capture orbits from scattering orbits.
Concerning the photon region, it is, in essence, the
boundary of the region of spacetime that if spherically
symmetric, addresses the photon sphere [156].
Let us begin with the Lagrangian Lðx; _xÞ ¼ gμν

2
_xμ _xν for

the geodesics of spherically symmetric and static spacetime
metric

Lðx; _xÞ¼ 1

2
ðfðrÞ_t2−fðrÞ−1 _r2− r2ð_θ2þ sin2θ _ϕ2ÞÞ: ð16Þ

As usual, by using the Euler-Lagrange equation d
dλ ð∂L∂_xμÞ −

∂L
∂xμ ¼ 0 in the equatorial plane (θ ¼ π=2), the two con-
served quantities are the energy E and the angular
momentum L,6 that is

6In case of explicit dependency of the lapse function to ϕ, the
angular momentum is no longer a constant of motion.
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E ¼ fðrÞ_t; L ¼ r2 _ϕ: ð17Þ

By taking the null-geodesics equation for light, we have

fðrÞ_t2 − fðrÞ−1 _r2 þ r2 _ϕ2 ¼ 0: ð18Þ

Inserting the conserved quantities E and L, see (17), into
the above Eq. (18), we arrive at the following orbit equation
for photon

�
dr
dϕ

�
2

¼ r2fðrÞ
�

r2

fðrÞ
E2

L2
− 1

�
: ð19Þ

Now, we can reexpress it in the form of the effective
potential

�
dr
dϕ

�
2

¼ Veff ; ð20Þ

with

Veff ¼ r4
�
E2

L2
−
fðrÞ
r2

�
: ð21Þ

Given that the orbit equation depends only on the impact
parameter b ¼ L=E at the turning point of the trajectory
r ¼ rph, we have to demand the conditions dr=dϕjrph ¼ 0

or Veff ¼ 0, V 0
eff ¼ 0 [157]. This results in the following

relation for the impact parameter at the turning point

b−2 ¼ fðrphÞ
r2ph

: ð22Þ

To obtain the radius of the photon sphere rph, one has to
impose the conditions dr=dϕjrph ¼ 0 and d2r=dϕ2jrph ¼ 0,
leading to the following equations

d
dr

�
r2

fðrÞ
�

rph

¼ 0; ð23Þ

f0ðrphÞ
fðrphÞ

−
2

rph
¼ 0: ð24Þ

By putting (22) into (23) and (24), one can easily find the
location of the photon sphere rph and the critical impact
factor bcrit. As a cross-check, one can show that for the
standard Schwarzschild metric, these two are 3M and
3

ffiffiffi
3

p
M, respectively. Actually, in the spherically symmetric

spacetime, the black hole shadow is obtained by using the
light rings, which correspond to a critical points of Eq. (24).
As a result, the form of Eq. (19) can be reexpressed as

�
dr
dϕ

�
2

¼
�
r4fðrphÞ

r2ph
− r2fðrÞ

�
: ð25Þ

To calculate the shadow radius Rsh from the view
of an observer located in r0, it is common to use the
angle αsh between the light ray and the radial direction as
follows [158]

cot θsh ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞr2
p dr

dϕ

����
r¼r0

: ð26Þ

and

cot2θsh ¼
r20fðrphÞ
r2phfðr0Þ

− 1; ð27Þ

where, by using the relevant trigonometric identities7 and
also taking into account bcr of (22), we have

sin2θsh ¼
b2crfðr0Þ

r20
: ð28Þ

The shadow radius of the black hole for a static observer r0 is

Rsh ¼ r0 sin θsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2phfðr0Þ
fðrphÞ

s
; ð29Þ

where for a static observer at far away distance reads as

Rsh ¼
rphffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ

p : ð30Þ

Since in limit r0 → ∞, then fðr0Þ → 1.
Now we are in a suitable position to reveal the role of the

underlying dimensionless LVCs on the size of the shadow
radius with spherical symmetry. In Fig. 1 we plot the
shadow resulting from the some optional values of ξ and η,
which respectively address the lapse functions (14) and
(15). As is evident, the presence of LV terms with negative
and positive signs in the Schwarzschild metric results in the
decrease and growth of the shadow size, respectively. Here,
η has a larger contribution to the change of the shadow size,
compared to ξ. Note that the values fixed for ξ and η in
Fig. 1, are not realistic. Indeed, they merely have been used
to reveal the impact of LVCs on the size of the black hole
shadow, and in what follows, their allowed ranges in light
of the data related to Sgr A* will be derived.

7sin2 θsh ¼ ð1þ cot2 θshÞ−1.
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FIG. 1. Apparent shadow of the Schwarzschild metric corrected by lapse functions: fIðrÞ (left) and fIIðrÞ (right). In both panels
values: −0.3;−0.2;−0.1, 0, 0.1, 0.2, 0.3 (from cyan curve to pink) fixed for the LVCs ξ (left) and η (right), respectively.

FIG. 2. The predicted radius per unit mass Rsh
M for the Schwarzschild metric corrected by lapse functions: fIðrÞ with the LVCs ξ (up

row) and fIIðrÞ with the LVCs η (bottom row). The shaded area mark the observationally determined radius per unit mass of Sgr A*’s

shadow, namely RSgr A�
M , within 1σ uncertainty.
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IV. CONSTRAINTS ON THE SME COEFFICIENTS
FROM Sgr A* COMPACT OBJECT

In this section we derive, by using data released by EHT
for Sgr A*, some allowed ranges for two combinations
of LVCs ξ and η. We perform this analysis by comparing
the observed angular radius of the ringlike in the EHT
near-horizon image of Sgr A* with the SME inspired
Schwarzschild metric at hand. In this way, the condition of
compatibility within the range of uncertainties allowed by
the EHT, permits us to set constraints on the ξ and η. To this
end, two ingredients are essential. The first is the mass-to-
distance ratio of Sgr A*, M=D. By exploiting the stellar
cluster dynamics, and the motion of S-stars, the mass and
distance to Sgr A* have been extracted by two teams
“Keck” [159], and “VLTI” [160] as follows

M ¼ ð3.951� 0.047Þ × 106 M⊙;

D ¼ ð7.953� 0.050� 0.032Þ Kpc;
M ¼ ð4.297� 0.012� 0.040Þ × 106 M⊙;

D ¼ ð8.277� 0.009� 0.033Þ Kpc; ð31Þ

respectively. The second is a calibration factor, connecting
the size of the bright ring of emission to the size of the
corresponding shadow. This, in essence, quantifies the level
of safety to use the size of the bright ring as a proxy for
the shadow size. Avoiding the details, by folding in the
calibration factor with uncertainties in the mass-to-distance
ratio of Sgr A*, and also taking into account the angular
diameter of the bright ring of Sgr A*, one obtains the
fractional deviation δ between the inferred shadow radius
of EHTand the Schwarzschild one. The fractional deviation
from the Schwarzschild expectation, δ, depends on the
mass-to-distance ratio. So, based on the Keck and VLTI
measurements reported above, one can record the following
values for δ [27]

δ¼−0.04þ0.09
−0.10 ðKeckÞ; δ¼−0.08þ0.09

−0.09 ðVLTIÞ ð32Þ

Interestingly, we see δ < 0, meaning that there is very slight
preference for the shadow of Sgr A* being slightly smaller
than the Schwarzschild one. Now by taking into account of
the average of the Keck and VLTI-based estimates of δ [87]

δ ≃ −0.06� 0.065; ð33Þ

FIG. 3. The predicted fractional deviation δ for the Schwarzschild metric corrected by lapse functions fIðrÞ with the LVCs ξ, and
fIIðrÞ with the LVCs η, respectively. The shaded area mark the observationally determined fractional deviations by estimation (33). To
provide lower and upper bounds with enough resolution we have scanned values of negative and positive LVCs ξ and η within two
complementary ranges: −0.125≲ δ < 0 (left panels) and 0 < δ≲ 0.005 (right panels), respectively.
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one obtains the following shadow radius for Sgr A* [87]

4.54≲ RSgr A�
M

≲ 5.22; ð34Þ

within 1σ uncertainty. In what follows, with this idea in
mind that the Sgr A* compact object recorded by EHT can
be described by the SME inspired Schwarzschild metric
at hand, and using (34) and (33), we will extract some
constraints for two combinations of the LVCs ξ and η.
By using the shadow radius (per mass) computed in the

previous section [see Eq. (30)], we plot in Fig. 2 the radius
of the resulting black hole shadow as a function of the
LVCs ξ and η, together with 1σ uncertainty on the radius of
the shadow of Sgr A* as reported in (34). Equivalently, in
the light of the average obtained from Keck and VLTI
measurements of fractional deviation, i.e., (33), we perform
this analysis in Fig. 3 for the fractional deviation predicated
by the SME-inspired Schwarzschild with the laps functions
(14), and (15), respectively. As expected, we see a decrease
and growth in the shadow radius of Schwarzschild in the
presence of negative and positive LVCs, respectively. This
trend corresponds to δ < 0 and δ > 0 in Fig. 3, respec-
tively. Concerning the positive LVCs, we clearly see from
Fig. 2 (also 3) that the shadow radius derived for Sgr A* by

EHT restricts the growth of the shadow size of the under-
lying black hole such that values beyond ξ ∼ 1.5 × 10−2

and η ∼ 10−2 are ruled out. This results in upper bounds
≲1.5 × 10−2 and ≲10−2, for ξ and η, respectively. For
negative LVCs, these two figures reveal lower bounds ξ >
−3.5 × 10−1 and η≳ −2.5 × 10−1 since in this case, the
shadow radius of Sgr A* restricts the reduction of the
shadow size. As a supplementary analysis, in Figs. 4 and 5
we repeat Fig. 3 for each of Keck and VLTI measurements
of fractional deviation, separately. It is clear from these
figures that a more robust constraint than the previous ones
will not be obtained.
An important point that we have to note about the

aforementioned upper bounds is that one cannot realize
their origin. Namely, it may not be clear whether the LV
correction results in changes in the shadow size or whether
it is related to the masses measured for Sgr A* from two
different sources: Keck and VLTI. In other words, one can
simultaneously attribute the effect of LV to the shadow
radius and the measured mass since uncertainty in both is of
the same order of magnitude. The reason behind it is that
the fractional deviation from the Schwarzschild metric,
which, in essence, comes from the shadow radius, has a
high dependency on the mass-to-distance ratio. Such a

FIG. 4. The predicted fractional deviation δ for the Schwarzschild metric corrected by lapse function fIðrÞ with the LVCs ξ. The
shaded area in the up and bottom rows mark the observationally determined fractional deviations by Keck and VLTI measurements,
respectively.
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degeneracy situation is not threatening the validation of the
upper bounds since, in any case, they are obtained from one
of the properties belonging to Sgr A*’s image, whatever the
size of the shadow radius or the mass.

V. DISCUSSION AND CONCLUSION

The extraordinary images of supermassive objects in the
center of galaxies, M87* and Milk Way (Sgr A*) which
were released by the Event Horizon Telescope (EHT),
respectively on 10 April 2019 and 12 May 2022, give us a
novel possibility of shedding light on metric theories of
gravity as well as the fundamental physics in the strong-field
regime. Despite some theoretical challenges, these two
compact objects seem to be strong candidates for playing
the role of the black hole in nature. Besides, the resolution of
EHT measurements is limited, and despite a good consis-
tency reported between the Sgr A* ’s shadow and prediction
of the general theory of relativity (GTR), it can be seen as a
tiny space that potentially can be controlled by adding some
fundamental corrections into the metric. One of the funda-
mental issues in physics which plays a key role in the
standard model of particle physics as well as GTR is the
Lorentz symmetry. Different approaches leading to quantum
gravity, and unified theories are the key motivations behind
significant efforts to test Lorentz symmetry, and eventually
its possible breakdown at some scales.

In this paper, we have used the near-horizon images of
Sgr A*, recently captured by EHT to test the Lorentz
symmetry violation (LSV) in gravity. A comprehensive
framework to address it is an effective field theory well
known as the Standard-Model extension (SME) inwhich are
included all possible Lorentz violating (LV) operators to the
standard model and GTR, as well. By adopting the pure
gravity sector of the minimal version of the SME, we, in
essence, deal with a matrix 4 × 4 of the coefficients s̄μν that
describe dominant observable deviations from Lorentz
invariance.
As is common in metric theories of gravity, to infer a

constraint on the LSV in gravity by the information
released in the first image of Sgr A*, it is essential to
have a metric that includes the LV terms. However, within
the general SME framework, except for the bumblebee
gravity as a subclass model of SME, there is no exact black
hole solution. In the framework of the pure-gravity sector
of the minimal SME theory, and using the effective
Newtonian potential obtained from the parametrized
post-Newtonian (PPN) approximation for a point particle
moving slowly, we have derived a Schwarzschild-like
metric in a weak gravitational field. It is well known that
any extended theory of gravitation can yield corrections to
Newton’s potential, such that the PPN formalism could
furnish tests for the relevant theory. The correction terms in
the underlying metric appear as two different combinations

FIG. 5. Same as Fig. 4 but for the Schwarzschild metric corrected by lapse function fIIðrÞ with the LVCs η.
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of spatial diagonal Lorentz violating coefficients (LVCs)
ξ ¼ s̄ii ≡ s̄XX þ s̄YY þ s̄ZZ and η ¼ ξ − s̄ZZ ≡ s̄XX þ s̄YY .
Recall two useful points. First, due to the spherical
symmetry and computing the relevant shadow in the
equatorial plane (θ ¼ π=2), the nondiagonal components
of LVCs in the metric, are out of reach. Second, despite the
absorption of the temporal diagonal component of LVC
(s̄TT) into the gravitational constant, the traceless condition
sμμ ¼ 0 (i.e., s̄TT − ξ ¼ 0), guarantees that the upper
bounds, obtained to the spatial diagonal combination ξ,
can be safely attributed to the time-time coefficient s̄TT , too.
Observations under our attention of the first image of

Sgr A*, that have been considered in our analysis, are: the
shadow radius per mass RSgr A�

M , and the fractional deviation
from standard Schwarzschild δ. The former comes from
bright ring diameter detected around Sgr A*, and the latter
originates from comparing the shadow diameter to the
stellar-dynamical measurements of the mass of Sgr A*,
i.e., mass measured with the Keck and VLTI instruments
via star orbits (particularly the motion of S-stars). In the
light of both observations we have extracted lower and
upper bounds: ξ ≳ −3.5 × 10−1, η ≳ −2.5 × 10−1 and
ξ ≲ 1.5×10−2, η≲ 10−2, respectively. The best upper
bound for LVCs at hand obtained from two Sgr A* ’s
observations mentioned above is, hence, at the 10−2 level.
This means that the first image of Sgr A* recorded by EHT
does not permit us to probeLSVwith a sensitivity levelmore
than one per hundred. However, the form of the correction of
LSVin the metric causes a dilemma, meaning that the origin
of these upper bounds comes from the measurement of Sgr
A*’s mass by different sources or is related to the shadow
size of Sgr A*. It is for that the uncertainty measurements of
mass and shadow radius of Sgr A* is of the same order of
magnitude.More precisely, the fractional deviation from the
Schwarzschild metric, in essence, comes from the shadow
radius and has a high dependency on the mass-to-distance
ratio. Overall, it does not matter since, in any case, they are
obtained from one of the properties belonging to Sgr A*’s
image, whether the size of the shadow radius or mass.
By comparing with constraints derived from some of the

well-known frameworks (listed in the Introduction), one
finds that relative to most cases, the sensitivity level of the

existing upper limit is quantitatively weaker. The best
constraint from Sgr A* with the present resolution (one
per hundred) is weaker than most other sensitivities in
search for LSV. It is necessary to stress that one should
interpret this upper bound differently from other published
ones since, in the standard SME studies, the Sun-centered
celestial frame is chosen as the standard frame, while this is
not the case here. In other words, although the best upper
bound is weaker than all limits listed in the Introduction, it
is obtained from the scan of gravitational SME in the
strong-field regime such as around the black hole horizon.
Apart from this, the need to increase the types of mea-
surements is inevitable, even if those do not give us more
strong constraints. In other words, every novel window
opened to us in the universe is potentially prone to shedding
light on the validity of fundamental physics. Even though
the best upper limit obtained from the first image of Sgr A*
is not so strong to compete with other setups, it is valuable
for two reasons. First, it is an independent constraint arising
from data of the near-horizon scales, which is a gravity-
dominated region. Second, despite the existing metric, in
essence, it does not allow us to probe the SME in a strong-
field regime around the horizon; these upper bounds are
merely a promising first step. In other words, one can hope
for more sensitive measurements of the deviation of the
inferred shadow image of Sgr A* from Schwarzschild in
the future, resulting in more stringent upper limits on SME
coefficients. Namely, if the mentioned deviation with much
greater sensitivity is measured, even with this weak-field
metric, one can extract tighter constraints on the under-
lying LVCs.
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