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We study effects of the particles coupling with scalar field (SF) on the distribution of stable circular
orbits (SCO) around the naked singularity described by the well-known Fisher-Janis-Newman-Winicour
solution (F/JNW). The power-law and exponential models of the particle–SF interaction are analyzed.
The focus is on the nonconnected SCO distributions. A method is used that facilitates numerical studies of
the SCO regions in the case of the general static spherically symmetric metric. In case of F/JNW, we show
that coupling between particles and SF can essentially complicate the topology of the SCO distributions.
In particular, it can lead to new nonoverlapping SCO regions, which are separated by unstable orbits and/or
by regions where the circular orbits do not exist.
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I. INTRODUCTION

Static spherically symmetric configurations of general
relativity (GR) with the linear massless scalar field (SF)
are described by the exact analytic solution of Einstein-SF
equations, which was first derived in 1948 by Fisher [1]
and later rediscovered in the other coordinates by Janis,
Newman and Winicour [2]. We will refer to this solution
as F/JNW. Subsequently, Wyman [3] obtained this sol-
ution within a more general consideration; see also [4,5]
and comments in [6,7]. The F/JNW solution is asymp-
totically flat, it contains the globally naked singularity
(NS) in the center [8], i.e., it can be observed from the
infinity. There are analytic generalizations of F/JNW in
case of the higher dimensions [7,9] and in case of several
linear massless SFs [10].
The picture of the stable circular orbits (SCO) of test

bodies in case of F/JNW metric has been first studied
by Chowdhury et al. [11] who revealed the possibility of
nonconnected SCO regions, which are separated by
unstable circular orbits (UCO). This is an important
feature that distinguishes F/JNW from the case of ordinary
Schwarzschild black holes, where there is the region of
nonexistence of circular orbits (NECO) near the center,

then the UCO ring and then the outer (unbounded) region
of SCO. Images of thin accretion disks related to the
circular orbits distributions (COD) in case of F/JNW
solutions have been considered in [12,13].
The unusual structure of COD around relativistic objects

is not a prerogative of F/JNW; the uncomplete list of papers
includes, e.g., [14–24]. As for the configurations with
scalar fields, apart from F/JNW, the nonconnected SCO
distributions have been demonstrated in the case of massive
SF [23] and in case of nonlinear SFs with the monomial
potential [10,24]. The above cases mainly deal with NSs,
however, the nonconnected SCO distributions can arise in
presence of the event horizon as well; see, e.g., [19] dealing
with the “Mexican hat” SF potential.
We note that the investigation of COD is an important tool

to study strong gravitational fields around compact astro-
physical objects, because this is the first step to figure out
the properties of real accretion discs and their observational
properties. The purpose of such studies is to screen out
theories alternative to GR, or, conversely, to look for putative
signals of a “newphysics” that can beverified inobservations.
Anyway, investigations of such exotic structures as NSs with
unusual accretion disks is interesting at least because they
make the standard black hole paradigm falsifiable.
The works [11–24] deal with the geodesic particle

motion; no additional particle interaction is introduced. In
the present paper we focus on the nonconnected SCO
distributions under assumptions that the massive particles
interact with SF. Analogous interactions naturally arise in
the scalar-tensor theories [25–27] and in the fðRÞ-gravity
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after transition to the Einstein frame (see, e.g., [28,29]).
There are hard limitations on the particles–SF interaction
imposed by the weak-field gravitational experiments [30].
Nevertheless, NS is a very special object with strong
gravitational field and we wonder whether coupling of
particles with SF in the vicinity of NS can lead to new
observational features that can be used to differentiate
between ordinary black hole and NS.
We investigate the effects in the SCO structure due to

various couplings of the particles with SF within simple toy
models. The particles move in the external gravitational and
scalar fields of the F/JNW naked singularity. In Sec. II we
write down the basic equations of motion of the particle.
In Sec. III we consider two types of the coupling, which

are applied to the equations of the particle motion in the
fields of F/JNW solutions. We present here the list of
possible distributions of the circular orbits; in particular, we
present those, which do not occur in case of usual geodesic
motion of the particles. In Sec. IV we discuss the results.

II. BASIC RELATIONS IN CASE OF
COUPLING OF PARTICLES WITH SF

We consider the motion of the test particles interacting
with SF ϕ in the four dimensional space-time of general
relativity endowed with metric gαβ. We assume that the
particles have small masses, which makes it possible to
neglect the mutual interaction between the particles and
their feedback on the gravitational and scalar fields.
For one particle we assume the action1

Sm ¼ −m
Z

dsψðϕðxÞÞ; ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβðxÞ

dxα

dτ
dxβ

dτ

r
dτ;

x≡ xðτÞ; ð1Þ

where trajectory xðτÞ is parametrized by a parameter τ;
ψðϕÞ ¼ 1þ ξðϕÞ is responsible for the interaction of
particles with SF. We assume ψ > 0 in order to avoid
negative masses of the particles. The value ξ is expected to
be sufficiently small in the weak-field systems. However,
we look for effects of the interaction in the strong field
region, where ξ may be comparable to unity.
The aim of this paper is to show that an additional coupling

between particles and SF (besides the indirect interaction
through the gravitational field depending on SF by means of
the Einstein equations) can essentially complicate the top-
ology of the SCO distributions, in addition to complications
due to possible introduction of the nonlinear self-interaction
SF potentials. This is motivated, in particular, by a number
of models, in which the coupling arises after the transition
from Jordan to Einstein frame either in the Brans-Dicke
theory or in the fðRÞ-gravity [25–29]. In these cases the
interaction with SF is simply a result of the conformal

transformation of the metric; but this leads also to changes
of the SF self-interaction. However, in this paper we are
looking for potentially interesting qualitative coupling effects
apart from from those due to the SF potential, whichmanifest
themselves in the strong gravitational field of a naked
singularity. There are various ways to introduce the coupling
into the particle action, and we see no physical reason to
prefer onemodel over another. In this situation, theway out is
to consider a number of examples with different couplings.
Some examples will be considered below in Secs. III A and
III B. Physically, the coupling may be, e.g., due to some
dependence of masses or interaction constants upon SF.
The equations of motion for the massive test particle

trajectory as a function of the proper time s obtained from
action (1) are

d
ds

�
ψgαβ

dxβ

ds

�
¼ ∂ψ

∂xα
þ ψ

2

∂gβγ
∂xα

dxβ

ds
dxγ

ds
; ð2Þ

ψ ≡ ψ ½ϕðxðsÞÞ�. Equation (2) is equivalent to the geodesic
equation for the conformal metric g̃μν ¼ ψ2gμν with the
canonical parameter s̃∶ ds̃ ¼ ψds. The trajectories of
photons and the other massless particles are the same
under the conformal transformation as for ψ ¼ 1.
The equivalent (explicitly covariant) form of this equa-

tion of motion is

δ

ds
dxβ

ds
¼

�
gβμ −

dxβ

ds
dxμ

ds

�
∂ lnψ
∂xμ

; ð3Þ

were δ=ds stands for the covariant differentiation (with
respect to gμν) along the particle trajectory.
It is easy to check that in virtue of (2) or (3)

d
ds

�
ψ2

�
gμν

dx
ds

μdx
ds

ν
− 1

��
¼ 0: ð4Þ

This equation is consistent with usual normalization

gμν
dx
ds

μdx
ds

ν ¼ 1: ð5Þ

Now we move on to the metric of the static spherically
symmetric space-time

dS2 ¼ AðrÞdt2 − BðrÞdr2 − ½RðrÞ�2ðdθ2 þ sin2θdφ2Þ: ð6Þ

Equation (5) in the plane θ≡ π=2 yields

A

�
dt
ds

�
2

− B

�
dr
ds

�
2

− R2

�
dφ
ds

�
2

¼ 1 ð7Þ

Using (2) we have integrals of motion1Units: c ¼ 8πG ¼ 1; the metric signature is ðþ−−−Þ.
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ψA
dt
ds

¼ p0; ψR2
dφ
ds

¼ L;

p0 and L are constants.
After substitution into (7) we get

ψ2AB

�
dr
ds

�
2

¼ p2
0 −Ueff ; ð8Þ

where the effective potential is

Ueff ¼ A

�
L2

R2
þ ψ2

�
:

This potential governs properties of COD. Minima of Ueff
for fixed L correspond to SCO, maxima—to UCO.
The regions where there is no minima or maxima for all
L correspond to NECO. For SCO of radius r0 we have
p2
0 ¼ Ueff and Ueff reaches minimum at r ¼ r0, i.e.,

U0
eff ¼

�
A0
�
L2

R2
þ ψ2

�
−
2L2R0A

R3
þ 2Aψψ 0

�
¼ 0;

r ¼ r0: ð9Þ

Consider function

L̃2ðrÞ≡−
R3ψðA0ψ þ2Aψ 0Þ

D
; DðrÞ ¼RA0ðrÞ−2AR0ðrÞ:

ð10Þ

Then condition (9) can be written as L2 ¼ L̃2ðr0Þ, r0 being
a radius of a circular orbit, and L̃2ðr0Þ > 0.
Differentiation of identity DL̃2 þ R3ψðA0ψ þ 2ψ 0Þ≡ 0

in view of (10) at the point of minimum yields

R3U00
eff ¼ −D

dL̃2

dr
; r ¼ r0; ð11Þ

Thus, there are two conditions of SCO with radius r

L̃2ðrÞ > 0 and DðrÞ dL̃
2

dr
< 0: ð12Þ

Obviously, the opposite signs correspond either to UCO, or
NECO. This makes it convenient in the numerical search
for the stability regions of circular orbits taking into
account the slope of the graph L̃2ðrÞ.

III. DISTRIBUTIONS OF CIRCULAR ORBITS

Introduction of the coupling of particles with SF creates
additional contributions into the Einstein equations (by
means of the energy-momentum tensor) and the SF
equation (by means of the source which involves the
particle masses). However, we avoid this question because

we deal with the test particles moving in the external
gravitational and scalar fields. This is a typical situation
when the contribution of the accretion disk is negligible
compared to the mass of the supermassive object at the
center of an active galactic nucleus.
Under the requirements of the spherical symmetry, there

is the exact static F/JNW solution of the Einstein-SF
equations that describes the massless linear SF in asymp-
totically flat space-time outside the naked singularity. We
use this solution in the form put by Virbhadra [6]

AðrÞ ¼
�
1 −

rs
r

�
γ

¼ 1

BðrÞ ; R2ðrÞ ¼ r2
�
1 −

rs
r

�
1−γ

;

ϕðrÞ ¼ −
Q
rs
ln

�
1 −

rs
r

�
; r > rs; ð13Þ

where

rs ¼ 2M=γ; γ ¼ μ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 1

q
; ð14Þ

M > 0 is the mass of the system, μ ¼ M=Q,Q ∈ ð−∞;∞Þ,
Q ≠ 0, is the scalar “charge”,2 defined by the asymptotic
dependence ϕ ∼Q=r for r → ∞. The radial coordinate r is
related to the coordinate R of [2] by r ¼ RþMð1þ γ−1Þ.
For any Q ≠ 0 there is NS for r ¼ rs; this is the center of
curvature (Schwarzschild) coordinates. There is a critical
value γc0 ¼ 1=2 that separates two types of singularity at rs;
for γ ∈ ðγc0; 1Þ there exists the root rph ¼ Mð2þ 1=γÞ of
equationDðrÞ ¼ 0, which is the radius of the photon sphere;
it does not depend on ψ .
Investigation of [11] shows that (i) for γ ∈ ð0; γc1Þ,

γc1 ¼ 1=
ffiffiffi
5

p
, there is one domain of SCO with radii

r > rs, which covers all the space outside NS; (ii) for γ ∈
ðγc1; γc0Þ there are two boundary radii rðbÞ1 < rðbÞ2 and two

rings of SCO with r ∈ ðrs; rðbÞ1 Þ and ðrðbÞ2 ;∞Þ, and ring of

UCO with r ∈ ðrðbÞ1 ; rðbÞ2 Þ. (iii) For γ ∈ ð1=2; 1Þ there is a
ring of NECO with radii r ∈ ðrs; rphÞ, then the ring of UCO
with radii r ∈ ðrph; rðbÞ1 Þ, and ring of SCOwith r ∈ ðrðbÞ1 ;∞Þ.
The boundary radii of the SCO regions can be defined

by the change of the sign either of L̃2ðrðLÞÞ or of dL̃2=dr.
Correspondingly, throughout the paper we denote the
roots of equations L̃2ðrÞ ¼ 0 by index “(L)”, and the
roots of dL̃2=dr ¼ 0 by index “(b)” (on condition that
L̃2ðrðbÞÞ > 0).
In Secs. III A and III B we consider two simple examples

of the interaction of particles with SF, which satisfy
condition ψ > 0, where ψ contains an additional parameter
κ describing the strength of the coupling. Therefore, we
have two parameters and the problem is to find areas of

2Our notation differs from that of Chowdhury et al. [11], who
define the scalar charge as 1=γ.
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these parameters in the γ − κ plane and critical (bifurcation)
curves that limit these areas. This is a typical problem of the
catastrophe theory. There are two types of such curves.
(a) The curves where the regions of NECOwith L̃2ðrÞ < 0

appear/disappear. They correspond to simultaneous
fulfillment of equations (at the same r)

L̃2ðr; γ; κÞ ¼ 0; dL̃2ðr; γ; κÞ=dr ¼ 0: ð15Þ

(b) The curves where the minima/maxima of L̃2ðrÞ
appear/disappear. They correspond to simultaneous
fulfillment of equations

dL̃2ðr; γ; κÞ=dr¼ 0; d2L̃2ðr; γ; κÞ=dr2 ¼ 0: ð16Þ

However, in the numerical treatment it is more
convenient to apply a straightforward determination
of roots of L̃2ðrÞ and dL̃2ðrÞ=dr. For admissible
parameter values3 we look for possible rðLÞðγ; κÞ
and rðbÞðγ; κÞ and control the fulfillment of conditions
(12) for SCO and analogous conditions for UCO and
NECO for orbits with radii r between these values.
Namely, for fixed γ, κ we test the existence of the
solutions for r > rs: L̃

2ðrÞ ¼ 0 and/or dL̃2=dr ¼ 0,
which separate r corresponding to SCO, UCO and
NECO. The emergence and disappearance of these
solutions for some values of γ, κ occurs on the
bifurcation curves separating the regions with different
CODs in γ − κ plane, colored in different colors in the
Figs. 2, 3, 4 below. The existence of different intervals
for admissible radii of SCO and UCO is correspond-
ingly shown in Tables I and II (see below).

A. Power-law coupling

As mentioned above, we have no considerations other
than the simplicity criterion regarding the choice of ψðϕÞ to
formulate modifications of the relativistic gravity theory.
The only restrictions must be imposed by known weak-
field experiments, which can be satisfied by an appropriate
choice of model parameters that regulate the strength of
the interaction, not excluding qualitative qualitative effects
near the naked singularity. In this situation, we will restrict
ourselves to the “toy” examples of the power-law coupling
(this subsection) and exponential coupling (Sec. III B),
which seem to be the simplest.
In the case of the power-law coupling

ψðϕÞ ¼ 1þ κϕ2n; n ¼ 1; 2;… ð17Þ

where we consider the even powers of ϕ in (17) and we put
κ > 0 so as to have ψðϕÞ > 0 for all ϕ.

From (10) we have

L̃2ðrÞ ¼ rsrð1 − rs=rÞ1−γψFðr;Q; nÞ
2ð1 − rph=rÞ

;

FðrÞ ¼ γ þ κ

�
γϕ2n −

2nγ
μ

ϕ2n−1
�
: ð18Þ

Without loss of the generality, we assume Q > 0.
We begin with some general analytical results concern-

ing the sign of L̃2ðrÞ (i.e., where either SCO or UCO can
exist) that follow directly from (18).
For a sufficiently large r we have L̃2ðrÞ ≈ rM and the

conditions (12) are fulfilled; therefore there is always an
unbounded outer region of SCO, which includes the
nonrelativistic orbits.
Now we proceed to the singularity neighborhood. For

r → rs we have FðrÞ > 0. Therefore, L̃2ðrÞ > 0 is increas-
ing at least in small vicinity of rs for γ ∈ ð0; 1=2Þ (SCO)
and there is NECO for γ ∈ ð1=2; 1Þ.
There is bifurcation value κ ¼ κcr,

κcr ¼
μ2n

ð2n − 1Þ2n−1 ¼
1

ð2n − 1Þ2n−1
�

γ2

1 − γ2

�
n

; ð19Þ

where the minimum of FðrÞ changes its sign from positive
for κ ∈ ð0; κcrÞ to negative for κ > κcr. This is the only
minimum of FðrÞ, therefore for κ > κcr we have only two
zeros of this function, which disappear at κcr. Equation (19)
yields the bifurcation curve in the γ − κ plane correspond-
ing to (15).
The following cases of behavior of L̃2ðrÞ are possible.
(i) For 0 < κ < κcr and γ ∈ ð0; 1=2Þwe have L̃2ðrÞ > 0

for all r;
(ii) For 0 < κ < κcr and γ ∈ ð1=2; 1Þ there are no

circular orbits under the photon sphere and
L̃2ðrÞ > 0 for r > rph;

(iii) For κ > κcr there are only two points rðLÞ1 , rðLÞ2 ,
where FðrÞ changes its sign. Therefore, for γ ∈
ð0; 1=2Þ we have L̃2ðrÞ < 0 in ðrðLÞ1 ; rðLÞ2 Þ (NECO)
and L̃2ðrÞ > 0 otherwise.

(iv) For κ > κcr and γ ∈ ð1=2; 1Þ the results depend upon
mutual disposition of rðLÞ1 ; rðLÞ2 ; rph.

For n ¼ 1 the points rðLÞ1 , rðLÞ2 can be easily found:

rðLÞ1;2 ¼ rs
1− e−ξ�

; ξ� ¼ 2

γ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

μ2

κ

r �
; κ > μ2:

We studied numerically function L̃2ðrÞ for n ¼ 1, 2.
Figure 2 shows areas with qualitatively different COD in
γ − κ plane which correspond Table I. Here we confined
ourselves with 0 ≤ κ ≤ 1, which is sufficient to see the
general tendency of the results. The areas of Fig. 2 with
qualitatively different SOD are colored in different colors

3In fact, in case of both couplings (17), (20) we tested the
values of jκj ∈ ½0; 10Þ, but the region of jκj > 1 does not result in
qualitatively new elements and it is not shown in figures.
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indicated in the legend of each of two panels with the
number associated with certain row of the Table I. Every
row shows intervals of the radii of possible SCO and UCO
regions, in accordance with the indexing introduced above).
As an example, we explain the notations in case of the

orange area (number 9 of the legend) in the right panel
(n ¼ 2) of Fig. 2. Correspondingly, row 9 of Table I shows

that there exist boundary radii rðbÞ1 , rðLÞ2 , rðLÞ3 , rðbÞ4 , rðbÞ5 of
regions with different stability properties (in ascending
order of the lower indexes), which of course depend on γ
and κ inside the orange area. Here the coordinate rs of the
singularity is also involved. The left column (row 9) shows
that for every γ and κ of this area, there exist such values of
boundary radii that function L̃2ðrÞ > 0 is increasing in

three intervals ðrs; rðbÞ1 Þ, ðrðLÞ3 ; rðbÞ4 Þ, ðrðbÞ5 ;∞Þ, where we
have SCO (see Fig. 1, left panel). This function decreases in

ðrðbÞ1 ; rðLÞ2 Þ and ðrðbÞ4 ; rðbÞ5 Þ (see row 9, middle column of
Table I, UCO). In the remaining intervals, not explicitly
shown in Table I, we have NECO. The right column
indicates that γ < 1=2, i.e., the orange region is to the left of
the vertical dashed line in the right panel of Fig. 2.
Figure 1 (right panel) shows the other example of the

graph of L̃2ðrÞ, which is related to row 11 of Table I (brown
region in the right panel of Fig. 2, to the right of the dashed
line γ ¼ 1=2).
The case γ ¼ 1=2 is poorly visible in the figures and

we describe it separately. In this case DðrÞ < 0 for
all r > rs.

TABLE I. Possible SCO and UCO regions for monomial coupling (17) in correspondence to different areas
of Fig. 2.

N SCO UCO signðγ − 0.5Þ
1 ðrðbÞ1 ;∞Þ ðrph; rðbÞ1 Þ þ
2 ðrs;∞Þ � � � −
3 ðrs; rðbÞ1 Þ ∪ ðrðbÞ2 ;∞Þ ðrðbÞ1 ; rðbÞ2 Þ −
4 ðrðLÞ2 ;∞Þ ðrph; rðLÞ1 Þ þ
5 ðrðLÞ1 ;∞Þ � � � þ=−
6 ðrðbÞ2 ; rðLÞ3 Þ ∪ ðrðbÞ4 ;∞Þ ðrðLÞ1 ; rðbÞ2 Þ ∪ ðrph; rðbÞ4 Þ þ
7 ðrs; rðbÞ1 Þ ∪ ðrðLÞ3 ;∞Þ ðrðbÞ1 ; rðLÞ2 Þ −
8 ðrs; rðbÞ1 Þ ∪ ðrðbÞ2 ; rðbÞ3 Þ ∪ ðrðbÞ4 ;∞Þ ðrðbÞ1 ; rðbÞ2 Þ ∪ ðrðbÞ3 ; rðbÞ4 Þ −
9 ðrs; rðbÞ1 Þ ∪ ðrðLÞ3 ; rðbÞ4 Þ ∪ ðrðbÞ5 ;∞Þ ðrðbÞ1 ; rðLÞ2 Þ ∪ ðrðbÞ4 ; rðbÞ5 Þ −
10 ðrðbÞ2 ; rðLÞ3 Þ ∪ ðrðbÞ4 ;∞Þ ðrðLÞ1 ; rðbÞ2 Þ ∪ ðrph; rðbÞ4 Þ þ
11 ðrðbÞ2 ; rðbÞ3 Þ ∪ ðrðLÞ4 ; rðbÞ5 Þ ∪ ðrðbÞ6 ;∞Þ ðrðLÞ1 ; rðbÞ2 Þ ∪ ðrðbÞ3 ; rphÞ ∪ ðrðbÞ5 ; rðbÞ6 Þ þ
12 ðrðbÞ3 ; rðbÞ4 Þ ∪ ðrðLÞ4 ;∞Þ ðrðLÞ1 ; rðbÞ2 Þ ∪ ðrðbÞ3 ; rphÞ þ
13 ðrðLÞ2 ;∞Þ ðrðLÞ1 ; rphÞ þ

FIG. 1. Typical behavior of L2 for area 9 (left) and area 11 (right) of the Table I and Fig. 2 in case of monomial coupling (17).

There is very fast growth of L2 and very small size of the SCO regions near the singularity. For case 9: rðbÞ1 − rs ≃ 2 × 10−9;

for case 11: rðbÞ2 − rðLÞ1 ≃ 0.0001.
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For n ¼ 1, there is a critical value κcr ≈ 0.33 such that

for κ < κcr ∃ rðbÞ1 such that L̃2ðrÞ > 0 decreases for r ∈
ðrph; rðbÞ1 Þ corresponding to UCO region near the center,

and increases for r > rðbÞ1 (SCO). Here rðbÞ1 is the point of
minimum of L̃2; this minimum decreases as κ grows and

becomes negative after κ > κcr, when ∃ rðLÞ1 , rðLÞ2 such that

there is UCO region with radii r ∈ ðrph; rðLÞ1 Þ, NECO for

r ∈ ðrðLÞ1 ; rðLÞ2 Þ, and SCO for r > rðLÞ2 .
In the case γ ¼ 1=2, n ¼ 2, we have an analogous

situation; the critical κcr can be found from (19).

B. Exponential coupling

Here we consider an exponential type of the
coupling, inspired by considerations from [27,29] in the
form of

ψðϕÞ ¼ eκϕ
n
; ξ ¼ eκϕ

n − 1; n ¼ 1; 2;…; ð20Þ

now ψðϕÞ > 0 for all values of ϕ and κ ∈ ð−∞;∞Þ. Note
that unlike Sec. III A, the sign of Q is significant for odd n,
however, in this case instead of considering negativeQ one
can change κ → −κ; therefore, we always assume Q > 0
and correspondingly ϕ > 0.
We have from (10)

L̃2 ¼ rM
ð1 − rs=rÞ1−γ
1 − rph=r

�
1 −

κn
μ
ϕn−1

�
e2κϕ

n
: ð21Þ

For κ < 0 we always have L̃2 > 0 for r > rph, if γ ∈
ð1=2; 1Þ and NECO for rs < r < rph; and L̃

2 > 0; ∀ r > rs
if γ ∈ ð0; 1=2Þ.

For n > 1 and κ > 0, the root of equation L̃2 ¼ 0 can be
written as

rðLÞ ¼ 1

1− e−ξ
; ξ¼ 2

�
γ

κn

�
1=ðn−1Þ� 1ffiffiffiffiffiffiffiffiffiffiffiffi

1− γ2
p �

n=ðn−1Þ
> 0:

These roots are always uniquely defined, no appearance/
disappearance of roots occurs. Therefore, there are no
bifurcation curves of type (a) [see (15)].
Further information on COD obtained numerically is

represented in Figs. 3, 4 and Table II. The latter contains
one more column indicating the possible sign of κ.
In case of n ¼ 1 a detailed analytic treatment is possible.

There is an obvious bifurcation curve

κb;0 ¼ μ ¼ γ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
;

that separates regions in the γ − κ plane:
(i) For κ < μ, γ ∈ ð0; 1=2Þ we always have

L̃2 > 0; ∀ r > rs.
(ii) For γ ∈ ð1=2; 1Þ we have L̃2 > 0 (UCO or SCO) for

r > rph and NECO for rs < r < rph.
(iii) There is a reverse situation for κ > μ. In particular,

there is no circular orbits at all for γ ∈ ð0; 1=2Þ; in
this case the repulsion of particles from the center
due to SF overcomes usual gravitational attraction.
For γ ∈ ð1=2; 1Þ we have L̃2 > 0 for r < rph. There

is SCO for r ∈ ðrs; rðbÞ1 Þ, UCO for r ∈ ðrðbÞ1 ; rphÞ and
NECO for r > rph. The situations with NECO for
large r are obviously unphysical.

(iv) From the conditions (9), (11) we obtain analytic
expression for two boundary radii

FIG. 2. Possible COD cases for the coupling (17). Left panel: n ¼ 1; Right panel: n ¼ 2. The dashed vertical lines correspond to
critical values of γc0 ¼ 1=2 and γc1 ¼ 1=

ffiffiffi
5

p
. The rectangles in the left panel represent enlarged elements, shown by the arrows.
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rðbÞ1;2 ¼ γ−1

"
1þ 3γþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− γ2

q
κ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ð5− κ2Þþ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1− γ2

q
γκþ κ2− 1

r #
: ð22Þ

These roots disappear on the type (b) bifurcation
curve [see (16)] with branches

κ1;2 ¼
γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γ2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p ¼ μ� 1; γ <
1

2
: ð23Þ

FIG. 3. Possible COD cases for (20), κ > 0. Left panel: n ¼ 2; Right panel: n ¼ 4. The dashed vertical lines as in Fig. 2.

FIG. 4. Possible COD cases for (20), κ < 0. Left panel: n ¼ 2; Right panel: n ¼ 4. The dashed vertical lines as in Fig. 2.

TABLE II. Possible SCO and UCO regions for the exponential coupling (20) in correspondence with different
areas of Figs. 3, 4.

N SCO UCO signðκÞ signðγ − 0.5Þ
1 ðrðbÞ1 ;∞Þ ðrph; rðbÞ1 Þ þ=− þ
2 ðrs;∞Þ � � � þ=− −
3 ðrs; rðbÞ1 Þ ∪ ðrðbÞ2 ;∞Þ ðrðbÞ2 ; rðbÞ3 Þ þ=− −
4 ðrs; rðLÞ1 Þ ∪ ðrðbÞ2 ;∞Þ ðrph; rðbÞ2 Þ þ þ
5 ðrs; rðbÞ1 Þ ∪ ðrðLÞ2 ; rðbÞ3 Þ ∪ ðrðbÞ4 ;∞Þ ðrðbÞ1 ; rphÞ ∪ ðrðbÞ3 ; rðbÞ4 Þ þ þ
6 ðrs; rðbÞ1 Þ ∪ ðrðLÞ2 ;∞Þ ðrðbÞ1 ; rphÞ þ þ
7 ðrðLÞ1 ; rðbÞ2 Þ ∪ ðrðbÞ3 ;∞Þ ðrðbÞ2 ; rðbÞ3 Þ þ −
8 ðrðLÞ1 ;∞Þ � � � þ −
9 ðrðbÞ1 ; rðbÞ2 Þ ∪ ðrðbÞ3 ;∞Þ ðrph; rðbÞ1 Þ ∪ ðrðbÞ2 ; rðbÞ3 Þ − −
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If we include into consideration the negative γ and κ,
these branches form the closed curve in the γ − κ
plane, which cross the γ–axis at γ ¼ �1=

ffiffiffi
5

p
.

IV. DISCUSSION

We have shown that introduction of the coupling of
particles with SF can essentially change the SCO distribution
around thenaked singularity describedby theF/JNWsolution
and creates a wealth of new types. In particular, COD with
three SCO regions appear in case of the nontrivial coupling,
which are absent in case of F/JNW. Namely, in case the
geodesic motion (κ ¼ 0), when the test particles move along
geodesics in the F/JNW metric, we have only one case of
disjoint SCO regions. In case of the monomial coupling (17),
we found areas in the γ − κ plane corresponding to three SCO
regions (see lines 8, 9 and 11) of Table I), which are separated
by UCO/NECO rings. In case of the exponential coupling
analogous case corresponds to line 5 of Table II.
Let us briefly discuss possible applications of the

obtained results to astrophysical objects.
The relation of the SCOdistributions to the accretion disks

around compact objects is straightforward in the Page-Thorn
model [31].Moreover, one can expect thatmain signatures of
the SCO rings, separated by the instability regions,will retain
their relevance inmore complex models of accretion disks as
well. For example, the dark spot at the center of an accretion
disk around a black hole is ultimately associated with the
NECO and UCO regions, although the underlying physical
processes in the disk can be very complex. Thus, if the
configurations with SF really exist, then the disconnected
structure of the SCO distributions may be an important
feature that can be related to the observational properties of
the accretion discs in astrophysical systems.
However, the occurrence of the most interesting COD

structures require a fine tuning, because they occupy rather
small areas in the γ − κ plane. Also, it is evident that the
existence of such fine details is possible in the region of
strong gravitational field that is not far from the singularity,
where the “unusual” annular structures are typically very
small and they might be difficult to observe.
Are there restrictions of the weak-field gravitational

experiments in connection with the above results? The
Post-Newtonian approximation of the metric (13) in the
isotropic coordinates does not involve the scalar chargeQ, so
the PPN-parameters of F/JNWsolution are the same as in the
Schwarzschild case [32]. Therefore, if there is no interaction
of particleswithSF, then in the casewhen thevalues ofM and
Q are of the same order, the latter practically is not restricted
by the Solar system gravitational experiments.

The situation changes, if the interaction is switched on.
The post-Newtonian analysis can be easily carried out
thanks to the fact that the Eq. (2) can be considered as
the geodesics in the space-time with the conformal metric
g̃μν ¼ ψ2gμν (ψ > 0). In the cases described by (17) and
(20), for jξj ≪ 1, we have ξ ∼ κjϕjn ∼ κðjQj=rÞn.
For both models (17) and (20), the constant κ should be

considered universal. Then, if n ¼ 1 in the case of (17) or
n ¼ 1, 2 in the case of (20), for κ ∼ 1 the Solar system
experiments put rather strong restrictions on the scalar
charge of the system. Otherwise, one must consider κ ≪ 1
and the properties of SCO distributions will be essentially
the same as for κ ¼ 0, even if Q is considerable. There
seems to be nothing unusual about the images of accretion
disks around M87* and SgrA* provided by the Event
Horizon Telescope (EHT) team [33,34]. Therefore, it may
seem that the case of significant Q in these systems with
κ ∼ 1 can be excluded. However, it should be kept in mind
that the current resolution of EHT may be insufficient to
resolve the discussed above (putative) fine structure of the
accretion discs (cf. [35]). Also, the absence of such a
structures in M87* and SgrA* does not mean that they
cannot be present in other objects.
For larger n and κ ∼ 1, the scalar charge does not to

contribute into the post-Newtonian orders and therefore, to
the PPN-parameters; then the Solar system experiments
do not restrict Q and κ. In this case we have a sufficient
freedom to chose Q and κ.
Although F/JNW is a very special solution dealing with

massless linear SF, one can suppose that situation with
several nonconnected SCO regions represents more general
case. For example, it was pointed out in [24] that the
circular orbits for static spherically symmetric configura-
tions with the SF potential ∼ϕ2p, p > 2, have much in
common with the F/JNW case. We expect that the appear-
ance of new COD types after switching on the coupling of
particles with SF occurs in this case as well.
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